| // SPDX-License-Identifier: GPL-2.0 |
| /* |
| * Scheduler topology setup/handling methods |
| */ |
| |
| #include <linux/bsearch.h> |
| #include <trace/hooks/sched.h> |
| |
| DEFINE_MUTEX(sched_domains_mutex); |
| #ifdef CONFIG_LOCKDEP |
| EXPORT_SYMBOL_GPL(sched_domains_mutex); |
| #endif |
| |
| /* Protected by sched_domains_mutex: */ |
| static cpumask_var_t sched_domains_tmpmask; |
| static cpumask_var_t sched_domains_tmpmask2; |
| |
| #ifdef CONFIG_SCHED_DEBUG |
| |
| static int __init sched_debug_setup(char *str) |
| { |
| sched_debug_verbose = true; |
| |
| return 0; |
| } |
| early_param("sched_verbose", sched_debug_setup); |
| |
| static inline bool sched_debug(void) |
| { |
| return sched_debug_verbose; |
| } |
| |
| #define SD_FLAG(_name, mflags) [__##_name] = { .meta_flags = mflags, .name = #_name }, |
| const struct sd_flag_debug sd_flag_debug[] = { |
| #include <linux/sched/sd_flags.h> |
| }; |
| #undef SD_FLAG |
| |
| static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level, |
| struct cpumask *groupmask) |
| { |
| struct sched_group *group = sd->groups; |
| unsigned long flags = sd->flags; |
| unsigned int idx; |
| |
| cpumask_clear(groupmask); |
| |
| printk(KERN_DEBUG "%*s domain-%d: ", level, "", level); |
| printk(KERN_CONT "span=%*pbl level=%s\n", |
| cpumask_pr_args(sched_domain_span(sd)), sd->name); |
| |
| if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) { |
| printk(KERN_ERR "ERROR: domain->span does not contain CPU%d\n", cpu); |
| } |
| if (group && !cpumask_test_cpu(cpu, sched_group_span(group))) { |
| printk(KERN_ERR "ERROR: domain->groups does not contain CPU%d\n", cpu); |
| } |
| |
| for_each_set_bit(idx, &flags, __SD_FLAG_CNT) { |
| unsigned int flag = BIT(idx); |
| unsigned int meta_flags = sd_flag_debug[idx].meta_flags; |
| |
| if ((meta_flags & SDF_SHARED_CHILD) && sd->child && |
| !(sd->child->flags & flag)) |
| printk(KERN_ERR "ERROR: flag %s set here but not in child\n", |
| sd_flag_debug[idx].name); |
| |
| if ((meta_flags & SDF_SHARED_PARENT) && sd->parent && |
| !(sd->parent->flags & flag)) |
| printk(KERN_ERR "ERROR: flag %s set here but not in parent\n", |
| sd_flag_debug[idx].name); |
| } |
| |
| printk(KERN_DEBUG "%*s groups:", level + 1, ""); |
| do { |
| if (!group) { |
| printk("\n"); |
| printk(KERN_ERR "ERROR: group is NULL\n"); |
| break; |
| } |
| |
| if (cpumask_empty(sched_group_span(group))) { |
| printk(KERN_CONT "\n"); |
| printk(KERN_ERR "ERROR: empty group\n"); |
| break; |
| } |
| |
| if (!(sd->flags & SD_OVERLAP) && |
| cpumask_intersects(groupmask, sched_group_span(group))) { |
| printk(KERN_CONT "\n"); |
| printk(KERN_ERR "ERROR: repeated CPUs\n"); |
| break; |
| } |
| |
| cpumask_or(groupmask, groupmask, sched_group_span(group)); |
| |
| printk(KERN_CONT " %d:{ span=%*pbl", |
| group->sgc->id, |
| cpumask_pr_args(sched_group_span(group))); |
| |
| if ((sd->flags & SD_OVERLAP) && |
| !cpumask_equal(group_balance_mask(group), sched_group_span(group))) { |
| printk(KERN_CONT " mask=%*pbl", |
| cpumask_pr_args(group_balance_mask(group))); |
| } |
| |
| if (group->sgc->capacity != SCHED_CAPACITY_SCALE) |
| printk(KERN_CONT " cap=%lu", group->sgc->capacity); |
| |
| if (group == sd->groups && sd->child && |
| !cpumask_equal(sched_domain_span(sd->child), |
| sched_group_span(group))) { |
| printk(KERN_ERR "ERROR: domain->groups does not match domain->child\n"); |
| } |
| |
| printk(KERN_CONT " }"); |
| |
| group = group->next; |
| |
| if (group != sd->groups) |
| printk(KERN_CONT ","); |
| |
| } while (group != sd->groups); |
| printk(KERN_CONT "\n"); |
| |
| if (!cpumask_equal(sched_domain_span(sd), groupmask)) |
| printk(KERN_ERR "ERROR: groups don't span domain->span\n"); |
| |
| if (sd->parent && |
| !cpumask_subset(groupmask, sched_domain_span(sd->parent))) |
| printk(KERN_ERR "ERROR: parent span is not a superset of domain->span\n"); |
| return 0; |
| } |
| |
| static void sched_domain_debug(struct sched_domain *sd, int cpu) |
| { |
| int level = 0; |
| |
| if (!sched_debug_verbose) |
| return; |
| |
| if (!sd) { |
| printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu); |
| return; |
| } |
| |
| printk(KERN_DEBUG "CPU%d attaching sched-domain(s):\n", cpu); |
| |
| for (;;) { |
| if (sched_domain_debug_one(sd, cpu, level, sched_domains_tmpmask)) |
| break; |
| level++; |
| sd = sd->parent; |
| if (!sd) |
| break; |
| } |
| } |
| #else /* !CONFIG_SCHED_DEBUG */ |
| |
| # define sched_debug_verbose 0 |
| # define sched_domain_debug(sd, cpu) do { } while (0) |
| static inline bool sched_debug(void) |
| { |
| return false; |
| } |
| #endif /* CONFIG_SCHED_DEBUG */ |
| |
| /* Generate a mask of SD flags with the SDF_NEEDS_GROUPS metaflag */ |
| #define SD_FLAG(name, mflags) (name * !!((mflags) & SDF_NEEDS_GROUPS)) | |
| static const unsigned int SD_DEGENERATE_GROUPS_MASK = |
| #include <linux/sched/sd_flags.h> |
| 0; |
| #undef SD_FLAG |
| |
| static int sd_degenerate(struct sched_domain *sd) |
| { |
| if (cpumask_weight(sched_domain_span(sd)) == 1) |
| return 1; |
| |
| /* Following flags need at least 2 groups */ |
| if ((sd->flags & SD_DEGENERATE_GROUPS_MASK) && |
| (sd->groups != sd->groups->next)) |
| return 0; |
| |
| /* Following flags don't use groups */ |
| if (sd->flags & (SD_WAKE_AFFINE)) |
| return 0; |
| |
| return 1; |
| } |
| |
| static int |
| sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent) |
| { |
| unsigned long cflags = sd->flags, pflags = parent->flags; |
| |
| if (sd_degenerate(parent)) |
| return 1; |
| |
| if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent))) |
| return 0; |
| |
| /* Flags needing groups don't count if only 1 group in parent */ |
| if (parent->groups == parent->groups->next) |
| pflags &= ~SD_DEGENERATE_GROUPS_MASK; |
| |
| if (~cflags & pflags) |
| return 0; |
| |
| return 1; |
| } |
| |
| #if defined(CONFIG_ENERGY_MODEL) && defined(CONFIG_CPU_FREQ_GOV_SCHEDUTIL) |
| DEFINE_STATIC_KEY_FALSE(sched_energy_present); |
| static unsigned int sysctl_sched_energy_aware = 1; |
| static DEFINE_MUTEX(sched_energy_mutex); |
| static bool sched_energy_update; |
| |
| void rebuild_sched_domains_energy(void) |
| { |
| mutex_lock(&sched_energy_mutex); |
| sched_energy_update = true; |
| rebuild_sched_domains(); |
| sched_energy_update = false; |
| mutex_unlock(&sched_energy_mutex); |
| } |
| |
| #ifdef CONFIG_PROC_SYSCTL |
| static int sched_energy_aware_handler(struct ctl_table *table, int write, |
| void *buffer, size_t *lenp, loff_t *ppos) |
| { |
| int ret, state; |
| |
| if (write && !capable(CAP_SYS_ADMIN)) |
| return -EPERM; |
| |
| ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos); |
| if (!ret && write) { |
| state = static_branch_unlikely(&sched_energy_present); |
| if (state != sysctl_sched_energy_aware) |
| rebuild_sched_domains_energy(); |
| } |
| |
| return ret; |
| } |
| |
| static struct ctl_table sched_energy_aware_sysctls[] = { |
| { |
| .procname = "sched_energy_aware", |
| .data = &sysctl_sched_energy_aware, |
| .maxlen = sizeof(unsigned int), |
| .mode = 0644, |
| .proc_handler = sched_energy_aware_handler, |
| .extra1 = SYSCTL_ZERO, |
| .extra2 = SYSCTL_ONE, |
| }, |
| {} |
| }; |
| |
| static int __init sched_energy_aware_sysctl_init(void) |
| { |
| register_sysctl_init("kernel", sched_energy_aware_sysctls); |
| return 0; |
| } |
| |
| late_initcall(sched_energy_aware_sysctl_init); |
| #endif |
| |
| static void free_pd(struct perf_domain *pd) |
| { |
| struct perf_domain *tmp; |
| |
| while (pd) { |
| tmp = pd->next; |
| kfree(pd); |
| pd = tmp; |
| } |
| } |
| |
| static struct perf_domain *find_pd(struct perf_domain *pd, int cpu) |
| { |
| while (pd) { |
| if (cpumask_test_cpu(cpu, perf_domain_span(pd))) |
| return pd; |
| pd = pd->next; |
| } |
| |
| return NULL; |
| } |
| |
| static struct perf_domain *pd_init(int cpu) |
| { |
| struct em_perf_domain *obj = em_cpu_get(cpu); |
| struct perf_domain *pd; |
| |
| if (!obj) { |
| if (sched_debug()) |
| pr_info("%s: no EM found for CPU%d\n", __func__, cpu); |
| return NULL; |
| } |
| |
| pd = kzalloc(sizeof(*pd), GFP_KERNEL); |
| if (!pd) |
| return NULL; |
| pd->em_pd = obj; |
| |
| return pd; |
| } |
| |
| static void perf_domain_debug(const struct cpumask *cpu_map, |
| struct perf_domain *pd) |
| { |
| if (!sched_debug() || !pd) |
| return; |
| |
| printk(KERN_DEBUG "root_domain %*pbl:", cpumask_pr_args(cpu_map)); |
| |
| while (pd) { |
| printk(KERN_CONT " pd%d:{ cpus=%*pbl nr_pstate=%d }", |
| cpumask_first(perf_domain_span(pd)), |
| cpumask_pr_args(perf_domain_span(pd)), |
| em_pd_nr_perf_states(pd->em_pd)); |
| pd = pd->next; |
| } |
| |
| printk(KERN_CONT "\n"); |
| } |
| |
| static void destroy_perf_domain_rcu(struct rcu_head *rp) |
| { |
| struct perf_domain *pd; |
| |
| pd = container_of(rp, struct perf_domain, rcu); |
| free_pd(pd); |
| } |
| |
| static void sched_energy_set(bool has_eas) |
| { |
| if (!has_eas && static_branch_unlikely(&sched_energy_present)) { |
| if (sched_debug()) |
| pr_info("%s: stopping EAS\n", __func__); |
| static_branch_disable_cpuslocked(&sched_energy_present); |
| } else if (has_eas && !static_branch_unlikely(&sched_energy_present)) { |
| if (sched_debug()) |
| pr_info("%s: starting EAS\n", __func__); |
| static_branch_enable_cpuslocked(&sched_energy_present); |
| } |
| } |
| |
| /* |
| * EAS can be used on a root domain if it meets all the following conditions: |
| * 1. an Energy Model (EM) is available; |
| * 2. the SD_ASYM_CPUCAPACITY flag is set in the sched_domain hierarchy. |
| * 3. no SMT is detected. |
| * 4. the EM complexity is low enough to keep scheduling overheads low; |
| * 5. frequency invariance support is present; |
| * |
