blob: 1760483b247e60a17f6b20e6933b83ecab392237 [file] [log] [blame]
/*
* Copyright (c) 2015, The Linux Foundation. All rights reserved.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 and
* only version 2 as published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*/
#include <linux/platform_device.h>
#include "dsi_phy.h"
#define S_DIV_ROUND_UP(n, d) \
(((n) >= 0) ? (((n) + (d) - 1) / (d)) : (((n) - (d) + 1) / (d)))
static inline s32 linear_inter(s32 tmax, s32 tmin, s32 percent,
s32 min_result, bool even)
{
s32 v;
v = (tmax - tmin) * percent;
v = S_DIV_ROUND_UP(v, 100) + tmin;
if (even && (v & 0x1))
return max_t(s32, min_result, v - 1);
else
return max_t(s32, min_result, v);
}
static void dsi_dphy_timing_calc_clk_zero(struct msm_dsi_dphy_timing *timing,
s32 ui, s32 coeff, s32 pcnt)
{
s32 tmax, tmin, clk_z;
s32 temp;
/* reset */
temp = 300 * coeff - ((timing->clk_prepare >> 1) + 1) * 2 * ui;
tmin = S_DIV_ROUND_UP(temp, ui) - 2;
if (tmin > 255) {
tmax = 511;
clk_z = linear_inter(2 * tmin, tmin, pcnt, 0, true);
} else {
tmax = 255;
clk_z = linear_inter(tmax, tmin, pcnt, 0, true);
}
/* adjust */
temp = (timing->hs_rqst + timing->clk_prepare + clk_z) & 0x7;
timing->clk_zero = clk_z + 8 - temp;
}
int msm_dsi_dphy_timing_calc(struct msm_dsi_dphy_timing *timing,
struct msm_dsi_phy_clk_request *clk_req)
{
const unsigned long bit_rate = clk_req->bitclk_rate;
const unsigned long esc_rate = clk_req->escclk_rate;
s32 ui, lpx;
s32 tmax, tmin;
s32 pcnt0 = 10;
s32 pcnt1 = (bit_rate > 1200000000) ? 15 : 10;
s32 pcnt2 = 10;
s32 pcnt3 = (bit_rate > 180000000) ? 10 : 40;
s32 coeff = 1000; /* Precision, should avoid overflow */
s32 temp;
if (!bit_rate || !esc_rate)
return -EINVAL;
ui = mult_frac(NSEC_PER_MSEC, coeff, bit_rate / 1000);
lpx = mult_frac(NSEC_PER_MSEC, coeff, esc_rate / 1000);
tmax = S_DIV_ROUND_UP(95 * coeff, ui) - 2;
tmin = S_DIV_ROUND_UP(38 * coeff, ui) - 2;
timing->clk_prepare = linear_inter(tmax, tmin, pcnt0, 0, true);
temp = lpx / ui;
if (temp & 0x1)
timing->hs_rqst = temp;
else
timing->hs_rqst = max_t(s32, 0, temp - 2);
/* Calculate clk_zero after clk_prepare and hs_rqst */
dsi_dphy_timing_calc_clk_zero(timing, ui, coeff, pcnt2);
temp = 105 * coeff + 12 * ui - 20 * coeff;
tmax = S_DIV_ROUND_UP(temp, ui) - 2;
tmin = S_DIV_ROUND_UP(60 * coeff, ui) - 2;
timing->clk_trail = linear_inter(tmax, tmin, pcnt3, 0, true);
temp = 85 * coeff + 6 * ui;
tmax = S_DIV_ROUND_UP(temp, ui) - 2;
temp = 40 * coeff + 4 * ui;
tmin = S_DIV_ROUND_UP(temp, ui) - 2;
timing->hs_prepare = linear_inter(tmax, tmin, pcnt1, 0, true);
tmax = 255;
temp = ((timing->hs_prepare >> 1) + 1) * 2 * ui + 2 * ui;
temp = 145 * coeff + 10 * ui - temp;
tmin = S_DIV_ROUND_UP(temp, ui) - 2;
timing->hs_zero = linear_inter(tmax, tmin, pcnt2, 24, true);
