| // SPDX-License-Identifier: GPL-2.0 |
| /* |
| * Copyright (c) 2000-2001,2005 Silicon Graphics, Inc. |
| * All Rights Reserved. |
| */ |
| #include "xfs.h" |
| #include "xfs_fs.h" |
| #include "xfs_format.h" |
| #include "xfs_log_format.h" |
| #include "xfs_trans_resv.h" |
| #include "xfs_bit.h" |
| #include "xfs_shared.h" |
| #include "xfs_mount.h" |
| #include "xfs_defer.h" |
| #include "xfs_trans.h" |
| #include "xfs_trans_priv.h" |
| #include "xfs_extfree_item.h" |
| #include "xfs_log.h" |
| #include "xfs_btree.h" |
| #include "xfs_rmap.h" |
| #include "xfs_alloc.h" |
| #include "xfs_bmap.h" |
| #include "xfs_trace.h" |
| #include "xfs_error.h" |
| #include "xfs_log_priv.h" |
| #include "xfs_log_recover.h" |
| |
| struct kmem_cache *xfs_efi_zone; |
| struct kmem_cache *xfs_efd_zone; |
| |
| static const struct xfs_item_ops xfs_efi_item_ops; |
| |
| static inline struct xfs_efi_log_item *EFI_ITEM(struct xfs_log_item *lip) |
| { |
| return container_of(lip, struct xfs_efi_log_item, efi_item); |
| } |
| |
| STATIC void |
| xfs_efi_item_free( |
| struct xfs_efi_log_item *efip) |
| { |
| kmem_free(efip->efi_item.li_lv_shadow); |
| if (efip->efi_format.efi_nextents > XFS_EFI_MAX_FAST_EXTENTS) |
| kmem_free(efip); |
| else |
| kmem_cache_free(xfs_efi_zone, efip); |
| } |
| |
| /* |
| * Freeing the efi requires that we remove it from the AIL if it has already |
| * been placed there. However, the EFI may not yet have been placed in the AIL |
| * when called by xfs_efi_release() from EFD processing due to the ordering of |
| * committed vs unpin operations in bulk insert operations. Hence the reference |
| * count to ensure only the last caller frees the EFI. |
| */ |
| STATIC void |
| xfs_efi_release( |
| struct xfs_efi_log_item *efip) |
| { |
| ASSERT(atomic_read(&efip->efi_refcount) > 0); |
| if (atomic_dec_and_test(&efip->efi_refcount)) { |
| xfs_trans_ail_delete(&efip->efi_item, SHUTDOWN_LOG_IO_ERROR); |
| xfs_efi_item_free(efip); |
| } |
| } |
| |
| /* |
| * This returns the number of iovecs needed to log the given efi item. |
| * We only need 1 iovec for an efi item. It just logs the efi_log_format |
| * structure. |
| */ |
| static inline int |
| xfs_efi_item_sizeof( |
| struct xfs_efi_log_item *efip) |
| { |
| return sizeof(struct xfs_efi_log_format) + |
| (efip->efi_format.efi_nextents - 1) * sizeof(xfs_extent_t); |
| } |
| |
| STATIC void |
| xfs_efi_item_size( |
| struct xfs_log_item *lip, |
| int *nvecs, |
| int *nbytes) |
| { |
| *nvecs += 1; |
| *nbytes += xfs_efi_item_sizeof(EFI_ITEM(lip)); |
| } |
| |
| /* |
| * This is called to fill in the vector of log iovecs for the |
| * given efi log item. We use only 1 iovec, and we point that |
| * at the efi_log_format structure embedded in the efi item. |
| * It is at this point that we assert that all of the extent |
| * slots in the efi item have been filled. |
| */ |
| STATIC void |
| xfs_efi_item_format( |
| struct xfs_log_item *lip, |
| struct xfs_log_vec *lv) |
