| // SPDX-License-Identifier: GPL-2.0-or-later |
| /* |
| * Module-based API test facility for ww_mutexes |
| */ |
| |
| #include <linux/kernel.h> |
| |
| #include <linux/completion.h> |
| #include <linux/delay.h> |
| #include <linux/kthread.h> |
| #include <linux/module.h> |
| #include <linux/random.h> |
| #include <linux/slab.h> |
| #include <linux/ww_mutex.h> |
| |
| static DEFINE_WD_CLASS(ww_class); |
| struct workqueue_struct *wq; |
| |
| #ifdef CONFIG_DEBUG_WW_MUTEX_SLOWPATH |
| #define ww_acquire_init_noinject(a, b) do { \ |
| ww_acquire_init((a), (b)); \ |
| (a)->deadlock_inject_countdown = ~0U; \ |
| } while (0) |
| #else |
| #define ww_acquire_init_noinject(a, b) ww_acquire_init((a), (b)) |
| #endif |
| |
| struct test_mutex { |
| struct work_struct work; |
| struct ww_mutex mutex; |
| struct completion ready, go, done; |
| unsigned int flags; |
| }; |
| |
| #define TEST_MTX_SPIN BIT(0) |
| #define TEST_MTX_TRY BIT(1) |
| #define TEST_MTX_CTX BIT(2) |
| #define __TEST_MTX_LAST BIT(3) |
| |
| static void test_mutex_work(struct work_struct *work) |
| { |
| struct test_mutex *mtx = container_of(work, typeof(*mtx), work); |
| |
| complete(&mtx->ready); |
| wait_for_completion(&mtx->go); |
| |
| if (mtx->flags & TEST_MTX_TRY) { |
| while (!ww_mutex_trylock(&mtx->mutex, NULL)) |
| cond_resched(); |
| } else { |
| ww_mutex_lock(&mtx->mutex, NULL); |
| } |
| complete(&mtx->done); |
| ww_mutex_unlock(&mtx->mutex); |
| } |
| |
| static int __test_mutex(unsigned int flags) |
| { |
| #define TIMEOUT (HZ / 16) |
| struct test_mutex mtx; |
| struct ww_acquire_ctx ctx; |
| int ret; |
| |
| ww_mutex_init(&mtx.mutex, &ww_class); |
| ww_acquire_init(&ctx, &ww_class); |
| |
| INIT_WORK_ONSTACK(&mtx.work, test_mutex_work); |
| init_completion(&mtx.ready); |
| init_completion(&mtx.go); |
| init_completion(&mtx.done); |
| mtx.flags = flags; |
| |
| schedule_work(&mtx.work); |
| |
| wait_for_completion(&mtx.ready); |
| ww_mutex_lock(&mtx.mutex, (flags & TEST_MTX_CTX) ? &ctx : NULL); |
| complete(&mtx.go); |
| if (flags & TEST_MTX_SPIN) { |
| unsigned long timeout = jiffies + TIMEOUT; |
| |
| ret = 0; |
| do { |
| if (completion_done(&mtx.done)) { |
| ret = -EINVAL; |
| break; |
| } |
| cond_resched(); |
| } while (time_before(jiffies, timeout)); |
| } else { |
| ret = wait_for_completion_timeout(&mtx.done, TIMEOUT); |
| } |
| ww_mutex_unlock(&mtx.mutex); |
| ww_acquire_fini(&ctx); |
| |
| if (ret) { |
| pr_err("%s(flags=%x): mutual exclusion failure\n", |
| __func__, flags); |
| ret = -EINVAL; |
| } |
| |
| flush_work(&mtx.work); |
| destroy_work_on_stack(&mtx.work); |
| return ret; |
| #undef TIMEOUT |
| } |
| |
| static int test_mutex(void) |
| { |
| int ret; |
| int i; |
| |
| for (i = 0; i < __TEST_MTX_LAST; i++) { |
| ret = __test_mutex(i); |
| if (ret) |
| return ret; |
| } |
| |
| return 0; |
| } |
| |
| static int test_aa(bool trylock) |
| { |
| struct ww_mutex mutex; |
| struct ww_acquire_ctx ctx; |
| int ret; |
| const char *from = trylock ? "trylock" : "lock"; |
| |
| ww_mutex_init(&mutex, &ww_class); |
| ww_acquire_init(&ctx, &ww_class); |
| |
| if (!trylock) { |
| ret = ww_mutex_lock(&mutex, &ctx); |