temp = 105 * coeff + 12 * ui - 20 * coeff;
tmax = S_DIV_ROUND_UP(temp, ui) - 2;
temp = 60 * coeff + 4 * ui;
tmin = DIV_ROUND_UP(temp, ui) - 2;
timing->hs_trail = linear_inter(tmax, tmin, pcnt3, 0, true);
tmax = 255;
tmin = S_DIV_ROUND_UP(100 * coeff, ui) - 2;
timing->hs_exit = linear_inter(tmax, tmin, pcnt2, 0, true);
tmax = 63;
temp = ((timing->hs_exit >> 1) + 1) * 2 * ui;
temp = 60 * coeff + 52 * ui - 24 * ui - temp;
tmin = S_DIV_ROUND_UP(temp, 8 * ui) - 1;
timing->shared_timings.clk_post = linear_inter(tmax, tmin, pcnt2, 0,
false);
tmax = 63;
temp = ((timing->clk_prepare >> 1) + 1) * 2 * ui;
temp += ((timing->clk_zero >> 1) + 1) * 2 * ui;
temp += 8 * ui + lpx;
tmin = S_DIV_ROUND_UP(temp, 8 * ui) - 1;
if (tmin > tmax) {
temp = linear_inter(2 * tmax, tmin, pcnt2, 0, false);
timing->shared_timings.clk_pre = temp >> 1;
timing->shared_timings.clk_pre_inc_by_2 = true;
} else {
timing->shared_timings.clk_pre =
linear_inter(tmax, tmin, pcnt2, 0, false);
timing->shared_timings.clk_pre_inc_by_2 = false;
}
timing->ta_go = 3;
timing->ta_sure = 0;
timing->ta_get = 4;
DBG("PHY timings: %d, %d, %d, %d, %d, %d, %d, %d, %d, %d, %d",
timing->shared_timings.clk_pre, timing->shared_timings.clk_post,
timing->shared_timings.clk_pre_inc_by_2, timing->clk_zero,
timing->clk_trail, timing->clk_prepare, timing->hs_exit,
timing->hs_zero, timing->hs_prepare, timing->hs_trail,
timing->hs_rqst);
return 0;
}
int msm_dsi_dphy_timing_calc_v2(struct msm_dsi_dphy_timing *timing,
struct msm_dsi_phy_clk_request *clk_req)
{
const unsigned long bit_rate = clk_req->bitclk_rate;
const unsigned long esc_rate = clk_req->escclk_rate;
s32 ui, ui_x8, lpx;
s32 tmax, tmin;
s32 pcnt0 = 50;
s32 pcnt1 = 50;
s32 pcnt2 = 10;
s32 pcnt3 = 30;
s32 pcnt4 = 10;
s32 pcnt5 = 2;
s32 coeff = 1000; /* Precision, should avoid overflow */
s32 hb_en, hb_en_ckln, pd_ckln, pd;
s32 val, val_ckln;
s32 temp;
if (!bit_rate || !esc_rate)
return -EINVAL;
timing->hs_halfbyte_en = 0;
hb_en = 0;
timing->hs_halfbyte_en_ckln = 0;
hb_en_ckln = 0;
timing->hs_prep_dly_ckln = (bit_rate > 100000000) ? 0 : 3;
pd_ckln = timing->hs_prep_dly_ckln;
timing->hs_prep_dly = (bit_rate > 120000000) ? 0 : 1;
pd = timing->hs_prep_dly;
val = (hb_en << 2) + (pd << 1);
val_ckln = (hb_en_ckln << 2) + (pd_ckln << 1);
ui = mult_frac(NSEC_PER_MSEC, coeff, bit_rate / 1000);
ui_x8 = ui << 3;
lpx = mult_frac(NSEC_PER_MSEC, coeff, esc_rate / 1000);
temp = S_DIV_ROUND_UP(38 * coeff - val_ckln * ui, ui_x8);
tmin = max_t(s32, temp, 0);
temp = (95 * coeff - val_ckln * ui) / ui_x8;
tmax = max_t(s32, temp, 0);
timing->clk_prepare = linear_inter(tmax, tmin, pcnt0, 0, false);
temp = 300 * coeff - ((timing->clk_prepare << 3) + val_ckln) * ui;
tmin = S_DIV_ROUND_UP(temp - 11 * ui, ui_x8) - 3;
tmax = (tmin > 255) ? 511 : 255;