| * The complexity of the Energy Model is defined as: |
| * |
| * C = nr_pd * (nr_cpus + nr_ps) |
| * |
| * with parameters defined as: |
| * - nr_pd: the number of performance domains |
| * - nr_cpus: the number of CPUs |
| * - nr_ps: the sum of the number of performance states of all performance |
| * domains (for example, on a system with 2 performance domains, |
| * with 10 performance states each, nr_ps = 2 * 10 = 20). |
| * |
| * It is generally not a good idea to use such a model in the wake-up path on |
| * very complex platforms because of the associated scheduling overheads. The |
| * arbitrary constraint below prevents that. It makes EAS usable up to 16 CPUs |
| * with per-CPU DVFS and less than 8 performance states each, for example. |
| */ |
| #define EM_MAX_COMPLEXITY 2048 |
| |
| static bool build_perf_domains(const struct cpumask *cpu_map) |
| { |
| int i, nr_pd = 0, nr_ps = 0, nr_cpus = cpumask_weight(cpu_map); |
| struct perf_domain *pd = NULL, *tmp; |
| int cpu = cpumask_first(cpu_map); |
| struct root_domain *rd = cpu_rq(cpu)->rd; |
| bool eas_check = false; |
| |
| if (!sysctl_sched_energy_aware) |
| goto free; |
| |
| /* |
| * EAS is enabled for asymmetric CPU capacity topologies. |
| * Allow vendor to override if desired. |
| */ |
| trace_android_rvh_build_perf_domains(&eas_check); |
| if (!per_cpu(sd_asym_cpucapacity, cpu) && !eas_check) { |
| if (sched_debug()) { |
| pr_info("rd %*pbl: CPUs do not have asymmetric capacities\n", |
| cpumask_pr_args(cpu_map)); |
| } |
| goto free; |
| } |
| |
| /* EAS definitely does *not* handle SMT */ |
| if (sched_smt_active()) { |
| pr_warn("rd %*pbl: Disabling EAS, SMT is not supported\n", |
| cpumask_pr_args(cpu_map)); |
| goto free; |
| } |
| |
| if (!arch_scale_freq_invariant()) { |
| if (sched_debug()) { |
| pr_warn("rd %*pbl: Disabling EAS: frequency-invariant load tracking not yet supported", |
| cpumask_pr_args(cpu_map)); |
| } |
| goto free; |
| } |
| |
| for_each_cpu(i, cpu_map) { |
| /* Skip already covered CPUs. */ |
| if (find_pd(pd, i)) |
| continue; |
| |
| /* Create the new pd and add it to the local list. */ |
| tmp = pd_init(i); |
| if (!tmp) |
| goto free; |
| tmp->next = pd; |
| pd = tmp; |
| |
| /* |
| * Count performance domains and performance states for the |
| * complexity check. |
| */ |
| nr_pd++; |
| nr_ps += em_pd_nr_perf_states(pd->em_pd); |
| } |
| |
| /* Bail out if the Energy Model complexity is too high. */ |
| if (nr_pd * (nr_ps + nr_cpus) > EM_MAX_COMPLEXITY) { |
| WARN(1, "rd %*pbl: Failed to start EAS, EM complexity is too high\n", |
| cpumask_pr_args(cpu_map)); |
| goto free; |
| } |
| |
| perf_domain_debug(cpu_map, pd); |
| |
| /* Attach the new list of performance domains to the root domain. */ |
| tmp = rd->pd; |
| rcu_assign_pointer(rd->pd, pd); |
| if (tmp) |
| call_rcu(&tmp->rcu, destroy_perf_domain_rcu); |
| |
| return !!pd; |
| |
| free: |
| free_pd(pd); |
| tmp = rd->pd; |
| rcu_assign_pointer(rd->pd, NULL); |
| if (tmp) |
| call_rcu(&tmp->rcu, destroy_perf_domain_rcu); |
| |
| return false; |
| } |
| #else |
| static void free_pd(struct perf_domain *pd) { } |
| #endif /* CONFIG_ENERGY_MODEL && CONFIG_CPU_FREQ_GOV_SCHEDUTIL*/ |
| |
| static void free_rootdomain(struct rcu_head *rcu) |
| { |
| struct root_domain *rd = container_of(rcu, struct root_domain, rcu); |
| |
| cpupri_cleanup(&rd->cpupri); |
| cpudl_cleanup(&rd->cpudl); |
| free_cpumask_var(rd->dlo_mask); |
| free_cpumask_var(rd->rto_mask); |
| free_cpumask_var(rd->online); |
| free_cpumask_var(rd->span); |
| free_pd(rd->pd); |
| kfree(rd); |
| } |
| |
| void rq_attach_root(struct rq *rq, struct root_domain *rd) |
| { |
| struct root_domain *old_rd = NULL; |
| struct rq_flags rf; |
| |
| rq_lock_irqsave(rq, &rf); |
| |
| if (rq->rd) { |
| old_rd = rq->rd; |
| |
| if (cpumask_test_cpu(rq->cpu, old_rd->online)) |
| set_rq_offline(rq); |
| |
| cpumask_clear_cpu(rq->cpu, old_rd->span); |
| |
| /* |
| * If we dont want to free the old_rd yet then |
| * set old_rd to NULL to skip the freeing later |
| * in this function: |
| */ |
| if (!atomic_dec_and_test(&old_rd->refcount)) |
| old_rd = NULL; |
| } |
| |
| atomic_inc(&rd->refcount); |
| rq->rd = rd; |
| |
| cpumask_set_cpu(rq->cpu, rd->span); |
| if (cpumask_test_cpu(rq->cpu, cpu_active_mask)) |
| set_rq_online(rq); |
| |
| rq_unlock_irqrestore(rq, &rf); |
| |
| if (old_rd) |
| call_rcu(&old_rd->rcu, free_rootdomain); |
| } |
| |
| void sched_get_rd(struct root_domain *rd) |
| { |
| atomic_inc(&rd->refcount); |
| } |
| |
| void sched_put_rd(struct root_domain *rd) |
| { |
| if (!atomic_dec_and_test(&rd->refcount)) |
| return; |
| |
| call_rcu(&rd->rcu, free_rootdomain); |
| } |
| |
| static int init_rootdomain(struct root_domain *rd) |
| { |
| if (!zalloc_cpumask_var(&rd->span, GFP_KERNEL)) |
| goto out; |
| if (!zalloc_cpumask_var(&rd->online, GFP_KERNEL)) |
| goto free_span; |
| if (!zalloc_cpumask_var(&rd->dlo_mask, GFP_KERNEL)) |
| goto free_online; |
| if (!zalloc_cpumask_var(&rd->rto_mask, GFP_KERNEL)) |
| goto free_dlo_mask; |
| |
| #ifdef HAVE_RT_PUSH_IPI |
| rd->rto_cpu = -1; |
| raw_spin_lock_init(&rd->rto_lock); |
| rd->rto_push_work = IRQ_WORK_INIT_HARD(rto_push_irq_work_func); |
| #endif |
| |
| rd->visit_gen = 0; |
| init_dl_bw(&rd->dl_bw); |
| if (cpudl_init(&rd->cpudl) != 0) |
| goto free_rto_mask; |
| |
| if (cpupri_init(&rd->cpupri) != 0) |
| goto free_cpudl; |
| return 0; |
| |
| free_cpudl: |
| cpudl_cleanup(&rd->cpudl); |
| free_rto_mask: |
| free_cpumask_var(rd->rto_mask); |
| free_dlo_mask: |
| free_cpumask_var(rd->dlo_mask); |
| free_online: |
| free_cpumask_var(rd->online); |
| free_span: |
| free_cpumask_var(rd->span); |
| out: |
| return -ENOMEM; |
| } |
| |
| /* |
| * By default the system creates a single root-domain with all CPUs as |
| * members (mimicking the global state we have today). |
| */ |
| struct root_domain def_root_domain; |
| |
| void __init init_defrootdomain(void) |
| { |
| init_rootdomain(&def_root_domain); |
| |
| atomic_set(&def_root_domain.refcount, 1); |
| } |
| |
| static struct root_domain *alloc_rootdomain(void) |
| { |
| struct root_domain *rd; |
| |
| rd = kzalloc(sizeof(*rd), GFP_KERNEL); |
| if (!rd) |
| return NULL; |
| |
| if (init_rootdomain(rd) != 0) { |
| kfree(rd); |
| return NULL; |
| } |
| |
| return rd; |
| } |
| |
| static void free_sched_groups(struct sched_group *sg, int free_sgc) |
| { |
| struct sched_group *tmp, *first; |
| |
| if (!sg) |
| return; |
| |
| first = sg; |
| do { |
| tmp = sg->next; |
| |
| if (free_sgc && atomic_dec_and_test(&sg->sgc->ref)) |
| kfree(sg->sgc); |
| |
| if (atomic_dec_and_test(&sg->ref)) |
| kfree(sg); |
| sg = tmp; |
| } while (sg != first); |
| } |
| |
| static void destroy_sched_domain(struct sched_domain *sd) |
| { |
| /* |
| * A normal sched domain may have multiple group references, an |
| * overlapping domain, having private groups, only one. Iterate, |
| * dropping group/capacity references, freeing where none remain. |
| */ |
| free_sched_groups(sd->groups, 1); |
| |
| if (sd->shared && atomic_dec_and_test(&sd->shared->ref)) |
| kfree(sd->shared); |
| kfree(sd); |
| } |
| |
| static void destroy_sched_domains_rcu(struct rcu_head *rcu) |
| { |
| struct sched_domain *sd = container_of(rcu, struct sched_domain, rcu); |
| |
| while (sd) { |
| struct sched_domain *parent = sd->parent; |
| destroy_sched_domain(sd); |
| sd = parent; |
| } |
| } |
| |
| static void destroy_sched_domains(struct sched_domain *sd) |
| { |
| if (sd) |
| call_rcu(&sd->rcu, destroy_sched_domains_rcu); |
| } |
| |
| /* |
| * Keep a special pointer to the highest sched_domain that has |
| * SD_SHARE_PKG_RESOURCE set (Last Level Cache Domain) for this |
| * allows us to avoid some pointer chasing select_idle_sibling(). |
| * |
| * Also keep a unique ID per domain (we use the first CPU number in |
| * the cpumask of the domain), this allows us to quickly tell if |
| * two CPUs are in the same cache domain, see cpus_share_cache(). |
| */ |
| DEFINE_PER_CPU(struct sched_domain __rcu *, sd_llc); |
| DEFINE_PER_CPU(int, sd_llc_size); |
| DEFINE_PER_CPU(int, sd_llc_id); |
| DEFINE_PER_CPU(struct sched_domain_shared __rcu *, sd_llc_shared); |
| DEFINE_PER_CPU(struct sched_domain __rcu *, sd_numa); |
| DEFINE_PER_CPU(struct sched_domain __rcu *, sd_asym_packing); |
| DEFINE_PER_CPU(struct sched_domain __rcu *, sd_asym_cpucapacity); |
| DEFINE_STATIC_KEY_FALSE(sched_asym_cpucapacity); |
| |
| static void update_top_cache_domain(int cpu) |
| { |
| struct sched_domain_shared *sds = NULL; |
| struct sched_domain *sd; |
| int id = cpu; |
| int size = 1; |
| |
| sd = highest_flag_domain(cpu, SD_SHARE_PKG_RESOURCES); |
| if (sd) { |
| id = cpumask_first(sched_domain_span(sd)); |
| size = cpumask_weight(sched_domain_span(sd)); |
| sds = sd->shared; |
| } |
| |
| rcu_assign_pointer(per_cpu(sd_llc, cpu), sd); |
| per_cpu(sd_llc_size, cpu) = size; |
| per_cpu(sd_llc_id, cpu) = id; |
| rcu_assign_pointer(per_cpu(sd_llc_shared, cpu), sds); |
| |
| sd = lowest_flag_domain(cpu, SD_NUMA); |
| rcu_assign_pointer(per_cpu(sd_numa, cpu), sd); |
| |
| sd = highest_flag_domain(cpu, SD_ASYM_PACKING); |
| rcu_assign_pointer(per_cpu(sd_asym_packing, cpu), sd); |
| |
| sd = lowest_flag_domain(cpu, SD_ASYM_CPUCAPACITY_FULL); |
| rcu_assign_pointer(per_cpu(sd_asym_cpucapacity, cpu), sd); |
| } |
| |
| /* |
| * Attach the domain 'sd' to 'cpu' as its base domain. Callers must |
| * hold the hotplug lock. |
| */ |
| static void |
| cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu) |
| { |
| struct rq *rq = cpu_rq(cpu); |
| struct sched_domain *tmp; |
| |
| /* Remove the sched domains which do not contribute to scheduling. */ |
| for (tmp = sd; tmp; ) { |