| if (ret) { |
| pr_err("%s: initial lock failed!\n", __func__); |
| goto out; |
| } |
| } else { |
| ret = !ww_mutex_trylock(&mutex, &ctx); |
| if (ret) { |
| pr_err("%s: initial trylock failed!\n", __func__); |
| goto out; |
| } |
| } |
| |
| if (ww_mutex_trylock(&mutex, NULL)) { |
| pr_err("%s: trylocked itself without context from %s!\n", __func__, from); |
| ww_mutex_unlock(&mutex); |
| ret = -EINVAL; |
| goto out; |
| } |
| |
| if (ww_mutex_trylock(&mutex, &ctx)) { |
| pr_err("%s: trylocked itself with context from %s!\n", __func__, from); |
| ww_mutex_unlock(&mutex); |
| ret = -EINVAL; |
| goto out; |
| } |
| |
| ret = ww_mutex_lock(&mutex, &ctx); |
| if (ret != -EALREADY) { |
| pr_err("%s: missed deadlock for recursing, ret=%d from %s\n", |
| __func__, ret, from); |
| if (!ret) |
| ww_mutex_unlock(&mutex); |
| ret = -EINVAL; |
| goto out; |
| } |
| |
| ww_mutex_unlock(&mutex); |
| ret = 0; |
| out: |
| ww_acquire_fini(&ctx); |
| return ret; |
| } |
| |
| struct test_abba { |
| struct work_struct work; |
| struct ww_mutex a_mutex; |
| struct ww_mutex b_mutex; |
| struct completion a_ready; |
| struct completion b_ready; |
| bool resolve, trylock; |
| int result; |
| }; |
| |
| static void test_abba_work(struct work_struct *work) |
| { |
| struct test_abba *abba = container_of(work, typeof(*abba), work); |
| struct ww_acquire_ctx ctx; |
| int err; |
| |
| ww_acquire_init_noinject(&ctx, &ww_class); |
| if (!abba->trylock) |
| ww_mutex_lock(&abba->b_mutex, &ctx); |
| else |
| WARN_ON(!ww_mutex_trylock(&abba->b_mutex, &ctx)); |
| |
| WARN_ON(READ_ONCE(abba->b_mutex.ctx) != &ctx); |
| |
| complete(&abba->b_ready); |
| wait_for_completion(&abba->a_ready); |
| |
| err = ww_mutex_lock(&abba->a_mutex, &ctx); |
| if (abba->resolve && err == -EDEADLK) { |
| ww_mutex_unlock(&abba->b_mutex); |
| ww_mutex_lock_slow(&abba->a_mutex, &ctx); |
| err = ww_mutex_lock(&abba->b_mutex, &ctx); |
| } |
| |
| if (!err) |
| ww_mutex_unlock(&abba->a_mutex); |
| ww_mutex_unlock(&abba->b_mutex); |
| ww_acquire_fini(&ctx); |
| |
| abba->result = err; |
| } |
| |
| static int test_abba(bool trylock, bool resolve) |
| { |
| struct test_abba abba; |
| struct ww_acquire_ctx ctx; |
| int err, ret; |
| |
| ww_mutex_init(&abba.a_mutex, &ww_class); |
| ww_mutex_init(&abba.b_mutex, &ww_class); |
| INIT_WORK_ONSTACK(&abba.work, test_abba_work); |
| init_completion(&abba.a_ready); |
| init_completion(&abba.b_ready); |
| abba.trylock = trylock; |
| abba.resolve = resolve; |
| |
| schedule_work(&abba.work); |
| |
| ww_acquire_init_noinject(&ctx, &ww_class); |
| if (!trylock) |
| ww_mutex_lock(&abba.a_mutex, &ctx); |
| else |
| WARN_ON(!ww_mutex_trylock(&abba.a_mutex, &ctx)); |
| |
| WARN_ON(READ_ONCE(abba.a_mutex.ctx) != &ctx); |
| |
| complete(&abba.a_ready); |
| wait_for_completion(&abba.b_ready); |
| |
| err = ww_mutex_lock(&abba.b_mutex, &ctx); |
| if (resolve && err == -EDEADLK) { |
| ww_mutex_unlock(&abba.a_mutex); |
| ww_mutex_lock_slow(&abba.b_mutex, &ctx); |
| err = ww_mutex_lock(&abba.a_mutex, &ctx); |
| } |
| |
| if (!err) |
| ww_mutex_unlock(&abba.b_mutex); |
| ww_mutex_unlock(&abba.a_mutex); |
