| // SPDX-License-Identifier: GPL-2.0-only |
| /* |
| * Copyright (C) 2015 Broadcom |
| */ |
| |
| /** |
| * DOC: VC4 KMS |
| * |
| * This is the general code for implementing KMS mode setting that |
| * doesn't clearly associate with any of the other objects (plane, |
| * crtc, HDMI encoder). |
| */ |
| |
| #include <linux/clk.h> |
| |
| #include <drm/drm_atomic.h> |
| #include <drm/drm_atomic_helper.h> |
| #include <drm/drm_crtc.h> |
| #include <drm/drm_gem_framebuffer_helper.h> |
| #include <drm/drm_plane_helper.h> |
| #include <drm/drm_probe_helper.h> |
| #include <drm/drm_vblank.h> |
| |
| #include "vc4_drv.h" |
| #include "vc4_regs.h" |
| |
| #define HVS_NUM_CHANNELS 3 |
| |
| struct vc4_ctm_state { |
| struct drm_private_state base; |
| struct drm_color_ctm *ctm; |
| int fifo; |
| }; |
| |
| static struct vc4_ctm_state *to_vc4_ctm_state(struct drm_private_state *priv) |
| { |
| return container_of(priv, struct vc4_ctm_state, base); |
| } |
| |
| struct vc4_hvs_state { |
| struct drm_private_state base; |
| unsigned int unassigned_channels; |
| }; |
| |
| static struct vc4_hvs_state * |
| to_vc4_hvs_state(struct drm_private_state *priv) |
| { |
| return container_of(priv, struct vc4_hvs_state, base); |
| } |
| |
| struct vc4_load_tracker_state { |
| struct drm_private_state base; |
| u64 hvs_load; |
| u64 membus_load; |
| }; |
| |
| static struct vc4_load_tracker_state * |
| to_vc4_load_tracker_state(struct drm_private_state *priv) |
| { |
| return container_of(priv, struct vc4_load_tracker_state, base); |
| } |
| |
| static struct vc4_ctm_state *vc4_get_ctm_state(struct drm_atomic_state *state, |
| struct drm_private_obj *manager) |
| { |
| struct drm_device *dev = state->dev; |
| struct vc4_dev *vc4 = to_vc4_dev(dev); |
| struct drm_private_state *priv_state; |
| int ret; |
| |
| ret = drm_modeset_lock(&vc4->ctm_state_lock, state->acquire_ctx); |
| if (ret) |
| return ERR_PTR(ret); |
| |
| priv_state = drm_atomic_get_private_obj_state(state, manager); |
| if (IS_ERR(priv_state)) |
| return ERR_CAST(priv_state); |
| |
| return to_vc4_ctm_state(priv_state); |
| } |
| |
| static struct drm_private_state * |
| vc4_ctm_duplicate_state(struct drm_private_obj *obj) |
| { |
| struct vc4_ctm_state *state; |
| |
| state = kmemdup(obj->state, sizeof(*state), GFP_KERNEL); |
| if (!state) |
| return NULL; |
| |
| __drm_atomic_helper_private_obj_duplicate_state(obj, &state->base); |
| |
| return &state->base; |
| } |
| |
| static void vc4_ctm_destroy_state(struct drm_private_obj *obj, |
| struct drm_private_state *state) |
| { |
| struct vc4_ctm_state *ctm_state = to_vc4_ctm_state(state); |
| |
| kfree(ctm_state); |
| } |
| |
| static const struct drm_private_state_funcs vc4_ctm_state_funcs = { |
| .atomic_duplicate_state = vc4_ctm_duplicate_state, |
| .atomic_destroy_state = vc4_ctm_destroy_state, |
| }; |
| |
| static void vc4_ctm_obj_fini(struct drm_device *dev, void *unused) |
| { |
| struct vc4_dev *vc4 = to_vc4_dev(dev); |
| |
| drm_atomic_private_obj_fini(&vc4->ctm_manager); |
| } |
| |
| static int vc4_ctm_obj_init(struct vc4_dev *vc4) |
| { |
| struct vc4_ctm_state *ctm_state; |
| |
| drm_modeset_lock_init(&vc4->ctm_state_lock); |
| |
| ctm_state = kzalloc(sizeof(*ctm_state), GFP_KERNEL); |
| if (!ctm_state) |
| return -ENOMEM; |
| |
| drm_atomic_private_obj_init(&vc4->base, &vc4->ctm_manager, &ctm_state->base, |
| &vc4_ctm_state_funcs); |
| |
| return drmm_add_action_or_reset(&vc4->base, vc4_ctm_obj_fini, NULL); |
