|  | // SPDX-License-Identifier: GPL-2.0-only | 
|  | /* | 
|  | * Kernel-based Virtual Machine driver for Linux | 
|  | * | 
|  | * AMD SVM support | 
|  | * | 
|  | * Copyright (C) 2006 Qumranet, Inc. | 
|  | * Copyright 2010 Red Hat, Inc. and/or its affiliates. | 
|  | * | 
|  | * Authors: | 
|  | *   Yaniv Kamay  <yaniv@qumranet.com> | 
|  | *   Avi Kivity   <avi@qumranet.com> | 
|  | */ | 
|  |  | 
|  | #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt | 
|  |  | 
|  | #include <linux/kvm_types.h> | 
|  | #include <linux/hashtable.h> | 
|  | #include <linux/amd-iommu.h> | 
|  | #include <linux/kvm_host.h> | 
|  |  | 
|  | #include <asm/irq_remapping.h> | 
|  |  | 
|  | #include "trace.h" | 
|  | #include "lapic.h" | 
|  | #include "x86.h" | 
|  | #include "irq.h" | 
|  | #include "svm.h" | 
|  |  | 
|  | /* | 
|  | * Encode the arbitrary VM ID and the vCPU's default APIC ID, i.e the vCPU ID, | 
|  | * into the GATag so that KVM can retrieve the correct vCPU from a GALog entry | 
|  | * if an interrupt can't be delivered, e.g. because the vCPU isn't running. | 
|  | * | 
|  | * For the vCPU ID, use however many bits are currently allowed for the max | 
|  | * guest physical APIC ID (limited by the size of the physical ID table), and | 
|  | * use whatever bits remain to assign arbitrary AVIC IDs to VMs.  Note, the | 
|  | * size of the GATag is defined by hardware (32 bits), but is an opaque value | 
|  | * as far as hardware is concerned. | 
|  | */ | 
|  | #define AVIC_VCPU_ID_MASK		AVIC_PHYSICAL_MAX_INDEX_MASK | 
|  |  | 
|  | #define AVIC_VM_ID_SHIFT		HWEIGHT32(AVIC_PHYSICAL_MAX_INDEX_MASK) | 
|  | #define AVIC_VM_ID_MASK			(GENMASK(31, AVIC_VM_ID_SHIFT) >> AVIC_VM_ID_SHIFT) | 
|  |  | 
|  | #define AVIC_GATAG_TO_VMID(x)		((x >> AVIC_VM_ID_SHIFT) & AVIC_VM_ID_MASK) | 
|  | #define AVIC_GATAG_TO_VCPUID(x)		(x & AVIC_VCPU_ID_MASK) | 
|  |  | 
|  | #define __AVIC_GATAG(vm_id, vcpu_id)	((((vm_id) & AVIC_VM_ID_MASK) << AVIC_VM_ID_SHIFT) | \ | 
|  | ((vcpu_id) & AVIC_VCPU_ID_MASK)) | 
|  | #define AVIC_GATAG(vm_id, vcpu_id)					\ | 
|  | ({									\ | 
|  | u32 ga_tag = __AVIC_GATAG(vm_id, vcpu_id);			\ | 
|  | \ | 
|  | WARN_ON_ONCE(AVIC_GATAG_TO_VCPUID(ga_tag) != (vcpu_id));	\ | 
|  | WARN_ON_ONCE(AVIC_GATAG_TO_VMID(ga_tag) != (vm_id));		\ | 
|  | ga_tag;								\ | 
|  | }) | 
|  |  | 
|  | static_assert(__AVIC_GATAG(AVIC_VM_ID_MASK, AVIC_VCPU_ID_MASK) == -1u); | 
|  |  | 
|  | static bool force_avic; | 
|  | module_param_unsafe(force_avic, bool, 0444); | 
|  |  | 
|  | /* Note: | 
|  | * This hash table is used to map VM_ID to a struct kvm_svm, | 
|  | * when handling AMD IOMMU GALOG notification to schedule in | 
|  | * a particular vCPU. | 
|  | */ | 
|  | #define SVM_VM_DATA_HASH_BITS	8 | 
|  | static DEFINE_HASHTABLE(svm_vm_data_hash, SVM_VM_DATA_HASH_BITS); | 
|  | static u32 next_vm_id = 0; | 
|  | static bool next_vm_id_wrapped = 0; | 
|  | static DEFINE_SPINLOCK(svm_vm_data_hash_lock); | 
|  | bool x2avic_enabled; | 
|  |  | 
|  | /* | 
|  | * This is a wrapper of struct amd_iommu_ir_data. | 
|  | */ | 
|  | struct amd_svm_iommu_ir { | 
|  | struct list_head node;	/* Used by SVM for per-vcpu ir_list */ | 
|  | void *data;		/* Storing pointer to struct amd_ir_data */ | 
|  | }; | 
|  |  | 
|  | static void avic_activate_vmcb(struct vcpu_svm *svm) | 
|  | { | 
|  | struct vmcb *vmcb = svm->vmcb01.ptr; | 
|  |  | 
|  | vmcb->control.int_ctl &= ~(AVIC_ENABLE_MASK | X2APIC_MODE_MASK); | 
|  | vmcb->control.avic_physical_id &= ~AVIC_PHYSICAL_MAX_INDEX_MASK; | 
|  |  | 
|  | vmcb->control.int_ctl |= AVIC_ENABLE_MASK; | 
|  |  | 
|  | /* | 
|  | * Note: KVM supports hybrid-AVIC mode, where KVM emulates x2APIC MSR | 
|  | * accesses, while interrupt injection to a running vCPU can be | 
|  | * achieved using AVIC doorbell.  KVM disables the APIC access page | 
|  | * (deletes the memslot) if any vCPU has x2APIC enabled, thus enabling | 
|  | * AVIC in hybrid mode activates only the doorbell mechanism. | 
|  | */ | 
|  | if (x2avic_enabled && apic_x2apic_mode(svm->vcpu.arch.apic)) { | 
|  | vmcb->control.int_ctl |= X2APIC_MODE_MASK; | 
|  | vmcb->control.avic_physical_id |= X2AVIC_MAX_PHYSICAL_ID; | 
|  | /* Disabling MSR intercept for x2APIC registers */ | 
|  | svm_set_x2apic_msr_interception(svm, false); | 
|  | } else { | 
|  | /* | 
|  | * Flush the TLB, the guest may have inserted a non-APIC | 
|  | * mapping into the TLB while AVIC was disabled. | 
|  | */ | 
|  | kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, &svm->vcpu); | 
|  |  | 
|  | /* For xAVIC and hybrid-xAVIC modes */ | 
|  | vmcb->control.avic_physical_id |= AVIC_MAX_PHYSICAL_ID; | 
|  | /* Enabling MSR intercept for x2APIC registers */ | 
|  | svm_set_x2apic_msr_interception(svm, true); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void avic_deactivate_vmcb(struct vcpu_svm *svm) | 
|  | { | 
|  | struct vmcb *vmcb = svm->vmcb01.ptr; | 
|  |  | 
|  | vmcb->control.int_ctl &= ~(AVIC_ENABLE_MASK | X2APIC_MODE_MASK); | 
|  | vmcb->control.avic_physical_id &= ~AVIC_PHYSICAL_MAX_INDEX_MASK; | 
|  |  | 
|  | /* | 
|  | * If running nested and the guest uses its own MSR bitmap, there | 
|  | * is no need to update L0's msr bitmap | 
|  | */ | 
|  | if (is_guest_mode(&svm->vcpu) && | 
