blob: aabab6311043afbc4304de9c2c8db0bf08edc796 [file] [log] [blame]
/*
* SPDX-License-Identifier: GPL-2.0
* Copyright (c) 2018, The Linux Foundation
*/
#include <linux/clk.h>
#include <linux/clk-provider.h>
#include <linux/iopoll.h>
#include "dsi_pll.h"
#include "dsi.xml.h"
/*
* DSI PLL 10nm - clock diagram (eg: DSI0):
*
* dsi0_pll_out_div_clk dsi0_pll_bit_clk
* | |
* | |
* +---------+ | +----------+ | +----+
* dsi0vco_clk ---| out_div |--o--| divl_3_0 |--o--| /8 |-- dsi0_phy_pll_out_byteclk
* +---------+ | +----------+ | +----+
* | |
* | | dsi0_pll_by_2_bit_clk
* | | |
* | | +----+ | |\ dsi0_pclk_mux
* | |--| /2 |--o--| \ |
* | | +----+ | \ | +---------+
* | --------------| |--o--| div_7_4 |-- dsi0_phy_pll_out_dsiclk
* |------------------------------| / +---------+
* | +-----+ | /
* -----------| /4? |--o----------|/
* +-----+ | |
* | |dsiclk_sel
* |
* dsi0_pll_post_out_div_clk
*/
#define DSI_BYTE_PLL_CLK 0
#define DSI_PIXEL_PLL_CLK 1
#define NUM_PROVIDED_CLKS 2
#define VCO_REF_CLK_RATE 19200000
struct dsi_pll_regs {
u32 pll_prop_gain_rate;
u32 pll_lockdet_rate;
u32 decimal_div_start;
u32 frac_div_start_low;
u32 frac_div_start_mid;
u32 frac_div_start_high;
u32 pll_clock_inverters;
u32 ssc_stepsize_low;
u32 ssc_stepsize_high;
u32 ssc_div_per_low;
u32 ssc_div_per_high;
u32 ssc_adjper_low;
u32 ssc_adjper_high;
u32 ssc_control;
};
struct dsi_pll_config {
u32 ref_freq;
bool div_override;
u32 output_div;
bool ignore_frac;
bool disable_prescaler;
bool enable_ssc;
bool ssc_center;
u32 dec_bits;
u32 frac_bits;
u32 lock_timer;
u32 ssc_freq;
u32 ssc_offset;
u32 ssc_adj_per;
u32 thresh_cycles;
u32 refclk_cycles;
};
struct pll_10nm_cached_state {
unsigned long vco_rate;
u8 bit_clk_div;
u8 pix_clk_div;
u8 pll_out_div;
u8 pll_mux;
};
struct dsi_pll_10nm {
struct msm_dsi_pll base;
int id;
struct platform_device *pdev;
void __iomem *phy_cmn_mmio;
void __iomem *mmio;
u64 vco_ref_clk_rate;
u64 vco_current_rate;
/* protects REG_DSI_10nm_PHY_CMN_CLK_CFG0 register */
spinlock_t postdiv_lock;
int vco_delay;
struct dsi_pll_config pll_configuration;
struct dsi_pll_regs reg_setup;
/* private clocks: */
struct clk_hw *hws[NUM_DSI_CLOCKS_MAX];
u32 num_hws;
/* clock-provider: */
struct clk_hw_onecell_data *hw_data;
struct pll_10nm_cached_state cached_state;
enum msm_dsi_phy_usecase uc;
struct dsi_pll_10nm *slave;
};
#define to_pll_10nm(x) container_of(x, struct dsi_pll_10nm, base)
/*
* Global list of private DSI PLL struct pointers. We need this for Dual DSI
* mode, where the master PLL's clk_ops needs access the slave's private data
*/
static struct dsi_pll_10nm *pll_10nm_list[DSI_MAX];
static void dsi_pll_setup_config(struct dsi_pll_10nm *pll)
{
struct dsi_pll_config *config = &pll->pll_configuration;