| } |
| |
| /* Converts a DRM S31.32 value to the HW S0.9 format. */ |
| static u16 vc4_ctm_s31_32_to_s0_9(u64 in) |
| { |
| u16 r; |
| |
| /* Sign bit. */ |
| r = in & BIT_ULL(63) ? BIT(9) : 0; |
| |
| if ((in & GENMASK_ULL(62, 32)) > 0) { |
| /* We have zero integer bits so we can only saturate here. */ |
| r |= GENMASK(8, 0); |
| } else { |
| /* Otherwise take the 9 most important fractional bits. */ |
| r |= (in >> 23) & GENMASK(8, 0); |
| } |
| |
| return r; |
| } |
| |
| static void |
| vc4_ctm_commit(struct vc4_dev *vc4, struct drm_atomic_state *state) |
| { |
| struct vc4_ctm_state *ctm_state = to_vc4_ctm_state(vc4->ctm_manager.state); |
| struct drm_color_ctm *ctm = ctm_state->ctm; |
| |
| if (ctm_state->fifo) { |
| HVS_WRITE(SCALER_OLEDCOEF2, |
| VC4_SET_FIELD(vc4_ctm_s31_32_to_s0_9(ctm->matrix[0]), |
| SCALER_OLEDCOEF2_R_TO_R) | |
| VC4_SET_FIELD(vc4_ctm_s31_32_to_s0_9(ctm->matrix[3]), |
| SCALER_OLEDCOEF2_R_TO_G) | |
| VC4_SET_FIELD(vc4_ctm_s31_32_to_s0_9(ctm->matrix[6]), |
| SCALER_OLEDCOEF2_R_TO_B)); |
| HVS_WRITE(SCALER_OLEDCOEF1, |
| VC4_SET_FIELD(vc4_ctm_s31_32_to_s0_9(ctm->matrix[1]), |
| SCALER_OLEDCOEF1_G_TO_R) | |
| VC4_SET_FIELD(vc4_ctm_s31_32_to_s0_9(ctm->matrix[4]), |
| SCALER_OLEDCOEF1_G_TO_G) | |
| VC4_SET_FIELD(vc4_ctm_s31_32_to_s0_9(ctm->matrix[7]), |
| SCALER_OLEDCOEF1_G_TO_B)); |
| HVS_WRITE(SCALER_OLEDCOEF0, |
| VC4_SET_FIELD(vc4_ctm_s31_32_to_s0_9(ctm->matrix[2]), |
| SCALER_OLEDCOEF0_B_TO_R) | |
| VC4_SET_FIELD(vc4_ctm_s31_32_to_s0_9(ctm->matrix[5]), |
| SCALER_OLEDCOEF0_B_TO_G) | |
| VC4_SET_FIELD(vc4_ctm_s31_32_to_s0_9(ctm->matrix[8]), |
| SCALER_OLEDCOEF0_B_TO_B)); |
| } |
| |
| HVS_WRITE(SCALER_OLEDOFFS, |
| VC4_SET_FIELD(ctm_state->fifo, SCALER_OLEDOFFS_DISPFIFO)); |
| } |
| |
| static struct vc4_hvs_state * |
| vc4_hvs_get_global_state(struct drm_atomic_state *state) |
| { |
| struct vc4_dev *vc4 = to_vc4_dev(state->dev); |
| struct drm_private_state *priv_state; |
| |
| priv_state = drm_atomic_get_private_obj_state(state, &vc4->hvs_channels); |
| if (IS_ERR(priv_state)) |
| return ERR_CAST(priv_state); |
| |
| return to_vc4_hvs_state(priv_state); |
| } |
| |
| static void vc4_hvs_pv_muxing_commit(struct vc4_dev *vc4, |
| struct drm_atomic_state *state) |
| { |
| struct drm_crtc_state *crtc_state; |
| struct drm_crtc *crtc; |
| unsigned int i; |
| |
| for_each_new_crtc_in_state(state, crtc, crtc_state, i) { |
| struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(crtc_state); |
| u32 dispctrl; |
| u32 dsp3_mux; |
| |
| if (!crtc_state->active) |
| continue; |
| |
| if (vc4_state->assigned_channel != 2) |
| continue; |
| |
| /* |
| * SCALER_DISPCTRL_DSP3 = X, where X < 2 means 'connect DSP3 to |
| * FIFO X'. |
| * SCALER_DISPCTRL_DSP3 = 3 means 'disable DSP 3'. |
| * |
| * DSP3 is connected to FIFO2 unless the transposer is |
| * enabled. In this case, FIFO 2 is directly accessed by the |
| * TXP IP, and we need to disable the FIFO2 -> pixelvalve1 |
| * route. |
| */ |
| if (vc4_state->feed_txp) |
| dsp3_mux = VC4_SET_FIELD(3, SCALER_DISPCTRL_DSP3_MUX); |
| else |
| dsp3_mux = VC4_SET_FIELD(2, SCALER_DISPCTRL_DSP3_MUX); |
| |
| dispctrl = HVS_READ(SCALER_DISPCTRL) & |
| ~SCALER_DISPCTRL_DSP3_MUX_MASK; |
| HVS_WRITE(SCALER_DISPCTRL, dispctrl | dsp3_mux); |
| } |
| } |
| |
| static void vc5_hvs_pv_muxing_commit(struct vc4_dev *vc4, |
| struct drm_atomic_state *state) |
| { |
| struct drm_crtc_state *crtc_state; |
| struct drm_crtc *crtc; |
| unsigned char mux; |
