| // SPDX-License-Identifier: ISC |
| /* |
| * Copyright (c) 2005-2011 Atheros Communications Inc. |
| * Copyright (c) 2011-2017 Qualcomm Atheros, Inc. |
| */ |
| |
| #include <linux/pci.h> |
| #include <linux/module.h> |
| #include <linux/interrupt.h> |
| #include <linux/spinlock.h> |
| #include <linux/bitops.h> |
| |
| #include "core.h" |
| #include "debug.h" |
| #include "coredump.h" |
| |
| #include "targaddrs.h" |
| #include "bmi.h" |
| |
| #include "hif.h" |
| #include "htc.h" |
| |
| #include "ce.h" |
| #include "pci.h" |
| |
| enum ath10k_pci_reset_mode { |
| ATH10K_PCI_RESET_AUTO = 0, |
| ATH10K_PCI_RESET_WARM_ONLY = 1, |
| }; |
| |
| static unsigned int ath10k_pci_irq_mode = ATH10K_PCI_IRQ_AUTO; |
| static unsigned int ath10k_pci_reset_mode = ATH10K_PCI_RESET_AUTO; |
| |
| module_param_named(irq_mode, ath10k_pci_irq_mode, uint, 0644); |
| MODULE_PARM_DESC(irq_mode, "0: auto, 1: legacy, 2: msi (default: 0)"); |
| |
| module_param_named(reset_mode, ath10k_pci_reset_mode, uint, 0644); |
| MODULE_PARM_DESC(reset_mode, "0: auto, 1: warm only (default: 0)"); |
| |
| /* how long wait to wait for target to initialise, in ms */ |
| #define ATH10K_PCI_TARGET_WAIT 3000 |
| #define ATH10K_PCI_NUM_WARM_RESET_ATTEMPTS 3 |
| |
| /* Maximum number of bytes that can be handled atomically by |
| * diag read and write. |
| */ |
| #define ATH10K_DIAG_TRANSFER_LIMIT 0x5000 |
| |
| #define QCA99X0_PCIE_BAR0_START_REG 0x81030 |
| #define QCA99X0_CPU_MEM_ADDR_REG 0x4d00c |
| #define QCA99X0_CPU_MEM_DATA_REG 0x4d010 |
| |
| static const struct pci_device_id ath10k_pci_id_table[] = { |
| /* PCI-E QCA988X V2 (Ubiquiti branded) */ |
| { PCI_VDEVICE(UBIQUITI, QCA988X_2_0_DEVICE_ID_UBNT) }, |
| |
| { PCI_VDEVICE(ATHEROS, QCA988X_2_0_DEVICE_ID) }, /* PCI-E QCA988X V2 */ |
| { PCI_VDEVICE(ATHEROS, QCA6164_2_1_DEVICE_ID) }, /* PCI-E QCA6164 V2.1 */ |
| { PCI_VDEVICE(ATHEROS, QCA6174_2_1_DEVICE_ID) }, /* PCI-E QCA6174 V2.1 */ |
| { PCI_VDEVICE(ATHEROS, QCA99X0_2_0_DEVICE_ID) }, /* PCI-E QCA99X0 V2 */ |
| { PCI_VDEVICE(ATHEROS, QCA9888_2_0_DEVICE_ID) }, /* PCI-E QCA9888 V2 */ |
| { PCI_VDEVICE(ATHEROS, QCA9984_1_0_DEVICE_ID) }, /* PCI-E QCA9984 V1 */ |
| { PCI_VDEVICE(ATHEROS, QCA9377_1_0_DEVICE_ID) }, /* PCI-E QCA9377 V1 */ |
| { PCI_VDEVICE(ATHEROS, QCA9887_1_0_DEVICE_ID) }, /* PCI-E QCA9887 */ |
| {0} |
| }; |
| |
| static const struct ath10k_pci_supp_chip ath10k_pci_supp_chips[] = { |
| /* QCA988X pre 2.0 chips are not supported because they need some nasty |
| * hacks. ath10k doesn't have them and these devices crash horribly |
| * because of that. |
| */ |
| { QCA988X_2_0_DEVICE_ID_UBNT, QCA988X_HW_2_0_CHIP_ID_REV }, |
| { QCA988X_2_0_DEVICE_ID, QCA988X_HW_2_0_CHIP_ID_REV }, |
| |
| { QCA6164_2_1_DEVICE_ID, QCA6174_HW_2_1_CHIP_ID_REV }, |
| { QCA6164_2_1_DEVICE_ID, QCA6174_HW_2_2_CHIP_ID_REV }, |
| { QCA6164_2_1_DEVICE_ID, QCA6174_HW_3_0_CHIP_ID_REV }, |
| { QCA6164_2_1_DEVICE_ID, QCA6174_HW_3_1_CHIP_ID_REV }, |
| { QCA6164_2_1_DEVICE_ID, QCA6174_HW_3_2_CHIP_ID_REV }, |
| |
| { QCA6174_2_1_DEVICE_ID, QCA6174_HW_2_1_CHIP_ID_REV }, |
| { QCA6174_2_1_DEVICE_ID, QCA6174_HW_2_2_CHIP_ID_REV }, |
| { QCA6174_2_1_DEVICE_ID, QCA6174_HW_3_0_CHIP_ID_REV }, |
| { QCA6174_2_1_DEVICE_ID, QCA6174_HW_3_1_CHIP_ID_REV }, |
| { QCA6174_2_1_DEVICE_ID, QCA6174_HW_3_2_CHIP_ID_REV }, |
| |
| { QCA99X0_2_0_DEVICE_ID, QCA99X0_HW_2_0_CHIP_ID_REV }, |
| |
| { QCA9984_1_0_DEVICE_ID, QCA9984_HW_1_0_CHIP_ID_REV }, |
| |
| { QCA9888_2_0_DEVICE_ID, QCA9888_HW_2_0_CHIP_ID_REV }, |
| |
| { QCA9377_1_0_DEVICE_ID, QCA9377_HW_1_0_CHIP_ID_REV }, |
| { QCA9377_1_0_DEVICE_ID, QCA9377_HW_1_1_CHIP_ID_REV }, |
| |
| { QCA9887_1_0_DEVICE_ID, QCA9887_HW_1_0_CHIP_ID_REV }, |
| }; |
| |
| static void ath10k_pci_buffer_cleanup(struct ath10k *ar); |
| static int ath10k_pci_cold_reset(struct ath10k *ar); |
| static int ath10k_pci_safe_chip_reset(struct ath10k *ar); |
| static int ath10k_pci_init_irq(struct ath10k *ar); |
| static int ath10k_pci_deinit_irq(struct ath10k *ar); |
| static int ath10k_pci_request_irq(struct ath10k *ar); |
| static void ath10k_pci_free_irq(struct ath10k *ar); |
| static int ath10k_pci_bmi_wait(struct ath10k *ar, |
| struct ath10k_ce_pipe *tx_pipe, |
| struct ath10k_ce_pipe *rx_pipe, |
| struct bmi_xfer *xfer); |
| static int ath10k_pci_qca99x0_chip_reset(struct ath10k *ar); |
| static void ath10k_pci_htc_tx_cb(struct ath10k_ce_pipe *ce_state); |
| static void ath10k_pci_htc_rx_cb(struct ath10k_ce_pipe *ce_state); |
| static void ath10k_pci_htt_tx_cb(struct ath10k_ce_pipe *ce_state); |
| static void ath10k_pci_htt_rx_cb(struct ath10k_ce_pipe *ce_state); |
| static void ath10k_pci_htt_htc_rx_cb(struct ath10k_ce_pipe *ce_state); |
| static void ath10k_pci_pktlog_rx_cb(struct ath10k_ce_pipe *ce_state); |
| |
| static const struct ce_attr pci_host_ce_config_wlan[] = { |
| /* CE0: host->target HTC control and raw streams */ |
| { |
| .flags = CE_ATTR_FLAGS, |
| .src_nentries = 16, |
| .src_sz_max = 256, |
| .dest_nentries = 0, |
| .send_cb = ath10k_pci_htc_tx_cb, |
| }, |
| |
| /* CE1: target->host HTT + HTC control */ |
| { |
| .flags = CE_ATTR_FLAGS, |
| .src_nentries = 0, |
| .src_sz_max = 2048, |
| .dest_nentries = 512, |
| .recv_cb = ath10k_pci_htt_htc_rx_cb, |
| }, |
| |
| /* CE2: target->host WMI */ |
| { |
| .flags = CE_ATTR_FLAGS, |
| .src_nentries = 0, |
| .src_sz_max = 2048, |
| .dest_nentries = 128, |
| .recv_cb = ath10k_pci_htc_rx_cb, |
| }, |
| |
| /* CE3: host->target WMI */ |
| { |
| .flags = CE_ATTR_FLAGS, |
| .src_nentries = 32, |
| .src_sz_max = 2048, |
| .dest_nentries = 0, |
| .send_cb = ath10k_pci_htc_tx_cb, |
| }, |
| |
| /* CE4: host->target HTT */ |
| { |
| .flags = CE_ATTR_FLAGS | CE_ATTR_DIS_INTR, |
| .src_nentries = CE_HTT_H2T_MSG_SRC_NENTRIES, |
| .src_sz_max = 256, |
| .dest_nentries = 0, |
| .send_cb = ath10k_pci_htt_tx_cb, |
| }, |
| |
| /* CE5: target->host HTT (HIF->HTT) */ |
| { |
| .flags = CE_ATTR_FLAGS, |
| .src_nentries = 0, |
| .src_sz_max = 512, |
| .dest_nentries = 512, |
| .recv_cb = ath10k_pci_htt_rx_cb, |
| }, |
| |
| /* CE6: target autonomous hif_memcpy */ |
| { |
| .flags = CE_ATTR_FLAGS, |
| .src_nentries = 0, |
| .src_sz_max = 0, |
| .dest_nentries = 0, |
| }, |
| |
| /* CE7: ce_diag, the Diagnostic Window */ |
| { |
| .flags = CE_ATTR_FLAGS | CE_ATTR_POLL, |
| .src_nentries = 2, |
| .src_sz_max = DIAG_TRANSFER_LIMIT, |
| .dest_nentries = 2, |
| }, |
| |
| /* CE8: target->host pktlog */ |
| { |
| .flags = CE_ATTR_FLAGS, |
| .src_nentries = 0, |
| .src_sz_max = 2048, |
| .dest_nentries = 128, |
| .recv_cb = ath10k_pci_pktlog_rx_cb, |
| }, |
| |
| /* CE9 target autonomous qcache memcpy */ |
| { |
| .flags = CE_ATTR_FLAGS, |
| .src_nentries = 0, |
| .src_sz_max = 0, |
| .dest_nentries = 0, |
| }, |
| |
| /* CE10: target autonomous hif memcpy */ |
| { |
| .flags = CE_ATTR_FLAGS, |
| .src_nentries = 0, |
| .src_sz_max = 0, |
| .dest_nentries = 0, |
| }, |
| |
| /* CE11: target autonomous hif memcpy */ |
| { |
| .flags = CE_ATTR_FLAGS, |
| .src_nentries = 0, |
| .src_sz_max = 0, |
| .dest_nentries = 0, |
| }, |
| }; |
| |
| /* Target firmware's Copy Engine configuration. */ |
| static const struct ce_pipe_config pci_target_ce_config_wlan[] = { |
| /* CE0: host->target HTC control and raw streams */ |
| { |
| .pipenum = __cpu_to_le32(0), |
| .pipedir = __cpu_to_le32(PIPEDIR_OUT), |
| .nentries = __cpu_to_le32(32), |
| .nbytes_max = __cpu_to_le32(256), |
| .flags = __cpu_to_le32(CE_ATTR_FLAGS), |
| .reserved = __cpu_to_le32(0), |
| }, |
| |
| /* CE1: target->host HTT + HTC control */ |
| { |
| .pipenum = __cpu_to_le32(1), |
| .pipedir = __cpu_to_le32(PIPEDIR_IN), |
| .nentries = __cpu_to_le32(32), |
| .nbytes_max = __cpu_to_le32(2048), |
| .flags = __cpu_to_le32(CE_ATTR_FLAGS), |
| .reserved = __cpu_to_le32(0), |
| }, |
| |
| /* CE2: target->host WMI */ |
| { |
| .pipenum = __cpu_to_le32(2), |
| .pipedir = __cpu_to_le32(PIPEDIR_IN), |
| .nentries = __cpu_to_le32(64), |
| .nbytes_max = __cpu_to_le32(2048), |
| .flags = __cpu_to_le32(CE_ATTR_FLAGS), |
| .reserved = __cpu_to_le32(0), |
| }, |
| |
| /* CE3: host->target WMI */ |
| { |
| .pipenum = __cpu_to_le32(3), |
| .pipedir = __cpu_to_le32(PIPEDIR_OUT), |
| .nentries = __cpu_to_le32(32), |
| .nbytes_max = __cpu_to_le32(2048), |
| .flags = __cpu_to_le32(CE_ATTR_FLAGS), |
| .reserved = __cpu_to_le32(0), |
| }, |
| |
| /* CE4: host->target HTT */ |
| { |
| .pipenum = __cpu_to_le32(4), |
| .pipedir = __cpu_to_le32(PIPEDIR_OUT), |
| .nentries = __cpu_to_le32(256), |
| .nbytes_max = __cpu_to_le32(256), |
| .flags = __cpu_to_le32(CE_ATTR_FLAGS), |
| .reserved = __cpu_to_le32(0), |
| }, |
| |
| /* NB: 50% of src nentries, since tx has 2 frags */ |
| |
| /* CE5: target->host HTT (HIF->HTT) */ |
| { |
| .pipenum = __cpu_to_le32(5), |
| .pipedir = __cpu_to_le32(PIPEDIR_IN), |
| .nentries = __cpu_to_le32(32), |
| .nbytes_max = __cpu_to_le32(512), |
| .flags = __cpu_to_le32(CE_ATTR_FLAGS), |
| .reserved = __cpu_to_le32(0), |
| }, |
| |
| /* CE6: Reserved for target autonomous hif_memcpy */ |
| { |
| .pipenum = __cpu_to_le32(6), |
| .pipedir = __cpu_to_le32(PIPEDIR_INOUT), |
| .nentries = __cpu_to_le32(32), |
| .nbytes_max = __cpu_to_le32(4096), |
| .flags = __cpu_to_le32(CE_ATTR_FLAGS), |
| .reserved = __cpu_to_le32(0), |
| }, |
| |
| /* CE7 used only by Host */ |
| { |
| .pipenum = __cpu_to_le32(7), |
| .pipedir = __cpu_to_le32(PIPEDIR_INOUT), |
| .nentries = __cpu_to_le32(0), |
| .nbytes_max = __cpu_to_le32(0), |
| .flags = __cpu_to_le32(0), |
| .reserved = __cpu_to_le32(0), |
| }, |
| |
| /* CE8 target->host packtlog */ |
| { |
| .pipenum = __cpu_to_le32(8), |
| .pipedir = __cpu_to_le32(PIPEDIR_IN), |
| .nentries = __cpu_to_le32(64), |
| .nbytes_max = __cpu_to_le32(2048), |
| .flags = __cpu_to_le32(CE_ATTR_FLAGS | CE_ATTR_DIS_INTR), |
| .reserved = __cpu_to_le32(0), |
| }, |
| |
| /* CE9 target autonomous qcache memcpy */ |
| { |
| .pipenum = __cpu_to_le32(9), |
| .pipedir = __cpu_to_le32(PIPEDIR_INOUT), |
| .nentries = __cpu_to_le32(32), |
| .nbytes_max = __cpu_to_le32(2048), |
| .flags = __cpu_to_le32(CE_ATTR_FLAGS | CE_ATTR_DIS_INTR), |
| .reserved = __cpu_to_le32(0), |
| }, |
| |
| /* It not necessary to send target wlan configuration for CE10 & CE11 |
| * as these CEs are not actively used in target. |
| */ |
| }; |
| |
| /* |
| * Map from service/endpoint to Copy Engine. |
| * This table is derived from the CE_PCI TABLE, above. |
| * It is passed to the Target at startup for use by firmware. |
| */ |
| static const struct ce_service_to_pipe pci_target_service_to_ce_map_wlan[] = { |
| { |
| __cpu_to_le32(ATH10K_HTC_SVC_ID_WMI_DATA_VO), |
| __cpu_to_le32(PIPEDIR_OUT), /* out = UL = host -> target */ |
| __cpu_to_le32(3), |
| }, |
| { |
| __cpu_to_le32(ATH10K_HTC_SVC_ID_WMI_DATA_VO), |
| __cpu_to_le32(PIPEDIR_IN), /* in = DL = target -> host */ |
| __cpu_to_le32(2), |
| }, |
| { |
| __cpu_to_le32(ATH10K_HTC_SVC_ID_WMI_DATA_BK), |
| __cpu_to_le32(PIPEDIR_OUT), /* out = UL = host -> target */ |
| __cpu_to_le32(3), |
| }, |
| { |
| __cpu_to_le32(ATH10K_HTC_SVC_ID_WMI_DATA_BK), |
| __cpu_to_le32(PIPEDIR_IN), /* in = DL = target -> host */ |
| __cpu_to_le32(2), |
| }, |
| { |
| __cpu_to_le32(ATH10K_HTC_SVC_ID_WMI_DATA_BE), |
| __cpu_to_le32(PIPEDIR_OUT), /* out = UL = host -> target */ |
| __cpu_to_le32(3), |
| }, |
| { |
| __cpu_to_le32(ATH10K_HTC_SVC_ID_WMI_DATA_BE), |
| __cpu_to_le32(PIPEDIR_IN), /* in = DL = target -> host */ |
| __cpu_to_le32(2), |
| }, |
| { |
| __cpu_to_le32(ATH10K_HTC_SVC_ID_WMI_DATA_VI), |
| __cpu_to_le32(PIPEDIR_OUT), /* out = UL = host -> target */ |
| __cpu_to_le32(3), |
| }, |
| { |
| __cpu_to_le32(ATH10K_HTC_SVC_ID_WMI_DATA_VI), |
| __cpu_to_le32(PIPEDIR_IN), /* in = DL = target -> host */ |
| __cpu_to_le32(2), |
| }, |
| { |
| __cpu_to_le32(ATH10K_HTC_SVC_ID_WMI_CONTROL), |
| __cpu_to_le32(PIPEDIR_OUT), /* out = UL = host -> target */ |
| __cpu_to_le32(3), |
| }, |
| { |
| __cpu_to_le32(ATH10K_HTC_SVC_ID_WMI_CONTROL), |
| __cpu_to_le32(PIPEDIR_IN), /* in = DL = target -> host */ |
| __cpu_to_le32(2), |
| }, |
| { |
| __cpu_to_le32(ATH10K_HTC_SVC_ID_RSVD_CTRL), |
| __cpu_to_le32(PIPEDIR_OUT), /* out = UL = host -> target */ |
| __cpu_to_le32(0), |
| }, |
| { |
| __cpu_to_le32(ATH10K_HTC_SVC_ID_RSVD_CTRL), |
| __cpu_to_le32(PIPEDIR_IN), /* in = DL = target -> host */ |
| __cpu_to_le32(1), |
| }, |
| { /* not used */ |
| __cpu_to_le32(ATH10K_HTC_SVC_ID_TEST_RAW_STREAMS), |
| __cpu_to_le32(PIPEDIR_OUT), /* out = UL = host -> target */ |
| __cpu_to_le32(0), |
| }, |
| { /* not used */ |
| __cpu_to_le32(ATH10K_HTC_SVC_ID_TEST_RAW_STREAMS), |
| __cpu_to_le32(PIPEDIR_IN), /* in = DL = target -> host */ |
| __cpu_to_le32(1), |
| }, |
| { |
| __cpu_to_le32(ATH10K_HTC_SVC_ID_HTT_DATA_MSG), |
| __cpu_to_le32(PIPEDIR_OUT), /* out = UL = host -> target */ |
| __cpu_to_le32(4), |
| }, |
| { |
| __cpu_to_le32(ATH10K_HTC_SVC_ID_HTT_DATA_MSG), |
| __cpu_to_le32(PIPEDIR_IN), /* in = DL = target -> host */ |
| __cpu_to_le32(5), |