config->ref_freq = pll->vco_ref_clk_rate;
config->output_div = 1;
config->dec_bits = 8;
config->frac_bits = 18;
config->lock_timer = 64;
config->ssc_freq = 31500;
config->ssc_offset = 5000;
config->ssc_adj_per = 2;
config->thresh_cycles = 32;
config->refclk_cycles = 256;
config->div_override = false;
config->ignore_frac = false;
config->disable_prescaler = false;
config->enable_ssc = false;
config->ssc_center = 0;
}
static void dsi_pll_calc_dec_frac(struct dsi_pll_10nm *pll)
{
struct dsi_pll_config *config = &pll->pll_configuration;
struct dsi_pll_regs *regs = &pll->reg_setup;
u64 fref = pll->vco_ref_clk_rate;
u64 pll_freq;
u64 divider;
u64 dec, dec_multiple;
u32 frac;
u64 multiplier;
pll_freq = pll->vco_current_rate;
if (config->disable_prescaler)
divider = fref;
else
divider = fref * 2;
multiplier = 1 << config->frac_bits;
dec_multiple = div_u64(pll_freq * multiplier, divider);
div_u64_rem(dec_multiple, multiplier, &frac);
dec = div_u64(dec_multiple, multiplier);
if (pll_freq <= 1900000000UL)
regs->pll_prop_gain_rate = 8;
else if (pll_freq <= 3000000000UL)
regs->pll_prop_gain_rate = 10;
else
regs->pll_prop_gain_rate = 12;
if (pll_freq < 1100000000UL)
regs->pll_clock_inverters = 8;
else
regs->pll_clock_inverters = 0;
regs->pll_lockdet_rate = config->lock_timer;
regs->decimal_div_start = dec;
regs->frac_div_start_low = (frac & 0xff);
regs->frac_div_start_mid = (frac & 0xff00) >> 8;
regs->frac_div_start_high = (frac & 0x30000) >> 16;
}
#define SSC_CENTER BIT(0)
#define SSC_EN BIT(1)
static void dsi_pll_calc_ssc(struct dsi_pll_10nm *pll)
{
struct dsi_pll_config *config = &pll->pll_configuration;
struct dsi_pll_regs *regs = &pll->reg_setup;
u32 ssc_per;
u32 ssc_mod;
u64 ssc_step_size;
u64 frac;
if (!config->enable_ssc) {
DBG("SSC not enabled\n");
return;
}
ssc_per = DIV_ROUND_CLOSEST(config->ref_freq, config->ssc_freq) / 2 - 1;
ssc_mod = (ssc_per + 1) % (config->ssc_adj_per + 1);
ssc_per -= ssc_mod;
frac = regs->frac_div_start_low |
(regs->frac_div_start_mid << 8) |
(regs->frac_div_start_high << 16);
ssc_step_size = regs->decimal_div_start;
ssc_step_size *= (1 << config->frac_bits);
ssc_step_size += frac;
ssc_step_size *= config->ssc_offset;
ssc_step_size *= (config->ssc_adj_per + 1);
ssc_step_size = div_u64(ssc_step_size, (ssc_per + 1));
ssc_step_size = DIV_ROUND_CLOSEST_ULL(ssc_step_size, 1000000);
regs->ssc_div_per_low = ssc_per & 0xFF;
regs->ssc_div_per_high = (ssc_per & 0xFF00) >> 8;
regs->ssc_stepsize_low = (u32)(ssc_step_size & 0xFF);
regs->ssc_stepsize_high = (u32)((ssc_step_size & 0xFF00) >> 8);
regs->ssc_adjper_low = config->ssc_adj_per & 0xFF;
regs->ssc_adjper_high = (config->ssc_adj_per & 0xFF00) >> 8;
regs->ssc_control = config->ssc_center ? SSC_CENTER : 0;
pr_debug("SCC: Dec:%d, frac:%llu, frac_bits:%d\n",