| ww_acquire_fini(&ctx); |
| |
| flush_work(&abba.work); |
| destroy_work_on_stack(&abba.work); |
| |
| ret = 0; |
| if (resolve) { |
| if (err || abba.result) { |
| pr_err("%s: failed to resolve ABBA deadlock, A err=%d, B err=%d\n", |
| __func__, err, abba.result); |
| ret = -EINVAL; |
| } |
| } else { |
| if (err != -EDEADLK && abba.result != -EDEADLK) { |
| pr_err("%s: missed ABBA deadlock, A err=%d, B err=%d\n", |
| __func__, err, abba.result); |
| ret = -EINVAL; |
| } |
| } |
| return ret; |
| } |
| |
| struct test_cycle { |
| struct work_struct work; |
| struct ww_mutex a_mutex; |
| struct ww_mutex *b_mutex; |
| struct completion *a_signal; |
| struct completion b_signal; |
| int result; |
| }; |
| |
| static void test_cycle_work(struct work_struct *work) |
| { |
| struct test_cycle *cycle = container_of(work, typeof(*cycle), work); |
| struct ww_acquire_ctx ctx; |
| int err, erra = 0; |
| |
| ww_acquire_init_noinject(&ctx, &ww_class); |
| ww_mutex_lock(&cycle->a_mutex, &ctx); |
| |
| complete(cycle->a_signal); |
| wait_for_completion(&cycle->b_signal); |
| |
| err = ww_mutex_lock(cycle->b_mutex, &ctx); |
| if (err == -EDEADLK) { |
| err = 0; |
| ww_mutex_unlock(&cycle->a_mutex); |
| ww_mutex_lock_slow(cycle->b_mutex, &ctx); |
| erra = ww_mutex_lock(&cycle->a_mutex, &ctx); |
| } |
| |
| if (!err) |
| ww_mutex_unlock(cycle->b_mutex); |
| if (!erra) |
| ww_mutex_unlock(&cycle->a_mutex); |
| ww_acquire_fini(&ctx); |
| |
| cycle->result = err ?: erra; |
| } |
| |
| static int __test_cycle(unsigned int nthreads) |
| { |
| struct test_cycle *cycles; |
| unsigned int n, last = nthreads - 1; |
| int ret; |
| |
| cycles = kmalloc_array(nthreads, sizeof(*cycles), GFP_KERNEL); |
| if (!cycles) |
| return -ENOMEM; |
| |
| for (n = 0; n < nthreads; n++) { |
| struct test_cycle *cycle = &cycles[n]; |
| |
| ww_mutex_init(&cycle->a_mutex, &ww_class); |
| if (n == last) |
| cycle->b_mutex = &cycles[0].a_mutex; |
| else |
| cycle->b_mutex = &cycles[n + 1].a_mutex; |
| |
| if (n == 0) |
| cycle->a_signal = &cycles[last].b_signal; |
| else |
| cycle->a_signal = &cycles[n - 1].b_signal; |
| init_completion(&cycle->b_signal); |
| |
| INIT_WORK(&cycle->work, test_cycle_work); |
| cycle->result = 0; |
| } |
| |
| for (n = 0; n < nthreads; n++) |
| queue_work(wq, &cycles[n].work); |
| |
| flush_workqueue(wq); |
| |
| ret = 0; |
| for (n = 0; n < nthreads; n++) { |
| struct test_cycle *cycle = &cycles[n]; |
| |
| if (!cycle->result) |
| continue; |
| |
| pr_err("cyclic deadlock not resolved, ret[%d/%d] = %d\n", |
| n, nthreads, cycle->result); |
| ret = -EINVAL; |
| break; |
| } |
| |
| for (n = 0; n < nthreads; n++) |
| ww_mutex_destroy(&cycles[n].a_mutex); |
| kfree(cycles); |
| return ret; |
| } |
| |
| static int test_cycle(unsigned int ncpus) |
| { |
| unsigned int n; |
| int ret; |
| |
| for (n = 2; n <= ncpus + 1; n++) { |
| ret = __test_cycle(n); |
| if (ret) |
| return ret; |
| } |
| |
| return 0; |
| } |
| |
| struct stress { |
| struct work_struct work; |
| struct ww_mutex *locks; |
| unsigned long timeout; |
| int nlocks; |
| }; |
| |
| static int *get_random_order(int count) |
| { |
| int *order; |