|  | vmcb12_is_intercept(&svm->nested.ctl, INTERCEPT_MSR_PROT)) | 
|  | return; | 
|  |  | 
|  | /* Enabling MSR intercept for x2APIC registers */ | 
|  | svm_set_x2apic_msr_interception(svm, true); | 
|  | } | 
|  |  | 
|  | /* Note: | 
|  | * This function is called from IOMMU driver to notify | 
|  | * SVM to schedule in a particular vCPU of a particular VM. | 
|  | */ | 
|  | int avic_ga_log_notifier(u32 ga_tag) | 
|  | { | 
|  | unsigned long flags; | 
|  | struct kvm_svm *kvm_svm; | 
|  | struct kvm_vcpu *vcpu = NULL; | 
|  | u32 vm_id = AVIC_GATAG_TO_VMID(ga_tag); | 
|  | u32 vcpu_id = AVIC_GATAG_TO_VCPUID(ga_tag); | 
|  |  | 
|  | pr_debug("SVM: %s: vm_id=%#x, vcpu_id=%#x\n", __func__, vm_id, vcpu_id); | 
|  | trace_kvm_avic_ga_log(vm_id, vcpu_id); | 
|  |  | 
|  | spin_lock_irqsave(&svm_vm_data_hash_lock, flags); | 
|  | hash_for_each_possible(svm_vm_data_hash, kvm_svm, hnode, vm_id) { | 
|  | if (kvm_svm->avic_vm_id != vm_id) | 
|  | continue; | 
|  | vcpu = kvm_get_vcpu_by_id(&kvm_svm->kvm, vcpu_id); | 
|  | break; | 
|  | } | 
|  | spin_unlock_irqrestore(&svm_vm_data_hash_lock, flags); | 
|  |  | 
|  | /* Note: | 
|  | * At this point, the IOMMU should have already set the pending | 
|  | * bit in the vAPIC backing page. So, we just need to schedule | 
|  | * in the vcpu. | 
|  | */ | 
|  | if (vcpu) | 
|  | kvm_vcpu_wake_up(vcpu); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | void avic_vm_destroy(struct kvm *kvm) | 
|  | { | 
|  | unsigned long flags; | 
|  | struct kvm_svm *kvm_svm = to_kvm_svm(kvm); | 
|  |  | 
|  | if (!enable_apicv) | 
|  | return; | 
|  |  | 
|  | if (kvm_svm->avic_logical_id_table_page) | 
|  | __free_page(kvm_svm->avic_logical_id_table_page); | 
|  | if (kvm_svm->avic_physical_id_table_page) | 
|  | __free_page(kvm_svm->avic_physical_id_table_page); | 
|  |  | 
|  | spin_lock_irqsave(&svm_vm_data_hash_lock, flags); | 
|  | hash_del(&kvm_svm->hnode); | 
|  | spin_unlock_irqrestore(&svm_vm_data_hash_lock, flags); | 
|  | } | 
|  |  | 
|  | int avic_vm_init(struct kvm *kvm) | 
|  | { | 
|  | unsigned long flags; | 
|  | int err = -ENOMEM; | 
|  | struct kvm_svm *kvm_svm = to_kvm_svm(kvm); | 
|  | struct kvm_svm *k2; | 
|  | struct page *p_page; | 
|  | struct page *l_page; | 
|  | u32 vm_id; | 
|  |  | 
|  | if (!enable_apicv) | 
|  | return 0; | 
|  |  | 
|  | /* Allocating physical APIC ID table (4KB) */ | 
|  | p_page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO); | 
|  | if (!p_page) | 
|  | goto free_avic; | 
|  |  | 
|  | kvm_svm->avic_physical_id_table_page = p_page; | 
|  |  | 
|  | /* Allocating logical APIC ID table (4KB) */ | 
|  | l_page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO); | 
|  | if (!l_page) | 
|  | goto free_avic; | 
|  |  | 
|  | kvm_svm->avic_logical_id_table_page = l_page; | 
|  |  | 
|  | spin_lock_irqsave(&svm_vm_data_hash_lock, flags); | 
|  | again: | 
|  | vm_id = next_vm_id = (next_vm_id + 1) & AVIC_VM_ID_MASK; | 
|  | if (vm_id == 0) { /* id is 1-based, zero is not okay */ | 
|  | next_vm_id_wrapped = 1; | 
|  | goto again; | 
|  | } | 
|  | /* Is it still in use? Only possible if wrapped at least once */ | 
|  | if (next_vm_id_wrapped) { | 
|  | hash_for_each_possible(svm_vm_data_hash, k2, hnode, vm_id) { | 
|  | if (k2->avic_vm_id == vm_id) | 
|  | goto again; | 
|  | } | 
|  | } | 
|  | kvm_svm->avic_vm_id = vm_id; | 
|  | hash_add(svm_vm_data_hash, &kvm_svm->hnode, kvm_svm->avic_vm_id); | 
|  | spin_unlock_irqrestore(&svm_vm_data_hash_lock, flags); | 
|  |  | 
|  | return 0; | 
|  |  | 
|  | free_avic: | 
|  | avic_vm_destroy(kvm); | 
|  | return err; | 
|  | } | 
|  |  | 
|  | void avic_init_vmcb(struct vcpu_svm *svm, struct vmcb *vmcb) | 
|  | { | 
|  | struct kvm_svm *kvm_svm = to_kvm_svm(svm->vcpu.kvm); | 
|  | phys_addr_t bpa = __sme_set(page_to_phys(svm->avic_backing_page)); | 
|  | phys_addr_t lpa = __sme_set(page_to_phys(kvm_svm->avic_logical_id_table_page)); | 
|  | phys_addr_t ppa = __sme_set(page_to_phys(kvm_svm->avic_physical_id_table_page)); | 
|  |  | 
|  | vmcb->control.avic_backing_page = bpa & AVIC_HPA_MASK; | 
|  | vmcb->control.avic_logical_id = lpa & AVIC_HPA_MASK; | 
|  | vmcb->control.avic_physical_id = ppa & AVIC_HPA_MASK; | 
|  | vmcb->control.avic_vapic_bar = APIC_DEFAULT_PHYS_BASE & VMCB_AVIC_APIC_BAR_MASK; | 
|  |  | 
|  | if (kvm_apicv_activated(svm->vcpu.kvm)) | 
|  | avic_activate_vmcb(svm); | 
|  | else | 
|  | avic_deactivate_vmcb(svm); | 
|  | } | 
|  |  | 
|  | static u64 *avic_get_physical_id_entry(struct kvm_vcpu *vcpu, | 
|  | unsigned int index) | 
|  | { | 
|  | u64 *avic_physical_id_table; | 
|  | struct kvm_svm *kvm_svm = to_kvm_svm(vcpu->kvm); | 
|  |  | 
|  | if ((!x2avic_enabled && index > AVIC_MAX_PHYSICAL_ID) || | 
|  | (index > X2AVIC_MAX_PHYSICAL_ID)) | 
|  | return NULL; | 
|  |  | 
|  | avic_physical_id_table = page_address(kvm_svm->avic_physical_id_table_page); | 
|  |  | 
|  | return &avic_physical_id_table[index]; | 
|  | } | 
|  |  | 
|  | static int avic_init_backing_page(struct kvm_vcpu *vcpu) | 
|  | { | 
|  | u64 *entry, new_entry; | 
|  | int id = vcpu->vcpu_id; | 
|  | struct vcpu_svm *svm = to_svm(vcpu); | 
|  |  | 
|  | if ((!x2avic_enabled && id > AVIC_MAX_PHYSICAL_ID) || | 