regs->decimal_div_start, frac, config->frac_bits);
pr_debug("SSC: div_per:0x%X, stepsize:0x%X, adjper:0x%X\n",
ssc_per, (u32)ssc_step_size, config->ssc_adj_per);
}
static void dsi_pll_ssc_commit(struct dsi_pll_10nm *pll)
{
void __iomem *base = pll->mmio;
struct dsi_pll_regs *regs = &pll->reg_setup;
if (pll->pll_configuration.enable_ssc) {
pr_debug("SSC is enabled\n");
pll_write(base + REG_DSI_10nm_PHY_PLL_SSC_STEPSIZE_LOW_1,
regs->ssc_stepsize_low);
pll_write(base + REG_DSI_10nm_PHY_PLL_SSC_STEPSIZE_HIGH_1,
regs->ssc_stepsize_high);
pll_write(base + REG_DSI_10nm_PHY_PLL_SSC_DIV_PER_LOW_1,
regs->ssc_div_per_low);
pll_write(base + REG_DSI_10nm_PHY_PLL_SSC_DIV_PER_HIGH_1,
regs->ssc_div_per_high);
pll_write(base + REG_DSI_10nm_PHY_PLL_SSC_DIV_ADJPER_LOW_1,
regs->ssc_adjper_low);
pll_write(base + REG_DSI_10nm_PHY_PLL_SSC_DIV_ADJPER_HIGH_1,
regs->ssc_adjper_high);
pll_write(base + REG_DSI_10nm_PHY_PLL_SSC_CONTROL,
SSC_EN | regs->ssc_control);
}
}
static void dsi_pll_config_hzindep_reg(struct dsi_pll_10nm *pll)
{
void __iomem *base = pll->mmio;
pll_write(base + REG_DSI_10nm_PHY_PLL_ANALOG_CONTROLS_ONE, 0x80);
pll_write(base + REG_DSI_10nm_PHY_PLL_ANALOG_CONTROLS_TWO, 0x03);
pll_write(base + REG_DSI_10nm_PHY_PLL_ANALOG_CONTROLS_THREE, 0x00);
pll_write(base + REG_DSI_10nm_PHY_PLL_DSM_DIVIDER, 0x00);
pll_write(base + REG_DSI_10nm_PHY_PLL_FEEDBACK_DIVIDER, 0x4e);
pll_write(base + REG_DSI_10nm_PHY_PLL_CALIBRATION_SETTINGS, 0x40);
pll_write(base + REG_DSI_10nm_PHY_PLL_BAND_SEL_CAL_SETTINGS_THREE,
0xba);
pll_write(base + REG_DSI_10nm_PHY_PLL_FREQ_DETECT_SETTINGS_ONE, 0x0c);
pll_write(base + REG_DSI_10nm_PHY_PLL_OUTDIV, 0x00);
pll_write(base + REG_DSI_10nm_PHY_PLL_CORE_OVERRIDE, 0x00);
pll_write(base + REG_DSI_10nm_PHY_PLL_PLL_DIGITAL_TIMERS_TWO, 0x08);
pll_write(base + REG_DSI_10nm_PHY_PLL_PLL_PROP_GAIN_RATE_1, 0x08);
pll_write(base + REG_DSI_10nm_PHY_PLL_PLL_BAND_SET_RATE_1, 0xc0);
pll_write(base + REG_DSI_10nm_PHY_PLL_PLL_INT_GAIN_IFILT_BAND_1, 0xfa);
pll_write(base + REG_DSI_10nm_PHY_PLL_PLL_FL_INT_GAIN_PFILT_BAND_1,
0x4c);
pll_write(base + REG_DSI_10nm_PHY_PLL_PLL_LOCK_OVERRIDE, 0x80);
pll_write(base + REG_DSI_10nm_PHY_PLL_PFILT, 0x29);
pll_write(base + REG_DSI_10nm_PHY_PLL_IFILT, 0x3f);
}
static void dsi_pll_commit(struct dsi_pll_10nm *pll)
{
void __iomem *base = pll->mmio;
struct dsi_pll_regs *reg = &pll->reg_setup;
pll_write(base + REG_DSI_10nm_PHY_PLL_CORE_INPUT_OVERRIDE, 0x12);
pll_write(base + REG_DSI_10nm_PHY_PLL_DECIMAL_DIV_START_1,
reg->decimal_div_start);
pll_write(base + REG_DSI_10nm_PHY_PLL_FRAC_DIV_START_LOW_1,
reg->frac_div_start_low);
pll_write(base + REG_DSI_10nm_PHY_PLL_FRAC_DIV_START_MID_1,
reg->frac_div_start_mid);
pll_write(base + REG_DSI_10nm_PHY_PLL_FRAC_DIV_START_HIGH_1,