| { |
| struct xfs_efi_log_item *efip = EFI_ITEM(lip); |
| struct xfs_log_iovec *vecp = NULL; |
| |
| ASSERT(atomic_read(&efip->efi_next_extent) == |
| efip->efi_format.efi_nextents); |
| |
| efip->efi_format.efi_type = XFS_LI_EFI; |
| efip->efi_format.efi_size = 1; |
| |
| xlog_copy_iovec(lv, &vecp, XLOG_REG_TYPE_EFI_FORMAT, |
| &efip->efi_format, |
| xfs_efi_item_sizeof(efip)); |
| } |
| |
| |
| /* |
| * The unpin operation is the last place an EFI is manipulated in the log. It is |
| * either inserted in the AIL or aborted in the event of a log I/O error. In |
| * either case, the EFI transaction has been successfully committed to make it |
| * this far. Therefore, we expect whoever committed the EFI to either construct |
| * and commit the EFD or drop the EFD's reference in the event of error. Simply |
| * drop the log's EFI reference now that the log is done with it. |
| */ |
| STATIC void |
| xfs_efi_item_unpin( |
| struct xfs_log_item *lip, |
| int remove) |
| { |
| struct xfs_efi_log_item *efip = EFI_ITEM(lip); |
| xfs_efi_release(efip); |
| } |
| |
| /* |
| * The EFI has been either committed or aborted if the transaction has been |
| * cancelled. If the transaction was cancelled, an EFD isn't going to be |
| * constructed and thus we free the EFI here directly. |
| */ |
| STATIC void |
| xfs_efi_item_release( |
| struct xfs_log_item *lip) |
| { |
| xfs_efi_release(EFI_ITEM(lip)); |
| } |
| |
| /* |
| * Allocate and initialize an efi item with the given number of extents. |
| */ |
| STATIC struct xfs_efi_log_item * |
| xfs_efi_init( |
| struct xfs_mount *mp, |
| uint nextents) |
| |
| { |
| struct xfs_efi_log_item *efip; |
| uint size; |
| |
| ASSERT(nextents > 0); |
| if (nextents > XFS_EFI_MAX_FAST_EXTENTS) { |
| size = (uint)(sizeof(struct xfs_efi_log_item) + |
| ((nextents - 1) * sizeof(xfs_extent_t))); |
| efip = kmem_zalloc(size, 0); |
| } else { |
| efip = kmem_cache_zalloc(xfs_efi_zone, |
| GFP_KERNEL | __GFP_NOFAIL); |
| } |
| |
| xfs_log_item_init(mp, &efip->efi_item, XFS_LI_EFI, &xfs_efi_item_ops); |
| efip->efi_format.efi_nextents = nextents; |
| efip->efi_format.efi_id = (uintptr_t)(void *)efip; |
| atomic_set(&efip->efi_next_extent, 0); |
| atomic_set(&efip->efi_refcount, 2); |
| |
| return efip; |
| } |
| |
| /* |
| * Copy an EFI format buffer from the given buf, and into the destination |
| * EFI format structure. |
| * The given buffer can be in 32 bit or 64 bit form (which has different padding), |
| * one of which will be the native format for this kernel. |
| * It will handle the conversion of formats if necessary. |
| */ |
| STATIC int |
| xfs_efi_copy_format(xfs_log_iovec_t *buf, xfs_efi_log_format_t *dst_efi_fmt) |
| { |
| xfs_efi_log_format_t *src_efi_fmt = buf->i_addr; |
| uint i; |
| uint len = sizeof(xfs_efi_log_format_t) + |
| (src_efi_fmt->efi_nextents - 1) * sizeof(xfs_extent_t); |
| uint len32 = sizeof(xfs_efi_log_format_32_t) + |
| (src_efi_fmt->efi_nextents - 1) * sizeof(xfs_extent_32_t); |