| unsigned int i; |
| u32 reg; |
| |
| for_each_new_crtc_in_state(state, crtc, crtc_state, i) { |
| struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(crtc_state); |
| struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc); |
| |
| if (!vc4_state->update_muxing) |
| continue; |
| |
| switch (vc4_crtc->data->hvs_output) { |
| case 2: |
| mux = (vc4_state->assigned_channel == 2) ? 0 : 1; |
| reg = HVS_READ(SCALER_DISPECTRL); |
| HVS_WRITE(SCALER_DISPECTRL, |
| (reg & ~SCALER_DISPECTRL_DSP2_MUX_MASK) | |
| VC4_SET_FIELD(mux, SCALER_DISPECTRL_DSP2_MUX)); |
| break; |
| |
| case 3: |
| if (vc4_state->assigned_channel == VC4_HVS_CHANNEL_DISABLED) |
| mux = 3; |
| else |
| mux = vc4_state->assigned_channel; |
| |
| reg = HVS_READ(SCALER_DISPCTRL); |
| HVS_WRITE(SCALER_DISPCTRL, |
| (reg & ~SCALER_DISPCTRL_DSP3_MUX_MASK) | |
| VC4_SET_FIELD(mux, SCALER_DISPCTRL_DSP3_MUX)); |
| break; |
| |
| case 4: |
| if (vc4_state->assigned_channel == VC4_HVS_CHANNEL_DISABLED) |
| mux = 3; |
| else |
| mux = vc4_state->assigned_channel; |
| |
| reg = HVS_READ(SCALER_DISPEOLN); |
| HVS_WRITE(SCALER_DISPEOLN, |
| (reg & ~SCALER_DISPEOLN_DSP4_MUX_MASK) | |
| VC4_SET_FIELD(mux, SCALER_DISPEOLN_DSP4_MUX)); |
| |
| break; |
| |
| case 5: |
| if (vc4_state->assigned_channel == VC4_HVS_CHANNEL_DISABLED) |
| mux = 3; |
| else |
| mux = vc4_state->assigned_channel; |
| |
| reg = HVS_READ(SCALER_DISPDITHER); |
| HVS_WRITE(SCALER_DISPDITHER, |
| (reg & ~SCALER_DISPDITHER_DSP5_MUX_MASK) | |
| VC4_SET_FIELD(mux, SCALER_DISPDITHER_DSP5_MUX)); |
| break; |
| |
| default: |
| break; |
| } |
| } |
| } |
| |
| static void |
| vc4_atomic_complete_commit(struct drm_atomic_state *state) |
| { |
| struct drm_device *dev = state->dev; |
| struct vc4_dev *vc4 = to_vc4_dev(dev); |
| struct vc4_hvs *hvs = vc4->hvs; |
| struct drm_crtc_state *new_crtc_state; |
| struct drm_crtc *crtc; |
| int i; |
| |
| for_each_new_crtc_in_state(state, crtc, new_crtc_state, i) { |
| struct vc4_crtc_state *vc4_crtc_state; |
| |
| if (!new_crtc_state->commit) |
| continue; |
| |
| vc4_crtc_state = to_vc4_crtc_state(new_crtc_state); |
| vc4_hvs_mask_underrun(dev, vc4_crtc_state->assigned_channel); |
| } |
| |
| if (vc4->hvs->hvs5) |
| clk_set_min_rate(hvs->core_clk, 500000000); |
| |
| drm_atomic_helper_wait_for_fences(dev, state, false); |
| |
| drm_atomic_helper_wait_for_dependencies(state); |
| |
| drm_atomic_helper_commit_modeset_disables(dev, state); |
| |
| vc4_ctm_commit(vc4, state); |
| |
| if (vc4->hvs->hvs5) |
| vc5_hvs_pv_muxing_commit(vc4, state); |
| else |
| vc4_hvs_pv_muxing_commit(vc4, state); |
| |
| drm_atomic_helper_commit_planes(dev, state, 0); |
| |
| drm_atomic_helper_commit_modeset_enables(dev, state); |
| |
| drm_atomic_helper_fake_vblank(state); |
| |
| drm_atomic_helper_commit_hw_done(state); |
| |
| drm_atomic_helper_wait_for_flip_done(dev, state); |
| |
| drm_atomic_helper_cleanup_planes(dev, state); |
| |
| drm_atomic_helper_commit_cleanup_done(state); |
| |
| if (vc4->hvs->hvs5) |
| clk_set_min_rate(hvs->core_clk, 0); |
| |
| drm_atomic_state_put(state); |
| |
| up(&vc4->async_modeset); |
| } |
| |
| static void commit_work(struct work_struct *work) |
| { |
| struct drm_atomic_state *state = container_of(work, |
| struct drm_atomic_state, |
| commit_work); |
| vc4_atomic_complete_commit(state); |
| } |
| |
| /** |
| * vc4_atomic_commit - commit validated state object |
| * @dev: DRM device |
| * @state: the driver state object |