timing->clk_zero = linear_inter(tmax, tmin, pcnt5, 0, false);
tmin = DIV_ROUND_UP(60 * coeff + 3 * ui, ui_x8);
temp = 105 * coeff + 12 * ui - 20 * coeff;
tmax = (temp + 3 * ui) / ui_x8;
timing->clk_trail = linear_inter(tmax, tmin, pcnt3, 0, false);
temp = S_DIV_ROUND_UP(40 * coeff + 4 * ui - val * ui, ui_x8);
tmin = max_t(s32, temp, 0);
temp = (85 * coeff + 6 * ui - val * ui) / ui_x8;
tmax = max_t(s32, temp, 0);
timing->hs_prepare = linear_inter(tmax, tmin, pcnt1, 0, false);
temp = 145 * coeff + 10 * ui - ((timing->hs_prepare << 3) + val) * ui;
tmin = S_DIV_ROUND_UP(temp - 11 * ui, ui_x8) - 3;
tmax = 255;
timing->hs_zero = linear_inter(tmax, tmin, pcnt4, 0, false);
tmin = DIV_ROUND_UP(60 * coeff + 4 * ui + 3 * ui, ui_x8);
temp = 105 * coeff + 12 * ui - 20 * coeff;
tmax = (temp + 3 * ui) / ui_x8;
timing->hs_trail = linear_inter(tmax, tmin, pcnt3, 0, false);
temp = 50 * coeff + ((hb_en << 2) - 8) * ui;
timing->hs_rqst = S_DIV_ROUND_UP(temp, ui_x8);
tmin = DIV_ROUND_UP(100 * coeff, ui_x8) - 1;
tmax = 255;
timing->hs_exit = linear_inter(tmax, tmin, pcnt2, 0, false);
temp = 50 * coeff + ((hb_en_ckln << 2) - 8) * ui;
timing->hs_rqst_ckln = S_DIV_ROUND_UP(temp, ui_x8);
temp = 60 * coeff + 52 * ui - 43 * ui;
tmin = DIV_ROUND_UP(temp, ui_x8) - 1;
tmax = 63;
timing->shared_timings.clk_post =
linear_inter(tmax, tmin, pcnt2, 0, false);
temp = 8 * ui + ((timing->clk_prepare << 3) + val_ckln) * ui;
temp += (((timing->clk_zero + 3) << 3) + 11 - (pd_ckln << 1)) * ui;
temp += hb_en_ckln ? (((timing->hs_rqst_ckln << 3) + 4) * ui) :
(((timing->hs_rqst_ckln << 3) + 8) * ui);
tmin = S_DIV_ROUND_UP(temp, ui_x8) - 1;
tmax = 63;
if (tmin > tmax) {
temp = linear_inter(tmax << 1, tmin, pcnt2, 0, false);
timing->shared_timings.clk_pre = temp >> 1;
timing->shared_timings.clk_pre_inc_by_2 = 1;
} else {
timing->shared_timings.clk_pre =
linear_inter(tmax, tmin, pcnt2, 0, false);
timing->shared_timings.clk_pre_inc_by_2 = 0;
}
timing->ta_go = 3;
timing->ta_sure = 0;
timing->ta_get = 4;
DBG("%d, %d, %d, %d, %d, %d, %d, %d, %d, %d, %d, %d, %d, %d, %d, %d",
timing->shared_timings.clk_pre, timing->shared_timings.clk_post,
timing->shared_timings.clk_pre_inc_by_2, timing->clk_zero,
timing->clk_trail, timing->clk_prepare, timing->hs_exit,
timing->hs_zero, timing->hs_prepare, timing->hs_trail,
timing->hs_rqst, timing->hs_rqst_ckln, timing->hs_halfbyte_en,
timing->hs_halfbyte_en_ckln, timing->hs_prep_dly,
timing->hs_prep_dly_ckln);
return 0;
}
int msm_dsi_dphy_timing_calc_v3(struct msm_dsi_dphy_timing *timing,
struct msm_dsi_phy_clk_request *clk_req)
{
const unsigned long bit_rate = clk_req->bitclk_rate;
const unsigned long esc_rate = clk_req->escclk_rate;
s32 ui, ui_x8, lpx;
s32 tmax, tmin;
s32 pcnt0 = 50;
s32 pcnt1 = 50;
s32 pcnt2 = 10;
s32 pcnt3 = 30;