| uint len64 = sizeof(xfs_efi_log_format_64_t) + |
| (src_efi_fmt->efi_nextents - 1) * sizeof(xfs_extent_64_t); |
| |
| if (buf->i_len == len) { |
| memcpy((char *)dst_efi_fmt, (char*)src_efi_fmt, len); |
| return 0; |
| } else if (buf->i_len == len32) { |
| xfs_efi_log_format_32_t *src_efi_fmt_32 = buf->i_addr; |
| |
| dst_efi_fmt->efi_type = src_efi_fmt_32->efi_type; |
| dst_efi_fmt->efi_size = src_efi_fmt_32->efi_size; |
| dst_efi_fmt->efi_nextents = src_efi_fmt_32->efi_nextents; |
| dst_efi_fmt->efi_id = src_efi_fmt_32->efi_id; |
| for (i = 0; i < dst_efi_fmt->efi_nextents; i++) { |
| dst_efi_fmt->efi_extents[i].ext_start = |
| src_efi_fmt_32->efi_extents[i].ext_start; |
| dst_efi_fmt->efi_extents[i].ext_len = |
| src_efi_fmt_32->efi_extents[i].ext_len; |
| } |
| return 0; |
| } else if (buf->i_len == len64) { |
| xfs_efi_log_format_64_t *src_efi_fmt_64 = buf->i_addr; |
| |
| dst_efi_fmt->efi_type = src_efi_fmt_64->efi_type; |
| dst_efi_fmt->efi_size = src_efi_fmt_64->efi_size; |
| dst_efi_fmt->efi_nextents = src_efi_fmt_64->efi_nextents; |
| dst_efi_fmt->efi_id = src_efi_fmt_64->efi_id; |
| for (i = 0; i < dst_efi_fmt->efi_nextents; i++) { |
| dst_efi_fmt->efi_extents[i].ext_start = |
| src_efi_fmt_64->efi_extents[i].ext_start; |
| dst_efi_fmt->efi_extents[i].ext_len = |
| src_efi_fmt_64->efi_extents[i].ext_len; |
| } |
| return 0; |
| } |
| XFS_ERROR_REPORT(__func__, XFS_ERRLEVEL_LOW, NULL); |
| return -EFSCORRUPTED; |
| } |
| |
| static inline struct xfs_efd_log_item *EFD_ITEM(struct xfs_log_item *lip) |
| { |
| return container_of(lip, struct xfs_efd_log_item, efd_item); |
| } |
| |
| STATIC void |
| xfs_efd_item_free(struct xfs_efd_log_item *efdp) |
| { |
| kmem_free(efdp->efd_item.li_lv_shadow); |
| if (efdp->efd_format.efd_nextents > XFS_EFD_MAX_FAST_EXTENTS) |
| kmem_free(efdp); |
| else |
| kmem_cache_free(xfs_efd_zone, efdp); |
| } |
| |
| /* |
| * This returns the number of iovecs needed to log the given efd item. |
| * We only need 1 iovec for an efd item. It just logs the efd_log_format |
| * structure. |
| */ |
| static inline int |
| xfs_efd_item_sizeof( |
| struct xfs_efd_log_item *efdp) |
| { |
| return sizeof(xfs_efd_log_format_t) + |
| (efdp->efd_format.efd_nextents - 1) * sizeof(xfs_extent_t); |
| } |
| |
| STATIC void |
| xfs_efd_item_size( |
| struct xfs_log_item *lip, |
| int *nvecs, |
| int *nbytes) |
| { |
| *nvecs += 1; |
| *nbytes += xfs_efd_item_sizeof(EFD_ITEM(lip)); |
| } |
| |
| /* |
| * This is called to fill in the vector of log iovecs for the |
| * given efd log item. We use only 1 iovec, and we point that |
| * at the efd_log_format structure embedded in the efd item. |
| * It is at this point that we assert that all of the extent |
| * slots in the efd item have been filled. |
| */ |
| STATIC void |
| xfs_efd_item_format( |
| struct xfs_log_item *lip, |
| struct xfs_log_vec *lv) |
| { |
| struct xfs_efd_log_item *efdp = EFD_ITEM(lip); |
| struct xfs_log_iovec *vecp = NULL; |