| * @nonblock: nonblocking commit |
| * |
| * This function commits a with drm_atomic_helper_check() pre-validated state |
| * object. This can still fail when e.g. the framebuffer reservation fails. For |
| * now this doesn't implement asynchronous commits. |
| * |
| * RETURNS |
| * Zero for success or -errno. |
| */ |
| static int vc4_atomic_commit(struct drm_device *dev, |
| struct drm_atomic_state *state, |
| bool nonblock) |
| { |
| struct vc4_dev *vc4 = to_vc4_dev(dev); |
| int ret; |
| |
| if (state->async_update) { |
| ret = down_interruptible(&vc4->async_modeset); |
| if (ret) |
| return ret; |
| |
| ret = drm_atomic_helper_prepare_planes(dev, state); |
| if (ret) { |
| up(&vc4->async_modeset); |
| return ret; |
| } |
| |
| drm_atomic_helper_async_commit(dev, state); |
| |
| drm_atomic_helper_cleanup_planes(dev, state); |
| |
| up(&vc4->async_modeset); |
| |
| return 0; |
| } |
| |
| /* We know for sure we don't want an async update here. Set |
| * state->legacy_cursor_update to false to prevent |
| * drm_atomic_helper_setup_commit() from auto-completing |
| * commit->flip_done. |
| */ |
| state->legacy_cursor_update = false; |
| ret = drm_atomic_helper_setup_commit(state, nonblock); |
| if (ret) |
| return ret; |
| |
| INIT_WORK(&state->commit_work, commit_work); |
| |
| ret = down_interruptible(&vc4->async_modeset); |
| if (ret) |
| return ret; |
| |
| ret = drm_atomic_helper_prepare_planes(dev, state); |
| if (ret) { |
| up(&vc4->async_modeset); |
| return ret; |
| } |
| |
| if (!nonblock) { |
| ret = drm_atomic_helper_wait_for_fences(dev, state, true); |
| if (ret) { |
| drm_atomic_helper_cleanup_planes(dev, state); |
| up(&vc4->async_modeset); |
| return ret; |
| } |
| } |
| |
| /* |
| * This is the point of no return - everything below never fails except |
| * when the hw goes bonghits. Which means we can commit the new state on |
| * the software side now. |
| */ |
| |
| BUG_ON(drm_atomic_helper_swap_state(state, false) < 0); |
| |
| /* |
| * Everything below can be run asynchronously without the need to grab |
| * any modeset locks at all under one condition: It must be guaranteed |
| * that the asynchronous work has either been cancelled (if the driver |
| * supports it, which at least requires that the framebuffers get |
| * cleaned up with drm_atomic_helper_cleanup_planes()) or completed |
| * before the new state gets committed on the software side with |
| * drm_atomic_helper_swap_state(). |
| * |
| * This scheme allows new atomic state updates to be prepared and |
| * checked in parallel to the asynchronous completion of the previous |
| * update. Which is important since compositors need to figure out the |
| * composition of the next frame right after having submitted the |
| * current layout. |
| */ |
| |
| drm_atomic_state_get(state); |
| if (nonblock) |
| queue_work(system_unbound_wq, &state->commit_work); |
| else |
| vc4_atomic_complete_commit(state); |
| |
| return 0; |
| } |
| |
| static struct drm_framebuffer *vc4_fb_create(struct drm_device *dev, |
| struct drm_file *file_priv, |
| const struct drm_mode_fb_cmd2 *mode_cmd) |
| { |
| struct drm_mode_fb_cmd2 mode_cmd_local; |
| |
| /* If the user didn't specify a modifier, use the |
| * vc4_set_tiling_ioctl() state for the BO. |
| */ |
| if (!(mode_cmd->flags & DRM_MODE_FB_MODIFIERS)) { |
| struct drm_gem_object *gem_obj; |
| struct vc4_bo *bo; |
| |
| gem_obj = drm_gem_object_lookup(file_priv, |
| mode_cmd->handles[0]); |
| if (!gem_obj) { |