| }, |
| |
| /* (Additions here) */ |
| |
| { /* must be last */ |
| __cpu_to_le32(0), |
| __cpu_to_le32(0), |
| __cpu_to_le32(0), |
| }, |
| }; |
| |
| static bool ath10k_pci_is_awake(struct ath10k *ar) |
| { |
| struct ath10k_pci *ar_pci = ath10k_pci_priv(ar); |
| u32 val = ioread32(ar_pci->mem + PCIE_LOCAL_BASE_ADDRESS + |
| RTC_STATE_ADDRESS); |
| |
| return RTC_STATE_V_GET(val) == RTC_STATE_V_ON; |
| } |
| |
| static void __ath10k_pci_wake(struct ath10k *ar) |
| { |
| struct ath10k_pci *ar_pci = ath10k_pci_priv(ar); |
| |
| lockdep_assert_held(&ar_pci->ps_lock); |
| |
| ath10k_dbg(ar, ATH10K_DBG_PCI_PS, "pci ps wake reg refcount %lu awake %d\n", |
| ar_pci->ps_wake_refcount, ar_pci->ps_awake); |
| |
| iowrite32(PCIE_SOC_WAKE_V_MASK, |
| ar_pci->mem + PCIE_LOCAL_BASE_ADDRESS + |
| PCIE_SOC_WAKE_ADDRESS); |
| } |
| |
| static void __ath10k_pci_sleep(struct ath10k *ar) |
| { |
| struct ath10k_pci *ar_pci = ath10k_pci_priv(ar); |
| |
| lockdep_assert_held(&ar_pci->ps_lock); |
| |
| ath10k_dbg(ar, ATH10K_DBG_PCI_PS, "pci ps sleep reg refcount %lu awake %d\n", |
| ar_pci->ps_wake_refcount, ar_pci->ps_awake); |
| |
| iowrite32(PCIE_SOC_WAKE_RESET, |
| ar_pci->mem + PCIE_LOCAL_BASE_ADDRESS + |
| PCIE_SOC_WAKE_ADDRESS); |
| ar_pci->ps_awake = false; |
| } |
| |
| static int ath10k_pci_wake_wait(struct ath10k *ar) |
| { |
| int tot_delay = 0; |
| int curr_delay = 5; |
| |
| while (tot_delay < PCIE_WAKE_TIMEOUT) { |
| if (ath10k_pci_is_awake(ar)) { |
| if (tot_delay > PCIE_WAKE_LATE_US) |
| ath10k_warn(ar, "device wakeup took %d ms which is unusually long, otherwise it works normally.\n", |
| tot_delay / 1000); |
| return 0; |
| } |
| |
| udelay(curr_delay); |
| tot_delay += curr_delay; |
| |
| if (curr_delay < 50) |
| curr_delay += 5; |
| } |
| |
| return -ETIMEDOUT; |
| } |
| |
| static int ath10k_pci_force_wake(struct ath10k *ar) |
| { |
| struct ath10k_pci *ar_pci = ath10k_pci_priv(ar); |
| unsigned long flags; |
| int ret = 0; |
| |
| if (ar_pci->pci_ps) |
| return ret; |
| |
| spin_lock_irqsave(&ar_pci->ps_lock, flags); |
| |
| if (!ar_pci->ps_awake) { |
| iowrite32(PCIE_SOC_WAKE_V_MASK, |
| ar_pci->mem + PCIE_LOCAL_BASE_ADDRESS + |
| PCIE_SOC_WAKE_ADDRESS); |
| |
| ret = ath10k_pci_wake_wait(ar); |
| if (ret == 0) |
| ar_pci->ps_awake = true; |
| } |
| |
| spin_unlock_irqrestore(&ar_pci->ps_lock, flags); |
| |
| return ret; |
| } |
| |
| static void ath10k_pci_force_sleep(struct ath10k *ar) |
| { |
| struct ath10k_pci *ar_pci = ath10k_pci_priv(ar); |
| unsigned long flags; |
| |
| spin_lock_irqsave(&ar_pci->ps_lock, flags); |
| |
| iowrite32(PCIE_SOC_WAKE_RESET, |
| ar_pci->mem + PCIE_LOCAL_BASE_ADDRESS + |
| PCIE_SOC_WAKE_ADDRESS); |
| ar_pci->ps_awake = false; |
| |
| spin_unlock_irqrestore(&ar_pci->ps_lock, flags); |
| } |
| |
| static int ath10k_pci_wake(struct ath10k *ar) |
| { |
| struct ath10k_pci *ar_pci = ath10k_pci_priv(ar); |
| unsigned long flags; |
| int ret = 0; |
| |
| if (ar_pci->pci_ps == 0) |
| return ret; |
| |
| spin_lock_irqsave(&ar_pci->ps_lock, flags); |
| |
| ath10k_dbg(ar, ATH10K_DBG_PCI_PS, "pci ps wake refcount %lu awake %d\n", |
| ar_pci->ps_wake_refcount, ar_pci->ps_awake); |
| |
| /* This function can be called very frequently. To avoid excessive |
| * CPU stalls for MMIO reads use a cache var to hold the device state. |
| */ |
| if (!ar_pci->ps_awake) { |
| __ath10k_pci_wake(ar); |
| |
| ret = ath10k_pci_wake_wait(ar); |
| if (ret == 0) |
| ar_pci->ps_awake = true; |
| } |
| |
| if (ret == 0) { |
| ar_pci->ps_wake_refcount++; |
| WARN_ON(ar_pci->ps_wake_refcount == 0); |
| } |
| |
| spin_unlock_irqrestore(&ar_pci->ps_lock, flags); |
| |
| return ret; |
| } |
| |
| static void ath10k_pci_sleep(struct ath10k *ar) |
| { |
| struct ath10k_pci *ar_pci = ath10k_pci_priv(ar); |
| unsigned long flags; |
| |
| if (ar_pci->pci_ps == 0) |
| return; |
| |
| spin_lock_irqsave(&ar_pci->ps_lock, flags); |
| |
| ath10k_dbg(ar, ATH10K_DBG_PCI_PS, "pci ps sleep refcount %lu awake %d\n", |
| ar_pci->ps_wake_refcount, ar_pci->ps_awake); |
| |
| if (WARN_ON(ar_pci->ps_wake_refcount == 0)) |
| goto skip; |
| |
| ar_pci->ps_wake_refcount--; |
| |
| mod_timer(&ar_pci->ps_timer, jiffies + |
| msecs_to_jiffies(ATH10K_PCI_SLEEP_GRACE_PERIOD_MSEC)); |
| |
| skip: |
| spin_unlock_irqrestore(&ar_pci->ps_lock, flags); |
| } |
| |
| static void ath10k_pci_ps_timer(struct timer_list *t) |
| { |
| struct ath10k_pci *ar_pci = from_timer(ar_pci, t, ps_timer); |
| struct ath10k *ar = ar_pci->ar; |
| unsigned long flags; |
| |
| spin_lock_irqsave(&ar_pci->ps_lock, flags); |
| |
| ath10k_dbg(ar, ATH10K_DBG_PCI_PS, "pci ps timer refcount %lu awake %d\n", |
| ar_pci->ps_wake_refcount, ar_pci->ps_awake); |
| |
| if (ar_pci->ps_wake_refcount > 0) |
| goto skip; |
| |
| __ath10k_pci_sleep(ar); |
| |
| skip: |
| spin_unlock_irqrestore(&ar_pci->ps_lock, flags); |
| } |
| |
| static void ath10k_pci_sleep_sync(struct ath10k *ar) |
| { |
| struct ath10k_pci *ar_pci = ath10k_pci_priv(ar); |
| unsigned long flags; |
| |
| if (ar_pci->pci_ps == 0) { |
| ath10k_pci_force_sleep(ar); |
| return; |
| } |
| |
| del_timer_sync(&ar_pci->ps_timer); |
| |
| spin_lock_irqsave(&ar_pci->ps_lock, flags); |
| WARN_ON(ar_pci->ps_wake_refcount > 0); |
| __ath10k_pci_sleep(ar); |
| spin_unlock_irqrestore(&ar_pci->ps_lock, flags); |
| } |
| |
| static void ath10k_bus_pci_write32(struct ath10k *ar, u32 offset, u32 value) |
| { |
| struct ath10k_pci *ar_pci = ath10k_pci_priv(ar); |
| int ret; |
| |
| if (unlikely(offset + sizeof(value) > ar_pci->mem_len)) { |
| ath10k_warn(ar, "refusing to write mmio out of bounds at 0x%08x - 0x%08zx (max 0x%08zx)\n", |
| offset, offset + sizeof(value), ar_pci->mem_len); |
| return; |
| } |
| |
| ret = ath10k_pci_wake(ar); |
| if (ret) { |
| ath10k_warn(ar, "failed to wake target for write32 of 0x%08x at 0x%08x: %d\n", |
| value, offset, ret); |
| return; |
| } |
| |
| iowrite32(value, ar_pci->mem + offset); |
| ath10k_pci_sleep(ar); |
| } |
| |
| static u32 ath10k_bus_pci_read32(struct ath10k *ar, u32 offset) |
| { |
| struct ath10k_pci *ar_pci = ath10k_pci_priv(ar); |
| u32 val; |
| int ret; |
| |
| if (unlikely(offset + sizeof(val) > ar_pci->mem_len)) { |
| ath10k_warn(ar, "refusing to read mmio out of bounds at 0x%08x - 0x%08zx (max 0x%08zx)\n", |
| offset, offset + sizeof(val), ar_pci->mem_len); |
| return 0; |
| } |
| |
| ret = ath10k_pci_wake(ar); |
| if (ret) { |
| ath10k_warn(ar, "failed to wake target for read32 at 0x%08x: %d\n", |
| offset, ret); |
| return 0xffffffff; |
| } |
| |
| val = ioread32(ar_pci->mem + offset); |
| ath10k_pci_sleep(ar); |
| |
| return val; |
| } |
| |
| inline void ath10k_pci_write32(struct ath10k *ar, u32 offset, u32 value) |
| { |
| struct ath10k_ce *ce = ath10k_ce_priv(ar); |
| |
| ce->bus_ops->write32(ar, offset, value); |
| } |
| |
| inline u32 ath10k_pci_read32(struct ath10k *ar, u32 offset) |
| { |
| struct ath10k_ce *ce = ath10k_ce_priv(ar); |
| |
| return ce->bus_ops->read32(ar, offset); |
| } |
| |
| u32 ath10k_pci_soc_read32(struct ath10k *ar, u32 addr) |
| { |
| return ath10k_pci_read32(ar, RTC_SOC_BASE_ADDRESS + addr); |
| } |
| |
| void ath10k_pci_soc_write32(struct ath10k *ar, u32 addr, u32 val) |
| { |
| ath10k_pci_write32(ar, RTC_SOC_BASE_ADDRESS + addr, val); |
| } |
| |
| u32 ath10k_pci_reg_read32(struct ath10k *ar, u32 addr) |
| { |
| return ath10k_pci_read32(ar, PCIE_LOCAL_BASE_ADDRESS + addr); |
| } |
| |
| void ath10k_pci_reg_write32(struct ath10k *ar, u32 addr, u32 val) |
| { |
| ath10k_pci_write32(ar, PCIE_LOCAL_BASE_ADDRESS + addr, val); |
| } |
| |
| bool ath10k_pci_irq_pending(struct ath10k *ar) |
| { |
| u32 cause; |
| |
| /* Check if the shared legacy irq is for us */ |
| cause = ath10k_pci_read32(ar, SOC_CORE_BASE_ADDRESS + |
| PCIE_INTR_CAUSE_ADDRESS); |
| if (cause & (PCIE_INTR_FIRMWARE_MASK | PCIE_INTR_CE_MASK_ALL)) |
| return true; |
| |
| return false; |
| } |
| |
| void ath10k_pci_disable_and_clear_legacy_irq(struct ath10k *ar) |
| { |
| /* IMPORTANT: INTR_CLR register has to be set after |
| * INTR_ENABLE is set to 0, otherwise interrupt can not be |
| * really cleared. |
| */ |
| ath10k_pci_write32(ar, SOC_CORE_BASE_ADDRESS + PCIE_INTR_ENABLE_ADDRESS, |
| 0); |
| ath10k_pci_write32(ar, SOC_CORE_BASE_ADDRESS + PCIE_INTR_CLR_ADDRESS, |
| PCIE_INTR_FIRMWARE_MASK | PCIE_INTR_CE_MASK_ALL); |
| |
| /* IMPORTANT: this extra read transaction is required to |
| * flush the posted write buffer. |
| */ |
| (void)ath10k_pci_read32(ar, SOC_CORE_BASE_ADDRESS + |
| PCIE_INTR_ENABLE_ADDRESS); |
| } |
| |
| void ath10k_pci_enable_legacy_irq(struct ath10k *ar) |
| { |
| ath10k_pci_write32(ar, SOC_CORE_BASE_ADDRESS + |
| PCIE_INTR_ENABLE_ADDRESS, |
| PCIE_INTR_FIRMWARE_MASK | PCIE_INTR_CE_MASK_ALL); |
| |
| /* IMPORTANT: this extra read transaction is required to |
| * flush the posted write buffer. |
| */ |
| (void)ath10k_pci_read32(ar, SOC_CORE_BASE_ADDRESS + |
| PCIE_INTR_ENABLE_ADDRESS); |
| } |
| |
| static inline const char *ath10k_pci_get_irq_method(struct ath10k *ar) |
| { |
| struct ath10k_pci *ar_pci = ath10k_pci_priv(ar); |
| |
| if (ar_pci->oper_irq_mode == ATH10K_PCI_IRQ_MSI) |
| return "msi"; |
| |
| return "legacy"; |
| } |
| |
| static int __ath10k_pci_rx_post_buf(struct ath10k_pci_pipe *pipe) |
| { |
| struct ath10k *ar = pipe->hif_ce_state; |
| struct ath10k_ce *ce = ath10k_ce_priv(ar); |
| struct ath10k_ce_pipe *ce_pipe = pipe->ce_hdl; |
| struct sk_buff *skb; |
| dma_addr_t paddr; |
| int ret; |
| |
| skb = dev_alloc_skb(pipe->buf_sz); |
| if (!skb) |
| return -ENOMEM; |
| |
| WARN_ONCE((unsigned long)skb->data & 3, "unaligned skb"); |
| |
| paddr = dma_map_single(ar->dev, skb->data, |
| skb->len + skb_tailroom(skb), |
| DMA_FROM_DEVICE); |
| if (unlikely(dma_mapping_error(ar->dev, paddr))) { |
| ath10k_warn(ar, "failed to dma map pci rx buf\n"); |
| dev_kfree_skb_any(skb); |
| return -EIO; |
| } |
| |
| ATH10K_SKB_RXCB(skb)->paddr = paddr; |
| |
| spin_lock_bh(&ce->ce_lock); |
| ret = ce_pipe->ops->ce_rx_post_buf(ce_pipe, skb, paddr); |
| spin_unlock_bh(&ce->ce_lock); |
| if (ret) { |
| dma_unmap_single(ar->dev, paddr, skb->len + skb_tailroom(skb), |
| DMA_FROM_DEVICE); |
| dev_kfree_skb_any(skb); |
| return ret; |
| } |
| |
| return 0; |
| } |
| |
| static void ath10k_pci_rx_post_pipe(struct ath10k_pci_pipe *pipe) |
| { |
| struct ath10k *ar = pipe->hif_ce_state; |
| struct ath10k_pci *ar_pci = ath10k_pci_priv(ar); |
| struct ath10k_ce *ce = ath10k_ce_priv(ar); |
| struct ath10k_ce_pipe *ce_pipe = pipe->ce_hdl; |
| int ret, num; |
| |
| if (pipe->buf_sz == 0) |
| return; |
| |
| if (!ce_pipe->dest_ring) |
| return; |
| |
| spin_lock_bh(&ce->ce_lock); |
| num = __ath10k_ce_rx_num_free_bufs(ce_pipe); |
| spin_unlock_bh(&ce->ce_lock); |
| |
| while (num >= 0) { |
| ret = __ath10k_pci_rx_post_buf(pipe); |
| if (ret) { |
| if (ret == -ENOSPC) |
| break; |
| ath10k_warn(ar, "failed to post pci rx buf: %d\n", ret); |
| mod_timer(&ar_pci->rx_post_retry, jiffies + |
| ATH10K_PCI_RX_POST_RETRY_MS); |
| break; |
| } |
| num--; |
| } |
| } |
| |
| void ath10k_pci_rx_post(struct ath10k *ar) |
| { |
| struct ath10k_pci *ar_pci = ath10k_pci_priv(ar); |
| int i; |
| |
| for (i = 0; i < CE_COUNT; i++) |
| ath10k_pci_rx_post_pipe(&ar_pci->pipe_info[i]); |
| } |
| |
| void ath10k_pci_rx_replenish_retry(struct timer_list *t) |
| { |
| struct ath10k_pci *ar_pci = from_timer(ar_pci, t, rx_post_retry); |
| struct ath10k *ar = ar_pci->ar; |
| |
| ath10k_pci_rx_post(ar); |
| } |
| |
| static u32 ath10k_pci_qca988x_targ_cpu_to_ce_addr(struct ath10k *ar, u32 addr) |
| { |
| u32 val = 0, region = addr & 0xfffff; |
| |
| val = (ath10k_pci_read32(ar, SOC_CORE_BASE_ADDRESS + CORE_CTRL_ADDRESS) |
| & 0x7ff) << 21; |
| val |= 0x100000 | region; |
| return val; |
| } |
| |
| /* Refactor from ath10k_pci_qca988x_targ_cpu_to_ce_addr. |
| * Support to access target space below 1M for qca6174 and qca9377. |
| * If target space is below 1M, the bit[20] of converted CE addr is 0. |
| * Otherwise bit[20] of converted CE addr is 1. |
| */ |
| static u32 ath10k_pci_qca6174_targ_cpu_to_ce_addr(struct ath10k *ar, u32 addr) |
| { |
| u32 val = 0, region = addr & 0xfffff; |
| |
| val = (ath10k_pci_read32(ar, SOC_CORE_BASE_ADDRESS + CORE_CTRL_ADDRESS) |
| & 0x7ff) << 21; |
| val |= ((addr >= 0x100000) ? 0x100000 : 0) | region; |
| return val; |
| } |
| |
| static u32 ath10k_pci_qca99x0_targ_cpu_to_ce_addr(struct ath10k *ar, u32 addr) |
| { |
| u32 val = 0, region = addr & 0xfffff; |
| |
| val = ath10k_pci_read32(ar, PCIE_BAR_REG_ADDRESS); |
| val |= 0x100000 | region; |
| return val; |
| } |
| |
| static u32 ath10k_pci_targ_cpu_to_ce_addr(struct ath10k *ar, u32 addr) |
| { |
| struct ath10k_pci *ar_pci = ath10k_pci_priv(ar); |
| |
| if (WARN_ON_ONCE(!ar_pci->targ_cpu_to_ce_addr)) |
| return -ENOTSUPP; |
| |
| return ar_pci->targ_cpu_to_ce_addr(ar, addr); |
| } |
| |
| /* |
| * Diagnostic read/write access is provided for startup/config/debug usage. |