| |
| ASSERT(efdp->efd_next_extent == efdp->efd_format.efd_nextents); |
| |
| efdp->efd_format.efd_type = XFS_LI_EFD; |
| efdp->efd_format.efd_size = 1; |
| |
| xlog_copy_iovec(lv, &vecp, XLOG_REG_TYPE_EFD_FORMAT, |
| &efdp->efd_format, |
| xfs_efd_item_sizeof(efdp)); |
| } |
| |
| /* |
| * The EFD is either committed or aborted if the transaction is cancelled. If |
| * the transaction is cancelled, drop our reference to the EFI and free the EFD. |
| */ |
| STATIC void |
| xfs_efd_item_release( |
| struct xfs_log_item *lip) |
| { |
| struct xfs_efd_log_item *efdp = EFD_ITEM(lip); |
| |
| xfs_efi_release(efdp->efd_efip); |
| xfs_efd_item_free(efdp); |
| } |
| |
| static const struct xfs_item_ops xfs_efd_item_ops = { |
| .flags = XFS_ITEM_RELEASE_WHEN_COMMITTED, |
| .iop_size = xfs_efd_item_size, |
| .iop_format = xfs_efd_item_format, |
| .iop_release = xfs_efd_item_release, |
| }; |
| |
| /* |
| * Allocate an "extent free done" log item that will hold nextents worth of |
| * extents. The caller must use all nextents extents, because we are not |
| * flexible about this at all. |
| */ |
| static struct xfs_efd_log_item * |
| xfs_trans_get_efd( |
| struct xfs_trans *tp, |
| struct xfs_efi_log_item *efip, |
| unsigned int nextents) |
| { |
| struct xfs_efd_log_item *efdp; |
| |
| ASSERT(nextents > 0); |
| |
| if (nextents > XFS_EFD_MAX_FAST_EXTENTS) { |
| efdp = kmem_zalloc(sizeof(struct xfs_efd_log_item) + |
| (nextents - 1) * sizeof(struct xfs_extent), |
| 0); |
| } else { |
| efdp = kmem_cache_zalloc(xfs_efd_zone, |
| GFP_KERNEL | __GFP_NOFAIL); |
| } |
| |
| xfs_log_item_init(tp->t_mountp, &efdp->efd_item, XFS_LI_EFD, |
| &xfs_efd_item_ops); |
| efdp->efd_efip = efip; |
| efdp->efd_format.efd_nextents = nextents; |
| efdp->efd_format.efd_efi_id = efip->efi_format.efi_id; |
| |
| xfs_trans_add_item(tp, &efdp->efd_item); |
| return efdp; |
| } |
| |
| /* |
| * Free an extent and log it to the EFD. Note that the transaction is marked |
| * dirty regardless of whether the extent free succeeds or fails to support the |
| * EFI/EFD lifecycle rules. |
| */ |
| static int |
| xfs_trans_free_extent( |
| struct xfs_trans *tp, |
| struct xfs_efd_log_item *efdp, |
| xfs_fsblock_t start_block, |
| xfs_extlen_t ext_len, |
| const struct xfs_owner_info *oinfo, |
| bool skip_discard) |
| { |
| struct xfs_mount *mp = tp->t_mountp; |
| struct xfs_extent *extp; |
| uint next_extent; |
| xfs_agnumber_t agno = XFS_FSB_TO_AGNO(mp, start_block); |
| xfs_agblock_t agbno = XFS_FSB_TO_AGBNO(mp, |
| start_block); |
| int error; |
| |
| trace_xfs_bmap_free_deferred(tp->t_mountp, agno, 0, agbno, ext_len); |
| |
| error = __xfs_free_extent(tp, start_block, ext_len, |
| oinfo, XFS_AG_RESV_NONE, skip_discard); |
| /* |
| * Mark the transaction dirty, even on error. This ensures the |
| * transaction is aborted, which: |
| * |
| * 1.) releases the EFI and frees the EFD |
| * 2.) shuts down the filesystem |
| */ |
| tp->t_flags |= XFS_TRANS_DIRTY; |