| DRM_DEBUG("Failed to look up GEM BO %d\n", |
| mode_cmd->handles[0]); |
| return ERR_PTR(-ENOENT); |
| } |
| bo = to_vc4_bo(gem_obj); |
| |
| mode_cmd_local = *mode_cmd; |
| |
| if (bo->t_format) { |
| mode_cmd_local.modifier[0] = |
| DRM_FORMAT_MOD_BROADCOM_VC4_T_TILED; |
| } else { |
| mode_cmd_local.modifier[0] = DRM_FORMAT_MOD_NONE; |
| } |
| |
| drm_gem_object_put(gem_obj); |
| |
| mode_cmd = &mode_cmd_local; |
| } |
| |
| return drm_gem_fb_create(dev, file_priv, mode_cmd); |
| } |
| |
| /* Our CTM has some peculiar limitations: we can only enable it for one CRTC |
| * at a time and the HW only supports S0.9 scalars. To account for the latter, |
| * we don't allow userland to set a CTM that we have no hope of approximating. |
| */ |
| static int |
| vc4_ctm_atomic_check(struct drm_device *dev, struct drm_atomic_state *state) |
| { |
| struct vc4_dev *vc4 = to_vc4_dev(dev); |
| struct vc4_ctm_state *ctm_state = NULL; |
| struct drm_crtc *crtc; |
| struct drm_crtc_state *old_crtc_state, *new_crtc_state; |
| struct drm_color_ctm *ctm; |
| int i; |
| |
| for_each_oldnew_crtc_in_state(state, crtc, old_crtc_state, new_crtc_state, i) { |
| /* CTM is being disabled. */ |
| if (!new_crtc_state->ctm && old_crtc_state->ctm) { |
| ctm_state = vc4_get_ctm_state(state, &vc4->ctm_manager); |
| if (IS_ERR(ctm_state)) |
| return PTR_ERR(ctm_state); |
| ctm_state->fifo = 0; |
| } |
| } |
| |
| for_each_oldnew_crtc_in_state(state, crtc, old_crtc_state, new_crtc_state, i) { |
| if (new_crtc_state->ctm == old_crtc_state->ctm) |
| continue; |
| |
| if (!ctm_state) { |
| ctm_state = vc4_get_ctm_state(state, &vc4->ctm_manager); |
| if (IS_ERR(ctm_state)) |
| return PTR_ERR(ctm_state); |
| } |
| |
| /* CTM is being enabled or the matrix changed. */ |
| if (new_crtc_state->ctm) { |
| struct vc4_crtc_state *vc4_crtc_state = |
| to_vc4_crtc_state(new_crtc_state); |
| |
| /* fifo is 1-based since 0 disables CTM. */ |
| int fifo = vc4_crtc_state->assigned_channel + 1; |
| |
| /* Check userland isn't trying to turn on CTM for more |
| * than one CRTC at a time. |
| */ |
| if (ctm_state->fifo && ctm_state->fifo != fifo) { |
| DRM_DEBUG_DRIVER("Too many CTM configured\n"); |
| return -EINVAL; |
| } |
| |
| /* Check we can approximate the specified CTM. |
| * We disallow scalars |c| > 1.0 since the HW has |
| * no integer bits. |
| */ |
| ctm = new_crtc_state->ctm->data; |
| for (i = 0; i < ARRAY_SIZE(ctm->matrix); i++) { |
| u64 val = ctm->matrix[i]; |
| |
| val &= ~BIT_ULL(63); |
| if (val > BIT_ULL(32)) |
| return -EINVAL; |
| } |
| |
| ctm_state->fifo = fifo; |
| ctm_state->ctm = ctm; |
| } |
| } |
| |
| return 0; |
| } |
| |
| static int vc4_load_tracker_atomic_check(struct drm_atomic_state *state) |
| { |
| struct drm_plane_state *old_plane_state, *new_plane_state; |
| struct vc4_dev *vc4 = to_vc4_dev(state->dev); |
| struct vc4_load_tracker_state *load_state; |
| struct drm_private_state *priv_state; |
| struct drm_plane *plane; |
| int i; |
| |
| if (!vc4->load_tracker_available) |
| return 0; |
| |
| priv_state = drm_atomic_get_private_obj_state(state, |
| &vc4->load_tracker); |
| if (IS_ERR(priv_state)) |
| return PTR_ERR(priv_state); |
| |
| load_state = to_vc4_load_tracker_state(priv_state); |
| for_each_oldnew_plane_in_state(state, plane, old_plane_state, |
| new_plane_state, i) { |
| struct vc4_plane_state *vc4_plane_state; |
| |
| if (old_plane_state->fb && old_plane_state->crtc) { |
| vc4_plane_state = to_vc4_plane_state(old_plane_state); |