s32 pcnt4 = 10;
s32 pcnt5 = 2;
s32 coeff = 1000; /* Precision, should avoid overflow */
s32 hb_en, hb_en_ckln;
s32 temp;
if (!bit_rate || !esc_rate)
return -EINVAL;
timing->hs_halfbyte_en = 0;
hb_en = 0;
timing->hs_halfbyte_en_ckln = 0;
hb_en_ckln = 0;
ui = mult_frac(NSEC_PER_MSEC, coeff, bit_rate / 1000);
ui_x8 = ui << 3;
lpx = mult_frac(NSEC_PER_MSEC, coeff, esc_rate / 1000);
temp = S_DIV_ROUND_UP(38 * coeff, ui_x8);
tmin = max_t(s32, temp, 0);
temp = (95 * coeff) / ui_x8;
tmax = max_t(s32, temp, 0);
timing->clk_prepare = linear_inter(tmax, tmin, pcnt0, 0, false);
temp = 300 * coeff - (timing->clk_prepare << 3) * ui;
tmin = S_DIV_ROUND_UP(temp, ui_x8) - 1;
tmax = (tmin > 255) ? 511 : 255;
timing->clk_zero = linear_inter(tmax, tmin, pcnt5, 0, false);
tmin = DIV_ROUND_UP(60 * coeff + 3 * ui, ui_x8);
temp = 105 * coeff + 12 * ui - 20 * coeff;
tmax = (temp + 3 * ui) / ui_x8;
timing->clk_trail = linear_inter(tmax, tmin, pcnt3, 0, false);
temp = S_DIV_ROUND_UP(40 * coeff + 4 * ui, ui_x8);
tmin = max_t(s32, temp, 0);
temp = (85 * coeff + 6 * ui) / ui_x8;
tmax = max_t(s32, temp, 0);
timing->hs_prepare = linear_inter(tmax, tmin, pcnt1, 0, false);
temp = 145 * coeff + 10 * ui - (timing->hs_prepare << 3) * ui;
tmin = S_DIV_ROUND_UP(temp, ui_x8) - 1;
tmax = 255;
timing->hs_zero = linear_inter(tmax, tmin, pcnt4, 0, false);
tmin = DIV_ROUND_UP(60 * coeff + 4 * ui, ui_x8) - 1;
temp = 105 * coeff + 12 * ui - 20 * coeff;
tmax = (temp / ui_x8) - 1;
timing->hs_trail = linear_inter(tmax, tmin, pcnt3, 0, false);
temp = 50 * coeff + ((hb_en << 2) - 8) * ui;
timing->hs_rqst = S_DIV_ROUND_UP(temp, ui_x8);
tmin = DIV_ROUND_UP(100 * coeff, ui_x8) - 1;
tmax = 255;
timing->hs_exit = linear_inter(tmax, tmin, pcnt2, 0, false);
temp = 50 * coeff + ((hb_en_ckln << 2) - 8) * ui;
timing->hs_rqst_ckln = S_DIV_ROUND_UP(temp, ui_x8);
temp = 60 * coeff + 52 * ui - 43 * ui;
tmin = DIV_ROUND_UP(temp, ui_x8) - 1;
tmax = 63;
timing->shared_timings.clk_post =
linear_inter(tmax, tmin, pcnt2, 0, false);
temp = 8 * ui + (timing->clk_prepare << 3) * ui;
temp += (((timing->clk_zero + 3) << 3) + 11) * ui;
temp += hb_en_ckln ? (((timing->hs_rqst_ckln << 3) + 4) * ui) :
(((timing->hs_rqst_ckln << 3) + 8) * ui);
tmin = S_DIV_ROUND_UP(temp, ui_x8) - 1;
tmax = 63;
if (tmin > tmax) {
temp = linear_inter(tmax << 1, tmin, pcnt2, 0, false);
timing->shared_timings.clk_pre = temp >> 1;
timing->shared_timings.clk_pre_inc_by_2 = 1;
} else {
timing->shared_timings.clk_pre =
linear_inter(tmax, tmin, pcnt2, 0, false);
timing->shared_timings.clk_pre_inc_by_2 = 0;
}
timing->ta_go = 3;
timing->ta_sure = 0;
timing->ta_get = 4;
DBG("%d, %d, %d, %d, %d, %d, %d, %d, %d, %d, %d, %d, %d, %d, %d, %d",
timing->shared_timings.clk_pre, timing->shared_timings.clk_post,