reg->frac_div_start_high);
pll_write(base + REG_DSI_10nm_PHY_PLL_PLL_LOCKDET_RATE_1, 0x40);
pll_write(base + REG_DSI_10nm_PHY_PLL_PLL_LOCK_DELAY, 0x06);
pll_write(base + REG_DSI_10nm_PHY_PLL_CMODE, 0x10);
pll_write(base + REG_DSI_10nm_PHY_PLL_CLOCK_INVERTERS,
reg->pll_clock_inverters);
}
static int dsi_pll_10nm_vco_set_rate(struct clk_hw *hw, unsigned long rate,
unsigned long parent_rate)
{
struct msm_dsi_pll *pll = hw_clk_to_pll(hw);
struct dsi_pll_10nm *pll_10nm = to_pll_10nm(pll);
DBG("DSI PLL%d rate=%lu, parent's=%lu", pll_10nm->id, rate,
parent_rate);
pll_10nm->vco_current_rate = rate;
pll_10nm->vco_ref_clk_rate = VCO_REF_CLK_RATE;
dsi_pll_setup_config(pll_10nm);
dsi_pll_calc_dec_frac(pll_10nm);
dsi_pll_calc_ssc(pll_10nm);
dsi_pll_commit(pll_10nm);
dsi_pll_config_hzindep_reg(pll_10nm);
dsi_pll_ssc_commit(pll_10nm);
/* flush, ensure all register writes are done*/
wmb();
return 0;
}
static int dsi_pll_10nm_lock_status(struct dsi_pll_10nm *pll)
{
int rc;
u32 status = 0;
u32 const delay_us = 100;
u32 const timeout_us = 5000;
rc = readl_poll_timeout_atomic(pll->mmio +
REG_DSI_10nm_PHY_PLL_COMMON_STATUS_ONE,
status,
((status & BIT(0)) > 0),
delay_us,
timeout_us);
if (rc)
pr_err("DSI PLL(%d) lock failed, status=0x%08x\n",
pll->id, status);
return rc;
}
static void dsi_pll_disable_pll_bias(struct dsi_pll_10nm *pll)
{
u32 data = pll_read(pll->phy_cmn_mmio + REG_DSI_10nm_PHY_CMN_CTRL_0);
pll_write(pll->mmio + REG_DSI_10nm_PHY_PLL_SYSTEM_MUXES, 0);
pll_write(pll->phy_cmn_mmio + REG_DSI_10nm_PHY_CMN_CTRL_0,
data & ~BIT(5));
ndelay(250);
}
static void dsi_pll_enable_pll_bias(struct dsi_pll_10nm *pll)
{
u32 data = pll_read(pll->phy_cmn_mmio + REG_DSI_10nm_PHY_CMN_CTRL_0);
pll_write(pll->phy_cmn_mmio + REG_DSI_10nm_PHY_CMN_CTRL_0,
data | BIT(5));
pll_write(pll->mmio + REG_DSI_10nm_PHY_PLL_SYSTEM_MUXES, 0xc0);
ndelay(250);
}
static void dsi_pll_disable_global_clk(struct dsi_pll_10nm *pll)
{
u32 data;
data = pll_read(pll->phy_cmn_mmio + REG_DSI_10nm_PHY_CMN_CLK_CFG1);
pll_write(pll->phy_cmn_mmio + REG_DSI_10nm_PHY_CMN_CLK_CFG1,
data & ~BIT(5));
}
static void dsi_pll_enable_global_clk(struct dsi_pll_10nm *pll)
{
u32 data;
data = pll_read(pll->phy_cmn_mmio + REG_DSI_10nm_PHY_CMN_CLK_CFG1);
pll_write(pll->phy_cmn_mmio + REG_DSI_10nm_PHY_CMN_CLK_CFG1,
data | BIT(5));
}
static int dsi_pll_10nm_vco_prepare(struct clk_hw *hw)
{
struct msm_dsi_pll *pll = hw_clk_to_pll(hw);
struct dsi_pll_10nm *pll_10nm = to_pll_10nm(pll);
int rc;
dsi_pll_enable_pll_bias(pll_10nm);
if (pll_10nm->slave)
dsi_pll_enable_pll_bias(pll_10nm->slave);
/* Start PLL */
pll_write(pll_10nm->phy_cmn_mmio + REG_DSI_10nm_PHY_CMN_PLL_CNTRL,
0x01);
/*
* ensure all PLL configurations are written prior to checking
* for PLL lock.