| struct sched_domain *parent = tmp->parent; |
| if (!parent) |
| break; |
| |
| if (sd_parent_degenerate(tmp, parent)) { |
| tmp->parent = parent->parent; |
| |
| if (parent->parent) { |
| parent->parent->child = tmp; |
| parent->parent->groups->flags = tmp->flags; |
| } |
| |
| /* |
| * Transfer SD_PREFER_SIBLING down in case of a |
| * degenerate parent; the spans match for this |
| * so the property transfers. |
| */ |
| if (parent->flags & SD_PREFER_SIBLING) |
| tmp->flags |= SD_PREFER_SIBLING; |
| destroy_sched_domain(parent); |
| } else |
| tmp = tmp->parent; |
| } |
| |
| if (sd && sd_degenerate(sd)) { |
| tmp = sd; |
| sd = sd->parent; |
| destroy_sched_domain(tmp); |
| if (sd) { |
| struct sched_group *sg = sd->groups; |
| |
| /* |
| * sched groups hold the flags of the child sched |
| * domain for convenience. Clear such flags since |
| * the child is being destroyed. |
| */ |
| do { |
| sg->flags = 0; |
| } while (sg != sd->groups); |
| |
| sd->child = NULL; |
| } |
| } |
| |
| sched_domain_debug(sd, cpu); |
| |
| rq_attach_root(rq, rd); |
| tmp = rq->sd; |
| rcu_assign_pointer(rq->sd, sd); |
| dirty_sched_domain_sysctl(cpu); |
| destroy_sched_domains(tmp); |
| |
| update_top_cache_domain(cpu); |
| } |
| |
| struct s_data { |
| struct sched_domain * __percpu *sd; |
| struct root_domain *rd; |
| }; |
| |
| enum s_alloc { |
| sa_rootdomain, |
| sa_sd, |
| sa_sd_storage, |
| sa_none, |
| }; |
| |
| /* |
| * Return the canonical balance CPU for this group, this is the first CPU |
| * of this group that's also in the balance mask. |
| * |
| * The balance mask are all those CPUs that could actually end up at this |
| * group. See build_balance_mask(). |
| * |
| * Also see should_we_balance(). |
| */ |
| int group_balance_cpu(struct sched_group *sg) |
| { |
| return cpumask_first(group_balance_mask(sg)); |
| } |
| |
| |
| /* |
| * NUMA topology (first read the regular topology blurb below) |
| * |
| * Given a node-distance table, for example: |
| * |
| * node 0 1 2 3 |
| * 0: 10 20 30 20 |
| * 1: 20 10 20 30 |
| * 2: 30 20 10 20 |
| * 3: 20 30 20 10 |
| * |
| * which represents a 4 node ring topology like: |
| * |
| * 0 ----- 1 |
| * | | |
| * | | |
| * | | |
| * 3 ----- 2 |
| * |
| * We want to construct domains and groups to represent this. The way we go |
| * about doing this is to build the domains on 'hops'. For each NUMA level we |
| * construct the mask of all nodes reachable in @level hops. |
| * |
| * For the above NUMA topology that gives 3 levels: |
| * |
| * NUMA-2 0-3 0-3 0-3 0-3 |
| * groups: {0-1,3},{1-3} {0-2},{0,2-3} {1-3},{0-1,3} {0,2-3},{0-2} |
| * |
| * NUMA-1 0-1,3 0-2 1-3 0,2-3 |
| * groups: {0},{1},{3} {0},{1},{2} {1},{2},{3} {0},{2},{3} |
| * |
| * NUMA-0 0 1 2 3 |
| * |
| * |
| * As can be seen; things don't nicely line up as with the regular topology. |
| * When we iterate a domain in child domain chunks some nodes can be |
| * represented multiple times -- hence the "overlap" naming for this part of |
| * the topology. |
| * |
| * In order to minimize this overlap, we only build enough groups to cover the |
| * domain. For instance Node-0 NUMA-2 would only get groups: 0-1,3 and 1-3. |
| * |
| * Because: |
| * |
| * - the first group of each domain is its child domain; this |
| * gets us the first 0-1,3 |
| * - the only uncovered node is 2, who's child domain is 1-3. |
| * |
| * However, because of the overlap, computing a unique CPU for each group is |
| * more complicated. Consider for instance the groups of NODE-1 NUMA-2, both |
| * groups include the CPUs of Node-0, while those CPUs would not in fact ever |
| * end up at those groups (they would end up in group: 0-1,3). |
| * |
| * To correct this we have to introduce the group balance mask. This mask |
| * will contain those CPUs in the group that can reach this group given the |
| * (child) domain tree. |
| * |
| * With this we can once again compute balance_cpu and sched_group_capacity |
| * relations. |
| * |
| * XXX include words on how balance_cpu is unique and therefore can be |
| * used for sched_group_capacity links. |
| * |
| * |
| * Another 'interesting' topology is: |
| * |
| * node 0 1 2 3 |
| * 0: 10 20 20 30 |
| * 1: 20 10 20 20 |
| * 2: 20 20 10 20 |
| * 3: 30 20 20 10 |
| * |
| * Which looks a little like: |
| * |
| * 0 ----- 1 |
| * | / | |
| * | / | |
| * | / | |
| * 2 ----- 3 |
| * |
| * This topology is asymmetric, nodes 1,2 are fully connected, but nodes 0,3 |
| * are not. |
| * |
| * This leads to a few particularly weird cases where the sched_domain's are |
| * not of the same number for each CPU. Consider: |
| * |
| * NUMA-2 0-3 0-3 |
| * groups: {0-2},{1-3} {1-3},{0-2} |
| * |
| * NUMA-1 0-2 0-3 0-3 1-3 |
| * |
| * NUMA-0 0 1 2 3 |
| * |
| */ |
| |
| |
| /* |
| * Build the balance mask; it contains only those CPUs that can arrive at this |
| * group and should be considered to continue balancing. |
| * |
| * We do this during the group creation pass, therefore the group information |
| * isn't complete yet, however since each group represents a (child) domain we |
| * can fully construct this using the sched_domain bits (which are already |
| * complete). |
| */ |
| static void |
| build_balance_mask(struct sched_domain *sd, struct sched_group *sg, struct cpumask *mask) |
| { |
| const struct cpumask *sg_span = sched_group_span(sg); |
| struct sd_data *sdd = sd->private; |
| struct sched_domain *sibling; |
| int i; |
| |
| cpumask_clear(mask); |
| |
| for_each_cpu(i, sg_span) { |
| sibling = *per_cpu_ptr(sdd->sd, i); |
| |
| /* |
| * Can happen in the asymmetric case, where these siblings are |
| * unused. The mask will not be empty because those CPUs that |
| * do have the top domain _should_ span the domain. |
| */ |
| if (!sibling->child) |
| continue; |
| |
| /* If we would not end up here, we can't continue from here */ |
| if (!cpumask_equal(sg_span, sched_domain_span(sibling->child))) |
| continue; |
| |
| cpumask_set_cpu(i, mask); |
| } |
| |
| /* We must not have empty masks here */ |
| WARN_ON_ONCE(cpumask_empty(mask)); |
| } |
| |
| /* |
| * XXX: This creates per-node group entries; since the load-balancer will |
| * immediately access remote memory to construct this group's load-balance |
| * statistics having the groups node local is of dubious benefit. |
| */ |
| static struct sched_group * |
| build_group_from_child_sched_domain(struct sched_domain *sd, int cpu) |
| { |
| struct sched_group *sg; |
| struct cpumask *sg_span; |
| |
| sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(), |
| GFP_KERNEL, cpu_to_node(cpu)); |
| |
| if (!sg) |
| return NULL; |
| |
| sg_span = sched_group_span(sg); |
| if (sd->child) { |
| cpumask_copy(sg_span, sched_domain_span(sd->child)); |
| sg->flags = sd->child->flags; |
| } else { |
| cpumask_copy(sg_span, sched_domain_span(sd)); |
| } |
| |
| atomic_inc(&sg->ref); |
| return sg; |
| } |
| |
| static void init_overlap_sched_group(struct sched_domain *sd, |
| struct sched_group *sg) |
| { |
| struct cpumask *mask = sched_domains_tmpmask2; |
| struct sd_data *sdd = sd->private; |
| struct cpumask *sg_span; |
| int cpu; |
| |
| build_balance_mask(sd, sg, mask); |
| cpu = cpumask_first(mask); |
| |
| sg->sgc = *per_cpu_ptr(sdd->sgc, cpu); |
| if (atomic_inc_return(&sg->sgc->ref) == 1) |
| cpumask_copy(group_balance_mask(sg), mask); |
| else |
| WARN_ON_ONCE(!cpumask_equal(group_balance_mask(sg), mask)); |
| |
| /* |
| * Initialize sgc->capacity such that even if we mess up the |
| * domains and no possible iteration will get us here, we won't |
| * die on a /0 trap. |
| */ |
| sg_span = sched_group_span(sg); |
| sg->sgc->capacity = SCHED_CAPACITY_SCALE * cpumask_weight(sg_span); |
| sg->sgc->min_capacity = SCHED_CAPACITY_SCALE; |
| sg->sgc->max_capacity = SCHED_CAPACITY_SCALE; |
| } |
| |
| static struct sched_domain * |
| find_descended_sibling(struct sched_domain *sd, struct sched_domain *sibling) |
| { |
| /* |
| * The proper descendant would be the one whose child won't span out |
| * of sd |
| */ |
| while (sibling->child && |
| !cpumask_subset(sched_domain_span(sibling->child), |
| sched_domain_span(sd))) |
| sibling = sibling->child; |
| |
| /* |
| * As we are referencing sgc across different topology level, we need |
| * to go down to skip those sched_domains which don't contribute to |
| * scheduling because they will be degenerated in cpu_attach_domain |
| */ |
| while (sibling->child && |
| cpumask_equal(sched_domain_span(sibling->child), |
| sched_domain_span(sibling))) |
| sibling = sibling->child; |
| |
| return sibling; |
| } |
| |
| static int |
| build_overlap_sched_groups(struct sched_domain *sd, int cpu) |
| { |
| struct sched_group *first = NULL, *last = NULL, *sg; |
| const struct cpumask *span = sched_domain_span(sd); |
| struct cpumask *covered = sched_domains_tmpmask; |
| struct sd_data *sdd = sd->private; |
| struct sched_domain *sibling; |
| int i; |
| |
| cpumask_clear(covered); |
| |
| for_each_cpu_wrap(i, span, cpu) { |
| struct cpumask *sg_span; |
| |
| if (cpumask_test_cpu(i, covered)) |
| continue; |
| |
| sibling = *per_cpu_ptr(sdd->sd, i); |
| |
| /* |
| * Asymmetric node setups can result in situations where the |
| * domain tree is of unequal depth, make sure to skip domains |
| * that already cover the entire range. |
| * |
| * In that case build_sched_domains() will have terminated the |
| * iteration early and our sibling sd spans will be empty. |
| * Domains should always include the CPU they're built on, so |
| * check that. |
| */ |
| if (!cpumask_test_cpu(i, sched_domain_span(sibling))) |
| continue; |
| |
| /* |
| * Usually we build sched_group by sibling's child sched_domain |
| * But for machines whose NUMA diameter are 3 or above, we move |