| * Caller must guarantee proper alignment, when applicable, and single user |
| * at any moment. |
| */ |
| static int ath10k_pci_diag_read_mem(struct ath10k *ar, u32 address, void *data, |
| int nbytes) |
| { |
| struct ath10k_pci *ar_pci = ath10k_pci_priv(ar); |
| int ret = 0; |
| u32 *buf; |
| unsigned int completed_nbytes, alloc_nbytes, remaining_bytes; |
| struct ath10k_ce_pipe *ce_diag; |
| /* Host buffer address in CE space */ |
| u32 ce_data; |
| dma_addr_t ce_data_base = 0; |
| void *data_buf; |
| int i; |
| |
| mutex_lock(&ar_pci->ce_diag_mutex); |
| ce_diag = ar_pci->ce_diag; |
| |
| /* |
| * Allocate a temporary bounce buffer to hold caller's data |
| * to be DMA'ed from Target. This guarantees |
| * 1) 4-byte alignment |
| * 2) Buffer in DMA-able space |
| */ |
| alloc_nbytes = min_t(unsigned int, nbytes, DIAG_TRANSFER_LIMIT); |
| |
| data_buf = dma_alloc_coherent(ar->dev, alloc_nbytes, &ce_data_base, |
| GFP_ATOMIC); |
| if (!data_buf) { |
| ret = -ENOMEM; |
| goto done; |
| } |
| |
| /* The address supplied by the caller is in the |
| * Target CPU virtual address space. |
| * |
| * In order to use this address with the diagnostic CE, |
| * convert it from Target CPU virtual address space |
| * to CE address space |
| */ |
| address = ath10k_pci_targ_cpu_to_ce_addr(ar, address); |
| |
| remaining_bytes = nbytes; |
| ce_data = ce_data_base; |
| while (remaining_bytes) { |
| nbytes = min_t(unsigned int, remaining_bytes, |
| DIAG_TRANSFER_LIMIT); |
| |
| ret = ath10k_ce_rx_post_buf(ce_diag, &ce_data, ce_data); |
| if (ret != 0) |
| goto done; |
| |
| /* Request CE to send from Target(!) address to Host buffer */ |
| ret = ath10k_ce_send(ce_diag, NULL, (u32)address, nbytes, 0, 0); |
| if (ret) |
| goto done; |
| |
| i = 0; |
| while (ath10k_ce_completed_send_next(ce_diag, NULL) != 0) { |
| udelay(DIAG_ACCESS_CE_WAIT_US); |
| i += DIAG_ACCESS_CE_WAIT_US; |
| |
| if (i > DIAG_ACCESS_CE_TIMEOUT_US) { |
| ret = -EBUSY; |
| goto done; |
| } |
| } |
| |
| i = 0; |
| while (ath10k_ce_completed_recv_next(ce_diag, (void **)&buf, |
| &completed_nbytes) != 0) { |
| udelay(DIAG_ACCESS_CE_WAIT_US); |
| i += DIAG_ACCESS_CE_WAIT_US; |
| |
| if (i > DIAG_ACCESS_CE_TIMEOUT_US) { |
| ret = -EBUSY; |
| goto done; |
| } |
| } |
| |
| if (nbytes != completed_nbytes) { |
| ret = -EIO; |
| goto done; |
| } |
| |
| if (*buf != ce_data) { |
| ret = -EIO; |
| goto done; |
| } |
| |
| remaining_bytes -= nbytes; |
| memcpy(data, data_buf, nbytes); |
| |
| address += nbytes; |
| data += nbytes; |
| } |
| |
| done: |
| |
| if (data_buf) |
| dma_free_coherent(ar->dev, alloc_nbytes, data_buf, |
| ce_data_base); |
| |
| mutex_unlock(&ar_pci->ce_diag_mutex); |
| |
| return ret; |
| } |
| |
| static int ath10k_pci_diag_read32(struct ath10k *ar, u32 address, u32 *value) |
| { |
| __le32 val = 0; |
| int ret; |
| |
| ret = ath10k_pci_diag_read_mem(ar, address, &val, sizeof(val)); |
| *value = __le32_to_cpu(val); |
| |
| return ret; |
| } |
| |
| static int __ath10k_pci_diag_read_hi(struct ath10k *ar, void *dest, |
| u32 src, u32 len) |
| { |
| u32 host_addr, addr; |
| int ret; |
| |
| host_addr = host_interest_item_address(src); |
| |
| ret = ath10k_pci_diag_read32(ar, host_addr, &addr); |
| if (ret != 0) { |
| ath10k_warn(ar, "failed to get memcpy hi address for firmware address %d: %d\n", |
| src, ret); |
| return ret; |
| } |
| |
| ret = ath10k_pci_diag_read_mem(ar, addr, dest, len); |
| if (ret != 0) { |
| ath10k_warn(ar, "failed to memcpy firmware memory from %d (%d B): %d\n", |
| addr, len, ret); |
| return ret; |
| } |
| |
| return 0; |
| } |
| |
| #define ath10k_pci_diag_read_hi(ar, dest, src, len) \ |
| __ath10k_pci_diag_read_hi(ar, dest, HI_ITEM(src), len) |
| |
| int ath10k_pci_diag_write_mem(struct ath10k *ar, u32 address, |
| const void *data, int nbytes) |
| { |
| struct ath10k_pci *ar_pci = ath10k_pci_priv(ar); |
| int ret = 0; |
| u32 *buf; |
| unsigned int completed_nbytes, alloc_nbytes, remaining_bytes; |
| struct ath10k_ce_pipe *ce_diag; |
| void *data_buf; |
| dma_addr_t ce_data_base = 0; |
| int i; |
| |
| mutex_lock(&ar_pci->ce_diag_mutex); |
| ce_diag = ar_pci->ce_diag; |
| |
| /* |
| * Allocate a temporary bounce buffer to hold caller's data |
| * to be DMA'ed to Target. This guarantees |
| * 1) 4-byte alignment |
| * 2) Buffer in DMA-able space |
| */ |
| alloc_nbytes = min_t(unsigned int, nbytes, DIAG_TRANSFER_LIMIT); |
| |
| data_buf = dma_alloc_coherent(ar->dev, alloc_nbytes, &ce_data_base, |
| GFP_ATOMIC); |
| if (!data_buf) { |
| ret = -ENOMEM; |
| goto done; |
| } |
| |
| /* |
| * The address supplied by the caller is in the |
| * Target CPU virtual address space. |
| * |
| * In order to use this address with the diagnostic CE, |
| * convert it from |
| * Target CPU virtual address space |
| * to |
| * CE address space |
| */ |
| address = ath10k_pci_targ_cpu_to_ce_addr(ar, address); |
| |
| remaining_bytes = nbytes; |
| while (remaining_bytes) { |
| /* FIXME: check cast */ |
| nbytes = min_t(int, remaining_bytes, DIAG_TRANSFER_LIMIT); |
| |
| /* Copy caller's data to allocated DMA buf */ |
| memcpy(data_buf, data, nbytes); |
| |
| /* Set up to receive directly into Target(!) address */ |
| ret = ath10k_ce_rx_post_buf(ce_diag, &address, address); |
| if (ret != 0) |
| goto done; |
| |
| /* |
| * Request CE to send caller-supplied data that |
| * was copied to bounce buffer to Target(!) address. |
| */ |
| ret = ath10k_ce_send(ce_diag, NULL, ce_data_base, nbytes, 0, 0); |
| if (ret != 0) |
| goto done; |
| |
| i = 0; |
| while (ath10k_ce_completed_send_next(ce_diag, NULL) != 0) { |
| udelay(DIAG_ACCESS_CE_WAIT_US); |
| i += DIAG_ACCESS_CE_WAIT_US; |
| |
| if (i > DIAG_ACCESS_CE_TIMEOUT_US) { |
| ret = -EBUSY; |
| goto done; |
| } |
| } |
| |
| i = 0; |
| while (ath10k_ce_completed_recv_next(ce_diag, (void **)&buf, |
| &completed_nbytes) != 0) { |
| udelay(DIAG_ACCESS_CE_WAIT_US); |
| i += DIAG_ACCESS_CE_WAIT_US; |
| |
| if (i > DIAG_ACCESS_CE_TIMEOUT_US) { |
| ret = -EBUSY; |
| goto done; |
| } |
| } |
| |
| if (nbytes != completed_nbytes) { |
| ret = -EIO; |
| goto done; |
| } |
| |
| if (*buf != address) { |
| ret = -EIO; |
| goto done; |
| } |
| |
| remaining_bytes -= nbytes; |
| address += nbytes; |
| data += nbytes; |
| } |
| |
| done: |
| if (data_buf) { |
| dma_free_coherent(ar->dev, alloc_nbytes, data_buf, |
| ce_data_base); |
| } |
| |
| if (ret != 0) |
| ath10k_warn(ar, "failed to write diag value at 0x%x: %d\n", |
| address, ret); |
| |
| mutex_unlock(&ar_pci->ce_diag_mutex); |
| |
| return ret; |
| } |
| |
| static int ath10k_pci_diag_write32(struct ath10k *ar, u32 address, u32 value) |
| { |
| __le32 val = __cpu_to_le32(value); |
| |
| return ath10k_pci_diag_write_mem(ar, address, &val, sizeof(val)); |
| } |
| |
| /* Called by lower (CE) layer when a send to Target completes. */ |
| static void ath10k_pci_htc_tx_cb(struct ath10k_ce_pipe *ce_state) |
| { |
| struct ath10k *ar = ce_state->ar; |
| struct sk_buff_head list; |
| struct sk_buff *skb; |
| |
| __skb_queue_head_init(&list); |
| while (ath10k_ce_completed_send_next(ce_state, (void **)&skb) == 0) { |
| /* no need to call tx completion for NULL pointers */ |
| if (skb == NULL) |
| continue; |
| |
| __skb_queue_tail(&list, skb); |
| } |
| |
| while ((skb = __skb_dequeue(&list))) |
| ath10k_htc_tx_completion_handler(ar, skb); |
| } |
| |
| static void ath10k_pci_process_rx_cb(struct ath10k_ce_pipe *ce_state, |
| void (*callback)(struct ath10k *ar, |
| struct sk_buff *skb)) |
| { |
| struct ath10k *ar = ce_state->ar; |
| struct ath10k_pci *ar_pci = ath10k_pci_priv(ar); |
| struct ath10k_pci_pipe *pipe_info = &ar_pci->pipe_info[ce_state->id]; |
| struct sk_buff *skb; |
| struct sk_buff_head list; |
| void *transfer_context; |
| unsigned int nbytes, max_nbytes; |
| |
| __skb_queue_head_init(&list); |
| while (ath10k_ce_completed_recv_next(ce_state, &transfer_context, |
| &nbytes) == 0) { |
| skb = transfer_context; |
| max_nbytes = skb->len + skb_tailroom(skb); |
| dma_unmap_single(ar->dev, ATH10K_SKB_RXCB(skb)->paddr, |
| max_nbytes, DMA_FROM_DEVICE); |
| |
| if (unlikely(max_nbytes < nbytes)) { |
| ath10k_warn(ar, "rxed more than expected (nbytes %d, max %d)", |
| nbytes, max_nbytes); |
| dev_kfree_skb_any(skb); |
| continue; |
| } |
| |
| skb_put(skb, nbytes); |
| __skb_queue_tail(&list, skb); |
| } |
| |
| while ((skb = __skb_dequeue(&list))) { |
| ath10k_dbg(ar, ATH10K_DBG_PCI, "pci rx ce pipe %d len %d\n", |
| ce_state->id, skb->len); |
| ath10k_dbg_dump(ar, ATH10K_DBG_PCI_DUMP, NULL, "pci rx: ", |
| skb->data, skb->len); |
| |
| callback(ar, skb); |
| } |
| |
| ath10k_pci_rx_post_pipe(pipe_info); |
| } |
| |
| static void ath10k_pci_process_htt_rx_cb(struct ath10k_ce_pipe *ce_state, |
| void (*callback)(struct ath10k *ar, |
| struct sk_buff *skb)) |
| { |
| struct ath10k *ar = ce_state->ar; |
| struct ath10k_pci *ar_pci = ath10k_pci_priv(ar); |
| struct ath10k_pci_pipe *pipe_info = &ar_pci->pipe_info[ce_state->id]; |
| struct ath10k_ce_pipe *ce_pipe = pipe_info->ce_hdl; |
| struct sk_buff *skb; |
| struct sk_buff_head list; |
| void *transfer_context; |
| unsigned int nbytes, max_nbytes, nentries; |
| int orig_len; |
| |
| /* No need to aquire ce_lock for CE5, since this is the only place CE5 |
| * is processed other than init and deinit. Before releasing CE5 |
| * buffers, interrupts are disabled. Thus CE5 access is serialized. |
| */ |
| __skb_queue_head_init(&list); |
| while (ath10k_ce_completed_recv_next_nolock(ce_state, &transfer_context, |
| &nbytes) == 0) { |
| skb = transfer_context; |
| max_nbytes = skb->len + skb_tailroom(skb); |
| |
| if (unlikely(max_nbytes < nbytes)) { |
| ath10k_warn(ar, "rxed more than expected (nbytes %d, max %d)", |
| nbytes, max_nbytes); |
| continue; |
| } |
| |
| dma_sync_single_for_cpu(ar->dev, ATH10K_SKB_RXCB(skb)->paddr, |
| max_nbytes, DMA_FROM_DEVICE); |
| skb_put(skb, nbytes); |
| __skb_queue_tail(&list, skb); |
| } |
| |
| nentries = skb_queue_len(&list); |
| while ((skb = __skb_dequeue(&list))) { |
| ath10k_dbg(ar, ATH10K_DBG_PCI, "pci rx ce pipe %d len %d\n", |
| ce_state->id, skb->len); |
| ath10k_dbg_dump(ar, ATH10K_DBG_PCI_DUMP, NULL, "pci rx: ", |
| skb->data, skb->len); |
| |
| orig_len = skb->len; |
| callback(ar, skb); |
| skb_push(skb, orig_len - skb->len); |
| skb_reset_tail_pointer(skb); |
| skb_trim(skb, 0); |
| |
| /*let device gain the buffer again*/ |
| dma_sync_single_for_device(ar->dev, ATH10K_SKB_RXCB(skb)->paddr, |
| skb->len + skb_tailroom(skb), |
| DMA_FROM_DEVICE); |
| } |
| ath10k_ce_rx_update_write_idx(ce_pipe, nentries); |
| } |
| |
| /* Called by lower (CE) layer when data is received from the Target. */ |
| static void ath10k_pci_htc_rx_cb(struct ath10k_ce_pipe *ce_state) |
| { |
| ath10k_pci_process_rx_cb(ce_state, ath10k_htc_rx_completion_handler); |
| } |
| |
| static void ath10k_pci_htt_htc_rx_cb(struct ath10k_ce_pipe *ce_state) |
| { |
| /* CE4 polling needs to be done whenever CE pipe which transports |
| * HTT Rx (target->host) is processed. |
| */ |
| ath10k_ce_per_engine_service(ce_state->ar, 4); |
| |
| ath10k_pci_process_rx_cb(ce_state, ath10k_htc_rx_completion_handler); |
| } |
| |
| /* Called by lower (CE) layer when data is received from the Target. |
| * Only 10.4 firmware uses separate CE to transfer pktlog data. |
| */ |
| static void ath10k_pci_pktlog_rx_cb(struct ath10k_ce_pipe *ce_state) |
| { |
| ath10k_pci_process_rx_cb(ce_state, |
| ath10k_htt_rx_pktlog_completion_handler); |
| } |
| |
| /* Called by lower (CE) layer when a send to HTT Target completes. */ |
| static void ath10k_pci_htt_tx_cb(struct ath10k_ce_pipe *ce_state) |
| { |
| struct ath10k *ar = ce_state->ar; |
| struct sk_buff *skb; |
| |
| while (ath10k_ce_completed_send_next(ce_state, (void **)&skb) == 0) { |
| /* no need to call tx completion for NULL pointers */ |
| if (!skb) |
| continue; |
| |
| dma_unmap_single(ar->dev, ATH10K_SKB_CB(skb)->paddr, |
| skb->len, DMA_TO_DEVICE); |
| ath10k_htt_hif_tx_complete(ar, skb); |
| } |
| } |
| |
| static void ath10k_pci_htt_rx_deliver(struct ath10k *ar, struct sk_buff *skb) |
| { |
| skb_pull(skb, sizeof(struct ath10k_htc_hdr)); |
| ath10k_htt_t2h_msg_handler(ar, skb); |
| } |
| |
| /* Called by lower (CE) layer when HTT data is received from the Target. */ |
| static void ath10k_pci_htt_rx_cb(struct ath10k_ce_pipe *ce_state) |
| { |
| /* CE4 polling needs to be done whenever CE pipe which transports |
| * HTT Rx (target->host) is processed. |
| */ |
| ath10k_ce_per_engine_service(ce_state->ar, 4); |
| |
| ath10k_pci_process_htt_rx_cb(ce_state, ath10k_pci_htt_rx_deliver); |
| } |
| |
| int ath10k_pci_hif_tx_sg(struct ath10k *ar, u8 pipe_id, |
| struct ath10k_hif_sg_item *items, int n_items) |
| { |
| struct ath10k_pci *ar_pci = ath10k_pci_priv(ar); |
| struct ath10k_ce *ce = ath10k_ce_priv(ar); |
| struct ath10k_pci_pipe *pci_pipe = &ar_pci->pipe_info[pipe_id]; |
| struct ath10k_ce_pipe *ce_pipe = pci_pipe->ce_hdl; |