| int n, r, tmp; |
| |
| order = kmalloc_array(count, sizeof(*order), GFP_KERNEL); |
| if (!order) |
| return order; |
| |
| for (n = 0; n < count; n++) |
| order[n] = n; |
| |
| for (n = count - 1; n > 1; n--) { |
| r = get_random_u32_below(n + 1); |
| if (r != n) { |
| tmp = order[n]; |
| order[n] = order[r]; |
| order[r] = tmp; |
| } |
| } |
| |
| return order; |
| } |
| |
| static void dummy_load(struct stress *stress) |
| { |
| usleep_range(1000, 2000); |
| } |
| |
| static void stress_inorder_work(struct work_struct *work) |
| { |
| struct stress *stress = container_of(work, typeof(*stress), work); |
| const int nlocks = stress->nlocks; |
| struct ww_mutex *locks = stress->locks; |
| struct ww_acquire_ctx ctx; |
| int *order; |
| |
| order = get_random_order(nlocks); |
| if (!order) |
| return; |
| |
| do { |
| int contended = -1; |
| int n, err; |
| |
| ww_acquire_init(&ctx, &ww_class); |
| retry: |
| err = 0; |
| for (n = 0; n < nlocks; n++) { |
| if (n == contended) |
| continue; |
| |
| err = ww_mutex_lock(&locks[order[n]], &ctx); |
| if (err < 0) |
| break; |
| } |
| if (!err) |
| dummy_load(stress); |
| |
| if (contended > n) |
| ww_mutex_unlock(&locks[order[contended]]); |
| contended = n; |
| while (n--) |
| ww_mutex_unlock(&locks[order[n]]); |
| |
| if (err == -EDEADLK) { |
| ww_mutex_lock_slow(&locks[order[contended]], &ctx); |
| goto retry; |
| } |
| |
| if (err) { |
| pr_err_once("stress (%s) failed with %d\n", |
| __func__, err); |
| break; |
| } |
| |
| ww_acquire_fini(&ctx); |
| } while (!time_after(jiffies, stress->timeout)); |
| |
| kfree(order); |
| } |
| |
| struct reorder_lock { |
| struct list_head link; |
| struct ww_mutex *lock; |
| }; |
| |
| static void stress_reorder_work(struct work_struct *work) |
| { |
| struct stress *stress = container_of(work, typeof(*stress), work); |
| LIST_HEAD(locks); |
| struct ww_acquire_ctx ctx; |
| struct reorder_lock *ll, *ln; |
| int *order; |
| int n, err; |
| |
| order = get_random_order(stress->nlocks); |
| if (!order) |
| return; |
| |
| for (n = 0; n < stress->nlocks; n++) { |
| ll = kmalloc(sizeof(*ll), GFP_KERNEL); |
| if (!ll) |
| goto out; |
| |
| ll->lock = &stress->locks[order[n]]; |
| list_add(&ll->link, &locks); |
| } |
| kfree(order); |
| order = NULL; |
| |
| do { |
| ww_acquire_init(&ctx, &ww_class); |
| |
| list_for_each_entry(ll, &locks, link) { |
| err = ww_mutex_lock(ll->lock, &ctx); |
| if (!err) |
| continue; |
| |
| ln = ll; |
| list_for_each_entry_continue_reverse(ln, &locks, link) |
| ww_mutex_unlock(ln->lock); |
| |
| if (err != -EDEADLK) { |
| pr_err_once("stress (%s) failed with %d\n", |
| __func__, err); |
| break; |
| } |
| |
| ww_mutex_lock_slow(ll->lock, &ctx); |
| list_move(&ll->link, &locks); /* restarts iteration */ |
| } |
| |
| dummy_load(stress); |
| list_for_each_entry(ll, &locks, link) |
| ww_mutex_unlock(ll->lock); |
| |
| ww_acquire_fini(&ctx); |
| } while (!time_after(jiffies, stress->timeout)); |
| |
| out: |
| list_for_each_entry_safe(ll, ln, &locks, link) |
| kfree(ll); |
| kfree(order); |
| } |
| |
| static void stress_one_work(struct work_struct *work) |
| { |