| * to build sched_group by sibling's proper descendant's child |
| * domain because sibling's child sched_domain will span out of |
| * the sched_domain being built as below. |
| * |
| * Smallest diameter=3 topology is: |
| * |
| * node 0 1 2 3 |
| * 0: 10 20 30 40 |
| * 1: 20 10 20 30 |
| * 2: 30 20 10 20 |
| * 3: 40 30 20 10 |
| * |
| * 0 --- 1 --- 2 --- 3 |
| * |
| * NUMA-3 0-3 N/A N/A 0-3 |
| * groups: {0-2},{1-3} {1-3},{0-2} |
| * |
| * NUMA-2 0-2 0-3 0-3 1-3 |
| * groups: {0-1},{1-3} {0-2},{2-3} {1-3},{0-1} {2-3},{0-2} |
| * |
| * NUMA-1 0-1 0-2 1-3 2-3 |
| * groups: {0},{1} {1},{2},{0} {2},{3},{1} {3},{2} |
| * |
| * NUMA-0 0 1 2 3 |
| * |
| * The NUMA-2 groups for nodes 0 and 3 are obviously buggered, as the |
| * group span isn't a subset of the domain span. |
| */ |
| if (sibling->child && |
| !cpumask_subset(sched_domain_span(sibling->child), span)) |
| sibling = find_descended_sibling(sd, sibling); |
| |
| sg = build_group_from_child_sched_domain(sibling, cpu); |
| if (!sg) |
| goto fail; |
| |
| sg_span = sched_group_span(sg); |
| cpumask_or(covered, covered, sg_span); |
| |
| init_overlap_sched_group(sibling, sg); |
| |
| if (!first) |
| first = sg; |
| if (last) |
| last->next = sg; |
| last = sg; |
| last->next = first; |
| } |
| sd->groups = first; |
| |
| return 0; |
| |
| fail: |
| free_sched_groups(first, 0); |
| |
| return -ENOMEM; |
| } |
| |
| |
| /* |
| * Package topology (also see the load-balance blurb in fair.c) |
| * |
| * The scheduler builds a tree structure to represent a number of important |
| * topology features. By default (default_topology[]) these include: |
| * |
| * - Simultaneous multithreading (SMT) |
| * - Multi-Core Cache (MC) |
| * - Package (DIE) |
| * |
| * Where the last one more or less denotes everything up to a NUMA node. |
| * |
| * The tree consists of 3 primary data structures: |
| * |
| * sched_domain -> sched_group -> sched_group_capacity |
| * ^ ^ ^ ^ |
| * `-' `-' |
| * |
| * The sched_domains are per-CPU and have a two way link (parent & child) and |
| * denote the ever growing mask of CPUs belonging to that level of topology. |
| * |
| * Each sched_domain has a circular (double) linked list of sched_group's, each |
| * denoting the domains of the level below (or individual CPUs in case of the |
| * first domain level). The sched_group linked by a sched_domain includes the |
| * CPU of that sched_domain [*]. |
| * |
| * Take for instance a 2 threaded, 2 core, 2 cache cluster part: |
| * |
| * CPU 0 1 2 3 4 5 6 7 |
| * |
| * DIE [ ] |
| * MC [ ] [ ] |
| * SMT [ ] [ ] [ ] [ ] |
| * |
| * - or - |
| * |
| * DIE 0-7 0-7 0-7 0-7 0-7 0-7 0-7 0-7 |
| * MC 0-3 0-3 0-3 0-3 4-7 4-7 4-7 4-7 |
| * SMT 0-1 0-1 2-3 2-3 4-5 4-5 6-7 6-7 |
| * |
| * CPU 0 1 2 3 4 5 6 7 |
| * |
| * One way to think about it is: sched_domain moves you up and down among these |
| * topology levels, while sched_group moves you sideways through it, at child |
| * domain granularity. |
| * |
| * sched_group_capacity ensures each unique sched_group has shared storage. |
| * |
| * There are two related construction problems, both require a CPU that |
| * uniquely identify each group (for a given domain): |
| * |
| * - The first is the balance_cpu (see should_we_balance() and the |
| * load-balance blub in fair.c); for each group we only want 1 CPU to |
| * continue balancing at a higher domain. |
| * |
| * - The second is the sched_group_capacity; we want all identical groups |
| * to share a single sched_group_capacity. |
| * |
| * Since these topologies are exclusive by construction. That is, its |
| * impossible for an SMT thread to belong to multiple cores, and cores to |
| * be part of multiple caches. There is a very clear and unique location |
| * for each CPU in the hierarchy. |
| * |
| * Therefore computing a unique CPU for each group is trivial (the iteration |
| * mask is redundant and set all 1s; all CPUs in a group will end up at _that_ |
| * group), we can simply pick the first CPU in each group. |
| * |
| * |
| * [*] in other words, the first group of each domain is its child domain. |
| */ |
| |
| static struct sched_group *get_group(int cpu, struct sd_data *sdd) |
| { |
| struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu); |
| struct sched_domain *child = sd->child; |
| struct sched_group *sg; |
| bool already_visited; |
| |
| if (child) |
| cpu = cpumask_first(sched_domain_span(child)); |
| |
| sg = *per_cpu_ptr(sdd->sg, cpu); |
| sg->sgc = *per_cpu_ptr(sdd->sgc, cpu); |
| |
| /* Increase refcounts for claim_allocations: */ |
| already_visited = atomic_inc_return(&sg->ref) > 1; |
| /* sgc visits should follow a similar trend as sg */ |
| WARN_ON(already_visited != (atomic_inc_return(&sg->sgc->ref) > 1)); |
| |
| /* If we have already visited that group, it's already initialized. */ |
| if (already_visited) |
| return sg; |
| |
| if (child) { |
| cpumask_copy(sched_group_span(sg), sched_domain_span(child)); |
| cpumask_copy(group_balance_mask(sg), sched_group_span(sg)); |
| sg->flags = child->flags; |
| } else { |
| cpumask_set_cpu(cpu, sched_group_span(sg)); |
| cpumask_set_cpu(cpu, group_balance_mask(sg)); |
| } |
| |
| sg->sgc->capacity = SCHED_CAPACITY_SCALE * cpumask_weight(sched_group_span(sg)); |
| sg->sgc->min_capacity = SCHED_CAPACITY_SCALE; |
| sg->sgc->max_capacity = SCHED_CAPACITY_SCALE; |
| |
| return sg; |
| } |
| |
| /* |
| * build_sched_groups will build a circular linked list of the groups |
| * covered by the given span, will set each group's ->cpumask correctly, |
| * and will initialize their ->sgc. |
| * |
| * Assumes the sched_domain tree is fully constructed |
| */ |
| static int |
| build_sched_groups(struct sched_domain *sd, int cpu) |
| { |
| struct sched_group *first = NULL, *last = NULL; |
| struct sd_data *sdd = sd->private; |
| const struct cpumask *span = sched_domain_span(sd); |
| struct cpumask *covered; |
| int i; |
| |
| lockdep_assert_held(&sched_domains_mutex); |
| covered = sched_domains_tmpmask; |
| |
| cpumask_clear(covered); |
| |
| for_each_cpu_wrap(i, span, cpu) { |
| struct sched_group *sg; |
| |
| if (cpumask_test_cpu(i, covered)) |
| continue; |
| |
| sg = get_group(i, sdd); |
| |
| cpumask_or(covered, covered, sched_group_span(sg)); |
| |
| if (!first) |
| first = sg; |
| if (last) |
| last->next = sg; |
| last = sg; |
| } |
| last->next = first; |
| sd->groups = first; |
| |
| return 0; |
| } |
| |
| /* |
| * Initialize sched groups cpu_capacity. |
| * |
| * cpu_capacity indicates the capacity of sched group, which is used while |
| * distributing the load between different sched groups in a sched domain. |
| * Typically cpu_capacity for all the groups in a sched domain will be same |
| * unless there are asymmetries in the topology. If there are asymmetries, |
| * group having more cpu_capacity will pickup more load compared to the |
| * group having less cpu_capacity. |
| */ |
| static void init_sched_groups_capacity(int cpu, struct sched_domain *sd) |
| { |
| struct sched_group *sg = sd->groups; |
| struct cpumask *mask = sched_domains_tmpmask2; |
| |
| WARN_ON(!sg); |
| |
| do { |
| int cpu, cores = 0, max_cpu = -1; |
| |
| sg->group_weight = cpumask_weight(sched_group_span(sg)); |
| |
| cpumask_copy(mask, sched_group_span(sg)); |
| for_each_cpu(cpu, mask) { |
| cores++; |
| #ifdef CONFIG_SCHED_SMT |
| cpumask_andnot(mask, mask, cpu_smt_mask(cpu)); |
| #endif |
| } |
| sg->cores = cores; |
| |
| if (!(sd->flags & SD_ASYM_PACKING)) |
| goto next; |
| |
| for_each_cpu(cpu, sched_group_span(sg)) { |
| if (max_cpu < 0) |
| max_cpu = cpu; |
| else if (sched_asym_prefer(cpu, max_cpu)) |
| max_cpu = cpu; |
| } |
| sg->asym_prefer_cpu = max_cpu; |
| |
| next: |
| sg = sg->next; |
| } while (sg != sd->groups); |
| |
| if (cpu != group_balance_cpu(sg)) |
| return; |
| |
| update_group_capacity(sd, cpu); |
| } |
| |
| /* |
| * Asymmetric CPU capacity bits |
| */ |
| struct asym_cap_data { |
| struct list_head link; |
| unsigned long capacity; |
| unsigned long cpus[]; |
| }; |
| |
| /* |
| * Set of available CPUs grouped by their corresponding capacities |
| * Each list entry contains a CPU mask reflecting CPUs that share the same |
| * capacity. |
| * The lifespan of data is unlimited. |
| */ |
| static LIST_HEAD(asym_cap_list); |
| |
| #define cpu_capacity_span(asym_data) to_cpumask((asym_data)->cpus) |
| |
| /* |
| * Verify whether there is any CPU capacity asymmetry in a given sched domain. |
| * Provides sd_flags reflecting the asymmetry scope. |
| */ |
| static inline int |
| asym_cpu_capacity_classify(const struct cpumask *sd_span, |
| const struct cpumask *cpu_map) |
| { |
| struct asym_cap_data *entry; |
| int count = 0, miss = 0; |
| |
| /* |
| * Count how many unique CPU capacities this domain spans across |
| * (compare sched_domain CPUs mask with ones representing available |
| * CPUs capacities). Take into account CPUs that might be offline: |
| * skip those. |
| */ |
| list_for_each_entry(entry, &asym_cap_list, link) { |
| if (cpumask_intersects(sd_span, cpu_capacity_span(entry))) |
| ++count; |
| else if (cpumask_intersects(cpu_map, cpu_capacity_span(entry))) |
| ++miss; |
| } |
| |
| WARN_ON_ONCE(!count && !list_empty(&asym_cap_list)); |
| |
| /* No asymmetry detected */ |
| if (count < 2) |
| return 0; |
| /* Some of the available CPU capacity values have not been detected */ |
| if (miss) |
| return SD_ASYM_CPUCAPACITY; |
| |
| /* Full asymmetry */ |
| return SD_ASYM_CPUCAPACITY | SD_ASYM_CPUCAPACITY_FULL; |
| |
| } |
| |
| static inline void asym_cpu_capacity_update_data(int cpu) |
| { |
| unsigned long capacity = arch_scale_cpu_capacity(cpu); |
| struct asym_cap_data *entry = NULL; |