| load_state->membus_load -= vc4_plane_state->membus_load; |
| load_state->hvs_load -= vc4_plane_state->hvs_load; |
| } |
| |
| if (new_plane_state->fb && new_plane_state->crtc) { |
| vc4_plane_state = to_vc4_plane_state(new_plane_state); |
| load_state->membus_load += vc4_plane_state->membus_load; |
| load_state->hvs_load += vc4_plane_state->hvs_load; |
| } |
| } |
| |
| /* Don't check the load when the tracker is disabled. */ |
| if (!vc4->load_tracker_enabled) |
| return 0; |
| |
| /* The absolute limit is 2Gbyte/sec, but let's take a margin to let |
| * the system work when other blocks are accessing the memory. |
| */ |
| if (load_state->membus_load > SZ_1G + SZ_512M) |
| return -ENOSPC; |
| |
| /* HVS clock is supposed to run @ 250Mhz, let's take a margin and |
| * consider the maximum number of cycles is 240M. |
| */ |
| if (load_state->hvs_load > 240000000ULL) |
| return -ENOSPC; |
| |
| return 0; |
| } |
| |
| static struct drm_private_state * |
| vc4_load_tracker_duplicate_state(struct drm_private_obj *obj) |
| { |
| struct vc4_load_tracker_state *state; |
| |
| state = kmemdup(obj->state, sizeof(*state), GFP_KERNEL); |
| if (!state) |
| return NULL; |
| |
| __drm_atomic_helper_private_obj_duplicate_state(obj, &state->base); |
| |
| return &state->base; |
| } |
| |
| static void vc4_load_tracker_destroy_state(struct drm_private_obj *obj, |
| struct drm_private_state *state) |
| { |
| struct vc4_load_tracker_state *load_state; |
| |
| load_state = to_vc4_load_tracker_state(state); |
| kfree(load_state); |
| } |
| |
| static const struct drm_private_state_funcs vc4_load_tracker_state_funcs = { |
| .atomic_duplicate_state = vc4_load_tracker_duplicate_state, |
| .atomic_destroy_state = vc4_load_tracker_destroy_state, |
| }; |
| |
| static void vc4_load_tracker_obj_fini(struct drm_device *dev, void *unused) |
| { |
| struct vc4_dev *vc4 = to_vc4_dev(dev); |
| |
| if (!vc4->load_tracker_available) |
| return; |
| |
| drm_atomic_private_obj_fini(&vc4->load_tracker); |
| } |
| |
| static int vc4_load_tracker_obj_init(struct vc4_dev *vc4) |
| { |
| struct vc4_load_tracker_state *load_state; |
| |
| if (!vc4->load_tracker_available) |
| return 0; |
| |
| load_state = kzalloc(sizeof(*load_state), GFP_KERNEL); |
| if (!load_state) |
| return -ENOMEM; |
| |
| drm_atomic_private_obj_init(&vc4->base, &vc4->load_tracker, |
| &load_state->base, |
| &vc4_load_tracker_state_funcs); |
| |
| return drmm_add_action_or_reset(&vc4->base, vc4_load_tracker_obj_fini, NULL); |
| } |
| |
| static struct drm_private_state * |
| vc4_hvs_channels_duplicate_state(struct drm_private_obj *obj) |
| { |
| struct vc4_hvs_state *old_state = to_vc4_hvs_state(obj->state); |
| struct vc4_hvs_state *state; |
| |
| state = kzalloc(sizeof(*state), GFP_KERNEL); |
| if (!state) |
| return NULL; |
| |
| __drm_atomic_helper_private_obj_duplicate_state(obj, &state->base); |
| |
| state->unassigned_channels = old_state->unassigned_channels; |
| |
| return &state->base; |
| } |
| |
| static void vc4_hvs_channels_destroy_state(struct drm_private_obj *obj, |
| struct drm_private_state *state) |
| { |
| struct vc4_hvs_state *hvs_state = to_vc4_hvs_state(state); |
| |
| kfree(hvs_state); |
| } |
| |
| static const struct drm_private_state_funcs vc4_hvs_state_funcs = { |
| .atomic_duplicate_state = vc4_hvs_channels_duplicate_state, |
| .atomic_destroy_state = vc4_hvs_channels_destroy_state, |
| }; |
| |