| struct ath10k_ce_ring *src_ring = ce_pipe->src_ring; |
| unsigned int nentries_mask; |
| unsigned int sw_index; |
| unsigned int write_index; |
| int err, i = 0; |
| |
| spin_lock_bh(&ce->ce_lock); |
| |
| nentries_mask = src_ring->nentries_mask; |
| sw_index = src_ring->sw_index; |
| write_index = src_ring->write_index; |
| |
| if (unlikely(CE_RING_DELTA(nentries_mask, |
| write_index, sw_index - 1) < n_items)) { |
| err = -ENOBUFS; |
| goto err; |
| } |
| |
| for (i = 0; i < n_items - 1; i++) { |
| ath10k_dbg(ar, ATH10K_DBG_PCI, |
| "pci tx item %d paddr %pad len %d n_items %d\n", |
| i, &items[i].paddr, items[i].len, n_items); |
| ath10k_dbg_dump(ar, ATH10K_DBG_PCI_DUMP, NULL, "pci tx data: ", |
| items[i].vaddr, items[i].len); |
| |
| err = ath10k_ce_send_nolock(ce_pipe, |
| items[i].transfer_context, |
| items[i].paddr, |
| items[i].len, |
| items[i].transfer_id, |
| CE_SEND_FLAG_GATHER); |
| if (err) |
| goto err; |
| } |
| |
| /* `i` is equal to `n_items -1` after for() */ |
| |
| ath10k_dbg(ar, ATH10K_DBG_PCI, |
| "pci tx item %d paddr %pad len %d n_items %d\n", |
| i, &items[i].paddr, items[i].len, n_items); |
| ath10k_dbg_dump(ar, ATH10K_DBG_PCI_DUMP, NULL, "pci tx data: ", |
| items[i].vaddr, items[i].len); |
| |
| err = ath10k_ce_send_nolock(ce_pipe, |
| items[i].transfer_context, |
| items[i].paddr, |
| items[i].len, |
| items[i].transfer_id, |
| 0); |
| if (err) |
| goto err; |
| |
| spin_unlock_bh(&ce->ce_lock); |
| return 0; |
| |
| err: |
| for (; i > 0; i--) |
| __ath10k_ce_send_revert(ce_pipe); |
| |
| spin_unlock_bh(&ce->ce_lock); |
| return err; |
| } |
| |
| int ath10k_pci_hif_diag_read(struct ath10k *ar, u32 address, void *buf, |
| size_t buf_len) |
| { |
| return ath10k_pci_diag_read_mem(ar, address, buf, buf_len); |
| } |
| |
| u16 ath10k_pci_hif_get_free_queue_number(struct ath10k *ar, u8 pipe) |
| { |
| struct ath10k_pci *ar_pci = ath10k_pci_priv(ar); |
| |
| ath10k_dbg(ar, ATH10K_DBG_PCI, "pci hif get free queue number\n"); |
| |
| return ath10k_ce_num_free_src_entries(ar_pci->pipe_info[pipe].ce_hdl); |
| } |
| |
| static void ath10k_pci_dump_registers(struct ath10k *ar, |
| struct ath10k_fw_crash_data *crash_data) |
| { |
| __le32 reg_dump_values[REG_DUMP_COUNT_QCA988X] = {}; |
| int i, ret; |
| |
| lockdep_assert_held(&ar->dump_mutex); |
| |
| ret = ath10k_pci_diag_read_hi(ar, ®_dump_values[0], |
| hi_failure_state, |
| REG_DUMP_COUNT_QCA988X * sizeof(__le32)); |
| if (ret) { |
| ath10k_err(ar, "failed to read firmware dump area: %d\n", ret); |
| return; |
| } |
| |
| BUILD_BUG_ON(REG_DUMP_COUNT_QCA988X % 4); |
| |
| ath10k_err(ar, "firmware register dump:\n"); |
| for (i = 0; i < REG_DUMP_COUNT_QCA988X; i += 4) |
| ath10k_err(ar, "[%02d]: 0x%08X 0x%08X 0x%08X 0x%08X\n", |
| i, |
| __le32_to_cpu(reg_dump_values[i]), |
| __le32_to_cpu(reg_dump_values[i + 1]), |
| __le32_to_cpu(reg_dump_values[i + 2]), |
| __le32_to_cpu(reg_dump_values[i + 3])); |
| |
| if (!crash_data) |
| return; |
| |
| for (i = 0; i < REG_DUMP_COUNT_QCA988X; i++) |
| crash_data->registers[i] = reg_dump_values[i]; |
| } |
| |
| static int ath10k_pci_dump_memory_section(struct ath10k *ar, |
| const struct ath10k_mem_region *mem_region, |
| u8 *buf, size_t buf_len) |
| { |
| const struct ath10k_mem_section *cur_section, *next_section; |
| unsigned int count, section_size, skip_size; |
| int ret, i, j; |
| |
| if (!mem_region || !buf) |
| return 0; |
| |
| cur_section = &mem_region->section_table.sections[0]; |
| |
| if (mem_region->start > cur_section->start) { |
| ath10k_warn(ar, "incorrect memdump region 0x%x with section start address 0x%x.\n", |
| mem_region->start, cur_section->start); |
| return 0; |
| } |
| |
| skip_size = cur_section->start - mem_region->start; |
| |
| /* fill the gap between the first register section and register |
| * start address |
| */ |
| for (i = 0; i < skip_size; i++) { |
| *buf = ATH10K_MAGIC_NOT_COPIED; |
| buf++; |
| } |
| |
| count = 0; |
| |
| for (i = 0; cur_section != NULL; i++) { |
| section_size = cur_section->end - cur_section->start; |
| |
| if (section_size <= 0) { |
| ath10k_warn(ar, "incorrect ramdump format with start address 0x%x and stop address 0x%x\n", |
| cur_section->start, |
| cur_section->end); |
| break; |
| } |
| |
| if ((i + 1) == mem_region->section_table.size) { |
| /* last section */ |
| next_section = NULL; |
| skip_size = 0; |
| } else { |
| next_section = cur_section + 1; |
| |
| if (cur_section->end > next_section->start) { |
| ath10k_warn(ar, "next ramdump section 0x%x is smaller than current end address 0x%x\n", |
| next_section->start, |
| cur_section->end); |
| break; |
| } |
| |
| skip_size = next_section->start - cur_section->end; |
| } |
| |
| if (buf_len < (skip_size + section_size)) { |
| ath10k_warn(ar, "ramdump buffer is too small: %zu\n", buf_len); |
| break; |
| } |
| |
| buf_len -= skip_size + section_size; |
| |
| /* read section to dest memory */ |
| ret = ath10k_pci_diag_read_mem(ar, cur_section->start, |
| buf, section_size); |
| if (ret) { |
| ath10k_warn(ar, "failed to read ramdump from section 0x%x: %d\n", |
| cur_section->start, ret); |
| break; |
| } |
| |
| buf += section_size; |
| count += section_size; |
| |
| /* fill in the gap between this section and the next */ |
| for (j = 0; j < skip_size; j++) { |
| *buf = ATH10K_MAGIC_NOT_COPIED; |
| buf++; |
| } |
| |
| count += skip_size; |
| |
| if (!next_section) |
| /* this was the last section */ |
| break; |
| |
| cur_section = next_section; |
| } |
| |
| return count; |
| } |
| |
| static int ath10k_pci_set_ram_config(struct ath10k *ar, u32 config) |
| { |
| u32 val; |
| |
| ath10k_pci_write32(ar, SOC_CORE_BASE_ADDRESS + |
| FW_RAM_CONFIG_ADDRESS, config); |
| |
| val = ath10k_pci_read32(ar, SOC_CORE_BASE_ADDRESS + |
| FW_RAM_CONFIG_ADDRESS); |
| if (val != config) { |
| ath10k_warn(ar, "failed to set RAM config from 0x%x to 0x%x\n", |
| val, config); |
| return -EIO; |
| } |
| |
| return 0; |
| } |
| |
| /* Always returns the length */ |
| static int ath10k_pci_dump_memory_sram(struct ath10k *ar, |
| const struct ath10k_mem_region *region, |
| u8 *buf) |
| { |
| struct ath10k_pci *ar_pci = ath10k_pci_priv(ar); |
| u32 base_addr, i; |
| |
| base_addr = ioread32(ar_pci->mem + QCA99X0_PCIE_BAR0_START_REG); |
| base_addr += region->start; |
| |
| for (i = 0; i < region->len; i += 4) { |
| iowrite32(base_addr + i, ar_pci->mem + QCA99X0_CPU_MEM_ADDR_REG); |
| *(u32 *)(buf + i) = ioread32(ar_pci->mem + QCA99X0_CPU_MEM_DATA_REG); |
| } |
| |
| return region->len; |
| } |
| |
| /* if an error happened returns < 0, otherwise the length */ |
| static int ath10k_pci_dump_memory_reg(struct ath10k *ar, |
| const struct ath10k_mem_region *region, |
| u8 *buf) |
| { |
| struct ath10k_pci *ar_pci = ath10k_pci_priv(ar); |
| u32 i; |
| int ret; |
| |
| mutex_lock(&ar->conf_mutex); |
| if (ar->state != ATH10K_STATE_ON) { |
| ath10k_warn(ar, "Skipping pci_dump_memory_reg invalid state\n"); |
| ret = -EIO; |
| goto done; |
| } |
| |
| for (i = 0; i < region->len; i += 4) |
| *(u32 *)(buf + i) = ioread32(ar_pci->mem + region->start + i); |
| |
| ret = region->len; |
| done: |
| mutex_unlock(&ar->conf_mutex); |
| return ret; |
| } |
| |
| /* if an error happened returns < 0, otherwise the length */ |
| static int ath10k_pci_dump_memory_generic(struct ath10k *ar, |
| const struct ath10k_mem_region *current_region, |
| u8 *buf) |
| { |
| int ret; |
| |
| if (current_region->section_table.size > 0) |
| /* Copy each section individually. */ |
| return ath10k_pci_dump_memory_section(ar, |
| current_region, |
| buf, |
| current_region->len); |
| |
| /* No individiual memory sections defined so we can |
| * copy the entire memory region. |
| */ |
| ret = ath10k_pci_diag_read_mem(ar, |
| current_region->start, |
| buf, |
| current_region->len); |
| if (ret) { |
| ath10k_warn(ar, "failed to copy ramdump region %s: %d\n", |
| current_region->name, ret); |
| return ret; |
| } |
| |
| return current_region->len; |
| } |
| |
| static void ath10k_pci_dump_memory(struct ath10k *ar, |
| struct ath10k_fw_crash_data *crash_data) |
| { |
| const struct ath10k_hw_mem_layout *mem_layout; |
| const struct ath10k_mem_region *current_region; |
| struct ath10k_dump_ram_data_hdr *hdr; |
| u32 count, shift; |
| size_t buf_len; |
| int ret, i; |
| u8 *buf; |
| |
| lockdep_assert_held(&ar->dump_mutex); |
| |
| if (!crash_data) |
| return; |
| |
| mem_layout = ath10k_coredump_get_mem_layout(ar); |
| if (!mem_layout) |
| return; |
| |
| current_region = &mem_layout->region_table.regions[0]; |
| |
| buf = crash_data->ramdump_buf; |
| buf_len = crash_data->ramdump_buf_len; |
| |
| memset(buf, 0, buf_len); |
| |
| for (i = 0; i < mem_layout->region_table.size; i++) { |
| count = 0; |
| |
| if (current_region->len > buf_len) { |
| ath10k_warn(ar, "memory region %s size %d is larger that remaining ramdump buffer size %zu\n", |
| current_region->name, |
| current_region->len, |
| buf_len); |
| break; |
| } |
| |
| /* To get IRAM dump, the host driver needs to switch target |
| * ram config from DRAM to IRAM. |
| */ |
| if (current_region->type == ATH10K_MEM_REGION_TYPE_IRAM1 || |
| current_region->type == ATH10K_MEM_REGION_TYPE_IRAM2) { |
| shift = current_region->start >> 20; |
| |
| ret = ath10k_pci_set_ram_config(ar, shift); |
| if (ret) { |
| ath10k_warn(ar, "failed to switch ram config to IRAM for section %s: %d\n", |
| current_region->name, ret); |
| break; |
| } |
| } |
| |
| /* Reserve space for the header. */ |
| hdr = (void *)buf; |
| buf += sizeof(*hdr); |
| buf_len -= sizeof(*hdr); |
| |
| switch (current_region->type) { |
| case ATH10K_MEM_REGION_TYPE_IOSRAM: |
| count = ath10k_pci_dump_memory_sram(ar, current_region, buf); |
| break; |
| case ATH10K_MEM_REGION_TYPE_IOREG: |
| ret = ath10k_pci_dump_memory_reg(ar, current_region, buf); |
| if (ret < 0) |
| break; |
| |
| count = ret; |
| break; |
| default: |
| ret = ath10k_pci_dump_memory_generic(ar, current_region, buf); |
| if (ret < 0) |
| break; |
| |
| count = ret; |
| break; |
| } |
| |
| hdr->region_type = cpu_to_le32(current_region->type); |
| hdr->start = cpu_to_le32(current_region->start); |
| hdr->length = cpu_to_le32(count); |
| |
| if (count == 0) |
| /* Note: the header remains, just with zero length. */ |
| break; |
| |
| buf += count; |
| buf_len -= count; |
| |
| current_region++; |
| } |
| } |
| |
| static void ath10k_pci_fw_dump_work(struct work_struct *work) |
| { |
| struct ath10k_pci *ar_pci = container_of(work, struct ath10k_pci, |
| dump_work); |
| struct ath10k_fw_crash_data *crash_data; |
| struct ath10k *ar = ar_pci->ar; |
| char guid[UUID_STRING_LEN + 1]; |
| |
| mutex_lock(&ar->dump_mutex); |
| |
| spin_lock_bh(&ar->data_lock); |
| ar->stats.fw_crash_counter++; |
| spin_unlock_bh(&ar->data_lock); |
| |
| crash_data = ath10k_coredump_new(ar); |
| |
| if (crash_data) |
| scnprintf(guid, sizeof(guid), "%pUl", &crash_data->guid); |
| else |
| scnprintf(guid, sizeof(guid), "n/a"); |
| |
| ath10k_err(ar, "firmware crashed! (guid %s)\n", guid); |
| ath10k_print_driver_info(ar); |
| ath10k_pci_dump_registers(ar, crash_data); |
| ath10k_ce_dump_registers(ar, crash_data); |
| ath10k_pci_dump_memory(ar, crash_data); |
| |
| mutex_unlock(&ar->dump_mutex); |
| |
| queue_work(ar->workqueue, &ar->restart_work); |
| } |
| |
| static void ath10k_pci_fw_crashed_dump(struct ath10k *ar) |
| { |
| struct ath10k_pci *ar_pci = ath10k_pci_priv(ar); |
| |
| queue_work(ar->workqueue, &ar_pci->dump_work); |
| } |
| |
| void ath10k_pci_hif_send_complete_check(struct ath10k *ar, u8 pipe, |
| int force) |
| { |
| struct ath10k_pci *ar_pci = ath10k_pci_priv(ar); |
| |
| ath10k_dbg(ar, ATH10K_DBG_PCI, "pci hif send complete check\n"); |
| |
| if (!force) { |
| int resources; |
| /* |
| * Decide whether to actually poll for completions, or just |
| * wait for a later chance. |
| * If there seem to be plenty of resources left, then just wait |
| * since checking involves reading a CE register, which is a |
| * relatively expensive operation. |
| */ |
| resources = ath10k_pci_hif_get_free_queue_number(ar, pipe); |
| |
| /* |
| * If at least 50% of the total resources are still available, |
| * don't bother checking again yet. |
| */ |
| if (resources > (ar_pci->attr[pipe].src_nentries >> 1)) |
| return; |
| } |
| ath10k_ce_per_engine_service(ar, pipe); |
| } |
| |
| static void ath10k_pci_rx_retry_sync(struct ath10k *ar) |
| { |
| struct ath10k_pci *ar_pci = ath10k_pci_priv(ar); |
| |
| del_timer_sync(&ar_pci->rx_post_retry); |
| } |
| |
| int ath10k_pci_hif_map_service_to_pipe(struct ath10k *ar, u16 service_id, |
| u8 *ul_pipe, u8 *dl_pipe) |
| { |
| struct ath10k_pci *ar_pci = ath10k_pci_priv(ar); |
| const struct ce_service_to_pipe *entry; |
| bool ul_set = false, dl_set = false; |
| int i; |
| |
| ath10k_dbg(ar, ATH10K_DBG_PCI, "pci hif map service\n"); |
| |
| for (i = 0; i < ARRAY_SIZE(pci_target_service_to_ce_map_wlan); i++) { |