|  | (id > X2AVIC_MAX_PHYSICAL_ID)) | 
|  | return -EINVAL; | 
|  |  | 
|  | if (!vcpu->arch.apic->regs) | 
|  | return -EINVAL; | 
|  |  | 
|  | if (kvm_apicv_activated(vcpu->kvm)) { | 
|  | int ret; | 
|  |  | 
|  | /* | 
|  | * Note, AVIC hardware walks the nested page table to check | 
|  | * permissions, but does not use the SPA address specified in | 
|  | * the leaf SPTE since it uses address in the AVIC_BACKING_PAGE | 
|  | * pointer field of the VMCB. | 
|  | */ | 
|  | ret = kvm_alloc_apic_access_page(vcpu->kvm); | 
|  | if (ret) | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | svm->avic_backing_page = virt_to_page(vcpu->arch.apic->regs); | 
|  |  | 
|  | /* Setting AVIC backing page address in the phy APIC ID table */ | 
|  | entry = avic_get_physical_id_entry(vcpu, id); | 
|  | if (!entry) | 
|  | return -EINVAL; | 
|  |  | 
|  | new_entry = __sme_set((page_to_phys(svm->avic_backing_page) & | 
|  | AVIC_PHYSICAL_ID_ENTRY_BACKING_PAGE_MASK) | | 
|  | AVIC_PHYSICAL_ID_ENTRY_VALID_MASK); | 
|  | WRITE_ONCE(*entry, new_entry); | 
|  |  | 
|  | svm->avic_physical_id_cache = entry; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | void avic_ring_doorbell(struct kvm_vcpu *vcpu) | 
|  | { | 
|  | /* | 
|  | * Note, the vCPU could get migrated to a different pCPU at any point, | 
|  | * which could result in signalling the wrong/previous pCPU.  But if | 
|  | * that happens the vCPU is guaranteed to do a VMRUN (after being | 
|  | * migrated) and thus will process pending interrupts, i.e. a doorbell | 
|  | * is not needed (and the spurious one is harmless). | 
|  | */ | 
|  | int cpu = READ_ONCE(vcpu->cpu); | 
|  |  | 
|  | if (cpu != get_cpu()) { | 
|  | wrmsrl(MSR_AMD64_SVM_AVIC_DOORBELL, kvm_cpu_get_apicid(cpu)); | 
|  | trace_kvm_avic_doorbell(vcpu->vcpu_id, kvm_cpu_get_apicid(cpu)); | 
|  | } | 
|  | put_cpu(); | 
|  | } | 
|  |  | 
|  |  | 
|  | static void avic_kick_vcpu(struct kvm_vcpu *vcpu, u32 icrl) | 
|  | { | 
|  | vcpu->arch.apic->irr_pending = true; | 
|  | svm_complete_interrupt_delivery(vcpu, | 
|  | icrl & APIC_MODE_MASK, | 
|  | icrl & APIC_INT_LEVELTRIG, | 
|  | icrl & APIC_VECTOR_MASK); | 
|  | } | 
|  |  | 
|  | static void avic_kick_vcpu_by_physical_id(struct kvm *kvm, u32 physical_id, | 
|  | u32 icrl) | 
|  | { | 
|  | /* | 
|  | * KVM inhibits AVIC if any vCPU ID diverges from the vCPUs APIC ID, | 
|  | * i.e. APIC ID == vCPU ID. | 
|  | */ | 
|  | struct kvm_vcpu *target_vcpu = kvm_get_vcpu_by_id(kvm, physical_id); | 
|  |  | 
|  | /* Once again, nothing to do if the target vCPU doesn't exist. */ | 
|  | if (unlikely(!target_vcpu)) | 
|  | return; | 
|  |  | 
|  | avic_kick_vcpu(target_vcpu, icrl); | 
|  | } | 
|  |  | 
|  | static void avic_kick_vcpu_by_logical_id(struct kvm *kvm, u32 *avic_logical_id_table, | 
|  | u32 logid_index, u32 icrl) | 
|  | { | 
|  | u32 physical_id; | 
|  |  | 
|  | if (avic_logical_id_table) { | 
|  | u32 logid_entry = avic_logical_id_table[logid_index]; | 
|  |  | 
|  | /* Nothing to do if the logical destination is invalid. */ | 
|  | if (unlikely(!(logid_entry & AVIC_LOGICAL_ID_ENTRY_VALID_MASK))) | 
|  | return; | 
|  |  | 
|  | physical_id = logid_entry & | 
|  | AVIC_LOGICAL_ID_ENTRY_GUEST_PHYSICAL_ID_MASK; | 
|  | } else { | 
|  | /* | 
|  | * For x2APIC, the logical APIC ID is a read-only value that is | 
|  | * derived from the x2APIC ID, thus the x2APIC ID can be found | 
|  | * by reversing the calculation (stored in logid_index).  Note, | 
|  | * bits 31:20 of the x2APIC ID aren't propagated to the logical | 
|  | * ID, but KVM limits the x2APIC ID limited to KVM_MAX_VCPU_IDS. | 
|  | */ | 
|  | physical_id = logid_index; | 
|  | } | 
|  |  | 
|  | avic_kick_vcpu_by_physical_id(kvm, physical_id, icrl); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * A fast-path version of avic_kick_target_vcpus(), which attempts to match | 
|  | * destination APIC ID to vCPU without looping through all vCPUs. | 
|  | */ | 
|  | static int avic_kick_target_vcpus_fast(struct kvm *kvm, struct kvm_lapic *source, | 
|  | u32 icrl, u32 icrh, u32 index) | 
|  | { | 
|  | int dest_mode = icrl & APIC_DEST_MASK; | 
|  | int shorthand = icrl & APIC_SHORT_MASK; | 
|  | struct kvm_svm *kvm_svm = to_kvm_svm(kvm); | 
|  | u32 dest; | 
|  |  | 
|  | if (shorthand != APIC_DEST_NOSHORT) | 
|  | return -EINVAL; | 
|  |  | 
|  | if (apic_x2apic_mode(source)) | 
|  | dest = icrh; | 
|  | else | 
|  | dest = GET_XAPIC_DEST_FIELD(icrh); | 
|  |  | 
|  | if (dest_mode == APIC_DEST_PHYSICAL) { | 
|  | /* broadcast destination, use slow path */ | 
|  | if (apic_x2apic_mode(source) && dest == X2APIC_BROADCAST) | 
|  | return -EINVAL; | 
|  | if (!apic_x2apic_mode(source) && dest == APIC_BROADCAST) | 
|  | return -EINVAL; | 
|  |  | 
|  | if (WARN_ON_ONCE(dest != index)) | 
|  | return -EINVAL; | 
|  |  | 
|  | avic_kick_vcpu_by_physical_id(kvm, dest, icrl); | 
|  | } else { | 
|  | u32 *avic_logical_id_table; | 
|  | unsigned long bitmap, i; | 
|  | u32 cluster; | 
|  |  | 
|  | if (apic_x2apic_mode(source)) { | 
|  | /* 16 bit dest mask, 16 bit cluster id */ | 
|  | bitmap = dest & 0xFFFF; | 
|  | cluster = (dest >> 16) << 4; | 
|  | } else if (kvm_lapic_get_reg(source, APIC_DFR) == APIC_DFR_FLAT) { | 