*/
wmb();
/* Check for PLL lock */
rc = dsi_pll_10nm_lock_status(pll_10nm);
if (rc) {
pr_err("PLL(%d) lock failed\n", pll_10nm->id);
goto error;
}
pll->pll_on = true;
dsi_pll_enable_global_clk(pll_10nm);
if (pll_10nm->slave)
dsi_pll_enable_global_clk(pll_10nm->slave);
pll_write(pll_10nm->phy_cmn_mmio + REG_DSI_10nm_PHY_CMN_RBUF_CTRL,
0x01);
if (pll_10nm->slave)
pll_write(pll_10nm->slave->phy_cmn_mmio +
REG_DSI_10nm_PHY_CMN_RBUF_CTRL, 0x01);
error:
return rc;
}
static void dsi_pll_disable_sub(struct dsi_pll_10nm *pll)
{
pll_write(pll->phy_cmn_mmio + REG_DSI_10nm_PHY_CMN_RBUF_CTRL, 0);
dsi_pll_disable_pll_bias(pll);
}
static void dsi_pll_10nm_vco_unprepare(struct clk_hw *hw)
{
struct msm_dsi_pll *pll = hw_clk_to_pll(hw);
struct dsi_pll_10nm *pll_10nm = to_pll_10nm(pll);
/*
* To avoid any stray glitches while abruptly powering down the PLL
* make sure to gate the clock using the clock enable bit before
* powering down the PLL
*/
dsi_pll_disable_global_clk(pll_10nm);
pll_write(pll_10nm->phy_cmn_mmio + REG_DSI_10nm_PHY_CMN_PLL_CNTRL, 0);
dsi_pll_disable_sub(pll_10nm);
if (pll_10nm->slave) {
dsi_pll_disable_global_clk(pll_10nm->slave);
dsi_pll_disable_sub(pll_10nm->slave);
}
/* flush, ensure all register writes are done */
wmb();
pll->pll_on = false;
}
static unsigned long dsi_pll_10nm_vco_recalc_rate(struct clk_hw *hw,
unsigned long parent_rate)
{
struct msm_dsi_pll *pll = hw_clk_to_pll(hw);
struct dsi_pll_10nm *pll_10nm = to_pll_10nm(pll);
void __iomem *base = pll_10nm->mmio;
u64 ref_clk = pll_10nm->vco_ref_clk_rate;
u64 vco_rate = 0x0;
u64 multiplier;
u32 frac;
u32 dec;
u64 pll_freq, tmp64;
dec = pll_read(base + REG_DSI_10nm_PHY_PLL_DECIMAL_DIV_START_1);
dec &= 0xff;
frac = pll_read(base + REG_DSI_10nm_PHY_PLL_FRAC_DIV_START_LOW_1);
frac |= ((pll_read(base + REG_DSI_10nm_PHY_PLL_FRAC_DIV_START_MID_1) &
0xff) << 8);
frac |= ((pll_read(base + REG_DSI_10nm_PHY_PLL_FRAC_DIV_START_HIGH_1) &
0x3) << 16);
/*
* TODO:
* 1. Assumes prescaler is disabled
* 2. Multiplier is 2^18. it should be 2^(num_of_frac_bits)
*/
multiplier = 1 << 18;
pll_freq = dec * (ref_clk * 2);
tmp64 = (ref_clk * 2 * frac);
pll_freq += div_u64(tmp64, multiplier);
vco_rate = pll_freq;
DBG("DSI PLL%d returning vco rate = %lu, dec = %x, frac = %x",
pll_10nm->id, (unsigned long)vco_rate, dec, frac);
return (unsigned long)vco_rate;
}
static const struct clk_ops clk_ops_dsi_pll_10nm_vco = {
.round_rate = msm_dsi_pll_helper_clk_round_rate,
.set_rate = dsi_pll_10nm_vco_set_rate,
.recalc_rate = dsi_pll_10nm_vco_recalc_rate,
.prepare = dsi_pll_10nm_vco_prepare,
.unprepare = dsi_pll_10nm_vco_unprepare,
};
/*
* PLL Callbacks
*/
static void dsi_pll_10nm_save_state(struct msm_dsi_pll *pll)