| |
| list_for_each_entry(entry, &asym_cap_list, link) { |
| if (capacity == entry->capacity) |
| goto done; |
| } |
| |
| entry = kzalloc(sizeof(*entry) + cpumask_size(), GFP_KERNEL); |
| if (WARN_ONCE(!entry, "Failed to allocate memory for asymmetry data\n")) |
| return; |
| entry->capacity = capacity; |
| list_add(&entry->link, &asym_cap_list); |
| done: |
| __cpumask_set_cpu(cpu, cpu_capacity_span(entry)); |
| } |
| |
| /* |
| * Build-up/update list of CPUs grouped by their capacities |
| * An update requires explicit request to rebuild sched domains |
| * with state indicating CPU topology changes. |
| */ |
| static void asym_cpu_capacity_scan(void) |
| { |
| struct asym_cap_data *entry, *next; |
| int cpu; |
| |
| list_for_each_entry(entry, &asym_cap_list, link) |
| cpumask_clear(cpu_capacity_span(entry)); |
| |
| for_each_cpu_and(cpu, cpu_possible_mask, housekeeping_cpumask(HK_TYPE_DOMAIN)) |
| asym_cpu_capacity_update_data(cpu); |
| |
| list_for_each_entry_safe(entry, next, &asym_cap_list, link) { |
| if (cpumask_empty(cpu_capacity_span(entry))) { |
| list_del(&entry->link); |
| kfree(entry); |
| } |
| } |
| |
| /* |
| * Only one capacity value has been detected i.e. this system is symmetric. |
| * No need to keep this data around. |
| */ |
| if (list_is_singular(&asym_cap_list)) { |
| entry = list_first_entry(&asym_cap_list, typeof(*entry), link); |
| list_del(&entry->link); |
| kfree(entry); |
| } |
| } |
| |
| /* |
| * Initializers for schedule domains |
| * Non-inlined to reduce accumulated stack pressure in build_sched_domains() |
| */ |
| |
| static int default_relax_domain_level = -1; |
| int sched_domain_level_max; |
| |
| static int __init setup_relax_domain_level(char *str) |
| { |
| if (kstrtoint(str, 0, &default_relax_domain_level)) |
| pr_warn("Unable to set relax_domain_level\n"); |
| |
| return 1; |
| } |
| __setup("relax_domain_level=", setup_relax_domain_level); |
| |
| static void set_domain_attribute(struct sched_domain *sd, |
| struct sched_domain_attr *attr) |
| { |
| int request; |
| |
| if (!attr || attr->relax_domain_level < 0) { |
| if (default_relax_domain_level < 0) |
| return; |
| request = default_relax_domain_level; |
| } else |
| request = attr->relax_domain_level; |
| |
| if (sd->level > request) { |
| /* Turn off idle balance on this domain: */ |
| sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE); |
| } |
| } |
| |
| static void __sdt_free(const struct cpumask *cpu_map); |
| static int __sdt_alloc(const struct cpumask *cpu_map); |
| |
| static void __free_domain_allocs(struct s_data *d, enum s_alloc what, |
| const struct cpumask *cpu_map) |
| { |
| switch (what) { |
| case sa_rootdomain: |
| if (!atomic_read(&d->rd->refcount)) |
| free_rootdomain(&d->rd->rcu); |
| fallthrough; |
| case sa_sd: |
| free_percpu(d->sd); |
| fallthrough; |
| case sa_sd_storage: |
| __sdt_free(cpu_map); |
| fallthrough; |
| case sa_none: |
| break; |
| } |
| } |
| |
| static enum s_alloc |
| __visit_domain_allocation_hell(struct s_data *d, const struct cpumask *cpu_map) |
| { |
| memset(d, 0, sizeof(*d)); |
| |
| if (__sdt_alloc(cpu_map)) |
| return sa_sd_storage; |
| d->sd = alloc_percpu(struct sched_domain *); |
| if (!d->sd) |
| return sa_sd_storage; |
| d->rd = alloc_rootdomain(); |
| if (!d->rd) |
| return sa_sd; |
| |
| return sa_rootdomain; |
| } |
| |
| /* |
| * NULL the sd_data elements we've used to build the sched_domain and |
| * sched_group structure so that the subsequent __free_domain_allocs() |
| * will not free the data we're using. |
| */ |
| static void claim_allocations(int cpu, struct sched_domain *sd) |
| { |
| struct sd_data *sdd = sd->private; |
| |
| WARN_ON_ONCE(*per_cpu_ptr(sdd->sd, cpu) != sd); |
| *per_cpu_ptr(sdd->sd, cpu) = NULL; |
| |
| if (atomic_read(&(*per_cpu_ptr(sdd->sds, cpu))->ref)) |
| *per_cpu_ptr(sdd->sds, cpu) = NULL; |
| |
| if (atomic_read(&(*per_cpu_ptr(sdd->sg, cpu))->ref)) |
| *per_cpu_ptr(sdd->sg, cpu) = NULL; |
| |
| if (atomic_read(&(*per_cpu_ptr(sdd->sgc, cpu))->ref)) |
| *per_cpu_ptr(sdd->sgc, cpu) = NULL; |
| } |
| |
| #ifdef CONFIG_NUMA |
| enum numa_topology_type sched_numa_topology_type; |
| |
| static int sched_domains_numa_levels; |
| static int sched_domains_curr_level; |
| |
| int sched_max_numa_distance; |
| static int *sched_domains_numa_distance; |
| static struct cpumask ***sched_domains_numa_masks; |
| #endif |
| |
| /* |
| * SD_flags allowed in topology descriptions. |
| * |
| * These flags are purely descriptive of the topology and do not prescribe |
| * behaviour. Behaviour is artificial and mapped in the below sd_init() |
| * function: |
| * |
| * SD_SHARE_CPUCAPACITY - describes SMT topologies |
| * SD_SHARE_PKG_RESOURCES - describes shared caches |
| * SD_NUMA - describes NUMA topologies |
| * |
| * Odd one out, which beside describing the topology has a quirk also |
| * prescribes the desired behaviour that goes along with it: |
| * |
| * SD_ASYM_PACKING - describes SMT quirks |
| */ |
| #define TOPOLOGY_SD_FLAGS \ |
| (SD_SHARE_CPUCAPACITY | \ |
| SD_SHARE_PKG_RESOURCES | \ |
| SD_NUMA | \ |
| SD_ASYM_PACKING) |
| |
| static struct sched_domain * |
| sd_init(struct sched_domain_topology_level *tl, |
| const struct cpumask *cpu_map, |
| struct sched_domain *child, int cpu) |
| { |
| struct sd_data *sdd = &tl->data; |
| struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu); |
| int sd_id, sd_weight, sd_flags = 0; |
| struct cpumask *sd_span; |
| |
| #ifdef CONFIG_NUMA |
| /* |
| * Ugly hack to pass state to sd_numa_mask()... |
| */ |
| sched_domains_curr_level = tl->numa_level; |
| #endif |
| |
| sd_weight = cpumask_weight(tl->mask(cpu)); |
| |
| if (tl->sd_flags) |
| sd_flags = (*tl->sd_flags)(); |
| if (WARN_ONCE(sd_flags & ~TOPOLOGY_SD_FLAGS, |
| "wrong sd_flags in topology description\n")) |
| sd_flags &= TOPOLOGY_SD_FLAGS; |
| |
| *sd = (struct sched_domain){ |
| .min_interval = sd_weight, |
| .max_interval = 2*sd_weight, |
| .busy_factor = 16, |
| .imbalance_pct = 117, |
| |
| .cache_nice_tries = 0, |
| |
| .flags = 1*SD_BALANCE_NEWIDLE |
| | 1*SD_BALANCE_EXEC |
| | 1*SD_BALANCE_FORK |
| | 0*SD_BALANCE_WAKE |
| | 1*SD_WAKE_AFFINE |
| | 0*SD_SHARE_CPUCAPACITY |
| | 0*SD_SHARE_PKG_RESOURCES |
| | 0*SD_SERIALIZE |
| | 1*SD_PREFER_SIBLING |
| | 0*SD_NUMA |
| | sd_flags |
| , |
| |
| .last_balance = jiffies, |
| .balance_interval = sd_weight, |
| .max_newidle_lb_cost = 0, |
| .last_decay_max_lb_cost = jiffies, |
| .child = child, |
| #ifdef CONFIG_SCHED_DEBUG |
| .name = tl->name, |
| #endif |
| }; |
| |
| sd_span = sched_domain_span(sd); |
| cpumask_and(sd_span, cpu_map, tl->mask(cpu)); |
| sd_id = cpumask_first(sd_span); |
| |
| sd->flags |= asym_cpu_capacity_classify(sd_span, cpu_map); |
| |
| WARN_ONCE((sd->flags & (SD_SHARE_CPUCAPACITY | SD_ASYM_CPUCAPACITY)) == |
| (SD_SHARE_CPUCAPACITY | SD_ASYM_CPUCAPACITY), |
| "CPU capacity asymmetry not supported on SMT\n"); |
| |
| /* |
| * Convert topological properties into behaviour. |
| */ |
| /* Don't attempt to spread across CPUs of different capacities. */ |
| if ((sd->flags & SD_ASYM_CPUCAPACITY) && sd->child) |
| sd->child->flags &= ~SD_PREFER_SIBLING; |
| |
| if (sd->flags & SD_SHARE_CPUCAPACITY) { |
| sd->imbalance_pct = 110; |
| |
| } else if (sd->flags & SD_SHARE_PKG_RESOURCES) { |
| sd->imbalance_pct = 117; |
| sd->cache_nice_tries = 1; |
| |
| #ifdef CONFIG_NUMA |
| } else if (sd->flags & SD_NUMA) { |
| sd->cache_nice_tries = 2; |
| |
| sd->flags &= ~SD_PREFER_SIBLING; |
| sd->flags |= SD_SERIALIZE; |
| if (sched_domains_numa_distance[tl->numa_level] > node_reclaim_distance) { |
| sd->flags &= ~(SD_BALANCE_EXEC | |
| SD_BALANCE_FORK | |
| SD_WAKE_AFFINE); |
| } |
| |
| #endif |
| } else { |
| sd->cache_nice_tries = 1; |
| } |
| |
| /* |
| * For all levels sharing cache; connect a sched_domain_shared |
| * instance. |
| */ |
| if (sd->flags & SD_SHARE_PKG_RESOURCES) { |
| sd->shared = *per_cpu_ptr(sdd->sds, sd_id); |
| atomic_inc(&sd->shared->ref); |
| atomic_set(&sd->shared->nr_busy_cpus, sd_weight); |
| } |
| |
| sd->private = sdd; |
| |
| return sd; |
| } |
| |
| /* |
| * Topology list, bottom-up. |
| */ |
| static struct sched_domain_topology_level default_topology[] = { |
| #ifdef CONFIG_SCHED_SMT |
| { cpu_smt_mask, cpu_smt_flags, SD_INIT_NAME(SMT) }, |
| #endif |
| |
| #ifdef CONFIG_SCHED_CLUSTER |
| { cpu_clustergroup_mask, cpu_cluster_flags, SD_INIT_NAME(CLS) }, |
| #endif |
| |
| #ifdef CONFIG_SCHED_MC |
| { cpu_coregroup_mask, cpu_core_flags, SD_INIT_NAME(MC) }, |
| #endif |
| { cpu_cpu_mask, SD_INIT_NAME(DIE) }, |
| { NULL, }, |
| }; |
| |
| static struct sched_domain_topology_level *sched_domain_topology = |
| default_topology; |
| static struct sched_domain_topology_level *sched_domain_topology_saved; |
| |
| #define for_each_sd_topology(tl) \ |
| for (tl = sched_domain_topology; tl->mask; tl++) |
| |
| void __init set_sched_topology(struct sched_domain_topology_level *tl) |
| { |
| if (WARN_ON_ONCE(sched_smp_initialized)) |
| return; |
| |
| sched_domain_topology = tl; |
| sched_domain_topology_saved = NULL; |
| } |
| |
| #ifdef CONFIG_NUMA |
| |
| static const struct cpumask *sd_numa_mask(int cpu) |
| { |
| return sched_domains_numa_masks[sched_domains_curr_level][cpu_to_node(cpu)]; |
| } |
| |
| static void sched_numa_warn(const char *str) |
| { |
| static int done = false; |
| int i,j; |
| |
| if (done) |
| return; |
| |
| done = true; |
| |
| printk(KERN_WARNING "ERROR: %s\n\n", str); |
| |
| for (i = 0; i < nr_node_ids; i++) { |
| printk(KERN_WARNING " "); |
| for (j = 0; j < nr_node_ids; j++) { |
| if (!node_state(i, N_CPU) || !node_state(j, N_CPU)) |
| printk(KERN_CONT "(%02d) ", node_distance(i,j)); |
| else |