|  | /* 8 bit dest mask*/ | 
|  | bitmap = dest; | 
|  | cluster = 0; | 
|  | } else { | 
|  | /* 4 bit desk mask, 4 bit cluster id */ | 
|  | bitmap = dest & 0xF; | 
|  | cluster = (dest >> 4) << 2; | 
|  | } | 
|  |  | 
|  | /* Nothing to do if there are no destinations in the cluster. */ | 
|  | if (unlikely(!bitmap)) | 
|  | return 0; | 
|  |  | 
|  | if (apic_x2apic_mode(source)) | 
|  | avic_logical_id_table = NULL; | 
|  | else | 
|  | avic_logical_id_table = page_address(kvm_svm->avic_logical_id_table_page); | 
|  |  | 
|  | /* | 
|  | * AVIC is inhibited if vCPUs aren't mapped 1:1 with logical | 
|  | * IDs, thus each bit in the destination is guaranteed to map | 
|  | * to at most one vCPU. | 
|  | */ | 
|  | for_each_set_bit(i, &bitmap, 16) | 
|  | avic_kick_vcpu_by_logical_id(kvm, avic_logical_id_table, | 
|  | cluster + i, icrl); | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void avic_kick_target_vcpus(struct kvm *kvm, struct kvm_lapic *source, | 
|  | u32 icrl, u32 icrh, u32 index) | 
|  | { | 
|  | u32 dest = apic_x2apic_mode(source) ? icrh : GET_XAPIC_DEST_FIELD(icrh); | 
|  | unsigned long i; | 
|  | struct kvm_vcpu *vcpu; | 
|  |  | 
|  | if (!avic_kick_target_vcpus_fast(kvm, source, icrl, icrh, index)) | 
|  | return; | 
|  |  | 
|  | trace_kvm_avic_kick_vcpu_slowpath(icrh, icrl, index); | 
|  |  | 
|  | /* | 
|  | * Wake any target vCPUs that are blocking, i.e. waiting for a wake | 
|  | * event.  There's no need to signal doorbells, as hardware has handled | 
|  | * vCPUs that were in guest at the time of the IPI, and vCPUs that have | 
|  | * since entered the guest will have processed pending IRQs at VMRUN. | 
|  | */ | 
|  | kvm_for_each_vcpu(i, vcpu, kvm) { | 
|  | if (kvm_apic_match_dest(vcpu, source, icrl & APIC_SHORT_MASK, | 
|  | dest, icrl & APIC_DEST_MASK)) | 
|  | avic_kick_vcpu(vcpu, icrl); | 
|  | } | 
|  | } | 
|  |  | 
|  | int avic_incomplete_ipi_interception(struct kvm_vcpu *vcpu) | 
|  | { | 
|  | struct vcpu_svm *svm = to_svm(vcpu); | 
|  | u32 icrh = svm->vmcb->control.exit_info_1 >> 32; | 
|  | u32 icrl = svm->vmcb->control.exit_info_1; | 
|  | u32 id = svm->vmcb->control.exit_info_2 >> 32; | 
|  | u32 index = svm->vmcb->control.exit_info_2 & 0x1FF; | 
|  | struct kvm_lapic *apic = vcpu->arch.apic; | 
|  |  | 
|  | trace_kvm_avic_incomplete_ipi(vcpu->vcpu_id, icrh, icrl, id, index); | 
|  |  | 
|  | switch (id) { | 
|  | case AVIC_IPI_FAILURE_INVALID_TARGET: | 
|  | case AVIC_IPI_FAILURE_INVALID_INT_TYPE: | 
|  | /* | 
|  | * Emulate IPIs that are not handled by AVIC hardware, which | 
|  | * only virtualizes Fixed, Edge-Triggered INTRs, and falls over | 
|  | * if _any_ targets are invalid, e.g. if the logical mode mask | 
|  | * is a superset of running vCPUs. | 
|  | * | 
|  | * The exit is a trap, e.g. ICR holds the correct value and RIP | 
|  | * has been advanced, KVM is responsible only for emulating the | 
|  | * IPI.  Sadly, hardware may sometimes leave the BUSY flag set, | 
|  | * in which case KVM needs to emulate the ICR write as well in | 
|  | * order to clear the BUSY flag. | 
|  | */ | 
|  | if (icrl & APIC_ICR_BUSY) | 
|  | kvm_apic_write_nodecode(vcpu, APIC_ICR); | 
|  | else | 
|  | kvm_apic_send_ipi(apic, icrl, icrh); | 
|  | break; | 
|  | case AVIC_IPI_FAILURE_TARGET_NOT_RUNNING: | 
|  | /* | 
|  | * At this point, we expect that the AVIC HW has already | 
|  | * set the appropriate IRR bits on the valid target | 
|  | * vcpus. So, we just need to kick the appropriate vcpu. | 
|  | */ | 
|  | avic_kick_target_vcpus(vcpu->kvm, apic, icrl, icrh, index); | 
|  | break; | 
|  | case AVIC_IPI_FAILURE_INVALID_BACKING_PAGE: | 
|  | WARN_ONCE(1, "Invalid backing page\n"); | 
|  | break; | 
|  | default: | 
|  | pr_err("Unknown IPI interception\n"); | 
|  | } | 
|  |  | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | unsigned long avic_vcpu_get_apicv_inhibit_reasons(struct kvm_vcpu *vcpu) | 
|  | { | 
|  | if (is_guest_mode(vcpu)) | 
|  | return APICV_INHIBIT_REASON_NESTED; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static u32 *avic_get_logical_id_entry(struct kvm_vcpu *vcpu, u32 ldr, bool flat) | 
|  | { | 
|  | struct kvm_svm *kvm_svm = to_kvm_svm(vcpu->kvm); | 
|  | u32 *logical_apic_id_table; | 
|  | u32 cluster, index; | 
|  |  | 
|  | ldr = GET_APIC_LOGICAL_ID(ldr); | 
|  |  | 
|  | if (flat) { | 
|  | cluster = 0; | 
|  | } else { | 
|  | cluster = (ldr >> 4); | 
|  | if (cluster >= 0xf) | 
|  | return NULL; | 
|  | ldr &= 0xf; | 
|  | } | 
|  | if (!ldr || !is_power_of_2(ldr)) | 
|  | return NULL; | 
|  |  | 
|  | index = __ffs(ldr); | 
|  | if (WARN_ON_ONCE(index > 7)) | 
|  | return NULL; | 
|  | index += (cluster << 2); | 
|  |  | 
|  | logical_apic_id_table = (u32 *) page_address(kvm_svm->avic_logical_id_table_page); | 
|  |  | 
|  | return &logical_apic_id_table[index]; | 
|  | } | 
|  |  | 
|  | static void avic_ldr_write(struct kvm_vcpu *vcpu, u8 g_physical_id, u32 ldr) | 
|  | { | 
|  | bool flat; | 
|  | u32 *entry, new_entry; | 
|  |  | 
|  | flat = kvm_lapic_get_reg(vcpu->arch.apic, APIC_DFR) == APIC_DFR_FLAT; | 
|  | entry = avic_get_logical_id_entry(vcpu, ldr, flat); | 
|  | if (!entry) | 
|  | return; | 
|  |  | 
|  | new_entry = READ_ONCE(*entry); | 