timing->shared_timings.clk_pre_inc_by_2, timing->clk_zero,
timing->clk_trail, timing->clk_prepare, timing->hs_exit,
timing->hs_zero, timing->hs_prepare, timing->hs_trail,
timing->hs_rqst, timing->hs_rqst_ckln, timing->hs_halfbyte_en,
timing->hs_halfbyte_en_ckln, timing->hs_prep_dly,
timing->hs_prep_dly_ckln);
return 0;
}
void msm_dsi_phy_set_src_pll(struct msm_dsi_phy *phy, int pll_id, u32 reg,
u32 bit_mask)
{
int phy_id = phy->id;
u32 val;
if ((phy_id >= DSI_MAX) || (pll_id >= DSI_MAX))
return;
val = dsi_phy_read(phy->base + reg);
if (phy->cfg->src_pll_truthtable[phy_id][pll_id])
dsi_phy_write(phy->base + reg, val | bit_mask);
else
dsi_phy_write(phy->base + reg, val & (~bit_mask));
}
static int dsi_phy_regulator_init(struct msm_dsi_phy *phy)
{
struct regulator_bulk_data *s = phy->supplies;
const struct dsi_reg_entry *regs = phy->cfg->reg_cfg.regs;
struct device *dev = &phy->pdev->dev;
int num = phy->cfg->reg_cfg.num;
int i, ret;
for (i = 0; i < num; i++)
s[i].supply = regs[i].name;
ret = devm_regulator_bulk_get(dev, num, s);
if (ret < 0) {
DRM_DEV_ERROR(dev, "%s: failed to init regulator, ret=%d\n",
__func__, ret);
return ret;
}
return 0;
}
static void dsi_phy_regulator_disable(struct msm_dsi_phy *phy)
{
struct regulator_bulk_data *s = phy->supplies;
const struct dsi_reg_entry *regs = phy->cfg->reg_cfg.regs;
int num = phy->cfg->reg_cfg.num;
int i;
DBG("");
for (i = num - 1; i >= 0; i--)
if (regs[i].disable_load >= 0)
regulator_set_load(s[i].consumer, regs[i].disable_load);
regulator_bulk_disable(num, s);
}
static int dsi_phy_regulator_enable(struct msm_dsi_phy *phy)
{
struct regulator_bulk_data *s = phy->supplies;
const struct dsi_reg_entry *regs = phy->cfg->reg_cfg.regs;
struct device *dev = &phy->pdev->dev;
int num = phy->cfg->reg_cfg.num;
int ret, i;
DBG("");
for (i = 0; i < num; i++) {
if (regs[i].enable_load >= 0) {
ret = regulator_set_load(s[i].consumer,
regs[i].enable_load);
if (ret < 0) {
DRM_DEV_ERROR(dev,
"regulator %d set op mode failed, %d\n",
i, ret);
goto fail;
}
}
}
ret = regulator_bulk_enable(num, s);
if (ret < 0) {
DRM_DEV_ERROR(dev, "regulator enable failed, %d\n", ret);
goto fail;
}
return 0;
fail:
for (i--; i >= 0; i--)
regulator_set_load(s[i].consumer, regs[i].disable_load);
return ret;
}
static int dsi_phy_enable_resource(struct msm_dsi_phy *phy)
{
struct device *dev = &phy->pdev->dev;
int ret;
pm_runtime_get_sync(dev);
ret = clk_prepare_enable(phy->ahb_clk);
if (ret) {
DRM_DEV_ERROR(dev, "%s: can't enable ahb clk, %d\n", __func__, ret);
pm_runtime_put_sync(dev);
}
return ret;
}
static void dsi_phy_disable_resource(struct msm_dsi_phy *phy)
{
clk_disable_unprepare(phy->ahb_clk);
pm_runtime_put_autosuspend(&phy->pdev->dev);
}
static const struct of_device_id dsi_phy_dt_match[] = {
#ifdef CONFIG_DRM_MSM_DSI_28NM_PHY