| printk(KERN_CONT " %02d ", node_distance(i,j)); |
| } |
| printk(KERN_CONT "\n"); |
| } |
| printk(KERN_WARNING "\n"); |
| } |
| |
| bool find_numa_distance(int distance) |
| { |
| bool found = false; |
| int i, *distances; |
| |
| if (distance == node_distance(0, 0)) |
| return true; |
| |
| rcu_read_lock(); |
| distances = rcu_dereference(sched_domains_numa_distance); |
| if (!distances) |
| goto unlock; |
| for (i = 0; i < sched_domains_numa_levels; i++) { |
| if (distances[i] == distance) { |
| found = true; |
| break; |
| } |
| } |
| unlock: |
| rcu_read_unlock(); |
| |
| return found; |
| } |
| |
| #define for_each_cpu_node_but(n, nbut) \ |
| for_each_node_state(n, N_CPU) \ |
| if (n == nbut) \ |
| continue; \ |
| else |
| |
| /* |
| * A system can have three types of NUMA topology: |
| * NUMA_DIRECT: all nodes are directly connected, or not a NUMA system |
| * NUMA_GLUELESS_MESH: some nodes reachable through intermediary nodes |
| * NUMA_BACKPLANE: nodes can reach other nodes through a backplane |
| * |
| * The difference between a glueless mesh topology and a backplane |
| * topology lies in whether communication between not directly |
| * connected nodes goes through intermediary nodes (where programs |
| * could run), or through backplane controllers. This affects |
| * placement of programs. |
| * |
| * The type of topology can be discerned with the following tests: |
| * - If the maximum distance between any nodes is 1 hop, the system |
| * is directly connected. |
| * - If for two nodes A and B, located N > 1 hops away from each other, |
| * there is an intermediary node C, which is < N hops away from both |
| * nodes A and B, the system is a glueless mesh. |
| */ |
| static void init_numa_topology_type(int offline_node) |
| { |
| int a, b, c, n; |
| |
| n = sched_max_numa_distance; |
| |
| if (sched_domains_numa_levels <= 2) { |
| sched_numa_topology_type = NUMA_DIRECT; |
| return; |
| } |
| |
| for_each_cpu_node_but(a, offline_node) { |
| for_each_cpu_node_but(b, offline_node) { |
| /* Find two nodes furthest removed from each other. */ |
| if (node_distance(a, b) < n) |
| continue; |
| |
| /* Is there an intermediary node between a and b? */ |
| for_each_cpu_node_but(c, offline_node) { |
| if (node_distance(a, c) < n && |
| node_distance(b, c) < n) { |
| sched_numa_topology_type = |
| NUMA_GLUELESS_MESH; |
| return; |
| } |
| } |
| |
| sched_numa_topology_type = NUMA_BACKPLANE; |
| return; |
| } |
| } |
| |
| pr_err("Failed to find a NUMA topology type, defaulting to DIRECT\n"); |
| sched_numa_topology_type = NUMA_DIRECT; |
| } |
| |
| |
| #define NR_DISTANCE_VALUES (1 << DISTANCE_BITS) |
| |
| void sched_init_numa(int offline_node) |
| { |
| struct sched_domain_topology_level *tl; |
| unsigned long *distance_map; |
| int nr_levels = 0; |
| int i, j; |
| int *distances; |
| struct cpumask ***masks; |
| |
| /* |
| * O(nr_nodes^2) deduplicating selection sort -- in order to find the |
| * unique distances in the node_distance() table. |
| */ |
| distance_map = bitmap_alloc(NR_DISTANCE_VALUES, GFP_KERNEL); |
| if (!distance_map) |
| return; |
| |
| bitmap_zero(distance_map, NR_DISTANCE_VALUES); |
| for_each_cpu_node_but(i, offline_node) { |
| for_each_cpu_node_but(j, offline_node) { |
| int distance = node_distance(i, j); |
| |
| if (distance < LOCAL_DISTANCE || distance >= NR_DISTANCE_VALUES) { |
| sched_numa_warn("Invalid distance value range"); |
| bitmap_free(distance_map); |
| return; |
| } |
| |
| bitmap_set(distance_map, distance, 1); |
| } |
| } |
| /* |
| * We can now figure out how many unique distance values there are and |
| * allocate memory accordingly. |
| */ |
| nr_levels = bitmap_weight(distance_map, NR_DISTANCE_VALUES); |
| |
| distances = kcalloc(nr_levels, sizeof(int), GFP_KERNEL); |
| if (!distances) { |
| bitmap_free(distance_map); |
| return; |
| } |
| |
| for (i = 0, j = 0; i < nr_levels; i++, j++) { |
| j = find_next_bit(distance_map, NR_DISTANCE_VALUES, j); |
| distances[i] = j; |
| } |
| rcu_assign_pointer(sched_domains_numa_distance, distances); |
| |
| bitmap_free(distance_map); |
| |
| /* |
| * 'nr_levels' contains the number of unique distances |
| * |
| * The sched_domains_numa_distance[] array includes the actual distance |
| * numbers. |
| */ |
| |
| /* |
| * Here, we should temporarily reset sched_domains_numa_levels to 0. |
| * If it fails to allocate memory for array sched_domains_numa_masks[][], |
| * the array will contain less then 'nr_levels' members. This could be |
| * dangerous when we use it to iterate array sched_domains_numa_masks[][] |
| * in other functions. |
| * |
| * We reset it to 'nr_levels' at the end of this function. |
| */ |
| sched_domains_numa_levels = 0; |
| |
| masks = kzalloc(sizeof(void *) * nr_levels, GFP_KERNEL); |
| if (!masks) |
| return; |
| |
| /* |
| * Now for each level, construct a mask per node which contains all |
| * CPUs of nodes that are that many hops away from us. |
| */ |
| for (i = 0; i < nr_levels; i++) { |
| masks[i] = kzalloc(nr_node_ids * sizeof(void *), GFP_KERNEL); |
| if (!masks[i]) |
| return; |
| |
| for_each_cpu_node_but(j, offline_node) { |
| struct cpumask *mask = kzalloc(cpumask_size(), GFP_KERNEL); |
| int k; |
| |
| if (!mask) |
| return; |
| |
| masks[i][j] = mask; |
| |
| for_each_cpu_node_but(k, offline_node) { |
| if (sched_debug() && (node_distance(j, k) != node_distance(k, j))) |
| sched_numa_warn("Node-distance not symmetric"); |
| |
| if (node_distance(j, k) > sched_domains_numa_distance[i]) |
| continue; |
| |
| cpumask_or(mask, mask, cpumask_of_node(k)); |
| } |
| } |
| } |
| rcu_assign_pointer(sched_domains_numa_masks, masks); |
| |
| /* Compute default topology size */ |
| for (i = 0; sched_domain_topology[i].mask; i++); |
| |
| tl = kzalloc((i + nr_levels + 1) * |
| sizeof(struct sched_domain_topology_level), GFP_KERNEL); |
| if (!tl) |
| return; |
| |
| /* |
| * Copy the default topology bits.. |
| */ |
| for (i = 0; sched_domain_topology[i].mask; i++) |
| tl[i] = sched_domain_topology[i]; |
| |
| /* |
| * Add the NUMA identity distance, aka single NODE. |
| */ |
| tl[i++] = (struct sched_domain_topology_level){ |
| .mask = sd_numa_mask, |
| .numa_level = 0, |
| SD_INIT_NAME(NODE) |
| }; |
| |
| /* |
| * .. and append 'j' levels of NUMA goodness. |
| */ |
| for (j = 1; j < nr_levels; i++, j++) { |
| tl[i] = (struct sched_domain_topology_level){ |
| .mask = sd_numa_mask, |
| .sd_flags = cpu_numa_flags, |
| .flags = SDTL_OVERLAP, |
| .numa_level = j, |
| SD_INIT_NAME(NUMA) |
| }; |
| } |
| |
| sched_domain_topology_saved = sched_domain_topology; |
| sched_domain_topology = tl; |
| |
| sched_domains_numa_levels = nr_levels; |
| WRITE_ONCE(sched_max_numa_distance, sched_domains_numa_distance[nr_levels - 1]); |
| |
| init_numa_topology_type(offline_node); |
| } |
| |
| |
| static void sched_reset_numa(void) |
| { |
| int nr_levels, *distances; |
| struct cpumask ***masks; |
| |
| nr_levels = sched_domains_numa_levels; |
| sched_domains_numa_levels = 0; |
| sched_max_numa_distance = 0; |
| sched_numa_topology_type = NUMA_DIRECT; |
| distances = sched_domains_numa_distance; |
| rcu_assign_pointer(sched_domains_numa_distance, NULL); |
| masks = sched_domains_numa_masks; |
| rcu_assign_pointer(sched_domains_numa_masks, NULL); |
| if (distances || masks) { |
| int i, j; |
| |
| synchronize_rcu(); |
| kfree(distances); |
| for (i = 0; i < nr_levels && masks; i++) { |
| if (!masks[i]) |
| continue; |
| for_each_node(j) |
| kfree(masks[i][j]); |
| kfree(masks[i]); |
| } |
| kfree(masks); |
| } |
| if (sched_domain_topology_saved) { |
| kfree(sched_domain_topology); |
| sched_domain_topology = sched_domain_topology_saved; |
| sched_domain_topology_saved = NULL; |
| } |
| } |
| |
| /* |
| * Call with hotplug lock held |
| */ |
| void sched_update_numa(int cpu, bool online) |
| { |
| int node; |
| |
| node = cpu_to_node(cpu); |
| /* |
| * Scheduler NUMA topology is updated when the first CPU of a |
| * node is onlined or the last CPU of a node is offlined. |
| */ |
| if (cpumask_weight(cpumask_of_node(node)) != 1) |
| return; |
| |
| sched_reset_numa(); |
| sched_init_numa(online ? NUMA_NO_NODE : node); |
| } |
| |
| void sched_domains_numa_masks_set(unsigned int cpu) |
| { |
| int node = cpu_to_node(cpu); |
| int i, j; |
| |
| for (i = 0; i < sched_domains_numa_levels; i++) { |
| for (j = 0; j < nr_node_ids; j++) { |
| if (!node_state(j, N_CPU)) |
| continue; |
| |
| /* Set ourselves in the remote node's masks */ |
| if (node_distance(j, node) <= sched_domains_numa_distance[i]) |
| cpumask_set_cpu(cpu, sched_domains_numa_masks[i][j]); |
| } |
| } |
| } |
| |
| void sched_domains_numa_masks_clear(unsigned int cpu) |
| { |
| int i, j; |
| |
| for (i = 0; i < sched_domains_numa_levels; i++) { |
| for (j = 0; j < nr_node_ids; j++) { |
| if (sched_domains_numa_masks[i][j]) |
| cpumask_clear_cpu(cpu, sched_domains_numa_masks[i][j]); |
| } |
| } |
| } |
| |
| /* |
| * sched_numa_find_closest() - given the NUMA topology, find the cpu |
| * closest to @cpu from @cpumask. |
| * cpumask: cpumask to find a cpu from |
| * cpu: cpu to be close to |
| * |
| * returns: cpu, or nr_cpu_ids when nothing found. |
| */ |
| int sched_numa_find_closest(const struct cpumask *cpus, int cpu) |
| { |
| int i, j = cpu_to_node(cpu), found = nr_cpu_ids; |
| struct cpumask ***masks; |
| |
| rcu_read_lock(); |
| masks = rcu_dereference(sched_domains_numa_masks); |
| if (!masks) |
| goto unlock; |
| for (i = 0; i < sched_domains_numa_levels; i++) { |
| if (!masks[i][j]) |
| break; |
| cpu = cpumask_any_and(cpus, masks[i][j]); |
| if (cpu < nr_cpu_ids) { |
| found = cpu; |
| break; |
| } |
| } |
| unlock: |
| rcu_read_unlock(); |
| |