| entry = &ar_pci->serv_to_pipe[i]; |
| |
| if (__le32_to_cpu(entry->service_id) != service_id) |
| continue; |
| |
| switch (__le32_to_cpu(entry->pipedir)) { |
| case PIPEDIR_NONE: |
| break; |
| case PIPEDIR_IN: |
| WARN_ON(dl_set); |
| *dl_pipe = __le32_to_cpu(entry->pipenum); |
| dl_set = true; |
| break; |
| case PIPEDIR_OUT: |
| WARN_ON(ul_set); |
| *ul_pipe = __le32_to_cpu(entry->pipenum); |
| ul_set = true; |
| break; |
| case PIPEDIR_INOUT: |
| WARN_ON(dl_set); |
| WARN_ON(ul_set); |
| *dl_pipe = __le32_to_cpu(entry->pipenum); |
| *ul_pipe = __le32_to_cpu(entry->pipenum); |
| dl_set = true; |
| ul_set = true; |
| break; |
| } |
| } |
| |
| if (!ul_set || !dl_set) |
| return -ENOENT; |
| |
| return 0; |
| } |
| |
| void ath10k_pci_hif_get_default_pipe(struct ath10k *ar, |
| u8 *ul_pipe, u8 *dl_pipe) |
| { |
| ath10k_dbg(ar, ATH10K_DBG_PCI, "pci hif get default pipe\n"); |
| |
| (void)ath10k_pci_hif_map_service_to_pipe(ar, |
| ATH10K_HTC_SVC_ID_RSVD_CTRL, |
| ul_pipe, dl_pipe); |
| } |
| |
| void ath10k_pci_irq_msi_fw_mask(struct ath10k *ar) |
| { |
| u32 val; |
| |
| switch (ar->hw_rev) { |
| case ATH10K_HW_QCA988X: |
| case ATH10K_HW_QCA9887: |
| case ATH10K_HW_QCA6174: |
| case ATH10K_HW_QCA9377: |
| val = ath10k_pci_read32(ar, SOC_CORE_BASE_ADDRESS + |
| CORE_CTRL_ADDRESS); |
| val &= ~CORE_CTRL_PCIE_REG_31_MASK; |
| ath10k_pci_write32(ar, SOC_CORE_BASE_ADDRESS + |
| CORE_CTRL_ADDRESS, val); |
| break; |
| case ATH10K_HW_QCA99X0: |
| case ATH10K_HW_QCA9984: |
| case ATH10K_HW_QCA9888: |
| case ATH10K_HW_QCA4019: |
| /* TODO: Find appropriate register configuration for QCA99X0 |
| * to mask irq/MSI. |
| */ |
| break; |
| case ATH10K_HW_WCN3990: |
| break; |
| } |
| } |
| |
| static void ath10k_pci_irq_msi_fw_unmask(struct ath10k *ar) |
| { |
| u32 val; |
| |
| switch (ar->hw_rev) { |
| case ATH10K_HW_QCA988X: |
| case ATH10K_HW_QCA9887: |
| case ATH10K_HW_QCA6174: |
| case ATH10K_HW_QCA9377: |
| val = ath10k_pci_read32(ar, SOC_CORE_BASE_ADDRESS + |
| CORE_CTRL_ADDRESS); |
| val |= CORE_CTRL_PCIE_REG_31_MASK; |
| ath10k_pci_write32(ar, SOC_CORE_BASE_ADDRESS + |
| CORE_CTRL_ADDRESS, val); |
| break; |
| case ATH10K_HW_QCA99X0: |
| case ATH10K_HW_QCA9984: |
| case ATH10K_HW_QCA9888: |
| case ATH10K_HW_QCA4019: |
| /* TODO: Find appropriate register configuration for QCA99X0 |
| * to unmask irq/MSI. |
| */ |
| break; |
| case ATH10K_HW_WCN3990: |
| break; |
| } |
| } |
| |
| static void ath10k_pci_irq_disable(struct ath10k *ar) |
| { |
| ath10k_ce_disable_interrupts(ar); |
| ath10k_pci_disable_and_clear_legacy_irq(ar); |
| ath10k_pci_irq_msi_fw_mask(ar); |
| } |
| |
| static void ath10k_pci_irq_sync(struct ath10k *ar) |
| { |
| struct ath10k_pci *ar_pci = ath10k_pci_priv(ar); |
| |
| synchronize_irq(ar_pci->pdev->irq); |
| } |
| |
| static void ath10k_pci_irq_enable(struct ath10k *ar) |
| { |
| ath10k_ce_enable_interrupts(ar); |
| ath10k_pci_enable_legacy_irq(ar); |
| ath10k_pci_irq_msi_fw_unmask(ar); |
| } |
| |
| static int ath10k_pci_hif_start(struct ath10k *ar) |
| { |
| struct ath10k_pci *ar_pci = ath10k_pci_priv(ar); |
| |
| ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot hif start\n"); |
| |
| napi_enable(&ar->napi); |
| |
| ath10k_pci_irq_enable(ar); |
| ath10k_pci_rx_post(ar); |
| |
| pcie_capability_write_word(ar_pci->pdev, PCI_EXP_LNKCTL, |
| ar_pci->link_ctl); |
| |
| return 0; |
| } |
| |
| static void ath10k_pci_rx_pipe_cleanup(struct ath10k_pci_pipe *pci_pipe) |
| { |
| struct ath10k *ar; |
| struct ath10k_ce_pipe *ce_pipe; |
| struct ath10k_ce_ring *ce_ring; |
| struct sk_buff *skb; |
| int i; |
| |
| ar = pci_pipe->hif_ce_state; |
| ce_pipe = pci_pipe->ce_hdl; |
| ce_ring = ce_pipe->dest_ring; |
| |
| if (!ce_ring) |
| return; |
| |
| if (!pci_pipe->buf_sz) |
| return; |
| |
| for (i = 0; i < ce_ring->nentries; i++) { |
| skb = ce_ring->per_transfer_context[i]; |
| if (!skb) |
| continue; |
| |
| ce_ring->per_transfer_context[i] = NULL; |
| |
| dma_unmap_single(ar->dev, ATH10K_SKB_RXCB(skb)->paddr, |
| skb->len + skb_tailroom(skb), |
| DMA_FROM_DEVICE); |
| dev_kfree_skb_any(skb); |
| } |
| } |
| |
| static void ath10k_pci_tx_pipe_cleanup(struct ath10k_pci_pipe *pci_pipe) |
| { |
| struct ath10k *ar; |
| struct ath10k_ce_pipe *ce_pipe; |
| struct ath10k_ce_ring *ce_ring; |
| struct sk_buff *skb; |
| int i; |
| |
| ar = pci_pipe->hif_ce_state; |
| ce_pipe = pci_pipe->ce_hdl; |
| ce_ring = ce_pipe->src_ring; |
| |
| if (!ce_ring) |
| return; |
| |
| if (!pci_pipe->buf_sz) |
| return; |
| |
| for (i = 0; i < ce_ring->nentries; i++) { |
| skb = ce_ring->per_transfer_context[i]; |
| if (!skb) |
| continue; |
| |
| ce_ring->per_transfer_context[i] = NULL; |
| |
| ath10k_htc_tx_completion_handler(ar, skb); |
| } |
| } |
| |
| /* |
| * Cleanup residual buffers for device shutdown: |
| * buffers that were enqueued for receive |
| * buffers that were to be sent |
| * Note: Buffers that had completed but which were |
| * not yet processed are on a completion queue. They |
| * are handled when the completion thread shuts down. |
| */ |
| static void ath10k_pci_buffer_cleanup(struct ath10k *ar) |
| { |
| struct ath10k_pci *ar_pci = ath10k_pci_priv(ar); |
| int pipe_num; |
| |
| for (pipe_num = 0; pipe_num < CE_COUNT; pipe_num++) { |
| struct ath10k_pci_pipe *pipe_info; |
| |
| pipe_info = &ar_pci->pipe_info[pipe_num]; |
| ath10k_pci_rx_pipe_cleanup(pipe_info); |
| ath10k_pci_tx_pipe_cleanup(pipe_info); |
| } |
| } |
| |
| void ath10k_pci_ce_deinit(struct ath10k *ar) |
| { |
| int i; |
| |
| for (i = 0; i < CE_COUNT; i++) |
| ath10k_ce_deinit_pipe(ar, i); |
| } |
| |
| void ath10k_pci_flush(struct ath10k *ar) |
| { |
| ath10k_pci_rx_retry_sync(ar); |
| ath10k_pci_buffer_cleanup(ar); |
| } |
| |
| static void ath10k_pci_hif_stop(struct ath10k *ar) |
| { |
| struct ath10k_pci *ar_pci = ath10k_pci_priv(ar); |
| unsigned long flags; |
| |
| ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot hif stop\n"); |
| |
| ath10k_pci_irq_disable(ar); |
| ath10k_pci_irq_sync(ar); |
| napi_synchronize(&ar->napi); |
| napi_disable(&ar->napi); |
| cancel_work_sync(&ar_pci->dump_work); |
| |
| /* Most likely the device has HTT Rx ring configured. The only way to |
| * prevent the device from accessing (and possible corrupting) host |
| * memory is to reset the chip now. |
| * |
| * There's also no known way of masking MSI interrupts on the device. |
| * For ranged MSI the CE-related interrupts can be masked. However |
| * regardless how many MSI interrupts are assigned the first one |
| * is always used for firmware indications (crashes) and cannot be |
| * masked. To prevent the device from asserting the interrupt reset it |
| * before proceeding with cleanup. |
| */ |
| ath10k_pci_safe_chip_reset(ar); |
| |
| ath10k_pci_flush(ar); |
| |
| spin_lock_irqsave(&ar_pci->ps_lock, flags); |
| WARN_ON(ar_pci->ps_wake_refcount > 0); |
| spin_unlock_irqrestore(&ar_pci->ps_lock, flags); |
| } |
| |
| int ath10k_pci_hif_exchange_bmi_msg(struct ath10k *ar, |
| void *req, u32 req_len, |
| void *resp, u32 *resp_len) |
| { |
| struct ath10k_pci *ar_pci = ath10k_pci_priv(ar); |
| struct ath10k_pci_pipe *pci_tx = &ar_pci->pipe_info[BMI_CE_NUM_TO_TARG]; |
| struct ath10k_pci_pipe *pci_rx = &ar_pci->pipe_info[BMI_CE_NUM_TO_HOST]; |
| struct ath10k_ce_pipe *ce_tx = pci_tx->ce_hdl; |
| struct ath10k_ce_pipe *ce_rx = pci_rx->ce_hdl; |
| dma_addr_t req_paddr = 0; |
| dma_addr_t resp_paddr = 0; |
| struct bmi_xfer xfer = {}; |
| void *treq, *tresp = NULL; |
| int ret = 0; |
| |
| might_sleep(); |
| |
| if (resp && !resp_len) |
| return -EINVAL; |
| |
| if (resp && resp_len && *resp_len == 0) |
| return -EINVAL; |
| |
| treq = kmemdup(req, req_len, GFP_KERNEL); |
| if (!treq) |
| return -ENOMEM; |
| |
| req_paddr = dma_map_single(ar->dev, treq, req_len, DMA_TO_DEVICE); |
| ret = dma_mapping_error(ar->dev, req_paddr); |
| if (ret) { |
| ret = -EIO; |
| goto err_dma; |
| } |
| |
| if (resp && resp_len) { |
| tresp = kzalloc(*resp_len, GFP_KERNEL); |
| if (!tresp) { |
| ret = -ENOMEM; |
| goto err_req; |
| } |
| |
| resp_paddr = dma_map_single(ar->dev, tresp, *resp_len, |
| DMA_FROM_DEVICE); |
| ret = dma_mapping_error(ar->dev, resp_paddr); |
| if (ret) { |
| ret = -EIO; |
| goto err_req; |
| } |
| |
| xfer.wait_for_resp = true; |
| xfer.resp_len = 0; |
| |
| ath10k_ce_rx_post_buf(ce_rx, &xfer, resp_paddr); |
| } |
| |
| ret = ath10k_ce_send(ce_tx, &xfer, req_paddr, req_len, -1, 0); |
| if (ret) |
| goto err_resp; |
| |
| ret = ath10k_pci_bmi_wait(ar, ce_tx, ce_rx, &xfer); |
| if (ret) { |
| dma_addr_t unused_buffer; |
| unsigned int unused_nbytes; |
| unsigned int unused_id; |
| |
| ath10k_ce_cancel_send_next(ce_tx, NULL, &unused_buffer, |
| &unused_nbytes, &unused_id); |
| } else { |
| /* non-zero means we did not time out */ |
| ret = 0; |
| } |
| |
| err_resp: |
| if (resp) { |
| dma_addr_t unused_buffer; |
| |
| ath10k_ce_revoke_recv_next(ce_rx, NULL, &unused_buffer); |
| dma_unmap_single(ar->dev, resp_paddr, |
| *resp_len, DMA_FROM_DEVICE); |
| } |
| err_req: |
| dma_unmap_single(ar->dev, req_paddr, req_len, DMA_TO_DEVICE); |
| |
| if (ret == 0 && resp_len) { |
| *resp_len = min(*resp_len, xfer.resp_len); |
| memcpy(resp, tresp, *resp_len); |
| } |
| err_dma: |
| kfree(treq); |
| kfree(tresp); |
| |
| return ret; |
| } |
| |
| static void ath10k_pci_bmi_send_done(struct ath10k_ce_pipe *ce_state) |
| { |
| struct bmi_xfer *xfer; |
| |
| if (ath10k_ce_completed_send_next(ce_state, (void **)&xfer)) |
| return; |
| |
| xfer->tx_done = true; |
| } |
| |
| static void ath10k_pci_bmi_recv_data(struct ath10k_ce_pipe *ce_state) |
| { |
| struct ath10k *ar = ce_state->ar; |
| struct bmi_xfer *xfer; |
| unsigned int nbytes; |
| |
| if (ath10k_ce_completed_recv_next(ce_state, (void **)&xfer, |
| &nbytes)) |
| return; |
| |
| if (WARN_ON_ONCE(!xfer)) |
| return; |
| |
| if (!xfer->wait_for_resp) { |
| ath10k_warn(ar, "unexpected: BMI data received; ignoring\n"); |
| return; |
| } |
| |
| xfer->resp_len = nbytes; |
| xfer->rx_done = true; |
| } |
| |
| static int ath10k_pci_bmi_wait(struct ath10k *ar, |
| struct ath10k_ce_pipe *tx_pipe, |
| struct ath10k_ce_pipe *rx_pipe, |
| struct bmi_xfer *xfer) |
| { |
| unsigned long timeout = jiffies + BMI_COMMUNICATION_TIMEOUT_HZ; |
| unsigned long started = jiffies; |
| unsigned long dur; |
| int ret; |
| |
| while (time_before_eq(jiffies, timeout)) { |
| ath10k_pci_bmi_send_done(tx_pipe); |
| ath10k_pci_bmi_recv_data(rx_pipe); |
| |
| if (xfer->tx_done && (xfer->rx_done == xfer->wait_for_resp)) { |
| ret = 0; |
| goto out; |
| } |
| |
| schedule(); |
| } |
| |
| ret = -ETIMEDOUT; |
| |
| out: |
| dur = jiffies - started; |
| if (dur > HZ) |
| ath10k_dbg(ar, ATH10K_DBG_BMI, |
| "bmi cmd took %lu jiffies hz %d ret %d\n", |
| dur, HZ, ret); |
| return ret; |
| } |
| |
| /* |
| * Send an interrupt to the device to wake up the Target CPU |
| * so it has an opportunity to notice any changed state. |
| */ |
| static int ath10k_pci_wake_target_cpu(struct ath10k *ar) |
| { |
| u32 addr, val; |
| |
| addr = SOC_CORE_BASE_ADDRESS + CORE_CTRL_ADDRESS; |
| val = ath10k_pci_read32(ar, addr); |
| val |= CORE_CTRL_CPU_INTR_MASK; |
| ath10k_pci_write32(ar, addr, val); |
| |
| return 0; |
| } |
| |
| static int ath10k_pci_get_num_banks(struct ath10k *ar) |
| { |
| struct ath10k_pci *ar_pci = ath10k_pci_priv(ar); |
| |
| switch (ar_pci->pdev->device) { |
| case QCA988X_2_0_DEVICE_ID_UBNT: |
| case QCA988X_2_0_DEVICE_ID: |
| case QCA99X0_2_0_DEVICE_ID: |
| case QCA9888_2_0_DEVICE_ID: |
| case QCA9984_1_0_DEVICE_ID: |
| case QCA9887_1_0_DEVICE_ID: |
| return 1; |
| case QCA6164_2_1_DEVICE_ID: |
| case QCA6174_2_1_DEVICE_ID: |
| switch (MS(ar->bus_param.chip_id, SOC_CHIP_ID_REV)) { |
| case QCA6174_HW_1_0_CHIP_ID_REV: |
| case QCA6174_HW_1_1_CHIP_ID_REV: |
| case QCA6174_HW_2_1_CHIP_ID_REV: |
| case QCA6174_HW_2_2_CHIP_ID_REV: |
| return 3; |
| case QCA6174_HW_1_3_CHIP_ID_REV: |
| return 2; |
| case QCA6174_HW_3_0_CHIP_ID_REV: |
| case QCA6174_HW_3_1_CHIP_ID_REV: |
| case QCA6174_HW_3_2_CHIP_ID_REV: |
| return 9; |
| } |
| break; |
| case QCA9377_1_0_DEVICE_ID: |
| return 9; |
| } |
| |
| ath10k_warn(ar, "unknown number of banks, assuming 1\n"); |
| return 1; |
| } |
| |
| static int ath10k_bus_get_num_banks(struct ath10k *ar) |
| { |
| struct ath10k_ce *ce = ath10k_ce_priv(ar); |
| |
| return ce->bus_ops->get_num_banks(ar); |
| } |
| |
| int ath10k_pci_init_config(struct ath10k *ar) |
| { |
| struct ath10k_pci *ar_pci = ath10k_pci_priv(ar); |
| u32 interconnect_targ_addr; |
| u32 pcie_state_targ_addr = 0; |
| u32 pipe_cfg_targ_addr = 0; |
| u32 svc_to_pipe_map = 0; |
| u32 pcie_config_flags = 0; |
| u32 ealloc_value; |
| u32 ealloc_targ_addr; |
| u32 flag2_value; |
| u32 flag2_targ_addr; |
| int ret = 0; |
| |
| /* Download to Target the CE Config and the service-to-CE map */ |
| interconnect_targ_addr = |
| host_interest_item_address(HI_ITEM(hi_interconnect_state)); |
| |