{
struct dsi_pll_10nm *pll_10nm = to_pll_10nm(pll);
struct pll_10nm_cached_state *cached = &pll_10nm->cached_state;
void __iomem *phy_base = pll_10nm->phy_cmn_mmio;
u32 cmn_clk_cfg0, cmn_clk_cfg1;
cached->pll_out_div = pll_read(pll_10nm->mmio +
REG_DSI_10nm_PHY_PLL_PLL_OUTDIV_RATE);
cached->pll_out_div &= 0x3;
cmn_clk_cfg0 = pll_read(phy_base + REG_DSI_10nm_PHY_CMN_CLK_CFG0);
cached->bit_clk_div = cmn_clk_cfg0 & 0xf;
cached->pix_clk_div = (cmn_clk_cfg0 & 0xf0) >> 4;
cmn_clk_cfg1 = pll_read(phy_base + REG_DSI_10nm_PHY_CMN_CLK_CFG1);
cached->pll_mux = cmn_clk_cfg1 & 0x3;
DBG("DSI PLL%d outdiv %x bit_clk_div %x pix_clk_div %x pll_mux %x",
pll_10nm->id, cached->pll_out_div, cached->bit_clk_div,
cached->pix_clk_div, cached->pll_mux);
}
static int dsi_pll_10nm_restore_state(struct msm_dsi_pll *pll)
{
struct dsi_pll_10nm *pll_10nm = to_pll_10nm(pll);
struct pll_10nm_cached_state *cached = &pll_10nm->cached_state;
void __iomem *phy_base = pll_10nm->phy_cmn_mmio;
u32 val;
val = pll_read(pll_10nm->mmio + REG_DSI_10nm_PHY_PLL_PLL_OUTDIV_RATE);
val &= ~0x3;
val |= cached->pll_out_div;
pll_write(pll_10nm->mmio + REG_DSI_10nm_PHY_PLL_PLL_OUTDIV_RATE, val);
pll_write(phy_base + REG_DSI_10nm_PHY_CMN_CLK_CFG0,
cached->bit_clk_div | (cached->pix_clk_div << 4));
val = pll_read(phy_base + REG_DSI_10nm_PHY_CMN_CLK_CFG1);
val &= ~0x3;
val |= cached->pll_mux;
pll_write(phy_base + REG_DSI_10nm_PHY_CMN_CLK_CFG1, val);
DBG("DSI PLL%d", pll_10nm->id);
return 0;
}
static int dsi_pll_10nm_set_usecase(struct msm_dsi_pll *pll,
enum msm_dsi_phy_usecase uc)
{
struct dsi_pll_10nm *pll_10nm = to_pll_10nm(pll);
void __iomem *base = pll_10nm->phy_cmn_mmio;
u32 data = 0x0; /* internal PLL */
DBG("DSI PLL%d", pll_10nm->id);
switch (uc) {
case MSM_DSI_PHY_STANDALONE:
break;
case MSM_DSI_PHY_MASTER:
pll_10nm->slave = pll_10nm_list[(pll_10nm->id + 1) % DSI_MAX];
break;
case MSM_DSI_PHY_SLAVE:
data = 0x1; /* external PLL */
break;
default:
return -EINVAL;
}
/* set PLL src */
pll_write(base + REG_DSI_10nm_PHY_CMN_CLK_CFG1, (data << 2));
pll_10nm->uc = uc;
return 0;
}
static int dsi_pll_10nm_get_provider(struct msm_dsi_pll *pll,
struct clk **byte_clk_provider,
struct clk **pixel_clk_provider)
{
struct dsi_pll_10nm *pll_10nm = to_pll_10nm(pll);
struct clk_hw_onecell_data *hw_data = pll_10nm->hw_data;
DBG("DSI PLL%d", pll_10nm->id);
if (byte_clk_provider)
*byte_clk_provider = hw_data->hws[DSI_BYTE_PLL_CLK]->clk;
if (pixel_clk_provider)
*pixel_clk_provider = hw_data->hws[DSI_PIXEL_PLL_CLK]->clk;
return 0;
}
static void dsi_pll_10nm_destroy(struct msm_dsi_pll *pll)
{
struct dsi_pll_10nm *pll_10nm = to_pll_10nm(pll);
DBG("DSI PLL%d", pll_10nm->id);