| return found; |
| } |
| |
| struct __cmp_key { |
| const struct cpumask *cpus; |
| struct cpumask ***masks; |
| int node; |
| int cpu; |
| int w; |
| }; |
| |
| static int hop_cmp(const void *a, const void *b) |
| { |
| struct cpumask **prev_hop, **cur_hop = *(struct cpumask ***)b; |
| struct __cmp_key *k = (struct __cmp_key *)a; |
| |
| if (cpumask_weight_and(k->cpus, cur_hop[k->node]) <= k->cpu) |
| return 1; |
| |
| if (b == k->masks) { |
| k->w = 0; |
| return 0; |
| } |
| |
| prev_hop = *((struct cpumask ***)b - 1); |
| k->w = cpumask_weight_and(k->cpus, prev_hop[k->node]); |
| if (k->w <= k->cpu) |
| return 0; |
| |
| return -1; |
| } |
| |
| /* |
| * sched_numa_find_nth_cpu() - given the NUMA topology, find the Nth next cpu |
| * closest to @cpu from @cpumask. |
| * cpumask: cpumask to find a cpu from |
| * cpu: Nth cpu to find |
| * |
| * returns: cpu, or nr_cpu_ids when nothing found. |
| */ |
| int sched_numa_find_nth_cpu(const struct cpumask *cpus, int cpu, int node) |
| { |
| struct __cmp_key k = { .cpus = cpus, .cpu = cpu }; |
| struct cpumask ***hop_masks; |
| int hop, ret = nr_cpu_ids; |
| |
| rcu_read_lock(); |
| |
| /* CPU-less node entries are uninitialized in sched_domains_numa_masks */ |
| node = numa_nearest_node(node, N_CPU); |
| k.node = node; |
| |
| k.masks = rcu_dereference(sched_domains_numa_masks); |
| if (!k.masks) |
| goto unlock; |
| |
| hop_masks = bsearch(&k, k.masks, sched_domains_numa_levels, sizeof(k.masks[0]), hop_cmp); |
| hop = hop_masks - k.masks; |
| |
| ret = hop ? |
| cpumask_nth_and_andnot(cpu - k.w, cpus, k.masks[hop][node], k.masks[hop-1][node]) : |
| cpumask_nth_and(cpu, cpus, k.masks[0][node]); |
| unlock: |
| rcu_read_unlock(); |
| return ret; |
| } |
| EXPORT_SYMBOL_GPL(sched_numa_find_nth_cpu); |
| |
| /** |
| * sched_numa_hop_mask() - Get the cpumask of CPUs at most @hops hops away from |
| * @node |
| * @node: The node to count hops from. |
| * @hops: Include CPUs up to that many hops away. 0 means local node. |
| * |
| * Return: On success, a pointer to a cpumask of CPUs at most @hops away from |
| * @node, an error value otherwise. |
| * |
| * Requires rcu_lock to be held. Returned cpumask is only valid within that |
| * read-side section, copy it if required beyond that. |
| * |
| * Note that not all hops are equal in distance; see sched_init_numa() for how |
| * distances and masks are handled. |
| * Also note that this is a reflection of sched_domains_numa_masks, which may change |
| * during the lifetime of the system (offline nodes are taken out of the masks). |
| */ |
| const struct cpumask *sched_numa_hop_mask(unsigned int node, unsigned int hops) |
| { |
| struct cpumask ***masks; |
| |
| if (node >= nr_node_ids || hops >= sched_domains_numa_levels) |
| return ERR_PTR(-EINVAL); |
| |
| masks = rcu_dereference(sched_domains_numa_masks); |
| if (!masks) |
| return ERR_PTR(-EBUSY); |
| |
| return masks[hops][node]; |
| } |
| EXPORT_SYMBOL_GPL(sched_numa_hop_mask); |
| |
| #endif /* CONFIG_NUMA */ |
| |
| static int __sdt_alloc(const struct cpumask *cpu_map) |
| { |
| struct sched_domain_topology_level *tl; |
| int j; |
| |
| for_each_sd_topology(tl) { |
| struct sd_data *sdd = &tl->data; |
| |
| sdd->sd = alloc_percpu(struct sched_domain *); |
| if (!sdd->sd) |
| return -ENOMEM; |
| |
| sdd->sds = alloc_percpu(struct sched_domain_shared *); |
| if (!sdd->sds) |
| return -ENOMEM; |
| |
| sdd->sg = alloc_percpu(struct sched_group *); |
| if (!sdd->sg) |
| return -ENOMEM; |
| |
| sdd->sgc = alloc_percpu(struct sched_group_capacity *); |
| if (!sdd->sgc) |
| return -ENOMEM; |
| |
| for_each_cpu(j, cpu_map) { |
| struct sched_domain *sd; |
| struct sched_domain_shared *sds; |
| struct sched_group *sg; |
| struct sched_group_capacity *sgc; |
| |
| sd = kzalloc_node(sizeof(struct sched_domain) + cpumask_size(), |
| GFP_KERNEL, cpu_to_node(j)); |
| if (!sd) |
| return -ENOMEM; |
| |
| *per_cpu_ptr(sdd->sd, j) = sd; |
| |
| sds = kzalloc_node(sizeof(struct sched_domain_shared), |
| GFP_KERNEL, cpu_to_node(j)); |
| if (!sds) |
| return -ENOMEM; |
| |
| *per_cpu_ptr(sdd->sds, j) = sds; |
| |
| sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(), |
| GFP_KERNEL, cpu_to_node(j)); |
| if (!sg) |
| return -ENOMEM; |
| |
| sg->next = sg; |
| |
| *per_cpu_ptr(sdd->sg, j) = sg; |
| |
| sgc = kzalloc_node(sizeof(struct sched_group_capacity) + cpumask_size(), |
| GFP_KERNEL, cpu_to_node(j)); |
| if (!sgc) |
| return -ENOMEM; |
| |
| #ifdef CONFIG_SCHED_DEBUG |
| sgc->id = j; |
| #endif |
| |
| *per_cpu_ptr(sdd->sgc, j) = sgc; |
| } |
| } |
| |
| return 0; |
| } |
| |
| static void __sdt_free(const struct cpumask *cpu_map) |
| { |
| struct sched_domain_topology_level *tl; |
| int j; |
| |
| for_each_sd_topology(tl) { |
| struct sd_data *sdd = &tl->data; |
| |
| for_each_cpu(j, cpu_map) { |
| struct sched_domain *sd; |
| |
| if (sdd->sd) { |
| sd = *per_cpu_ptr(sdd->sd, j); |
| if (sd && (sd->flags & SD_OVERLAP)) |
| free_sched_groups(sd->groups, 0); |
| kfree(*per_cpu_ptr(sdd->sd, j)); |
| } |
| |
| if (sdd->sds) |
| kfree(*per_cpu_ptr(sdd->sds, j)); |
| if (sdd->sg) |
| kfree(*per_cpu_ptr(sdd->sg, j)); |
| if (sdd->sgc) |
| kfree(*per_cpu_ptr(sdd->sgc, j)); |
| } |
| free_percpu(sdd->sd); |
| sdd->sd = NULL; |
| free_percpu(sdd->sds); |
| sdd->sds = NULL; |
| free_percpu(sdd->sg); |
| sdd->sg = NULL; |
| free_percpu(sdd->sgc); |
| sdd->sgc = NULL; |
| } |
| } |
| |
| static struct sched_domain *build_sched_domain(struct sched_domain_topology_level *tl, |
| const struct cpumask *cpu_map, struct sched_domain_attr *attr, |
| struct sched_domain *child, int cpu) |
| { |
| struct sched_domain *sd = sd_init(tl, cpu_map, child, cpu); |
| |
| if (child) { |
| sd->level = child->level + 1; |
| sched_domain_level_max = max(sched_domain_level_max, sd->level); |
| child->parent = sd; |
| |
| if (!cpumask_subset(sched_domain_span(child), |
| sched_domain_span(sd))) { |
| pr_err("BUG: arch topology borken\n"); |
| #ifdef CONFIG_SCHED_DEBUG |
| pr_err(" the %s domain not a subset of the %s domain\n", |
| child->name, sd->name); |
| #endif |
| /* Fixup, ensure @sd has at least @child CPUs. */ |
| cpumask_or(sched_domain_span(sd), |
| sched_domain_span(sd), |
| sched_domain_span(child)); |
| } |
| |
| } |
| set_domain_attribute(sd, attr); |
| |
| return sd; |
| } |
| |
| /* |
| * Ensure topology masks are sane, i.e. there are no conflicts (overlaps) for |
| * any two given CPUs at this (non-NUMA) topology level. |
| */ |
| static bool topology_span_sane(struct sched_domain_topology_level *tl, |
| const struct cpumask *cpu_map, int cpu) |
| { |
| int i; |
| |
| /* NUMA levels are allowed to overlap */ |
| if (tl->flags & SDTL_OVERLAP) |
| return true; |
| |
| /* |
| * Non-NUMA levels cannot partially overlap - they must be either |
| * completely equal or completely disjoint. Otherwise we can end up |
| * breaking the sched_group lists - i.e. a later get_group() pass |
| * breaks the linking done for an earlier span. |
| */ |
| for_each_cpu(i, cpu_map) { |
| if (i == cpu) |
| continue; |
| /* |
| * We should 'and' all those masks with 'cpu_map' to exactly |
| * match the topology we're about to build, but that can only |
| * remove CPUs, which only lessens our ability to detect |
| * overlaps |
| */ |
| if (!cpumask_equal(tl->mask(cpu), tl->mask(i)) && |
| cpumask_intersects(tl->mask(cpu), tl->mask(i))) |
| return false; |
| } |
| |
| return true; |
| } |
| |
| /* |
| * Build sched domains for a given set of CPUs and attach the sched domains |
| * to the individual CPUs |
| */ |
| static int |
| build_sched_domains(const struct cpumask *cpu_map, struct sched_domain_attr *attr) |
| { |
| enum s_alloc alloc_state = sa_none; |
| struct sched_domain *sd; |
| struct s_data d; |
| struct rq *rq = NULL; |
| int i, ret = -ENOMEM; |
| bool has_asym = false; |
| |
| if (WARN_ON(cpumask_empty(cpu_map))) |
| goto error; |
| |
| alloc_state = __visit_domain_allocation_hell(&d, cpu_map); |
| if (alloc_state != sa_rootdomain) |
| goto error; |
| |
| /* Set up domains for CPUs specified by the cpu_map: */ |
| for_each_cpu(i, cpu_map) { |
| struct sched_domain_topology_level *tl; |
| |
| sd = NULL; |
| for_each_sd_topology(tl) { |
| |
| if (WARN_ON(!topology_span_sane(tl, cpu_map, i))) |
| goto error; |
| |
| sd = build_sched_domain(tl, cpu_map, attr, sd, i); |
| |
| has_asym |= sd->flags & SD_ASYM_CPUCAPACITY; |
| |
| if (tl == sched_domain_topology) |
| *per_cpu_ptr(d.sd, i) = sd; |
| if (tl->flags & SDTL_OVERLAP) |
| sd->flags |= SD_OVERLAP; |
| if (cpumask_equal(cpu_map, sched_domain_span(sd))) |
| break; |
| } |
| } |
| |
| /* Build the groups for the domains */ |
| for_each_cpu(i, cpu_map) { |
| for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) { |
| sd->span_weight = cpumask_weight(sched_domain_span(sd)); |
| if (sd->flags & SD_OVERLAP) { |
| if (build_overlap_sched_groups(sd, i)) |
| goto error; |
| } else { |
| if (build_sched_groups(sd, i)) |
| goto error; |
| } |
| } |
| } |
| |
| /* |
| * Calculate an allowed NUMA imbalance such that LLCs do not get |
| * imbalanced. |
| */ |
| for_each_cpu(i, cpu_map) { |
| unsigned int imb = 0; |
| unsigned int imb_span = 1; |
| |
| for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) { |
| struct sched_domain *child = sd->child; |
| |
| if (!(sd->flags & SD_SHARE_PKG_RESOURCES) && child && |
| (child->flags & SD_SHARE_PKG_RESOURCES)) { |
| struct sched_domain __rcu *top_p; |
| unsigned int nr_llcs; |
| |
| /* |
| * For a single LLC per node, allow an |
| * imbalance up to 12.5% of the node. This is |
| * arbitrary cutoff based two factors -- SMT and |
| * memory channels. For SMT-2, the intent is to |
| * avoid premature sharing of HT resources but |