| /* Supply Target-side CE configuration */ |
| ret = ath10k_pci_diag_read32(ar, interconnect_targ_addr, |
| &pcie_state_targ_addr); |
| if (ret != 0) { |
| ath10k_err(ar, "Failed to get pcie state addr: %d\n", ret); |
| return ret; |
| } |
| |
| if (pcie_state_targ_addr == 0) { |
| ret = -EIO; |
| ath10k_err(ar, "Invalid pcie state addr\n"); |
| return ret; |
| } |
| |
| ret = ath10k_pci_diag_read32(ar, (pcie_state_targ_addr + |
| offsetof(struct pcie_state, |
| pipe_cfg_addr)), |
| &pipe_cfg_targ_addr); |
| if (ret != 0) { |
| ath10k_err(ar, "Failed to get pipe cfg addr: %d\n", ret); |
| return ret; |
| } |
| |
| if (pipe_cfg_targ_addr == 0) { |
| ret = -EIO; |
| ath10k_err(ar, "Invalid pipe cfg addr\n"); |
| return ret; |
| } |
| |
| ret = ath10k_pci_diag_write_mem(ar, pipe_cfg_targ_addr, |
| ar_pci->pipe_config, |
| sizeof(struct ce_pipe_config) * |
| NUM_TARGET_CE_CONFIG_WLAN); |
| |
| if (ret != 0) { |
| ath10k_err(ar, "Failed to write pipe cfg: %d\n", ret); |
| return ret; |
| } |
| |
| ret = ath10k_pci_diag_read32(ar, (pcie_state_targ_addr + |
| offsetof(struct pcie_state, |
| svc_to_pipe_map)), |
| &svc_to_pipe_map); |
| if (ret != 0) { |
| ath10k_err(ar, "Failed to get svc/pipe map: %d\n", ret); |
| return ret; |
| } |
| |
| if (svc_to_pipe_map == 0) { |
| ret = -EIO; |
| ath10k_err(ar, "Invalid svc_to_pipe map\n"); |
| return ret; |
| } |
| |
| ret = ath10k_pci_diag_write_mem(ar, svc_to_pipe_map, |
| ar_pci->serv_to_pipe, |
| sizeof(pci_target_service_to_ce_map_wlan)); |
| if (ret != 0) { |
| ath10k_err(ar, "Failed to write svc/pipe map: %d\n", ret); |
| return ret; |
| } |
| |
| ret = ath10k_pci_diag_read32(ar, (pcie_state_targ_addr + |
| offsetof(struct pcie_state, |
| config_flags)), |
| &pcie_config_flags); |
| if (ret != 0) { |
| ath10k_err(ar, "Failed to get pcie config_flags: %d\n", ret); |
| return ret; |
| } |
| |
| pcie_config_flags &= ~PCIE_CONFIG_FLAG_ENABLE_L1; |
| |
| ret = ath10k_pci_diag_write32(ar, (pcie_state_targ_addr + |
| offsetof(struct pcie_state, |
| config_flags)), |
| pcie_config_flags); |
| if (ret != 0) { |
| ath10k_err(ar, "Failed to write pcie config_flags: %d\n", ret); |
| return ret; |
| } |
| |
| /* configure early allocation */ |
| ealloc_targ_addr = host_interest_item_address(HI_ITEM(hi_early_alloc)); |
| |
| ret = ath10k_pci_diag_read32(ar, ealloc_targ_addr, &ealloc_value); |
| if (ret != 0) { |
| ath10k_err(ar, "Failed to get early alloc val: %d\n", ret); |
| return ret; |
| } |
| |
| /* first bank is switched to IRAM */ |
| ealloc_value |= ((HI_EARLY_ALLOC_MAGIC << HI_EARLY_ALLOC_MAGIC_SHIFT) & |
| HI_EARLY_ALLOC_MAGIC_MASK); |
| ealloc_value |= ((ath10k_bus_get_num_banks(ar) << |
| HI_EARLY_ALLOC_IRAM_BANKS_SHIFT) & |
| HI_EARLY_ALLOC_IRAM_BANKS_MASK); |
| |
| ret = ath10k_pci_diag_write32(ar, ealloc_targ_addr, ealloc_value); |
| if (ret != 0) { |
| ath10k_err(ar, "Failed to set early alloc val: %d\n", ret); |
| return ret; |
| } |
| |
| /* Tell Target to proceed with initialization */ |
| flag2_targ_addr = host_interest_item_address(HI_ITEM(hi_option_flag2)); |
| |
| ret = ath10k_pci_diag_read32(ar, flag2_targ_addr, &flag2_value); |
| if (ret != 0) { |
| ath10k_err(ar, "Failed to get option val: %d\n", ret); |
| return ret; |
| } |
| |
| flag2_value |= HI_OPTION_EARLY_CFG_DONE; |
| |
| ret = ath10k_pci_diag_write32(ar, flag2_targ_addr, flag2_value); |
| if (ret != 0) { |
| ath10k_err(ar, "Failed to set option val: %d\n", ret); |
| return ret; |
| } |
| |
| return 0; |
| } |
| |
| static void ath10k_pci_override_ce_config(struct ath10k *ar) |
| { |
| struct ce_attr *attr; |
| struct ce_pipe_config *config; |
| struct ath10k_pci *ar_pci = ath10k_pci_priv(ar); |
| |
| /* For QCA6174 we're overriding the Copy Engine 5 configuration, |
| * since it is currently used for other feature. |
| */ |
| |
| /* Override Host's Copy Engine 5 configuration */ |
| attr = &ar_pci->attr[5]; |
| attr->src_sz_max = 0; |
| attr->dest_nentries = 0; |
| |
| /* Override Target firmware's Copy Engine configuration */ |
| config = &ar_pci->pipe_config[5]; |
| config->pipedir = __cpu_to_le32(PIPEDIR_OUT); |
| config->nbytes_max = __cpu_to_le32(2048); |
| |
| /* Map from service/endpoint to Copy Engine */ |
| ar_pci->serv_to_pipe[15].pipenum = __cpu_to_le32(1); |
| } |
| |
| int ath10k_pci_alloc_pipes(struct ath10k *ar) |
| { |
| struct ath10k_pci *ar_pci = ath10k_pci_priv(ar); |
| struct ath10k_pci_pipe *pipe; |
| struct ath10k_ce *ce = ath10k_ce_priv(ar); |
| int i, ret; |
| |
| for (i = 0; i < CE_COUNT; i++) { |
| pipe = &ar_pci->pipe_info[i]; |
| pipe->ce_hdl = &ce->ce_states[i]; |
| pipe->pipe_num = i; |
| pipe->hif_ce_state = ar; |
| |
| ret = ath10k_ce_alloc_pipe(ar, i, &ar_pci->attr[i]); |
| if (ret) { |
| ath10k_err(ar, "failed to allocate copy engine pipe %d: %d\n", |
| i, ret); |
| return ret; |
| } |
| |
| /* Last CE is Diagnostic Window */ |
| if (i == CE_DIAG_PIPE) { |
| ar_pci->ce_diag = pipe->ce_hdl; |
| continue; |
| } |
| |
| pipe->buf_sz = (size_t)(ar_pci->attr[i].src_sz_max); |
| } |
| |
| return 0; |
| } |
| |
| void ath10k_pci_free_pipes(struct ath10k *ar) |
| { |
| int i; |
| |
| for (i = 0; i < CE_COUNT; i++) |
| ath10k_ce_free_pipe(ar, i); |
| } |
| |
| int ath10k_pci_init_pipes(struct ath10k *ar) |
| { |
| struct ath10k_pci *ar_pci = ath10k_pci_priv(ar); |
| int i, ret; |
| |
| for (i = 0; i < CE_COUNT; i++) { |
| ret = ath10k_ce_init_pipe(ar, i, &ar_pci->attr[i]); |
| if (ret) { |
| ath10k_err(ar, "failed to initialize copy engine pipe %d: %d\n", |
| i, ret); |
| return ret; |
| } |
| } |
| |
| return 0; |
| } |
| |
| static bool ath10k_pci_has_fw_crashed(struct ath10k *ar) |
| { |
| return ath10k_pci_read32(ar, FW_INDICATOR_ADDRESS) & |
| FW_IND_EVENT_PENDING; |
| } |
| |
| static void ath10k_pci_fw_crashed_clear(struct ath10k *ar) |
| { |
| u32 val; |
| |
| val = ath10k_pci_read32(ar, FW_INDICATOR_ADDRESS); |
| val &= ~FW_IND_EVENT_PENDING; |
| ath10k_pci_write32(ar, FW_INDICATOR_ADDRESS, val); |
| } |
| |
| static bool ath10k_pci_has_device_gone(struct ath10k *ar) |
| { |
| u32 val; |
| |
| val = ath10k_pci_read32(ar, FW_INDICATOR_ADDRESS); |
| return (val == 0xffffffff); |
| } |
| |
| /* this function effectively clears target memory controller assert line */ |
| static void ath10k_pci_warm_reset_si0(struct ath10k *ar) |
| { |
| u32 val; |
| |
| val = ath10k_pci_soc_read32(ar, SOC_RESET_CONTROL_ADDRESS); |
| ath10k_pci_soc_write32(ar, SOC_RESET_CONTROL_ADDRESS, |
| val | SOC_RESET_CONTROL_SI0_RST_MASK); |
| val = ath10k_pci_soc_read32(ar, SOC_RESET_CONTROL_ADDRESS); |
| |
| msleep(10); |
| |
| val = ath10k_pci_soc_read32(ar, SOC_RESET_CONTROL_ADDRESS); |
| ath10k_pci_soc_write32(ar, SOC_RESET_CONTROL_ADDRESS, |
| val & ~SOC_RESET_CONTROL_SI0_RST_MASK); |
| val = ath10k_pci_soc_read32(ar, SOC_RESET_CONTROL_ADDRESS); |
| |
| msleep(10); |
| } |
| |
| static void ath10k_pci_warm_reset_cpu(struct ath10k *ar) |
| { |
| u32 val; |
| |
| ath10k_pci_write32(ar, FW_INDICATOR_ADDRESS, 0); |
| |
| val = ath10k_pci_soc_read32(ar, SOC_RESET_CONTROL_ADDRESS); |
| ath10k_pci_soc_write32(ar, SOC_RESET_CONTROL_ADDRESS, |
| val | SOC_RESET_CONTROL_CPU_WARM_RST_MASK); |
| } |
| |
| static void ath10k_pci_warm_reset_ce(struct ath10k *ar) |
| { |
| u32 val; |
| |
| val = ath10k_pci_soc_read32(ar, SOC_RESET_CONTROL_ADDRESS); |
| |
| ath10k_pci_soc_write32(ar, SOC_RESET_CONTROL_ADDRESS, |
| val | SOC_RESET_CONTROL_CE_RST_MASK); |
| msleep(10); |
| ath10k_pci_soc_write32(ar, SOC_RESET_CONTROL_ADDRESS, |
| val & ~SOC_RESET_CONTROL_CE_RST_MASK); |
| } |
| |
| static void ath10k_pci_warm_reset_clear_lf(struct ath10k *ar) |
| { |
| u32 val; |
| |
| val = ath10k_pci_soc_read32(ar, SOC_LF_TIMER_CONTROL0_ADDRESS); |
| ath10k_pci_soc_write32(ar, SOC_LF_TIMER_CONTROL0_ADDRESS, |
| val & ~SOC_LF_TIMER_CONTROL0_ENABLE_MASK); |
| } |
| |
| static int ath10k_pci_warm_reset(struct ath10k *ar) |
| { |
| int ret; |
| |
| ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot warm reset\n"); |
| |
| spin_lock_bh(&ar->data_lock); |
| ar->stats.fw_warm_reset_counter++; |
| spin_unlock_bh(&ar->data_lock); |
| |
| ath10k_pci_irq_disable(ar); |
| |
| /* Make sure the target CPU is not doing anything dangerous, e.g. if it |
| * were to access copy engine while host performs copy engine reset |
| * then it is possible for the device to confuse pci-e controller to |
| * the point of bringing host system to a complete stop (i.e. hang). |
| */ |
| ath10k_pci_warm_reset_si0(ar); |
| ath10k_pci_warm_reset_cpu(ar); |
| ath10k_pci_init_pipes(ar); |
| ath10k_pci_wait_for_target_init(ar); |
| |
| ath10k_pci_warm_reset_clear_lf(ar); |
| ath10k_pci_warm_reset_ce(ar); |
| ath10k_pci_warm_reset_cpu(ar); |
| ath10k_pci_init_pipes(ar); |
| |
| ret = ath10k_pci_wait_for_target_init(ar); |
| if (ret) { |
| ath10k_warn(ar, "failed to wait for target init: %d\n", ret); |
| return ret; |
| } |
| |
| ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot warm reset complete\n"); |
| |
| return 0; |
| } |
| |
| static int ath10k_pci_qca99x0_soft_chip_reset(struct ath10k *ar) |
| { |
| ath10k_pci_irq_disable(ar); |
| return ath10k_pci_qca99x0_chip_reset(ar); |
| } |
| |
| static int ath10k_pci_safe_chip_reset(struct ath10k *ar) |
| { |
| struct ath10k_pci *ar_pci = ath10k_pci_priv(ar); |
| |
| if (!ar_pci->pci_soft_reset) |
| return -ENOTSUPP; |
| |
| return ar_pci->pci_soft_reset(ar); |
| } |
| |
| static int ath10k_pci_qca988x_chip_reset(struct ath10k *ar) |
| { |
| int i, ret; |
| u32 val; |
| |
| ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot 988x chip reset\n"); |
| |
| /* Some hardware revisions (e.g. CUS223v2) has issues with cold reset. |
| * It is thus preferred to use warm reset which is safer but may not be |
| * able to recover the device from all possible fail scenarios. |
| * |
| * Warm reset doesn't always work on first try so attempt it a few |
| * times before giving up. |
| */ |
| for (i = 0; i < ATH10K_PCI_NUM_WARM_RESET_ATTEMPTS; i++) { |
| ret = ath10k_pci_warm_reset(ar); |
| if (ret) { |
| ath10k_warn(ar, "failed to warm reset attempt %d of %d: %d\n", |
| i + 1, ATH10K_PCI_NUM_WARM_RESET_ATTEMPTS, |
| ret); |
| continue; |
| } |
| |
| /* FIXME: Sometimes copy engine doesn't recover after warm |
| * reset. In most cases this needs cold reset. In some of these |
| * cases the device is in such a state that a cold reset may |
| * lock up the host. |
| * |
| * Reading any host interest register via copy engine is |
| * sufficient to verify if device is capable of booting |
| * firmware blob. |
| */ |
| ret = ath10k_pci_init_pipes(ar); |
| if (ret) { |
| ath10k_warn(ar, "failed to init copy engine: %d\n", |
| ret); |
| continue; |
| } |
| |
| ret = ath10k_pci_diag_read32(ar, QCA988X_HOST_INTEREST_ADDRESS, |
| &val); |
| if (ret) { |
| ath10k_warn(ar, "failed to poke copy engine: %d\n", |
| ret); |
| continue; |
| } |
| |
| ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot chip reset complete (warm)\n"); |
| return 0; |
| } |
| |
| if (ath10k_pci_reset_mode == ATH10K_PCI_RESET_WARM_ONLY) { |
| ath10k_warn(ar, "refusing cold reset as requested\n"); |
| return -EPERM; |
| } |
| |
| ret = ath10k_pci_cold_reset(ar); |
| if (ret) { |
| ath10k_warn(ar, "failed to cold reset: %d\n", ret); |
| return ret; |
| } |
| |
| ret = ath10k_pci_wait_for_target_init(ar); |
| if (ret) { |
| ath10k_warn(ar, "failed to wait for target after cold reset: %d\n", |
| ret); |
| return ret; |
| } |
| |
| ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot qca988x chip reset complete (cold)\n"); |
| |
| return 0; |
| } |
| |
| static int ath10k_pci_qca6174_chip_reset(struct ath10k *ar) |
| { |
| int ret; |
| |
| ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot qca6174 chip reset\n"); |
| |
| /* FIXME: QCA6174 requires cold + warm reset to work. */ |
| |
| ret = ath10k_pci_cold_reset(ar); |
| if (ret) { |
| ath10k_warn(ar, "failed to cold reset: %d\n", ret); |
| return ret; |
| } |
| |
| ret = ath10k_pci_wait_for_target_init(ar); |
| if (ret) { |
| ath10k_warn(ar, "failed to wait for target after cold reset: %d\n", |
| ret); |
| return ret; |
| } |
| |
| ret = ath10k_pci_warm_reset(ar); |
| if (ret) { |
| ath10k_warn(ar, "failed to warm reset: %d\n", ret); |
| return ret; |
| } |
| |
| ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot qca6174 chip reset complete (cold)\n"); |
| |
| return 0; |
| } |
| |
| static int ath10k_pci_qca99x0_chip_reset(struct ath10k *ar) |
| { |
| int ret; |
| |
| ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot qca99x0 chip reset\n"); |
| |
| ret = ath10k_pci_cold_reset(ar); |
| if (ret) { |
| ath10k_warn(ar, "failed to cold reset: %d\n", ret); |
| return ret; |
| } |
| |
| ret = ath10k_pci_wait_for_target_init(ar); |
| if (ret) { |
| ath10k_warn(ar, "failed to wait for target after cold reset: %d\n", |
| ret); |
| return ret; |
| } |
| |
| ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot qca99x0 chip reset complete (cold)\n"); |
| |