}
/*
* The post dividers and mux clocks are created using the standard divider and
* mux API. Unlike the 14nm PHY, the slave PLL doesn't need its dividers/mux
* state to follow the master PLL's divider/mux state. Therefore, we don't
* require special clock ops that also configure the slave PLL registers
*/
static int pll_10nm_register(struct dsi_pll_10nm *pll_10nm)
{
char clk_name[32], parent[32], vco_name[32];
char parent2[32], parent3[32], parent4[32];
struct clk_init_data vco_init = {
.parent_names = (const char *[]){ "xo" },
.num_parents = 1,
.name = vco_name,
.flags = CLK_IGNORE_UNUSED,
.ops = &clk_ops_dsi_pll_10nm_vco,
};
struct device *dev = &pll_10nm->pdev->dev;
struct clk_hw **hws = pll_10nm->hws;
struct clk_hw_onecell_data *hw_data;
struct clk_hw *hw;
int num = 0;
int ret;
DBG("DSI%d", pll_10nm->id);
hw_data = devm_kzalloc(dev, sizeof(*hw_data) +
NUM_PROVIDED_CLKS * sizeof(struct clk_hw *),
GFP_KERNEL);
if (!hw_data)
return -ENOMEM;
snprintf(vco_name, 32, "dsi%dvco_clk", pll_10nm->id);
pll_10nm->base.clk_hw.init = &vco_init;
ret = clk_hw_register(dev, &pll_10nm->base.clk_hw);
if (ret)
return ret;
hws[num++] = &pll_10nm->base.clk_hw;
snprintf(clk_name, 32, "dsi%d_pll_out_div_clk", pll_10nm->id);
snprintf(parent, 32, "dsi%dvco_clk", pll_10nm->id);
hw = clk_hw_register_divider(dev, clk_name,
parent, CLK_SET_RATE_PARENT,
pll_10nm->mmio +
REG_DSI_10nm_PHY_PLL_PLL_OUTDIV_RATE,
0, 2, CLK_DIVIDER_POWER_OF_TWO, NULL);
if (IS_ERR(hw))
return PTR_ERR(hw);
hws[num++] = hw;
snprintf(clk_name, 32, "dsi%d_pll_bit_clk", pll_10nm->id);
snprintf(parent, 32, "dsi%d_pll_out_div_clk", pll_10nm->id);
/* BIT CLK: DIV_CTRL_3_0 */
hw = clk_hw_register_divider(dev, clk_name, parent,
CLK_SET_RATE_PARENT,
pll_10nm->phy_cmn_mmio +
REG_DSI_10nm_PHY_CMN_CLK_CFG0,
0, 4, CLK_DIVIDER_ONE_BASED,
&pll_10nm->postdiv_lock);
if (IS_ERR(hw))
return PTR_ERR(hw);
hws[num++] = hw;
snprintf(clk_name, 32, "dsi%d_phy_pll_out_byteclk", pll_10nm->id);
snprintf(parent, 32, "dsi%d_pll_bit_clk", pll_10nm->id);
/* DSI Byte clock = VCO_CLK / OUT_DIV / BIT_DIV / 8 */
hw = clk_hw_register_fixed_factor(dev, clk_name, parent,
CLK_SET_RATE_PARENT, 1, 8);
if (IS_ERR(hw))
return PTR_ERR(hw);
hws[num++] = hw;
hw_data->hws[DSI_BYTE_PLL_CLK] = hw;
snprintf(clk_name, 32, "dsi%d_pll_by_2_bit_clk", pll_10nm->id);
snprintf(parent, 32, "dsi%d_pll_bit_clk", pll_10nm->id);
hw = clk_hw_register_fixed_factor(dev, clk_name, parent,
0, 1, 2);
if (IS_ERR(hw))
return PTR_ERR(hw);
hws[num++] = hw;
snprintf(clk_name, 32, "dsi%d_pll_post_out_div_clk", pll_10nm->id);
snprintf(parent, 32, "dsi%d_pll_out_div_clk", pll_10nm->id);
hw = clk_hw_register_fixed_factor(dev, clk_name, parent,