| set_bit(XFS_LI_DIRTY, &efdp->efd_item.li_flags); |
| |
| next_extent = efdp->efd_next_extent; |
| ASSERT(next_extent < efdp->efd_format.efd_nextents); |
| extp = &(efdp->efd_format.efd_extents[next_extent]); |
| extp->ext_start = start_block; |
| extp->ext_len = ext_len; |
| efdp->efd_next_extent++; |
| |
| return error; |
| } |
| |
| /* Sort bmap items by AG. */ |
| static int |
| xfs_extent_free_diff_items( |
| void *priv, |
| const struct list_head *a, |
| const struct list_head *b) |
| { |
| struct xfs_mount *mp = priv; |
| struct xfs_extent_free_item *ra; |
| struct xfs_extent_free_item *rb; |
| |
| ra = container_of(a, struct xfs_extent_free_item, xefi_list); |
| rb = container_of(b, struct xfs_extent_free_item, xefi_list); |
| return XFS_FSB_TO_AGNO(mp, ra->xefi_startblock) - |
| XFS_FSB_TO_AGNO(mp, rb->xefi_startblock); |
| } |
| |
| /* Log a free extent to the intent item. */ |
| STATIC void |
| xfs_extent_free_log_item( |
| struct xfs_trans *tp, |
| struct xfs_efi_log_item *efip, |
| struct xfs_extent_free_item *free) |
| { |
| uint next_extent; |
| struct xfs_extent *extp; |
| |
| tp->t_flags |= XFS_TRANS_DIRTY; |
| set_bit(XFS_LI_DIRTY, &efip->efi_item.li_flags); |
| |
| /* |
| * atomic_inc_return gives us the value after the increment; |
| * we want to use it as an array index so we need to subtract 1 from |
| * it. |
| */ |
| next_extent = atomic_inc_return(&efip->efi_next_extent) - 1; |
| ASSERT(next_extent < efip->efi_format.efi_nextents); |
| extp = &efip->efi_format.efi_extents[next_extent]; |
| extp->ext_start = free->xefi_startblock; |
| extp->ext_len = free->xefi_blockcount; |
| } |
| |
| static struct xfs_log_item * |
| xfs_extent_free_create_intent( |
| struct xfs_trans *tp, |
| struct list_head *items, |
| unsigned int count, |
| bool sort) |
| { |
| struct xfs_mount *mp = tp->t_mountp; |
| struct xfs_efi_log_item *efip = xfs_efi_init(mp, count); |
| struct xfs_extent_free_item *free; |
| |
| ASSERT(count > 0); |
| |
| xfs_trans_add_item(tp, &efip->efi_item); |
| if (sort) |
| list_sort(mp, items, xfs_extent_free_diff_items); |
| list_for_each_entry(free, items, xefi_list) |
| xfs_extent_free_log_item(tp, efip, free); |
| return &efip->efi_item; |
| } |
| |
| /* Get an EFD so we can process all the free extents. */ |
| static struct xfs_log_item * |
| xfs_extent_free_create_done( |
| struct xfs_trans *tp, |
| struct xfs_log_item *intent, |
| unsigned int count) |
| { |
| return &xfs_trans_get_efd(tp, EFI_ITEM(intent), count)->efd_item; |
| } |
| |
| /* Process a free extent. */ |
| STATIC int |
| xfs_extent_free_finish_item( |
| struct xfs_trans *tp, |
| struct xfs_log_item *done, |
| struct list_head *item, |
| struct xfs_btree_cur **state) |
| { |
| struct xfs_extent_free_item *free; |
| int error; |
| |
| free = container_of(item, struct xfs_extent_free_item, xefi_list); |
| error = xfs_trans_free_extent(tp, EFD_ITEM(done), |
| free->xefi_startblock, |
| free->xefi_blockcount, |