| struct stress *stress = container_of(work, typeof(*stress), work); |
| const int nlocks = stress->nlocks; |
| struct ww_mutex *lock = stress->locks + get_random_u32_below(nlocks); |
| int err; |
| |
| do { |
| err = ww_mutex_lock(lock, NULL); |
| if (!err) { |
| dummy_load(stress); |
| ww_mutex_unlock(lock); |
| } else { |
| pr_err_once("stress (%s) failed with %d\n", |
| __func__, err); |
| break; |
| } |
| } while (!time_after(jiffies, stress->timeout)); |
| } |
| |
| #define STRESS_INORDER BIT(0) |
| #define STRESS_REORDER BIT(1) |
| #define STRESS_ONE BIT(2) |
| #define STRESS_ALL (STRESS_INORDER | STRESS_REORDER | STRESS_ONE) |
| |
| static int stress(int nlocks, int nthreads, unsigned int flags) |
| { |
| struct ww_mutex *locks; |
| struct stress *stress_array; |
| int n, count; |
| |
| locks = kmalloc_array(nlocks, sizeof(*locks), GFP_KERNEL); |
| if (!locks) |
| return -ENOMEM; |
| |
| stress_array = kmalloc_array(nthreads, sizeof(*stress_array), |
| GFP_KERNEL); |
| if (!stress_array) { |
| kfree(locks); |
| return -ENOMEM; |
| } |
| |
| for (n = 0; n < nlocks; n++) |
| ww_mutex_init(&locks[n], &ww_class); |
| |
| count = 0; |
| for (n = 0; nthreads; n++) { |
| struct stress *stress; |
| void (*fn)(struct work_struct *work); |
| |
| fn = NULL; |
| switch (n & 3) { |
| case 0: |
| if (flags & STRESS_INORDER) |
| fn = stress_inorder_work; |
| break; |
| case 1: |
| if (flags & STRESS_REORDER) |
| fn = stress_reorder_work; |
| break; |
| case 2: |
| if (flags & STRESS_ONE) |
| fn = stress_one_work; |
| break; |
| } |
| |
| if (!fn) |
| continue; |
| |
| stress = &stress_array[count++]; |
| |
| INIT_WORK(&stress->work, fn); |
| stress->locks = locks; |
| stress->nlocks = nlocks; |
| stress->timeout = jiffies + 2*HZ; |
| |
| queue_work(wq, &stress->work); |
| nthreads--; |
| } |
| |
| flush_workqueue(wq); |
| |
| for (n = 0; n < nlocks; n++) |
| ww_mutex_destroy(&locks[n]); |
| kfree(stress_array); |
| kfree(locks); |
| |
| return 0; |
| } |
| |
| static int __init test_ww_mutex_init(void) |
| { |
| int ncpus = num_online_cpus(); |
| int ret, i; |
| |
| printk(KERN_INFO "Beginning ww mutex selftests\n"); |
| |
| wq = alloc_workqueue("test-ww_mutex", WQ_UNBOUND, 0); |
| if (!wq) |
| return -ENOMEM; |
| |
| ret = test_mutex(); |
| if (ret) |
| return ret; |
| |
| ret = test_aa(false); |
| if (ret) |
| return ret; |
| |
| ret = test_aa(true); |
| if (ret) |
| return ret; |
| |
| for (i = 0; i < 4; i++) { |
| ret = test_abba(i & 1, i & 2); |
| if (ret) |
| return ret; |
| } |
| |
| ret = test_cycle(ncpus); |
| if (ret) |
| return ret; |
| |
| ret = stress(16, 2*ncpus, STRESS_INORDER); |
| if (ret) |
| return ret; |
| |
| ret = stress(16, 2*ncpus, STRESS_REORDER); |
| if (ret) |
| return ret; |
| |
| ret = stress(2047, hweight32(STRESS_ALL)*ncpus, STRESS_ALL); |
| if (ret) |
| return ret; |
| |
| printk(KERN_INFO "All ww mutex selftests passed\n"); |
| return 0; |
| } |
| |
| static void __exit test_ww_mutex_exit(void) |
| { |
| destroy_workqueue(wq); |
| } |
| |
| module_init(test_ww_mutex_init); |
| module_exit(test_ww_mutex_exit); |
| |
| MODULE_LICENSE("GPL"); |
| MODULE_AUTHOR("Intel Corporation"); |