| return 0; |
| } |
| |
| static int ath10k_pci_chip_reset(struct ath10k *ar) |
| { |
| struct ath10k_pci *ar_pci = ath10k_pci_priv(ar); |
| |
| if (WARN_ON(!ar_pci->pci_hard_reset)) |
| return -ENOTSUPP; |
| |
| return ar_pci->pci_hard_reset(ar); |
| } |
| |
| static int ath10k_pci_hif_power_up(struct ath10k *ar, |
| enum ath10k_firmware_mode fw_mode) |
| { |
| struct ath10k_pci *ar_pci = ath10k_pci_priv(ar); |
| int ret; |
| |
| ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot hif power up\n"); |
| |
| pcie_capability_read_word(ar_pci->pdev, PCI_EXP_LNKCTL, |
| &ar_pci->link_ctl); |
| pcie_capability_write_word(ar_pci->pdev, PCI_EXP_LNKCTL, |
| ar_pci->link_ctl & ~PCI_EXP_LNKCTL_ASPMC); |
| |
| /* |
| * Bring the target up cleanly. |
| * |
| * The target may be in an undefined state with an AUX-powered Target |
| * and a Host in WoW mode. If the Host crashes, loses power, or is |
| * restarted (without unloading the driver) then the Target is left |
| * (aux) powered and running. On a subsequent driver load, the Target |
| * is in an unexpected state. We try to catch that here in order to |
| * reset the Target and retry the probe. |
| */ |
| ret = ath10k_pci_chip_reset(ar); |
| if (ret) { |
| if (ath10k_pci_has_fw_crashed(ar)) { |
| ath10k_warn(ar, "firmware crashed during chip reset\n"); |
| ath10k_pci_fw_crashed_clear(ar); |
| ath10k_pci_fw_crashed_dump(ar); |
| } |
| |
| ath10k_err(ar, "failed to reset chip: %d\n", ret); |
| goto err_sleep; |
| } |
| |
| ret = ath10k_pci_init_pipes(ar); |
| if (ret) { |
| ath10k_err(ar, "failed to initialize CE: %d\n", ret); |
| goto err_sleep; |
| } |
| |
| ret = ath10k_pci_init_config(ar); |
| if (ret) { |
| ath10k_err(ar, "failed to setup init config: %d\n", ret); |
| goto err_ce; |
| } |
| |
| ret = ath10k_pci_wake_target_cpu(ar); |
| if (ret) { |
| ath10k_err(ar, "could not wake up target CPU: %d\n", ret); |
| goto err_ce; |
| } |
| |
| return 0; |
| |
| err_ce: |
| ath10k_pci_ce_deinit(ar); |
| |
| err_sleep: |
| return ret; |
| } |
| |
| void ath10k_pci_hif_power_down(struct ath10k *ar) |
| { |
| ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot hif power down\n"); |
| |
| /* Currently hif_power_up performs effectively a reset and hif_stop |
| * resets the chip as well so there's no point in resetting here. |
| */ |
| } |
| |
| static int ath10k_pci_hif_suspend(struct ath10k *ar) |
| { |
| /* Nothing to do; the important stuff is in the driver suspend. */ |
| return 0; |
| } |
| |
| static int ath10k_pci_suspend(struct ath10k *ar) |
| { |
| /* The grace timer can still be counting down and ar->ps_awake be true. |
| * It is known that the device may be asleep after resuming regardless |
| * of the SoC powersave state before suspending. Hence make sure the |
| * device is asleep before proceeding. |
| */ |
| ath10k_pci_sleep_sync(ar); |
| |
| return 0; |
| } |
| |
| static int ath10k_pci_hif_resume(struct ath10k *ar) |
| { |
| /* Nothing to do; the important stuff is in the driver resume. */ |
| return 0; |
| } |
| |
| static int ath10k_pci_resume(struct ath10k *ar) |
| { |
| struct ath10k_pci *ar_pci = ath10k_pci_priv(ar); |
| struct pci_dev *pdev = ar_pci->pdev; |
| u32 val; |
| int ret = 0; |
| |
| ret = ath10k_pci_force_wake(ar); |
| if (ret) { |
| ath10k_err(ar, "failed to wake up target: %d\n", ret); |
| return ret; |
| } |
| |
| /* Suspend/Resume resets the PCI configuration space, so we have to |
| * re-disable the RETRY_TIMEOUT register (0x41) to keep PCI Tx retries |
| * from interfering with C3 CPU state. pci_restore_state won't help |
| * here since it only restores the first 64 bytes pci config header. |
| */ |
| pci_read_config_dword(pdev, 0x40, &val); |
| if ((val & 0x0000ff00) != 0) |
| pci_write_config_dword(pdev, 0x40, val & 0xffff00ff); |
| |
| return ret; |
| } |
| |
| static bool ath10k_pci_validate_cal(void *data, size_t size) |
| { |
| __le16 *cal_words = data; |
| u16 checksum = 0; |
| size_t i; |
| |
| if (size % 2 != 0) |
| return false; |
| |
| for (i = 0; i < size / 2; i++) |
| checksum ^= le16_to_cpu(cal_words[i]); |
| |
| return checksum == 0xffff; |
| } |
| |
| static void ath10k_pci_enable_eeprom(struct ath10k *ar) |
| { |
| /* Enable SI clock */ |
| ath10k_pci_soc_write32(ar, CLOCK_CONTROL_OFFSET, 0x0); |
| |
| /* Configure GPIOs for I2C operation */ |
| ath10k_pci_write32(ar, |
| GPIO_BASE_ADDRESS + GPIO_PIN0_OFFSET + |
| 4 * QCA9887_1_0_I2C_SDA_GPIO_PIN, |
| SM(QCA9887_1_0_I2C_SDA_PIN_CONFIG, |
| GPIO_PIN0_CONFIG) | |
| SM(1, GPIO_PIN0_PAD_PULL)); |
| |
| ath10k_pci_write32(ar, |
| GPIO_BASE_ADDRESS + GPIO_PIN0_OFFSET + |
| 4 * QCA9887_1_0_SI_CLK_GPIO_PIN, |
| SM(QCA9887_1_0_SI_CLK_PIN_CONFIG, GPIO_PIN0_CONFIG) | |
| SM(1, GPIO_PIN0_PAD_PULL)); |
| |
| ath10k_pci_write32(ar, |
| GPIO_BASE_ADDRESS + |
| QCA9887_1_0_GPIO_ENABLE_W1TS_LOW_ADDRESS, |
| 1u << QCA9887_1_0_SI_CLK_GPIO_PIN); |
| |
| /* In Swift ASIC - EEPROM clock will be (110MHz/512) = 214KHz */ |
| ath10k_pci_write32(ar, |
| SI_BASE_ADDRESS + SI_CONFIG_OFFSET, |
| SM(1, SI_CONFIG_ERR_INT) | |
| SM(1, SI_CONFIG_BIDIR_OD_DATA) | |
| SM(1, SI_CONFIG_I2C) | |
| SM(1, SI_CONFIG_POS_SAMPLE) | |
| SM(1, SI_CONFIG_INACTIVE_DATA) | |
| SM(1, SI_CONFIG_INACTIVE_CLK) | |
| SM(8, SI_CONFIG_DIVIDER)); |
| } |
| |
| static int ath10k_pci_read_eeprom(struct ath10k *ar, u16 addr, u8 *out) |
| { |
| u32 reg; |
| int wait_limit; |
| |
| /* set device select byte and for the read operation */ |
| reg = QCA9887_EEPROM_SELECT_READ | |
| SM(addr, QCA9887_EEPROM_ADDR_LO) | |
| SM(addr >> 8, QCA9887_EEPROM_ADDR_HI); |
| ath10k_pci_write32(ar, SI_BASE_ADDRESS + SI_TX_DATA0_OFFSET, reg); |
| |
| /* write transmit data, transfer length, and START bit */ |
| ath10k_pci_write32(ar, SI_BASE_ADDRESS + SI_CS_OFFSET, |
| SM(1, SI_CS_START) | SM(1, SI_CS_RX_CNT) | |
| SM(4, SI_CS_TX_CNT)); |
| |
| /* wait max 1 sec */ |
| wait_limit = 100000; |
| |
| /* wait for SI_CS_DONE_INT */ |
| do { |
| reg = ath10k_pci_read32(ar, SI_BASE_ADDRESS + SI_CS_OFFSET); |
| if (MS(reg, SI_CS_DONE_INT)) |
| break; |
| |
| wait_limit--; |
| udelay(10); |
| } while (wait_limit > 0); |
| |
| if (!MS(reg, SI_CS_DONE_INT)) { |
| ath10k_err(ar, "timeout while reading device EEPROM at %04x\n", |
| addr); |
| return -ETIMEDOUT; |
| } |
| |
| /* clear SI_CS_DONE_INT */ |
| ath10k_pci_write32(ar, SI_BASE_ADDRESS + SI_CS_OFFSET, reg); |
| |
| if (MS(reg, SI_CS_DONE_ERR)) { |
| ath10k_err(ar, "failed to read device EEPROM at %04x\n", addr); |
| return -EIO; |
| } |
| |
| /* extract receive data */ |
| reg = ath10k_pci_read32(ar, SI_BASE_ADDRESS + SI_RX_DATA0_OFFSET); |
| *out = reg; |
| |
| return 0; |
| } |
| |
| static int ath10k_pci_hif_fetch_cal_eeprom(struct ath10k *ar, void **data, |
| size_t *data_len) |
| { |
| u8 *caldata = NULL; |
| size_t calsize, i; |
| int ret; |
| |
| if (!QCA_REV_9887(ar)) |
| return -EOPNOTSUPP; |
| |
| calsize = ar->hw_params.cal_data_len; |
| caldata = kmalloc(calsize, GFP_KERNEL); |
| if (!caldata) |
| return -ENOMEM; |
| |
| ath10k_pci_enable_eeprom(ar); |
| |
| for (i = 0; i < calsize; i++) { |
| ret = ath10k_pci_read_eeprom(ar, i, &caldata[i]); |
| if (ret) |
| goto err_free; |
| } |
| |
| if (!ath10k_pci_validate_cal(caldata, calsize)) |
| goto err_free; |
| |
| *data = caldata; |
| *data_len = calsize; |
| |
| return 0; |
| |
| err_free: |
| kfree(caldata); |
| |
| return -EINVAL; |
| } |
| |
| static const struct ath10k_hif_ops ath10k_pci_hif_ops = { |
| .tx_sg = ath10k_pci_hif_tx_sg, |
| .diag_read = ath10k_pci_hif_diag_read, |
| .diag_write = ath10k_pci_diag_write_mem, |
| .exchange_bmi_msg = ath10k_pci_hif_exchange_bmi_msg, |
| .start = ath10k_pci_hif_start, |
| .stop = ath10k_pci_hif_stop, |
| .map_service_to_pipe = ath10k_pci_hif_map_service_to_pipe, |
| .get_default_pipe = ath10k_pci_hif_get_default_pipe, |
| .send_complete_check = ath10k_pci_hif_send_complete_check, |
| .get_free_queue_number = ath10k_pci_hif_get_free_queue_number, |
| .power_up = ath10k_pci_hif_power_up, |
| .power_down = ath10k_pci_hif_power_down, |
| .read32 = ath10k_pci_read32, |
| .write32 = ath10k_pci_write32, |
| .suspend = ath10k_pci_hif_suspend, |
| .resume = ath10k_pci_hif_resume, |
| .fetch_cal_eeprom = ath10k_pci_hif_fetch_cal_eeprom, |
| }; |
| |
| /* |
| * Top-level interrupt handler for all PCI interrupts from a Target. |
| * When a block of MSI interrupts is allocated, this top-level handler |
| * is not used; instead, we directly call the correct sub-handler. |
| */ |
| static irqreturn_t ath10k_pci_interrupt_handler(int irq, void *arg) |
| { |
| struct ath10k *ar = arg; |
| struct ath10k_pci *ar_pci = ath10k_pci_priv(ar); |
| int ret; |
| |
| if (ath10k_pci_has_device_gone(ar)) |
| return IRQ_NONE; |
| |
| ret = ath10k_pci_force_wake(ar); |
| if (ret) { |
| ath10k_warn(ar, "failed to wake device up on irq: %d\n", ret); |
| return IRQ_NONE; |
| } |
| |
| if ((ar_pci->oper_irq_mode == ATH10K_PCI_IRQ_LEGACY) && |
| !ath10k_pci_irq_pending(ar)) |
| return IRQ_NONE; |
| |
| ath10k_pci_disable_and_clear_legacy_irq(ar); |
| ath10k_pci_irq_msi_fw_mask(ar); |
| napi_schedule(&ar->napi); |
| |
| return IRQ_HANDLED; |
| } |
| |
| static int ath10k_pci_napi_poll(struct napi_struct *ctx, int budget) |
| { |
| struct ath10k *ar = container_of(ctx, struct ath10k, napi); |
| int done = 0; |
| |
| if (ath10k_pci_has_fw_crashed(ar)) { |
| ath10k_pci_fw_crashed_clear(ar); |
| ath10k_pci_fw_crashed_dump(ar); |
| napi_complete(ctx); |
| return done; |
| } |
| |
| ath10k_ce_per_engine_service_any(ar); |
| |
| done = ath10k_htt_txrx_compl_task(ar, budget); |
| |
| if (done < budget) { |
| napi_complete_done(ctx, done); |
| /* In case of MSI, it is possible that interrupts are received |
| * while NAPI poll is inprogress. So pending interrupts that are |
| * received after processing all copy engine pipes by NAPI poll |
| * will not be handled again. This is causing failure to |
| * complete boot sequence in x86 platform. So before enabling |
| * interrupts safer to check for pending interrupts for |
| * immediate servicing. |
| */ |
| if (ath10k_ce_interrupt_summary(ar)) { |
| napi_reschedule(ctx); |
| goto out; |
| } |
| ath10k_pci_enable_legacy_irq(ar); |
| ath10k_pci_irq_msi_fw_unmask(ar); |
| } |
| |
| out: |
| return done; |
| } |
| |
| static int ath10k_pci_request_irq_msi(struct ath10k *ar) |
| { |
| struct ath10k_pci *ar_pci = ath10k_pci_priv(ar); |
| int ret; |
| |
| ret = request_irq(ar_pci->pdev->irq, |
| ath10k_pci_interrupt_handler, |
| IRQF_SHARED, "ath10k_pci", ar); |
| if (ret) { |
| ath10k_warn(ar, "failed to request MSI irq %d: %d\n", |
| ar_pci->pdev->irq, ret); |
| return ret; |
| } |
| |
| return 0; |
| } |
| |
| static int ath10k_pci_request_irq_legacy(struct ath10k *ar) |
| { |
| struct ath10k_pci *ar_pci = ath10k_pci_priv(ar); |
| int ret; |
| |
| ret = request_irq(ar_pci->pdev->irq, |
| ath10k_pci_interrupt_handler, |
| IRQF_SHARED, "ath10k_pci", ar); |
| if (ret) { |
| ath10k_warn(ar, "failed to request legacy irq %d: %d\n", |
| ar_pci->pdev->irq, ret); |
| return ret; |
| } |
| |
| return 0; |
| } |
| |
| static int ath10k_pci_request_irq(struct ath10k *ar) |
| { |
| struct ath10k_pci *ar_pci = ath10k_pci_priv(ar); |
| |
| switch (ar_pci->oper_irq_mode) { |
| case ATH10K_PCI_IRQ_LEGACY: |
| return ath10k_pci_request_irq_legacy(ar); |
| case ATH10K_PCI_IRQ_MSI: |
| return ath10k_pci_request_irq_msi(ar); |
| default: |
| return -EINVAL; |
| } |
| } |
| |
| static void ath10k_pci_free_irq(struct ath10k *ar) |
| { |
| struct ath10k_pci *ar_pci = ath10k_pci_priv(ar); |
| |
| free_irq(ar_pci->pdev->irq, ar); |
| } |
| |
| void ath10k_pci_init_napi(struct ath10k *ar) |
| { |
| netif_napi_add(&ar->napi_dev, &ar->napi, ath10k_pci_napi_poll, |
| ATH10K_NAPI_BUDGET); |
| } |
| |
| static int ath10k_pci_init_irq(struct ath10k *ar) |
| { |
| struct ath10k_pci *ar_pci = ath10k_pci_priv(ar); |
| int ret; |
| |
| ath10k_pci_init_napi(ar); |
| |
| if (ath10k_pci_irq_mode != ATH10K_PCI_IRQ_AUTO) |
| ath10k_info(ar, "limiting irq mode to: %d\n", |
| ath10k_pci_irq_mode); |
| |
| /* Try MSI */ |
| if (ath10k_pci_irq_mode != ATH10K_PCI_IRQ_LEGACY) { |
| ar_pci->oper_irq_mode = ATH10K_PCI_IRQ_MSI; |
| ret = pci_enable_msi(ar_pci->pdev); |
| if (ret == 0) |
| return 0; |
| |
| /* fall-through */ |
| } |
| |
| /* Try legacy irq |
| * |
| * A potential race occurs here: The CORE_BASE write |
| * depends on target correctly decoding AXI address but |
| * host won't know when target writes BAR to CORE_CTRL. |
| * This write might get lost if target has NOT written BAR. |
| * For now, fix the race by repeating the write in below |
| * synchronization checking. |
| */ |
| ar_pci->oper_irq_mode = ATH10K_PCI_IRQ_LEGACY; |
| |
| ath10k_pci_write32(ar, SOC_CORE_BASE_ADDRESS + PCIE_INTR_ENABLE_ADDRESS, |
| PCIE_INTR_FIRMWARE_MASK | PCIE_INTR_CE_MASK_ALL); |
| |
| return 0; |
| } |
| |
| static void ath10k_pci_deinit_irq_legacy(struct ath10k *ar) |
| { |