| &free->xefi_oinfo, free->xefi_skip_discard); |
| kmem_cache_free(xfs_bmap_free_item_zone, free); |
| return error; |
| } |
| |
| /* Abort all pending EFIs. */ |
| STATIC void |
| xfs_extent_free_abort_intent( |
| struct xfs_log_item *intent) |
| { |
| xfs_efi_release(EFI_ITEM(intent)); |
| } |
| |
| /* Cancel a free extent. */ |
| STATIC void |
| xfs_extent_free_cancel_item( |
| struct list_head *item) |
| { |
| struct xfs_extent_free_item *free; |
| |
| free = container_of(item, struct xfs_extent_free_item, xefi_list); |
| kmem_cache_free(xfs_bmap_free_item_zone, free); |
| } |
| |
| const struct xfs_defer_op_type xfs_extent_free_defer_type = { |
| .max_items = XFS_EFI_MAX_FAST_EXTENTS, |
| .create_intent = xfs_extent_free_create_intent, |
| .abort_intent = xfs_extent_free_abort_intent, |
| .create_done = xfs_extent_free_create_done, |
| .finish_item = xfs_extent_free_finish_item, |
| .cancel_item = xfs_extent_free_cancel_item, |
| }; |
| |
| /* |
| * AGFL blocks are accounted differently in the reserve pools and are not |
| * inserted into the busy extent list. |
| */ |
| STATIC int |
| xfs_agfl_free_finish_item( |
| struct xfs_trans *tp, |
| struct xfs_log_item *done, |
| struct list_head *item, |
| struct xfs_btree_cur **state) |
| { |
| struct xfs_mount *mp = tp->t_mountp; |
| struct xfs_efd_log_item *efdp = EFD_ITEM(done); |
| struct xfs_extent_free_item *free; |
| struct xfs_extent *extp; |
| struct xfs_buf *agbp; |
| int error; |
| xfs_agnumber_t agno; |
| xfs_agblock_t agbno; |
| uint next_extent; |
| |
| free = container_of(item, struct xfs_extent_free_item, xefi_list); |
| ASSERT(free->xefi_blockcount == 1); |
| agno = XFS_FSB_TO_AGNO(mp, free->xefi_startblock); |
| agbno = XFS_FSB_TO_AGBNO(mp, free->xefi_startblock); |
| |
| trace_xfs_agfl_free_deferred(mp, agno, 0, agbno, free->xefi_blockcount); |
| |
| error = xfs_alloc_read_agf(mp, tp, agno, 0, &agbp); |
| if (!error) |
| error = xfs_free_agfl_block(tp, agno, agbno, agbp, |
| &free->xefi_oinfo); |
| |
| /* |
| * Mark the transaction dirty, even on error. This ensures the |
| * transaction is aborted, which: |
| * |
| * 1.) releases the EFI and frees the EFD |
| * 2.) shuts down the filesystem |
| */ |
| tp->t_flags |= XFS_TRANS_DIRTY; |
| set_bit(XFS_LI_DIRTY, &efdp->efd_item.li_flags); |
| |
| next_extent = efdp->efd_next_extent; |
| ASSERT(next_extent < efdp->efd_format.efd_nextents); |
| extp = &(efdp->efd_format.efd_extents[next_extent]); |
| extp->ext_start = free->xefi_startblock; |
| extp->ext_len = free->xefi_blockcount; |
| efdp->efd_next_extent++; |
| |
| kmem_cache_free(xfs_bmap_free_item_zone, free); |
| return error; |
| } |
| |
| /* sub-type with special handling for AGFL deferred frees */ |
| const struct xfs_defer_op_type xfs_agfl_free_defer_type = { |
| .max_items = XFS_EFI_MAX_FAST_EXTENTS, |
| .create_intent = xfs_extent_free_create_intent, |
| .abort_intent = xfs_extent_free_abort_intent, |
| .create_done = xfs_extent_free_create_done, |