| static void vc4_hvs_channels_obj_fini(struct drm_device *dev, void *unused) |
| { |
| struct vc4_dev *vc4 = to_vc4_dev(dev); |
| |
| drm_atomic_private_obj_fini(&vc4->hvs_channels); |
| } |
| |
| static int vc4_hvs_channels_obj_init(struct vc4_dev *vc4) |
| { |
| struct vc4_hvs_state *state; |
| |
| state = kzalloc(sizeof(*state), GFP_KERNEL); |
| if (!state) |
| return -ENOMEM; |
| |
| state->unassigned_channels = GENMASK(HVS_NUM_CHANNELS - 1, 0); |
| drm_atomic_private_obj_init(&vc4->base, &vc4->hvs_channels, |
| &state->base, |
| &vc4_hvs_state_funcs); |
| |
| return drmm_add_action_or_reset(&vc4->base, vc4_hvs_channels_obj_fini, NULL); |
| } |
| |
| /* |
| * The BCM2711 HVS has up to 7 outputs connected to the pixelvalves and |
| * the TXP (and therefore all the CRTCs found on that platform). |
| * |
| * The naive (and our initial) implementation would just iterate over |
| * all the active CRTCs, try to find a suitable FIFO, and then remove it |
| * from the pool of available FIFOs. However, there are a few corner |
| * cases that need to be considered: |
| * |
| * - When running in a dual-display setup (so with two CRTCs involved), |
| * we can update the state of a single CRTC (for example by changing |
| * its mode using xrandr under X11) without affecting the other. In |
| * this case, the other CRTC wouldn't be in the state at all, so we |
| * need to consider all the running CRTCs in the DRM device to assign |
| * a FIFO, not just the one in the state. |
| * |
| * - To fix the above, we can't use drm_atomic_get_crtc_state on all |
| * enabled CRTCs to pull their CRTC state into the global state, since |
| * a page flip would start considering their vblank to complete. Since |
| * we don't have a guarantee that they are actually active, that |
| * vblank might never happen, and shouldn't even be considered if we |
| * want to do a page flip on a single CRTC. That can be tested by |
| * doing a modetest -v first on HDMI1 and then on HDMI0. |
| * |
| * - Since we need the pixelvalve to be disabled and enabled back when |
| * the FIFO is changed, we should keep the FIFO assigned for as long |
| * as the CRTC is enabled, only considering it free again once that |
| * CRTC has been disabled. This can be tested by booting X11 on a |
| * single display, and changing the resolution down and then back up. |
| */ |
| static int vc4_pv_muxing_atomic_check(struct drm_device *dev, |
| struct drm_atomic_state *state) |
| { |
| struct vc4_hvs_state *hvs_new_state; |
| struct drm_crtc_state *old_crtc_state, *new_crtc_state; |
| struct drm_crtc *crtc; |
| unsigned int i; |
| |
| hvs_new_state = vc4_hvs_get_global_state(state); |
| if (!hvs_new_state) |
| return -EINVAL; |
| |
| for_each_oldnew_crtc_in_state(state, crtc, old_crtc_state, new_crtc_state, i) { |
| struct vc4_crtc_state *old_vc4_crtc_state = |
| to_vc4_crtc_state(old_crtc_state); |
| struct vc4_crtc_state *new_vc4_crtc_state = |
| to_vc4_crtc_state(new_crtc_state); |
| struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc); |
| unsigned int matching_channels; |
| |
| /* Nothing to do here, let's skip it */ |
| if (old_crtc_state->enable == new_crtc_state->enable) |
| continue; |
| |
| /* Muxing will need to be modified, mark it as such */ |
| new_vc4_crtc_state->update_muxing = true; |
| |
| /* If we're disabling our CRTC, we put back our channel */ |
| if (!new_crtc_state->enable) { |
| hvs_new_state->unassigned_channels |= BIT(old_vc4_crtc_state->assigned_channel); |