|  | new_entry &= ~AVIC_LOGICAL_ID_ENTRY_GUEST_PHYSICAL_ID_MASK; | 
|  | new_entry |= (g_physical_id & AVIC_LOGICAL_ID_ENTRY_GUEST_PHYSICAL_ID_MASK); | 
|  | new_entry |= AVIC_LOGICAL_ID_ENTRY_VALID_MASK; | 
|  | WRITE_ONCE(*entry, new_entry); | 
|  | } | 
|  |  | 
|  | static void avic_invalidate_logical_id_entry(struct kvm_vcpu *vcpu) | 
|  | { | 
|  | struct vcpu_svm *svm = to_svm(vcpu); | 
|  | bool flat = svm->dfr_reg == APIC_DFR_FLAT; | 
|  | u32 *entry; | 
|  |  | 
|  | /* Note: x2AVIC does not use logical APIC ID table */ | 
|  | if (apic_x2apic_mode(vcpu->arch.apic)) | 
|  | return; | 
|  |  | 
|  | entry = avic_get_logical_id_entry(vcpu, svm->ldr_reg, flat); | 
|  | if (entry) | 
|  | clear_bit(AVIC_LOGICAL_ID_ENTRY_VALID_BIT, (unsigned long *)entry); | 
|  | } | 
|  |  | 
|  | static void avic_handle_ldr_update(struct kvm_vcpu *vcpu) | 
|  | { | 
|  | struct vcpu_svm *svm = to_svm(vcpu); | 
|  | u32 ldr = kvm_lapic_get_reg(vcpu->arch.apic, APIC_LDR); | 
|  | u32 id = kvm_xapic_id(vcpu->arch.apic); | 
|  |  | 
|  | /* AVIC does not support LDR update for x2APIC */ | 
|  | if (apic_x2apic_mode(vcpu->arch.apic)) | 
|  | return; | 
|  |  | 
|  | if (ldr == svm->ldr_reg) | 
|  | return; | 
|  |  | 
|  | avic_invalidate_logical_id_entry(vcpu); | 
|  |  | 
|  | svm->ldr_reg = ldr; | 
|  | avic_ldr_write(vcpu, id, ldr); | 
|  | } | 
|  |  | 
|  | static void avic_handle_dfr_update(struct kvm_vcpu *vcpu) | 
|  | { | 
|  | struct vcpu_svm *svm = to_svm(vcpu); | 
|  | u32 dfr = kvm_lapic_get_reg(vcpu->arch.apic, APIC_DFR); | 
|  |  | 
|  | if (svm->dfr_reg == dfr) | 
|  | return; | 
|  |  | 
|  | avic_invalidate_logical_id_entry(vcpu); | 
|  | svm->dfr_reg = dfr; | 
|  | } | 
|  |  | 
|  | static int avic_unaccel_trap_write(struct kvm_vcpu *vcpu) | 
|  | { | 
|  | u32 offset = to_svm(vcpu)->vmcb->control.exit_info_1 & | 
|  | AVIC_UNACCEL_ACCESS_OFFSET_MASK; | 
|  |  | 
|  | switch (offset) { | 
|  | case APIC_LDR: | 
|  | avic_handle_ldr_update(vcpu); | 
|  | break; | 
|  | case APIC_DFR: | 
|  | avic_handle_dfr_update(vcpu); | 
|  | break; | 
|  | case APIC_RRR: | 
|  | /* Ignore writes to Read Remote Data, it's read-only. */ | 
|  | return 1; | 
|  | default: | 
|  | break; | 
|  | } | 
|  |  | 
|  | kvm_apic_write_nodecode(vcpu, offset); | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | static bool is_avic_unaccelerated_access_trap(u32 offset) | 
|  | { | 
|  | bool ret = false; | 
|  |  | 
|  | switch (offset) { | 
|  | case APIC_ID: | 
|  | case APIC_EOI: | 
|  | case APIC_RRR: | 
|  | case APIC_LDR: | 
|  | case APIC_DFR: | 
|  | case APIC_SPIV: | 
|  | case APIC_ESR: | 
|  | case APIC_ICR: | 
|  | case APIC_LVTT: | 
|  | case APIC_LVTTHMR: | 
|  | case APIC_LVTPC: | 
|  | case APIC_LVT0: | 
|  | case APIC_LVT1: | 
|  | case APIC_LVTERR: | 
|  | case APIC_TMICT: | 
|  | case APIC_TDCR: | 
|  | ret = true; | 
|  | break; | 
|  | default: | 
|  | break; | 
|  | } | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | int avic_unaccelerated_access_interception(struct kvm_vcpu *vcpu) | 
|  | { | 
|  | struct vcpu_svm *svm = to_svm(vcpu); | 
|  | int ret = 0; | 
|  | u32 offset = svm->vmcb->control.exit_info_1 & | 
|  | AVIC_UNACCEL_ACCESS_OFFSET_MASK; | 
|  | u32 vector = svm->vmcb->control.exit_info_2 & | 
|  | AVIC_UNACCEL_ACCESS_VECTOR_MASK; | 
|  | bool write = (svm->vmcb->control.exit_info_1 >> 32) & | 
|  | AVIC_UNACCEL_ACCESS_WRITE_MASK; | 
|  | bool trap = is_avic_unaccelerated_access_trap(offset); | 
|  |  | 
|  | trace_kvm_avic_unaccelerated_access(vcpu->vcpu_id, offset, | 
|  | trap, write, vector); | 
|  | if (trap) { | 
|  | /* Handling Trap */ | 
|  | WARN_ONCE(!write, "svm: Handling trap read.\n"); | 
|  | ret = avic_unaccel_trap_write(vcpu); | 
|  | } else { | 
|  | /* Handling Fault */ | 
|  | ret = kvm_emulate_instruction(vcpu, 0); | 
|  | } | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | int avic_init_vcpu(struct vcpu_svm *svm) | 
|  | { | 
|  | int ret; | 
|  | struct kvm_vcpu *vcpu = &svm->vcpu; | 
|  |  | 
|  | if (!enable_apicv || !irqchip_in_kernel(vcpu->kvm)) | 
|  | return 0; | 
|  |  | 
|  | ret = avic_init_backing_page(vcpu); | 
|  | if (ret) | 
|  | return ret; | 
|  |  | 
|  | INIT_LIST_HEAD(&svm->ir_list); | 
|  | spin_lock_init(&svm->ir_list_lock); | 
|  | svm->dfr_reg = APIC_DFR_FLAT; | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | void avic_apicv_post_state_restore(struct kvm_vcpu *vcpu) | 
|  | { | 
|  | avic_handle_dfr_update(vcpu); | 
|  | avic_handle_ldr_update(vcpu); | 
|  | } | 
|  |  | 
|  | static int avic_set_pi_irte_mode(struct kvm_vcpu *vcpu, bool activate) | 
|  | { | 
|  | int ret = 0; | 
|  | unsigned long flags; | 
|  | struct amd_svm_iommu_ir *ir; | 
|  | struct vcpu_svm *svm = to_svm(vcpu); | 
|  |  | 
|  | if (!kvm_arch_has_assigned_device(vcpu->kvm)) | 
|  | return 0; | 
|  |  | 
|  | /* | 
|  | * Here, we go through the per-vcpu ir_list to update all existing | 
|  | * interrupt remapping table entry targeting this vcpu. | 
|  | */ | 
|  | spin_lock_irqsave(&svm->ir_list_lock, flags); | 
|  |  | 
|  | if (list_empty(&svm->ir_list)) | 
|  | goto out; | 
|  |  | 
|  | list_for_each_entry(ir, &svm->ir_list, node) { | 
|  | if (activate) | 
|  | ret = amd_iommu_activate_guest_mode(ir->data); | 