{ .compatible = "qcom,dsi-phy-28nm-hpm",
.data = &dsi_phy_28nm_hpm_cfgs },
{ .compatible = "qcom,dsi-phy-28nm-lp",
.data = &dsi_phy_28nm_lp_cfgs },
#endif
#ifdef CONFIG_DRM_MSM_DSI_20NM_PHY
{ .compatible = "qcom,dsi-phy-20nm",
.data = &dsi_phy_20nm_cfgs },
#endif
#ifdef CONFIG_DRM_MSM_DSI_28NM_8960_PHY
{ .compatible = "qcom,dsi-phy-28nm-8960",
.data = &dsi_phy_28nm_8960_cfgs },
#endif
#ifdef CONFIG_DRM_MSM_DSI_14NM_PHY
{ .compatible = "qcom,dsi-phy-14nm",
.data = &dsi_phy_14nm_cfgs },
#endif
#ifdef CONFIG_DRM_MSM_DSI_10NM_PHY
{ .compatible = "qcom,dsi-phy-10nm",
.data = &dsi_phy_10nm_cfgs },
#endif
{}
};
/*
* Currently, we only support one SoC for each PHY type. When we have multiple
* SoCs for the same PHY, we can try to make the index searching a bit more
* clever.
*/
static int dsi_phy_get_id(struct msm_dsi_phy *phy)
{
struct platform_device *pdev = phy->pdev;
const struct msm_dsi_phy_cfg *cfg = phy->cfg;
struct resource *res;
int i;
res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "dsi_phy");
if (!res)
return -EINVAL;
for (i = 0; i < cfg->num_dsi_phy; i++) {
if (cfg->io_start[i] == res->start)
return i;
}
return -EINVAL;
}
int msm_dsi_phy_init_common(struct msm_dsi_phy *phy)
{
struct platform_device *pdev = phy->pdev;
int ret = 0;
phy->reg_base = msm_ioremap(pdev, "dsi_phy_regulator",
"DSI_PHY_REG");
if (IS_ERR(phy->reg_base)) {
DRM_DEV_ERROR(&pdev->dev, "%s: failed to map phy regulator base\n",
__func__);
ret = -ENOMEM;
goto fail;
}
fail:
return ret;
}
static int dsi_phy_driver_probe(struct platform_device *pdev)
{
struct msm_dsi_phy *phy;
struct device *dev = &pdev->dev;
const struct of_device_id *match;
int ret;
phy = devm_kzalloc(dev, sizeof(*phy), GFP_KERNEL);
if (!phy)
return -ENOMEM;
match = of_match_node(dsi_phy_dt_match, dev->of_node);
if (!match)
return -ENODEV;
phy->cfg = match->data;
phy->pdev = pdev;
phy->id = dsi_phy_get_id(phy);
if (phy->id < 0) {
ret = phy->id;
DRM_DEV_ERROR(dev, "%s: couldn't identify PHY index, %d\n",
__func__, ret);
goto fail;
}
phy->regulator_ldo_mode = of_property_read_bool(dev->of_node,
"qcom,dsi-phy-regulator-ldo-mode");
phy->base = msm_ioremap(pdev, "dsi_phy", "DSI_PHY");
if (IS_ERR(phy->base)) {
DRM_DEV_ERROR(dev, "%s: failed to map phy base\n", __func__);
ret = -ENOMEM;
goto fail;
}
ret = dsi_phy_regulator_init(phy);
if (ret) {
DRM_DEV_ERROR(dev, "%s: failed to init regulator\n", __func__);
goto fail;
}
phy->ahb_clk = msm_clk_get(pdev, "iface");
if (IS_ERR(phy->ahb_clk)) {
DRM_DEV_ERROR(dev, "%s: Unable to get ahb clk\n", __func__);
ret = PTR_ERR(phy->ahb_clk);
goto fail;
}
if (phy->cfg->ops.init) {
ret = phy->cfg->ops.init(phy);
if (ret)
goto fail;
}
/* PLL init will call into clk_register which requires
* register access, so we need to enable power and ahb clock.