| .finish_item = xfs_agfl_free_finish_item, |
| .cancel_item = xfs_extent_free_cancel_item, |
| }; |
| |
| /* Is this recovered EFI ok? */ |
| static inline bool |
| xfs_efi_validate_ext( |
| struct xfs_mount *mp, |
| struct xfs_extent *extp) |
| { |
| return xfs_verify_fsbext(mp, extp->ext_start, extp->ext_len); |
| } |
| |
| /* |
| * Process an extent free intent item that was recovered from |
| * the log. We need to free the extents that it describes. |
| */ |
| STATIC int |
| xfs_efi_item_recover( |
| struct xfs_log_item *lip, |
| struct list_head *capture_list) |
| { |
| struct xfs_efi_log_item *efip = EFI_ITEM(lip); |
| struct xfs_mount *mp = lip->li_mountp; |
| struct xfs_efd_log_item *efdp; |
| struct xfs_trans *tp; |
| struct xfs_extent *extp; |
| int i; |
| int error = 0; |
| |
| /* |
| * First check the validity of the extents described by the |
| * EFI. If any are bad, then assume that all are bad and |
| * just toss the EFI. |
| */ |
| for (i = 0; i < efip->efi_format.efi_nextents; i++) { |
| if (!xfs_efi_validate_ext(mp, |
| &efip->efi_format.efi_extents[i])) { |
| XFS_CORRUPTION_ERROR(__func__, XFS_ERRLEVEL_LOW, mp, |
| &efip->efi_format, |
| sizeof(efip->efi_format)); |
| return -EFSCORRUPTED; |
| } |
| } |
| |
| error = xfs_trans_alloc(mp, &M_RES(mp)->tr_itruncate, 0, 0, 0, &tp); |
| if (error) |
| return error; |
| efdp = xfs_trans_get_efd(tp, efip, efip->efi_format.efi_nextents); |
| |
| for (i = 0; i < efip->efi_format.efi_nextents; i++) { |
| extp = &efip->efi_format.efi_extents[i]; |
| error = xfs_trans_free_extent(tp, efdp, extp->ext_start, |
| extp->ext_len, |
| &XFS_RMAP_OINFO_ANY_OWNER, false); |
| if (error == -EFSCORRUPTED) |
| XFS_CORRUPTION_ERROR(__func__, XFS_ERRLEVEL_LOW, mp, |
| extp, sizeof(*extp)); |
| if (error) |
| goto abort_error; |
| |
| } |
| |
| return xfs_defer_ops_capture_and_commit(tp, capture_list); |
| |
| abort_error: |
| xfs_trans_cancel(tp); |
| return error; |
| } |
| |
| STATIC bool |
| xfs_efi_item_match( |
| struct xfs_log_item *lip, |
| uint64_t intent_id) |
| { |
| return EFI_ITEM(lip)->efi_format.efi_id == intent_id; |
| } |
| |
| /* Relog an intent item to push the log tail forward. */ |
| static struct xfs_log_item * |
| xfs_efi_item_relog( |
| struct xfs_log_item *intent, |
| struct xfs_trans *tp) |
| { |
| struct xfs_efd_log_item *efdp; |
| struct xfs_efi_log_item *efip; |
| struct xfs_extent *extp; |
| unsigned int count; |
| |
| count = EFI_ITEM(intent)->efi_format.efi_nextents; |
| extp = EFI_ITEM(intent)->efi_format.efi_extents; |
| |
| tp->t_flags |= XFS_TRANS_DIRTY; |
| efdp = xfs_trans_get_efd(tp, EFI_ITEM(intent), count); |
| efdp->efd_next_extent = count; |
| memcpy(efdp->efd_format.efd_extents, extp, count * sizeof(*extp)); |
| set_bit(XFS_LI_DIRTY, &efdp->efd_item.li_flags); |
| |
| efip = xfs_efi_init(tp->t_mountp, count); |
| memcpy(efip->efi_format.efi_extents, extp, count * sizeof(*extp)); |
| atomic_set(&efip->efi_next_extent, count); |