|  | else | 
|  | ret = amd_iommu_deactivate_guest_mode(ir->data); | 
|  | if (ret) | 
|  | break; | 
|  | } | 
|  | out: | 
|  | spin_unlock_irqrestore(&svm->ir_list_lock, flags); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static void svm_ir_list_del(struct vcpu_svm *svm, struct amd_iommu_pi_data *pi) | 
|  | { | 
|  | unsigned long flags; | 
|  | struct amd_svm_iommu_ir *cur; | 
|  |  | 
|  | spin_lock_irqsave(&svm->ir_list_lock, flags); | 
|  | list_for_each_entry(cur, &svm->ir_list, node) { | 
|  | if (cur->data != pi->ir_data) | 
|  | continue; | 
|  | list_del(&cur->node); | 
|  | kfree(cur); | 
|  | break; | 
|  | } | 
|  | spin_unlock_irqrestore(&svm->ir_list_lock, flags); | 
|  | } | 
|  |  | 
|  | static int svm_ir_list_add(struct vcpu_svm *svm, struct amd_iommu_pi_data *pi) | 
|  | { | 
|  | int ret = 0; | 
|  | unsigned long flags; | 
|  | struct amd_svm_iommu_ir *ir; | 
|  | u64 entry; | 
|  |  | 
|  | /** | 
|  | * In some cases, the existing irte is updated and re-set, | 
|  | * so we need to check here if it's already been * added | 
|  | * to the ir_list. | 
|  | */ | 
|  | if (pi->ir_data && (pi->prev_ga_tag != 0)) { | 
|  | struct kvm *kvm = svm->vcpu.kvm; | 
|  | u32 vcpu_id = AVIC_GATAG_TO_VCPUID(pi->prev_ga_tag); | 
|  | struct kvm_vcpu *prev_vcpu = kvm_get_vcpu_by_id(kvm, vcpu_id); | 
|  | struct vcpu_svm *prev_svm; | 
|  |  | 
|  | if (!prev_vcpu) { | 
|  | ret = -EINVAL; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | prev_svm = to_svm(prev_vcpu); | 
|  | svm_ir_list_del(prev_svm, pi); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * Allocating new amd_iommu_pi_data, which will get | 
|  | * add to the per-vcpu ir_list. | 
|  | */ | 
|  | ir = kzalloc(sizeof(struct amd_svm_iommu_ir), GFP_KERNEL_ACCOUNT); | 
|  | if (!ir) { | 
|  | ret = -ENOMEM; | 
|  | goto out; | 
|  | } | 
|  | ir->data = pi->ir_data; | 
|  |  | 
|  | spin_lock_irqsave(&svm->ir_list_lock, flags); | 
|  |  | 
|  | /* | 
|  | * Update the target pCPU for IOMMU doorbells if the vCPU is running. | 
|  | * If the vCPU is NOT running, i.e. is blocking or scheduled out, KVM | 
|  | * will update the pCPU info when the vCPU awkened and/or scheduled in. | 
|  | * See also avic_vcpu_load(). | 
|  | */ | 
|  | entry = READ_ONCE(*(svm->avic_physical_id_cache)); | 
|  | if (entry & AVIC_PHYSICAL_ID_ENTRY_IS_RUNNING_MASK) | 
|  | amd_iommu_update_ga(entry & AVIC_PHYSICAL_ID_ENTRY_HOST_PHYSICAL_ID_MASK, | 
|  | true, pi->ir_data); | 
|  |  | 
|  | list_add(&ir->node, &svm->ir_list); | 
|  | spin_unlock_irqrestore(&svm->ir_list_lock, flags); | 
|  | out: | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Note: | 
|  | * The HW cannot support posting multicast/broadcast | 
|  | * interrupts to a vCPU. So, we still use legacy interrupt | 
|  | * remapping for these kind of interrupts. | 
|  | * | 
|  | * For lowest-priority interrupts, we only support | 
|  | * those with single CPU as the destination, e.g. user | 
|  | * configures the interrupts via /proc/irq or uses | 
|  | * irqbalance to make the interrupts single-CPU. | 
|  | */ | 
|  | static int | 
|  | get_pi_vcpu_info(struct kvm *kvm, struct kvm_kernel_irq_routing_entry *e, | 
|  | struct vcpu_data *vcpu_info, struct vcpu_svm **svm) | 
|  | { | 
|  | struct kvm_lapic_irq irq; | 
|  | struct kvm_vcpu *vcpu = NULL; | 
|  |  | 
|  | kvm_set_msi_irq(kvm, e, &irq); | 
|  |  | 
|  | if (!kvm_intr_is_single_vcpu(kvm, &irq, &vcpu) || | 
|  | !kvm_irq_is_postable(&irq)) { | 
|  | pr_debug("SVM: %s: use legacy intr remap mode for irq %u\n", | 
|  | __func__, irq.vector); | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | pr_debug("SVM: %s: use GA mode for irq %u\n", __func__, | 
|  | irq.vector); | 
|  | *svm = to_svm(vcpu); | 
|  | vcpu_info->pi_desc_addr = __sme_set(page_to_phys((*svm)->avic_backing_page)); | 
|  | vcpu_info->vector = irq.vector; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * avic_pi_update_irte - set IRTE for Posted-Interrupts | 
|  | * | 
|  | * @kvm: kvm | 
|  | * @host_irq: host irq of the interrupt | 
|  | * @guest_irq: gsi of the interrupt | 
|  | * @set: set or unset PI | 
|  | * returns 0 on success, < 0 on failure | 
|  | */ | 
|  | int avic_pi_update_irte(struct kvm *kvm, unsigned int host_irq, | 
|  | uint32_t guest_irq, bool set) | 
|  | { | 
|  | struct kvm_kernel_irq_routing_entry *e; | 
|  | struct kvm_irq_routing_table *irq_rt; | 
|  | int idx, ret = 0; | 
|  |  | 
|  | if (!kvm_arch_has_assigned_device(kvm) || | 
|  | !irq_remapping_cap(IRQ_POSTING_CAP)) | 
|  | return 0; | 
|  |  | 
|  | pr_debug("SVM: %s: host_irq=%#x, guest_irq=%#x, set=%#x\n", | 
|  | __func__, host_irq, guest_irq, set); | 
|  |  | 
|  | idx = srcu_read_lock(&kvm->irq_srcu); | 
|  | irq_rt = srcu_dereference(kvm->irq_routing, &kvm->irq_srcu); | 
|  |  | 
|  | if (guest_irq >= irq_rt->nr_rt_entries || | 
|  | hlist_empty(&irq_rt->map[guest_irq])) { | 
|  | pr_warn_once("no route for guest_irq %u/%u (broken user space?)\n", | 
|  | guest_irq, irq_rt->nr_rt_entries); | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | hlist_for_each_entry(e, &irq_rt->map[guest_irq], link) { | 
|  | struct vcpu_data vcpu_info; | 
|  | struct vcpu_svm *svm = NULL; | 
|  |  | 