0, 1, 4);
if (IS_ERR(hw))
return PTR_ERR(hw);
hws[num++] = hw;
snprintf(clk_name, 32, "dsi%d_pclk_mux", pll_10nm->id);
snprintf(parent, 32, "dsi%d_pll_bit_clk", pll_10nm->id);
snprintf(parent2, 32, "dsi%d_pll_by_2_bit_clk", pll_10nm->id);
snprintf(parent3, 32, "dsi%d_pll_out_div_clk", pll_10nm->id);
snprintf(parent4, 32, "dsi%d_pll_post_out_div_clk", pll_10nm->id);
hw = clk_hw_register_mux(dev, clk_name,
(const char *[]){
parent, parent2, parent3, parent4
}, 4, 0, pll_10nm->phy_cmn_mmio +
REG_DSI_10nm_PHY_CMN_CLK_CFG1,
0, 2, 0, NULL);
if (IS_ERR(hw))
return PTR_ERR(hw);
hws[num++] = hw;
snprintf(clk_name, 32, "dsi%d_phy_pll_out_dsiclk", pll_10nm->id);
snprintf(parent, 32, "dsi%d_pclk_mux", pll_10nm->id);
/* PIX CLK DIV : DIV_CTRL_7_4*/
hw = clk_hw_register_divider(dev, clk_name, parent,
0, pll_10nm->phy_cmn_mmio +
REG_DSI_10nm_PHY_CMN_CLK_CFG0,
4, 4, CLK_DIVIDER_ONE_BASED,
&pll_10nm->postdiv_lock);
if (IS_ERR(hw))
return PTR_ERR(hw);
hws[num++] = hw;
hw_data->hws[DSI_PIXEL_PLL_CLK] = hw;
pll_10nm->num_hws = num;
hw_data->num = NUM_PROVIDED_CLKS;
pll_10nm->hw_data = hw_data;
ret = of_clk_add_hw_provider(dev->of_node, of_clk_hw_onecell_get,
pll_10nm->hw_data);
if (ret) {
DRM_DEV_ERROR(dev, "failed to register clk provider: %d\n", ret);
return ret;
}
return 0;
}
struct msm_dsi_pll *msm_dsi_pll_10nm_init(struct platform_device *pdev, int id)
{
struct dsi_pll_10nm *pll_10nm;
struct msm_dsi_pll *pll;
int ret;
if (!pdev)
return ERR_PTR(-ENODEV);
pll_10nm = devm_kzalloc(&pdev->dev, sizeof(*pll_10nm), GFP_KERNEL);
if (!pll_10nm)
return ERR_PTR(-ENOMEM);
DBG("DSI PLL%d", id);
pll_10nm->pdev = pdev;
pll_10nm->id = id;
pll_10nm_list[id] = pll_10nm;
pll_10nm->phy_cmn_mmio = msm_ioremap(pdev, "dsi_phy", "DSI_PHY");
if (IS_ERR_OR_NULL(pll_10nm->phy_cmn_mmio)) {
DRM_DEV_ERROR(&pdev->dev, "failed to map CMN PHY base\n");
return ERR_PTR(-ENOMEM);
}
pll_10nm->mmio = msm_ioremap(pdev, "dsi_pll", "DSI_PLL");
if (IS_ERR_OR_NULL(pll_10nm->mmio)) {
DRM_DEV_ERROR(&pdev->dev, "failed to map PLL base\n");
return ERR_PTR(-ENOMEM);
}
spin_lock_init(&pll_10nm->postdiv_lock);
pll = &pll_10nm->base;
pll->min_rate = 1000000000UL;
pll->max_rate = 3500000000UL;
pll->get_provider = dsi_pll_10nm_get_provider;
pll->destroy = dsi_pll_10nm_destroy;
pll->save_state = dsi_pll_10nm_save_state;
pll->restore_state = dsi_pll_10nm_restore_state;
pll->set_usecase = dsi_pll_10nm_set_usecase;
pll_10nm->vco_delay = 1;
ret = pll_10nm_register(pll_10nm);
if (ret) {
DRM_DEV_ERROR(&pdev->dev, "failed to register PLL: %d\n", ret);
return ERR_PTR(ret);
}
/* TODO: Remove this when we have proper display handover support */
msm_dsi_pll_save_state(pll);
return pll;
}