| xfs_trans_add_item(tp, &efip->efi_item); |
| set_bit(XFS_LI_DIRTY, &efip->efi_item.li_flags); |
| return &efip->efi_item; |
| } |
| |
| static const struct xfs_item_ops xfs_efi_item_ops = { |
| .iop_size = xfs_efi_item_size, |
| .iop_format = xfs_efi_item_format, |
| .iop_unpin = xfs_efi_item_unpin, |
| .iop_release = xfs_efi_item_release, |
| .iop_recover = xfs_efi_item_recover, |
| .iop_match = xfs_efi_item_match, |
| .iop_relog = xfs_efi_item_relog, |
| }; |
| |
| /* |
| * This routine is called to create an in-core extent free intent |
| * item from the efi format structure which was logged on disk. |
| * It allocates an in-core efi, copies the extents from the format |
| * structure into it, and adds the efi to the AIL with the given |
| * LSN. |
| */ |
| STATIC int |
| xlog_recover_efi_commit_pass2( |
| struct xlog *log, |
| struct list_head *buffer_list, |
| struct xlog_recover_item *item, |
| xfs_lsn_t lsn) |
| { |
| struct xfs_mount *mp = log->l_mp; |
| struct xfs_efi_log_item *efip; |
| struct xfs_efi_log_format *efi_formatp; |
| int error; |
| |
| efi_formatp = item->ri_buf[0].i_addr; |
| |
| efip = xfs_efi_init(mp, efi_formatp->efi_nextents); |
| error = xfs_efi_copy_format(&item->ri_buf[0], &efip->efi_format); |
| if (error) { |
| xfs_efi_item_free(efip); |
| return error; |
| } |
| atomic_set(&efip->efi_next_extent, efi_formatp->efi_nextents); |
| /* |
| * Insert the intent into the AIL directly and drop one reference so |
| * that finishing or canceling the work will drop the other. |
| */ |
| xfs_trans_ail_insert(log->l_ailp, &efip->efi_item, lsn); |
| xfs_efi_release(efip); |
| return 0; |
| } |
| |
| const struct xlog_recover_item_ops xlog_efi_item_ops = { |
| .item_type = XFS_LI_EFI, |
| .commit_pass2 = xlog_recover_efi_commit_pass2, |
| }; |
| |
| /* |
| * This routine is called when an EFD format structure is found in a committed |
| * transaction in the log. Its purpose is to cancel the corresponding EFI if it |
| * was still in the log. To do this it searches the AIL for the EFI with an id |
| * equal to that in the EFD format structure. If we find it we drop the EFD |
| * reference, which removes the EFI from the AIL and frees it. |
| */ |
| STATIC int |
| xlog_recover_efd_commit_pass2( |
| struct xlog *log, |
| struct list_head *buffer_list, |
| struct xlog_recover_item *item, |
| xfs_lsn_t lsn) |
| { |
| struct xfs_efd_log_format *efd_formatp; |
| |
| efd_formatp = item->ri_buf[0].i_addr; |
| ASSERT((item->ri_buf[0].i_len == (sizeof(xfs_efd_log_format_32_t) + |
| ((efd_formatp->efd_nextents - 1) * sizeof(xfs_extent_32_t)))) || |
| (item->ri_buf[0].i_len == (sizeof(xfs_efd_log_format_64_t) + |
| ((efd_formatp->efd_nextents - 1) * sizeof(xfs_extent_64_t))))); |
| |
| xlog_recover_release_intent(log, XFS_LI_EFI, efd_formatp->efd_efi_id); |
| return 0; |
| } |
| |
| const struct xlog_recover_item_ops xlog_efd_item_ops = { |
| .item_type = XFS_LI_EFD, |
| .commit_pass2 = xlog_recover_efd_commit_pass2, |
| }; |