|  | if (e->type != KVM_IRQ_ROUTING_MSI) | 
|  | continue; | 
|  |  | 
|  | /** | 
|  | * Here, we setup with legacy mode in the following cases: | 
|  | * 1. When cannot target interrupt to a specific vcpu. | 
|  | * 2. Unsetting posted interrupt. | 
|  | * 3. APIC virtualization is disabled for the vcpu. | 
|  | * 4. IRQ has incompatible delivery mode (SMI, INIT, etc) | 
|  | */ | 
|  | if (!get_pi_vcpu_info(kvm, e, &vcpu_info, &svm) && set && | 
|  | kvm_vcpu_apicv_active(&svm->vcpu)) { | 
|  | struct amd_iommu_pi_data pi; | 
|  |  | 
|  | /* Try to enable guest_mode in IRTE */ | 
|  | pi.base = __sme_set(page_to_phys(svm->avic_backing_page) & | 
|  | AVIC_HPA_MASK); | 
|  | pi.ga_tag = AVIC_GATAG(to_kvm_svm(kvm)->avic_vm_id, | 
|  | svm->vcpu.vcpu_id); | 
|  | pi.is_guest_mode = true; | 
|  | pi.vcpu_data = &vcpu_info; | 
|  | ret = irq_set_vcpu_affinity(host_irq, &pi); | 
|  |  | 
|  | /** | 
|  | * Here, we successfully setting up vcpu affinity in | 
|  | * IOMMU guest mode. Now, we need to store the posted | 
|  | * interrupt information in a per-vcpu ir_list so that | 
|  | * we can reference to them directly when we update vcpu | 
|  | * scheduling information in IOMMU irte. | 
|  | */ | 
|  | if (!ret && pi.is_guest_mode) | 
|  | svm_ir_list_add(svm, &pi); | 
|  | } else { | 
|  | /* Use legacy mode in IRTE */ | 
|  | struct amd_iommu_pi_data pi; | 
|  |  | 
|  | /** | 
|  | * Here, pi is used to: | 
|  | * - Tell IOMMU to use legacy mode for this interrupt. | 
|  | * - Retrieve ga_tag of prior interrupt remapping data. | 
|  | */ | 
|  | pi.prev_ga_tag = 0; | 
|  | pi.is_guest_mode = false; | 
|  | ret = irq_set_vcpu_affinity(host_irq, &pi); | 
|  |  | 
|  | /** | 
|  | * Check if the posted interrupt was previously | 
|  | * setup with the guest_mode by checking if the ga_tag | 
|  | * was cached. If so, we need to clean up the per-vcpu | 
|  | * ir_list. | 
|  | */ | 
|  | if (!ret && pi.prev_ga_tag) { | 
|  | int id = AVIC_GATAG_TO_VCPUID(pi.prev_ga_tag); | 
|  | struct kvm_vcpu *vcpu; | 
|  |  | 
|  | vcpu = kvm_get_vcpu_by_id(kvm, id); | 
|  | if (vcpu) | 
|  | svm_ir_list_del(to_svm(vcpu), &pi); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (!ret && svm) { | 
|  | trace_kvm_pi_irte_update(host_irq, svm->vcpu.vcpu_id, | 
|  | e->gsi, vcpu_info.vector, | 
|  | vcpu_info.pi_desc_addr, set); | 
|  | } | 
|  |  | 
|  | if (ret < 0) { | 
|  | pr_err("%s: failed to update PI IRTE\n", __func__); | 
|  | goto out; | 
|  | } | 
|  | } | 
|  |  | 
|  | ret = 0; | 
|  | out: | 
|  | srcu_read_unlock(&kvm->irq_srcu, idx); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static inline int | 
|  | avic_update_iommu_vcpu_affinity(struct kvm_vcpu *vcpu, int cpu, bool r) | 
|  | { | 
|  | int ret = 0; | 
|  | struct amd_svm_iommu_ir *ir; | 
|  | struct vcpu_svm *svm = to_svm(vcpu); | 
|  |  | 
|  | lockdep_assert_held(&svm->ir_list_lock); | 
|  |  | 
|  | if (!kvm_arch_has_assigned_device(vcpu->kvm)) | 
|  | return 0; | 
|  |  | 
|  | /* | 
|  | * Here, we go through the per-vcpu ir_list to update all existing | 
|  | * interrupt remapping table entry targeting this vcpu. | 
|  | */ | 
|  | if (list_empty(&svm->ir_list)) | 
|  | return 0; | 
|  |  | 
|  | list_for_each_entry(ir, &svm->ir_list, node) { | 
|  | ret = amd_iommu_update_ga(cpu, r, ir->data); | 
|  | if (ret) | 
|  | return ret; | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | void avic_vcpu_load(struct kvm_vcpu *vcpu, int cpu) | 
|  | { | 
|  | u64 entry; | 
|  | int h_physical_id = kvm_cpu_get_apicid(cpu); | 
|  | struct vcpu_svm *svm = to_svm(vcpu); | 
|  | unsigned long flags; | 
|  |  | 
|  | lockdep_assert_preemption_disabled(); | 
|  |  | 
|  | if (WARN_ON(h_physical_id & ~AVIC_PHYSICAL_ID_ENTRY_HOST_PHYSICAL_ID_MASK)) | 
|  | return; | 
|  |  | 
|  | /* | 
|  | * No need to update anything if the vCPU is blocking, i.e. if the vCPU | 
|  | * is being scheduled in after being preempted.  The CPU entries in the | 
|  | * Physical APIC table and IRTE are consumed iff IsRun{ning} is '1'. | 
|  | * If the vCPU was migrated, its new CPU value will be stuffed when the | 
|  | * vCPU unblocks. | 
|  | */ | 
|  | if (kvm_vcpu_is_blocking(vcpu)) | 
|  | return; | 
|  |  | 
|  | /* | 
|  | * Grab the per-vCPU interrupt remapping lock even if the VM doesn't | 
|  | * _currently_ have assigned devices, as that can change.  Holding | 
|  | * ir_list_lock ensures that either svm_ir_list_add() will consume | 
|  | * up-to-date entry information, or that this task will wait until | 
|  | * svm_ir_list_add() completes to set the new target pCPU. | 
|  | */ | 
|  | spin_lock_irqsave(&svm->ir_list_lock, flags); | 
|  |  | 
|  | entry = READ_ONCE(*(svm->avic_physical_id_cache)); | 
|  | WARN_ON_ONCE(entry & AVIC_PHYSICAL_ID_ENTRY_IS_RUNNING_MASK); | 
|  |  | 
|  | entry &= ~AVIC_PHYSICAL_ID_ENTRY_HOST_PHYSICAL_ID_MASK; | 
|  | entry |= (h_physical_id & AVIC_PHYSICAL_ID_ENTRY_HOST_PHYSICAL_ID_MASK); | 
|  | entry |= AVIC_PHYSICAL_ID_ENTRY_IS_RUNNING_MASK; | 
|  |  | 
|  | WRITE_ONCE(*(svm->avic_physical_id_cache), entry); | 
|  | avic_update_iommu_vcpu_affinity(vcpu, h_physical_id, true); | 
|  |  | 
|  | spin_unlock_irqrestore(&svm->ir_list_lock, flags); | 
|  | } | 
|  |  | 
|  | void avic_vcpu_put(struct kvm_vcpu *vcpu) | 