| new_vc4_crtc_state->assigned_channel = VC4_HVS_CHANNEL_DISABLED; |
| continue; |
| } |
| |
| /* |
| * The problem we have to solve here is that we have |
| * up to 7 encoders, connected to up to 6 CRTCs. |
| * |
| * Those CRTCs, depending on the instance, can be |
| * routed to 1, 2 or 3 HVS FIFOs, and we need to set |
| * the change the muxing between FIFOs and outputs in |
| * the HVS accordingly. |
| * |
| * It would be pretty hard to come up with an |
| * algorithm that would generically solve |
| * this. However, the current routing trees we support |
| * allow us to simplify a bit the problem. |
| * |
| * Indeed, with the current supported layouts, if we |
| * try to assign in the ascending crtc index order the |
| * FIFOs, we can't fall into the situation where an |
| * earlier CRTC that had multiple routes is assigned |
| * one that was the only option for a later CRTC. |
| * |
| * If the layout changes and doesn't give us that in |
| * the future, we will need to have something smarter, |
| * but it works so far. |
| */ |
| matching_channels = hvs_new_state->unassigned_channels & vc4_crtc->data->hvs_available_channels; |
| if (matching_channels) { |
| unsigned int channel = ffs(matching_channels) - 1; |
| |
| new_vc4_crtc_state->assigned_channel = channel; |
| hvs_new_state->unassigned_channels &= ~BIT(channel); |
| } else { |
| return -EINVAL; |
| } |
| } |
| |
| return 0; |
| } |
| |
| static int |
| vc4_atomic_check(struct drm_device *dev, struct drm_atomic_state *state) |
| { |
| int ret; |
| |
| ret = vc4_pv_muxing_atomic_check(dev, state); |
| if (ret) |
| return ret; |
| |
| ret = vc4_ctm_atomic_check(dev, state); |
| if (ret < 0) |
| return ret; |
| |
| ret = drm_atomic_helper_check(dev, state); |
| if (ret) |
| return ret; |
| |
| return vc4_load_tracker_atomic_check(state); |
| } |
| |
| static const struct drm_mode_config_funcs vc4_mode_funcs = { |
| .atomic_check = vc4_atomic_check, |
| .atomic_commit = vc4_atomic_commit, |
| .fb_create = vc4_fb_create, |
| }; |
| |
| int vc4_kms_load(struct drm_device *dev) |
| { |
| struct vc4_dev *vc4 = to_vc4_dev(dev); |
| bool is_vc5 = of_device_is_compatible(dev->dev->of_node, |
| "brcm,bcm2711-vc5"); |
| int ret; |
| |
| if (!is_vc5) { |
| vc4->load_tracker_available = true; |
| |
| /* Start with the load tracker enabled. Can be |
| * disabled through the debugfs load_tracker file. |
| */ |
| vc4->load_tracker_enabled = true; |
| } |
| |
| sema_init(&vc4->async_modeset, 1); |
| |
| /* Set support for vblank irq fast disable, before drm_vblank_init() */ |
| dev->vblank_disable_immediate = true; |
| |
| dev->irq_enabled = true; |
| ret = drm_vblank_init(dev, dev->mode_config.num_crtc); |
| if (ret < 0) { |
| dev_err(dev->dev, "failed to initialize vblank\n"); |
| return ret; |
| } |
| |
| if (is_vc5) { |
| dev->mode_config.max_width = 7680; |
| dev->mode_config.max_height = 7680; |
| } else { |
| dev->mode_config.max_width = 2048; |
| dev->mode_config.max_height = 2048; |
| } |
| |
| dev->mode_config.funcs = &vc4_mode_funcs; |
| dev->mode_config.preferred_depth = 24; |
| dev->mode_config.async_page_flip = true; |
| dev->mode_config.allow_fb_modifiers = true; |
| |
| ret = vc4_ctm_obj_init(vc4); |
| if (ret) |
| return ret; |
| |
| ret = vc4_load_tracker_obj_init(vc4); |
| if (ret) |
| return ret; |
| |
| ret = vc4_hvs_channels_obj_init(vc4); |
| if (ret) |
| return ret; |
| |
| drm_mode_config_reset(dev); |
| |
| drm_kms_helper_poll_init(dev); |
| |
| return 0; |
| } |