*/
ret = dsi_phy_enable_resource(phy);
if (ret)
goto fail;
phy->pll = msm_dsi_pll_init(pdev, phy->cfg->type, phy->id);
if (IS_ERR_OR_NULL(phy->pll))
DRM_DEV_INFO(dev,
"%s: pll init failed: %ld, need separate pll clk driver\n",
__func__, PTR_ERR(phy->pll));
dsi_phy_disable_resource(phy);
platform_set_drvdata(pdev, phy);
return 0;
fail:
return ret;
}
static int dsi_phy_driver_remove(struct platform_device *pdev)
{
struct msm_dsi_phy *phy = platform_get_drvdata(pdev);
if (phy && phy->pll) {
msm_dsi_pll_destroy(phy->pll);
phy->pll = NULL;
}
platform_set_drvdata(pdev, NULL);
return 0;
}
static struct platform_driver dsi_phy_platform_driver = {
.probe = dsi_phy_driver_probe,
.remove = dsi_phy_driver_remove,
.driver = {
.name = "msm_dsi_phy",
.of_match_table = dsi_phy_dt_match,
},
};
void __init msm_dsi_phy_driver_register(void)
{
platform_driver_register(&dsi_phy_platform_driver);
}
void __exit msm_dsi_phy_driver_unregister(void)
{
platform_driver_unregister(&dsi_phy_platform_driver);
}
int msm_dsi_phy_enable(struct msm_dsi_phy *phy, int src_pll_id,
struct msm_dsi_phy_clk_request *clk_req)
{
struct device *dev = &phy->pdev->dev;
int ret;
if (!phy || !phy->cfg->ops.enable)
return -EINVAL;
ret = dsi_phy_enable_resource(phy);
if (ret) {
DRM_DEV_ERROR(dev, "%s: resource enable failed, %d\n",
__func__, ret);
goto res_en_fail;
}
ret = dsi_phy_regulator_enable(phy);
if (ret) {
DRM_DEV_ERROR(dev, "%s: regulator enable failed, %d\n",
__func__, ret);
goto reg_en_fail;
}
ret = phy->cfg->ops.enable(phy, src_pll_id, clk_req);
if (ret) {
DRM_DEV_ERROR(dev, "%s: phy enable failed, %d\n", __func__, ret);
goto phy_en_fail;
}
/*
* Resetting DSI PHY silently changes its PLL registers to reset status,
* which will confuse clock driver and result in wrong output rate of
* link clocks. Restore PLL status if its PLL is being used as clock
* source.
*/
if (phy->usecase != MSM_DSI_PHY_SLAVE) {
ret = msm_dsi_pll_restore_state(phy->pll);
if (ret) {
DRM_DEV_ERROR(dev, "%s: failed to restore pll state, %d\n",
__func__, ret);
goto pll_restor_fail;
}
}
return 0;
pll_restor_fail:
if (phy->cfg->ops.disable)
phy->cfg->ops.disable(phy);
phy_en_fail:
dsi_phy_regulator_disable(phy);
reg_en_fail:
dsi_phy_disable_resource(phy);
res_en_fail:
return ret;
}
void msm_dsi_phy_disable(struct msm_dsi_phy *phy)
{
if (!phy || !phy->cfg->ops.disable)
return;
/* Save PLL status if it is a clock source */
if (phy->usecase != MSM_DSI_PHY_SLAVE)
msm_dsi_pll_save_state(phy->pll);
phy->cfg->ops.disable(phy);
dsi_phy_regulator_disable(phy);
dsi_phy_disable_resource(phy);
}
void msm_dsi_phy_get_shared_timings(struct msm_dsi_phy *phy,
struct msm_dsi_phy_shared_timings *shared_timings)
{
memcpy(shared_timings, &phy->timing.shared_timings,
sizeof(*shared_timings));
}
struct msm_dsi_pll *msm_dsi_phy_get_pll(struct msm_dsi_phy *phy)
{
if (!phy)
return NULL;
return phy->pll;
}
void msm_dsi_phy_set_usecase(struct msm_dsi_phy *phy,
enum msm_dsi_phy_usecase uc)
{
if (phy)
phy->usecase = uc;
}