| * SMT-4 or SMT-8 *may* benefit from a different |
| * cutoff. For memory channels, this is a very |
| * rough estimate of how many channels may be |
| * active and is based on recent CPUs with |
| * many cores. |
| * |
| * For multiple LLCs, allow an imbalance |
| * until multiple tasks would share an LLC |
| * on one node while LLCs on another node |
| * remain idle. This assumes that there are |
| * enough logical CPUs per LLC to avoid SMT |
| * factors and that there is a correlation |
| * between LLCs and memory channels. |
| */ |
| nr_llcs = sd->span_weight / child->span_weight; |
| if (nr_llcs == 1) |
| imb = sd->span_weight >> 3; |
| else |
| imb = nr_llcs; |
| imb = max(1U, imb); |
| sd->imb_numa_nr = imb; |
| |
| /* Set span based on the first NUMA domain. */ |
| top_p = sd->parent; |
| while (top_p && !(top_p->flags & SD_NUMA)) { |
| top_p = top_p->parent; |
| } |
| imb_span = top_p ? top_p->span_weight : sd->span_weight; |
| } else { |
| int factor = max(1U, (sd->span_weight / imb_span)); |
| |
| sd->imb_numa_nr = imb * factor; |
| } |
| } |
| } |
| |
| /* Calculate CPU capacity for physical packages and nodes */ |
| for (i = nr_cpumask_bits-1; i >= 0; i--) { |
| if (!cpumask_test_cpu(i, cpu_map)) |
| continue; |
| |
| for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) { |
| claim_allocations(i, sd); |
| init_sched_groups_capacity(i, sd); |
| } |
| } |
| |
| /* Attach the domains */ |
| rcu_read_lock(); |
| for_each_cpu(i, cpu_map) { |
| rq = cpu_rq(i); |
| sd = *per_cpu_ptr(d.sd, i); |
| |
| /* Use READ_ONCE()/WRITE_ONCE() to avoid load/store tearing: */ |
| if (rq->cpu_capacity_orig > READ_ONCE(d.rd->max_cpu_capacity)) |
| WRITE_ONCE(d.rd->max_cpu_capacity, rq->cpu_capacity_orig); |
| |
| cpu_attach_domain(sd, d.rd, i); |
| } |
| rcu_read_unlock(); |
| |
| if (has_asym) |
| static_branch_inc_cpuslocked(&sched_asym_cpucapacity); |
| |
| if (rq && sched_debug_verbose) { |
| pr_info("root domain span: %*pbl (max cpu_capacity = %lu)\n", |
| cpumask_pr_args(cpu_map), rq->rd->max_cpu_capacity); |
| } |
| trace_android_vh_build_sched_domains(has_asym); |
| |
| ret = 0; |
| error: |
| __free_domain_allocs(&d, alloc_state, cpu_map); |
| |
| return ret; |
| } |
| |
| /* Current sched domains: */ |
| static cpumask_var_t *doms_cur; |
| |
| /* Number of sched domains in 'doms_cur': */ |
| static int ndoms_cur; |
| |
| /* Attributes of custom domains in 'doms_cur' */ |
| static struct sched_domain_attr *dattr_cur; |
| |
| /* |
| * Special case: If a kmalloc() of a doms_cur partition (array of |
| * cpumask) fails, then fallback to a single sched domain, |
| * as determined by the single cpumask fallback_doms. |
| */ |
| static cpumask_var_t fallback_doms; |
| |
| /* |
| * arch_update_cpu_topology lets virtualized architectures update the |
| * CPU core maps. It is supposed to return 1 if the topology changed |
| * or 0 if it stayed the same. |
| */ |
| int __weak arch_update_cpu_topology(void) |
| { |
| return 0; |
| } |
| |
| cpumask_var_t *alloc_sched_domains(unsigned int ndoms) |
| { |
| int i; |
| cpumask_var_t *doms; |
| |
| doms = kmalloc_array(ndoms, sizeof(*doms), GFP_KERNEL); |
| if (!doms) |
| return NULL; |
| for (i = 0; i < ndoms; i++) { |
| if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) { |
| free_sched_domains(doms, i); |
| return NULL; |
| } |
| } |
| return doms; |
| } |
| |
| void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms) |
| { |
| unsigned int i; |
| for (i = 0; i < ndoms; i++) |
| free_cpumask_var(doms[i]); |
| kfree(doms); |
| } |
| |
| /* |
| * Set up scheduler domains and groups. For now this just excludes isolated |
| * CPUs, but could be used to exclude other special cases in the future. |
| */ |
| int __init sched_init_domains(const struct cpumask *cpu_map) |
| { |
| int err; |
| |
| zalloc_cpumask_var(&sched_domains_tmpmask, GFP_KERNEL); |
| zalloc_cpumask_var(&sched_domains_tmpmask2, GFP_KERNEL); |
| zalloc_cpumask_var(&fallback_doms, GFP_KERNEL); |
| |
| arch_update_cpu_topology(); |
| asym_cpu_capacity_scan(); |
| ndoms_cur = 1; |
| doms_cur = alloc_sched_domains(ndoms_cur); |
| if (!doms_cur) |
| doms_cur = &fallback_doms; |
| cpumask_and(doms_cur[0], cpu_map, housekeeping_cpumask(HK_TYPE_DOMAIN)); |
| err = build_sched_domains(doms_cur[0], NULL); |
| |
| return err; |
| } |
| |
| /* |
| * Detach sched domains from a group of CPUs specified in cpu_map |
| * These CPUs will now be attached to the NULL domain |
| */ |
| static void detach_destroy_domains(const struct cpumask *cpu_map) |
| { |
| unsigned int cpu = cpumask_any(cpu_map); |
| int i; |
| |
| if (rcu_access_pointer(per_cpu(sd_asym_cpucapacity, cpu))) |
| static_branch_dec_cpuslocked(&sched_asym_cpucapacity); |
| |
| rcu_read_lock(); |
| for_each_cpu(i, cpu_map) |
| cpu_attach_domain(NULL, &def_root_domain, i); |
| rcu_read_unlock(); |
| } |
| |
| /* handle null as "default" */ |
| static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur, |
| struct sched_domain_attr *new, int idx_new) |
| { |
| struct sched_domain_attr tmp; |
| |
| /* Fast path: */ |
| if (!new && !cur) |
| return 1; |
| |
| tmp = SD_ATTR_INIT; |
| |
| return !memcmp(cur ? (cur + idx_cur) : &tmp, |
| new ? (new + idx_new) : &tmp, |
| sizeof(struct sched_domain_attr)); |
| } |
| |
| /* |
| * Partition sched domains as specified by the 'ndoms_new' |
| * cpumasks in the array doms_new[] of cpumasks. This compares |
| * doms_new[] to the current sched domain partitioning, doms_cur[]. |
| * It destroys each deleted domain and builds each new domain. |
| * |
| * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'. |
| * The masks don't intersect (don't overlap.) We should setup one |
| * sched domain for each mask. CPUs not in any of the cpumasks will |
| * not be load balanced. If the same cpumask appears both in the |
| * current 'doms_cur' domains and in the new 'doms_new', we can leave |
| * it as it is. |
| * |
| * The passed in 'doms_new' should be allocated using |
| * alloc_sched_domains. This routine takes ownership of it and will |
| * free_sched_domains it when done with it. If the caller failed the |
| * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1, |
| * and partition_sched_domains() will fallback to the single partition |
| * 'fallback_doms', it also forces the domains to be rebuilt. |
| * |
| * If doms_new == NULL it will be replaced with cpu_online_mask. |
| * ndoms_new == 0 is a special case for destroying existing domains, |
| * and it will not create the default domain. |
| * |
| * Call with hotplug lock and sched_domains_mutex held |
| */ |
| void partition_sched_domains_locked(int ndoms_new, cpumask_var_t doms_new[], |
| struct sched_domain_attr *dattr_new) |
| { |
| bool __maybe_unused has_eas = false; |
| int i, j, n; |
| int new_topology; |
| |
| lockdep_assert_held(&sched_domains_mutex); |
| |
| /* Let the architecture update CPU core mappings: */ |
| new_topology = arch_update_cpu_topology(); |
| /* Trigger rebuilding CPU capacity asymmetry data */ |
| if (new_topology) |
| asym_cpu_capacity_scan(); |
| |
| if (!doms_new) { |
| WARN_ON_ONCE(dattr_new); |
| n = 0; |
| doms_new = alloc_sched_domains(1); |
| if (doms_new) { |
| n = 1; |
| cpumask_and(doms_new[0], cpu_active_mask, |
| housekeeping_cpumask(HK_TYPE_DOMAIN)); |
| } |
| } else { |
| n = ndoms_new; |
| } |
| |
| /* Destroy deleted domains: */ |
| for (i = 0; i < ndoms_cur; i++) { |
| for (j = 0; j < n && !new_topology; j++) { |
| if (cpumask_equal(doms_cur[i], doms_new[j]) && |
| dattrs_equal(dattr_cur, i, dattr_new, j)) { |
| struct root_domain *rd; |
| |
| /* |
| * This domain won't be destroyed and as such |
| * its dl_bw->total_bw needs to be cleared. It |
| * will be recomputed in function |
| * update_tasks_root_domain(). |
| */ |
| rd = cpu_rq(cpumask_any(doms_cur[i]))->rd; |
| dl_clear_root_domain(rd); |
| goto match1; |
| } |
| } |
| /* No match - a current sched domain not in new doms_new[] */ |
| detach_destroy_domains(doms_cur[i]); |
| match1: |
| ; |
| } |
| |
| n = ndoms_cur; |
| if (!doms_new) { |
| n = 0; |
| doms_new = &fallback_doms; |
| cpumask_and(doms_new[0], cpu_active_mask, |
| housekeeping_cpumask(HK_TYPE_DOMAIN)); |
| } |
| |
| /* Build new domains: */ |
| for (i = 0; i < ndoms_new; i++) { |
| for (j = 0; j < n && !new_topology; j++) { |
| if (cpumask_equal(doms_new[i], doms_cur[j]) && |
| dattrs_equal(dattr_new, i, dattr_cur, j)) |
| goto match2; |
| } |
| /* No match - add a new doms_new */ |
| build_sched_domains(doms_new[i], dattr_new ? dattr_new + i : NULL); |
| match2: |
| ; |
| } |
| |
| #if defined(CONFIG_ENERGY_MODEL) && defined(CONFIG_CPU_FREQ_GOV_SCHEDUTIL) |
| /* Build perf. domains: */ |
| for (i = 0; i < ndoms_new; i++) { |
| for (j = 0; j < n && !sched_energy_update; j++) { |
| if (cpumask_equal(doms_new[i], doms_cur[j]) && |
| cpu_rq(cpumask_first(doms_cur[j]))->rd->pd) { |
| has_eas = true; |
| goto match3; |
| } |
| } |
| /* No match - add perf. domains for a new rd */ |
| has_eas |= build_perf_domains(doms_new[i]); |
| match3: |
| ; |
| } |
| sched_energy_set(has_eas); |
| #endif |
| |
| /* Remember the new sched domains: */ |
| if (doms_cur != &fallback_doms) |
| free_sched_domains(doms_cur, ndoms_cur); |
| |
| kfree(dattr_cur); |
| doms_cur = doms_new; |
| dattr_cur = dattr_new; |
| ndoms_cur = ndoms_new; |
| |
| update_sched_domain_debugfs(); |
| } |
| |
| /* |
| * Call with hotplug lock held |
| */ |
| void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[], |
| struct sched_domain_attr *dattr_new) |
| { |
| mutex_lock(&sched_domains_mutex); |
| partition_sched_domains_locked(ndoms_new, doms_new, dattr_new); |
| mutex_unlock(&sched_domains_mutex); |
| } |