|  | { | 
|  | u64 entry; | 
|  | struct vcpu_svm *svm = to_svm(vcpu); | 
|  | unsigned long flags; | 
|  |  | 
|  | lockdep_assert_preemption_disabled(); | 
|  |  | 
|  | /* | 
|  | * Note, reading the Physical ID entry outside of ir_list_lock is safe | 
|  | * as only the pCPU that has loaded (or is loading) the vCPU is allowed | 
|  | * to modify the entry, and preemption is disabled.  I.e. the vCPU | 
|  | * can't be scheduled out and thus avic_vcpu_{put,load}() can't run | 
|  | * recursively. | 
|  | */ | 
|  | entry = READ_ONCE(*(svm->avic_physical_id_cache)); | 
|  |  | 
|  | /* Nothing to do if IsRunning == '0' due to vCPU blocking. */ | 
|  | if (!(entry & AVIC_PHYSICAL_ID_ENTRY_IS_RUNNING_MASK)) | 
|  | return; | 
|  |  | 
|  | /* | 
|  | * Take and hold the per-vCPU interrupt remapping lock while updating | 
|  | * the Physical ID entry even though the lock doesn't protect against | 
|  | * multiple writers (see above).  Holding ir_list_lock ensures that | 
|  | * either svm_ir_list_add() will consume up-to-date entry information, | 
|  | * or that this task will wait until svm_ir_list_add() completes to | 
|  | * mark the vCPU as not running. | 
|  | */ | 
|  | spin_lock_irqsave(&svm->ir_list_lock, flags); | 
|  |  | 
|  | avic_update_iommu_vcpu_affinity(vcpu, -1, 0); | 
|  |  | 
|  | entry &= ~AVIC_PHYSICAL_ID_ENTRY_IS_RUNNING_MASK; | 
|  | WRITE_ONCE(*(svm->avic_physical_id_cache), entry); | 
|  |  | 
|  | spin_unlock_irqrestore(&svm->ir_list_lock, flags); | 
|  |  | 
|  | } | 
|  |  | 
|  | void avic_refresh_virtual_apic_mode(struct kvm_vcpu *vcpu) | 
|  | { | 
|  | struct vcpu_svm *svm = to_svm(vcpu); | 
|  | struct vmcb *vmcb = svm->vmcb01.ptr; | 
|  |  | 
|  | if (!lapic_in_kernel(vcpu) || !enable_apicv) | 
|  | return; | 
|  |  | 
|  | if (kvm_vcpu_apicv_active(vcpu)) { | 
|  | /** | 
|  | * During AVIC temporary deactivation, guest could update | 
|  | * APIC ID, DFR and LDR registers, which would not be trapped | 
|  | * by avic_unaccelerated_access_interception(). In this case, | 
|  | * we need to check and update the AVIC logical APIC ID table | 
|  | * accordingly before re-activating. | 
|  | */ | 
|  | avic_apicv_post_state_restore(vcpu); | 
|  | avic_activate_vmcb(svm); | 
|  | } else { | 
|  | avic_deactivate_vmcb(svm); | 
|  | } | 
|  | vmcb_mark_dirty(vmcb, VMCB_AVIC); | 
|  | } | 
|  |  | 
|  | void avic_refresh_apicv_exec_ctrl(struct kvm_vcpu *vcpu) | 
|  | { | 
|  | bool activated = kvm_vcpu_apicv_active(vcpu); | 
|  |  | 
|  | if (!enable_apicv) | 
|  | return; | 
|  |  | 
|  | avic_refresh_virtual_apic_mode(vcpu); | 
|  |  | 
|  | if (activated) | 
|  | avic_vcpu_load(vcpu, vcpu->cpu); | 
|  | else | 
|  | avic_vcpu_put(vcpu); | 
|  |  | 
|  | avic_set_pi_irte_mode(vcpu, activated); | 
|  | } | 
|  |  | 
|  | void avic_vcpu_blocking(struct kvm_vcpu *vcpu) | 
|  | { | 
|  | if (!kvm_vcpu_apicv_active(vcpu)) | 
|  | return; | 
|  |  | 
|  | /* | 
|  | * Unload the AVIC when the vCPU is about to block, _before_ | 
|  | * the vCPU actually blocks. | 
|  | * | 
|  | * Any IRQs that arrive before IsRunning=0 will not cause an | 
|  | * incomplete IPI vmexit on the source, therefore vIRR will also | 
|  | * be checked by kvm_vcpu_check_block() before blocking.  The | 
|  | * memory barrier implicit in set_current_state orders writing | 
|  | * IsRunning=0 before reading the vIRR.  The processor needs a | 
|  | * matching memory barrier on interrupt delivery between writing | 
|  | * IRR and reading IsRunning; the lack of this barrier might be | 
|  | * the cause of errata #1235). | 
|  | */ | 
|  | avic_vcpu_put(vcpu); | 
|  | } | 
|  |  | 
|  | void avic_vcpu_unblocking(struct kvm_vcpu *vcpu) | 
|  | { | 
|  | if (!kvm_vcpu_apicv_active(vcpu)) | 
|  | return; | 
|  |  | 
|  | avic_vcpu_load(vcpu, vcpu->cpu); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Note: | 
|  | * - The module param avic enable both xAPIC and x2APIC mode. | 
|  | * - Hypervisor can support both xAVIC and x2AVIC in the same guest. | 
|  | * - The mode can be switched at run-time. | 
|  | */ | 
|  | bool avic_hardware_setup(void) | 
|  | { | 
|  | if (!npt_enabled) | 
|  | return false; | 
|  |  | 
|  | /* AVIC is a prerequisite for x2AVIC. */ | 
|  | if (!boot_cpu_has(X86_FEATURE_AVIC) && !force_avic) { | 
|  | if (boot_cpu_has(X86_FEATURE_X2AVIC)) { | 
|  | pr_warn(FW_BUG "Cannot support x2AVIC due to AVIC is disabled"); | 
|  | pr_warn(FW_BUG "Try enable AVIC using force_avic option"); | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | if (boot_cpu_has(X86_FEATURE_AVIC)) { | 
|  | pr_info("AVIC enabled\n"); | 
|  | } else if (force_avic) { | 
|  | /* | 
|  | * Some older systems does not advertise AVIC support. | 
|  | * See Revision Guide for specific AMD processor for more detail. | 
|  | */ | 
|  | pr_warn("AVIC is not supported in CPUID but force enabled"); | 
|  | pr_warn("Your system might crash and burn"); | 
|  | } | 
|  |  | 
|  | /* AVIC is a prerequisite for x2AVIC. */ | 
|  | x2avic_enabled = boot_cpu_has(X86_FEATURE_X2AVIC); | 
|  | if (x2avic_enabled) | 
|  | pr_info("x2AVIC enabled\n"); | 
|  |  | 
|  | amd_iommu_register_ga_log_notifier(&avic_ga_log_notifier); | 
|  |  | 
|  | return true; | 
|  | } |