| ath10k_pci_write32(ar, SOC_CORE_BASE_ADDRESS + PCIE_INTR_ENABLE_ADDRESS, |
| 0); |
| } |
| |
| static int ath10k_pci_deinit_irq(struct ath10k *ar) |
| { |
| struct ath10k_pci *ar_pci = ath10k_pci_priv(ar); |
| |
| switch (ar_pci->oper_irq_mode) { |
| case ATH10K_PCI_IRQ_LEGACY: |
| ath10k_pci_deinit_irq_legacy(ar); |
| break; |
| default: |
| pci_disable_msi(ar_pci->pdev); |
| break; |
| } |
| |
| return 0; |
| } |
| |
| int ath10k_pci_wait_for_target_init(struct ath10k *ar) |
| { |
| struct ath10k_pci *ar_pci = ath10k_pci_priv(ar); |
| unsigned long timeout; |
| u32 val; |
| |
| ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot waiting target to initialise\n"); |
| |
| timeout = jiffies + msecs_to_jiffies(ATH10K_PCI_TARGET_WAIT); |
| |
| do { |
| val = ath10k_pci_read32(ar, FW_INDICATOR_ADDRESS); |
| |
| ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot target indicator %x\n", |
| val); |
| |
| /* target should never return this */ |
| if (val == 0xffffffff) |
| continue; |
| |
| /* the device has crashed so don't bother trying anymore */ |
| if (val & FW_IND_EVENT_PENDING) |
| break; |
| |
| if (val & FW_IND_INITIALIZED) |
| break; |
| |
| if (ar_pci->oper_irq_mode == ATH10K_PCI_IRQ_LEGACY) |
| /* Fix potential race by repeating CORE_BASE writes */ |
| ath10k_pci_enable_legacy_irq(ar); |
| |
| mdelay(10); |
| } while (time_before(jiffies, timeout)); |
| |
| ath10k_pci_disable_and_clear_legacy_irq(ar); |
| ath10k_pci_irq_msi_fw_mask(ar); |
| |
| if (val == 0xffffffff) { |
| ath10k_err(ar, "failed to read device register, device is gone\n"); |
| return -EIO; |
| } |
| |
| if (val & FW_IND_EVENT_PENDING) { |
| ath10k_warn(ar, "device has crashed during init\n"); |
| return -ECOMM; |
| } |
| |
| if (!(val & FW_IND_INITIALIZED)) { |
| ath10k_err(ar, "failed to receive initialized event from target: %08x\n", |
| val); |
| return -ETIMEDOUT; |
| } |
| |
| ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot target initialised\n"); |
| return 0; |
| } |
| |
| static int ath10k_pci_cold_reset(struct ath10k *ar) |
| { |
| u32 val; |
| |
| ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot cold reset\n"); |
| |
| spin_lock_bh(&ar->data_lock); |
| |
| ar->stats.fw_cold_reset_counter++; |
| |
| spin_unlock_bh(&ar->data_lock); |
| |
| /* Put Target, including PCIe, into RESET. */ |
| val = ath10k_pci_reg_read32(ar, SOC_GLOBAL_RESET_ADDRESS); |
| val |= 1; |
| ath10k_pci_reg_write32(ar, SOC_GLOBAL_RESET_ADDRESS, val); |
| |
| /* After writing into SOC_GLOBAL_RESET to put device into |
| * reset and pulling out of reset pcie may not be stable |
| * for any immediate pcie register access and cause bus error, |
| * add delay before any pcie access request to fix this issue. |
| */ |
| msleep(20); |
| |
| /* Pull Target, including PCIe, out of RESET. */ |
| val &= ~1; |
| ath10k_pci_reg_write32(ar, SOC_GLOBAL_RESET_ADDRESS, val); |
| |
| msleep(20); |
| |
| ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot cold reset complete\n"); |
| |
| return 0; |
| } |
| |
| static int ath10k_pci_claim(struct ath10k *ar) |
| { |
| struct ath10k_pci *ar_pci = ath10k_pci_priv(ar); |
| struct pci_dev *pdev = ar_pci->pdev; |
| int ret; |
| |
| pci_set_drvdata(pdev, ar); |
| |
| ret = pci_enable_device(pdev); |
| if (ret) { |
| ath10k_err(ar, "failed to enable pci device: %d\n", ret); |
| return ret; |
| } |
| |
| ret = pci_request_region(pdev, BAR_NUM, "ath"); |
| if (ret) { |
| ath10k_err(ar, "failed to request region BAR%d: %d\n", BAR_NUM, |
| ret); |
| goto err_device; |
| } |
| |
| /* Target expects 32 bit DMA. Enforce it. */ |
| ret = pci_set_dma_mask(pdev, DMA_BIT_MASK(32)); |
| if (ret) { |
| ath10k_err(ar, "failed to set dma mask to 32-bit: %d\n", ret); |
| goto err_region; |
| } |
| |
| ret = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32)); |
| if (ret) { |
| ath10k_err(ar, "failed to set consistent dma mask to 32-bit: %d\n", |
| ret); |
| goto err_region; |
| } |
| |
| pci_set_master(pdev); |
| |
| /* Arrange for access to Target SoC registers. */ |
| ar_pci->mem_len = pci_resource_len(pdev, BAR_NUM); |
| ar_pci->mem = pci_iomap(pdev, BAR_NUM, 0); |
| if (!ar_pci->mem) { |
| ath10k_err(ar, "failed to iomap BAR%d\n", BAR_NUM); |
| ret = -EIO; |
| goto err_master; |
| } |
| |
| ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot pci_mem 0x%pK\n", ar_pci->mem); |
| return 0; |
| |
| err_master: |
| pci_clear_master(pdev); |
| |
| err_region: |
| pci_release_region(pdev, BAR_NUM); |
| |
| err_device: |
| pci_disable_device(pdev); |
| |
| return ret; |
| } |
| |
| static void ath10k_pci_release(struct ath10k *ar) |
| { |
| struct ath10k_pci *ar_pci = ath10k_pci_priv(ar); |
| struct pci_dev *pdev = ar_pci->pdev; |
| |
| pci_iounmap(pdev, ar_pci->mem); |
| pci_release_region(pdev, BAR_NUM); |
| pci_clear_master(pdev); |
| pci_disable_device(pdev); |
| } |
| |
| static bool ath10k_pci_chip_is_supported(u32 dev_id, u32 chip_id) |
| { |
| const struct ath10k_pci_supp_chip *supp_chip; |
| int i; |
| u32 rev_id = MS(chip_id, SOC_CHIP_ID_REV); |
| |
| for (i = 0; i < ARRAY_SIZE(ath10k_pci_supp_chips); i++) { |
| supp_chip = &ath10k_pci_supp_chips[i]; |
| |
| if (supp_chip->dev_id == dev_id && |
| supp_chip->rev_id == rev_id) |
| return true; |
| } |
| |
| return false; |
| } |
| |
| int ath10k_pci_setup_resource(struct ath10k *ar) |
| { |
| struct ath10k_pci *ar_pci = ath10k_pci_priv(ar); |
| struct ath10k_ce *ce = ath10k_ce_priv(ar); |
| int ret; |
| |
| spin_lock_init(&ce->ce_lock); |
| spin_lock_init(&ar_pci->ps_lock); |
| mutex_init(&ar_pci->ce_diag_mutex); |
| |
| INIT_WORK(&ar_pci->dump_work, ath10k_pci_fw_dump_work); |
| |
| timer_setup(&ar_pci->rx_post_retry, ath10k_pci_rx_replenish_retry, 0); |
| |
| ar_pci->attr = kmemdup(pci_host_ce_config_wlan, |
| sizeof(pci_host_ce_config_wlan), |
| GFP_KERNEL); |
| if (!ar_pci->attr) |
| return -ENOMEM; |
| |
| ar_pci->pipe_config = kmemdup(pci_target_ce_config_wlan, |
| sizeof(pci_target_ce_config_wlan), |
| GFP_KERNEL); |
| if (!ar_pci->pipe_config) { |
| ret = -ENOMEM; |
| goto err_free_attr; |
| } |
| |
| ar_pci->serv_to_pipe = kmemdup(pci_target_service_to_ce_map_wlan, |
| sizeof(pci_target_service_to_ce_map_wlan), |
| GFP_KERNEL); |
| if (!ar_pci->serv_to_pipe) { |
| ret = -ENOMEM; |
| goto err_free_pipe_config; |
| } |
| |
| if (QCA_REV_6174(ar) || QCA_REV_9377(ar)) |
| ath10k_pci_override_ce_config(ar); |
| |
| ret = ath10k_pci_alloc_pipes(ar); |
| if (ret) { |
| ath10k_err(ar, "failed to allocate copy engine pipes: %d\n", |
| ret); |
| goto err_free_serv_to_pipe; |
| } |
| |
| return 0; |
| |
| err_free_serv_to_pipe: |
| kfree(ar_pci->serv_to_pipe); |
| err_free_pipe_config: |
| kfree(ar_pci->pipe_config); |
| err_free_attr: |
| kfree(ar_pci->attr); |
| return ret; |
| } |
| |
| void ath10k_pci_release_resource(struct ath10k *ar) |
| { |
| struct ath10k_pci *ar_pci = ath10k_pci_priv(ar); |
| |
| ath10k_pci_rx_retry_sync(ar); |
| netif_napi_del(&ar->napi); |
| ath10k_pci_ce_deinit(ar); |
| ath10k_pci_free_pipes(ar); |
| kfree(ar_pci->attr); |
| kfree(ar_pci->pipe_config); |
| kfree(ar_pci->serv_to_pipe); |
| } |
| |
| static const struct ath10k_bus_ops ath10k_pci_bus_ops = { |
| .read32 = ath10k_bus_pci_read32, |
| .write32 = ath10k_bus_pci_write32, |
| .get_num_banks = ath10k_pci_get_num_banks, |
| }; |
| |
| static int ath10k_pci_probe(struct pci_dev *pdev, |
| const struct pci_device_id *pci_dev) |
| { |
| int ret = 0; |
| struct ath10k *ar; |
| struct ath10k_pci *ar_pci; |
| enum ath10k_hw_rev hw_rev; |
| struct ath10k_bus_params bus_params = {}; |
| bool pci_ps, is_qca988x = false; |
| int (*pci_soft_reset)(struct ath10k *ar); |
| int (*pci_hard_reset)(struct ath10k *ar); |
| u32 (*targ_cpu_to_ce_addr)(struct ath10k *ar, u32 addr); |
| |
| switch (pci_dev->device) { |
| case QCA988X_2_0_DEVICE_ID_UBNT: |
| case QCA988X_2_0_DEVICE_ID: |
| hw_rev = ATH10K_HW_QCA988X; |
| pci_ps = false; |
| is_qca988x = true; |
| pci_soft_reset = ath10k_pci_warm_reset; |
| pci_hard_reset = ath10k_pci_qca988x_chip_reset; |
| targ_cpu_to_ce_addr = ath10k_pci_qca988x_targ_cpu_to_ce_addr; |
| break; |
| case QCA9887_1_0_DEVICE_ID: |
| hw_rev = ATH10K_HW_QCA9887; |
| pci_ps = false; |
| pci_soft_reset = ath10k_pci_warm_reset; |
| pci_hard_reset = ath10k_pci_qca988x_chip_reset; |
| targ_cpu_to_ce_addr = ath10k_pci_qca988x_targ_cpu_to_ce_addr; |
| break; |
| case QCA6164_2_1_DEVICE_ID: |
| case QCA6174_2_1_DEVICE_ID: |
| hw_rev = ATH10K_HW_QCA6174; |
| pci_ps = true; |
| pci_soft_reset = ath10k_pci_warm_reset; |
| pci_hard_reset = ath10k_pci_qca6174_chip_reset; |
| targ_cpu_to_ce_addr = ath10k_pci_qca6174_targ_cpu_to_ce_addr; |
| break; |
| case QCA99X0_2_0_DEVICE_ID: |
| hw_rev = ATH10K_HW_QCA99X0; |
| pci_ps = false; |
| pci_soft_reset = ath10k_pci_qca99x0_soft_chip_reset; |
| pci_hard_reset = ath10k_pci_qca99x0_chip_reset; |
| targ_cpu_to_ce_addr = ath10k_pci_qca99x0_targ_cpu_to_ce_addr; |
| break; |
| case QCA9984_1_0_DEVICE_ID: |
| hw_rev = ATH10K_HW_QCA9984; |
| pci_ps = false; |
| pci_soft_reset = ath10k_pci_qca99x0_soft_chip_reset; |
| pci_hard_reset = ath10k_pci_qca99x0_chip_reset; |
| targ_cpu_to_ce_addr = ath10k_pci_qca99x0_targ_cpu_to_ce_addr; |
| break; |
| case QCA9888_2_0_DEVICE_ID: |
| hw_rev = ATH10K_HW_QCA9888; |
| pci_ps = false; |
| pci_soft_reset = ath10k_pci_qca99x0_soft_chip_reset; |
| pci_hard_reset = ath10k_pci_qca99x0_chip_reset; |
| targ_cpu_to_ce_addr = ath10k_pci_qca99x0_targ_cpu_to_ce_addr; |
| break; |
| case QCA9377_1_0_DEVICE_ID: |
| hw_rev = ATH10K_HW_QCA9377; |
| pci_ps = true; |
| pci_soft_reset = ath10k_pci_warm_reset; |
| pci_hard_reset = ath10k_pci_qca6174_chip_reset; |
| targ_cpu_to_ce_addr = ath10k_pci_qca6174_targ_cpu_to_ce_addr; |
| break; |
| default: |
| WARN_ON(1); |
| return -ENOTSUPP; |
| } |
| |
| ar = ath10k_core_create(sizeof(*ar_pci), &pdev->dev, ATH10K_BUS_PCI, |
| hw_rev, &ath10k_pci_hif_ops); |
| if (!ar) { |
| dev_err(&pdev->dev, "failed to allocate core\n"); |
| return -ENOMEM; |
| } |
| |
| ath10k_dbg(ar, ATH10K_DBG_BOOT, "pci probe %04x:%04x %04x:%04x\n", |
| pdev->vendor, pdev->device, |
| pdev->subsystem_vendor, pdev->subsystem_device); |
| |
| ar_pci = ath10k_pci_priv(ar); |
| ar_pci->pdev = pdev; |
| ar_pci->dev = &pdev->dev; |
| ar_pci->ar = ar; |
| ar->dev_id = pci_dev->device; |
| ar_pci->pci_ps = pci_ps; |
| ar_pci->ce.bus_ops = &ath10k_pci_bus_ops; |
| ar_pci->pci_soft_reset = pci_soft_reset; |
| ar_pci->pci_hard_reset = pci_hard_reset; |
| ar_pci->targ_cpu_to_ce_addr = targ_cpu_to_ce_addr; |
| ar->ce_priv = &ar_pci->ce; |
| |
| ar->id.vendor = pdev->vendor; |
| ar->id.device = pdev->device; |
| ar->id.subsystem_vendor = pdev->subsystem_vendor; |
| ar->id.subsystem_device = pdev->subsystem_device; |
| |
| timer_setup(&ar_pci->ps_timer, ath10k_pci_ps_timer, 0); |
| |
| ret = ath10k_pci_setup_resource(ar); |
| if (ret) { |
| ath10k_err(ar, "failed to setup resource: %d\n", ret); |
| goto err_core_destroy; |
| } |
| |
| ret = ath10k_pci_claim(ar); |
| if (ret) { |
| ath10k_err(ar, "failed to claim device: %d\n", ret); |
| goto err_free_pipes; |
| } |
| |
| ret = ath10k_pci_force_wake(ar); |
| if (ret) { |
| ath10k_warn(ar, "failed to wake up device : %d\n", ret); |
| goto err_sleep; |
| } |
| |
| ath10k_pci_ce_deinit(ar); |
| ath10k_pci_irq_disable(ar); |
| |
| ret = ath10k_pci_init_irq(ar); |
| if (ret) { |
| ath10k_err(ar, "failed to init irqs: %d\n", ret); |
| goto err_sleep; |
| } |
| |
| ath10k_info(ar, "pci irq %s oper_irq_mode %d irq_mode %d reset_mode %d\n", |
| ath10k_pci_get_irq_method(ar), ar_pci->oper_irq_mode, |
| ath10k_pci_irq_mode, ath10k_pci_reset_mode); |
| |
| ret = ath10k_pci_request_irq(ar); |
| if (ret) { |
| ath10k_warn(ar, "failed to request irqs: %d\n", ret); |
| goto err_deinit_irq; |
| } |
| |
| bus_params.dev_type = ATH10K_DEV_TYPE_LL; |
| bus_params.link_can_suspend = true; |
| /* Read CHIP_ID before reset to catch QCA9880-AR1A v1 devices that |
| * fall off the bus during chip_reset. These chips have the same pci |
| * device id as the QCA9880 BR4A or 2R4E. So that's why the check. |
| */ |
| if (is_qca988x) { |
| bus_params.chip_id = |
| ath10k_pci_soc_read32(ar, SOC_CHIP_ID_ADDRESS); |
| if (bus_params.chip_id != 0xffffffff) { |
| if (!ath10k_pci_chip_is_supported(pdev->device, |
| bus_params.chip_id)) { |
| ret = -ENODEV; |
| goto err_unsupported; |
| } |
| } |
| } |
| |
| ret = ath10k_pci_chip_reset(ar); |
| if (ret) { |
| ath10k_err(ar, "failed to reset chip: %d\n", ret); |
| goto err_free_irq; |
| } |
| |
| bus_params.chip_id = ath10k_pci_soc_read32(ar, SOC_CHIP_ID_ADDRESS); |
| if (bus_params.chip_id == 0xffffffff) { |
| ret = -ENODEV; |
| goto err_unsupported; |
| } |
| |
| if (!ath10k_pci_chip_is_supported(pdev->device, bus_params.chip_id)) { |
| ret = -ENODEV; |
| goto err_unsupported; |
| } |
| |
| ret = ath10k_core_register(ar, &bus_params); |
| if (ret) { |
| ath10k_err(ar, "failed to register driver core: %d\n", ret); |
| goto err_free_irq; |
| } |
| |
| return 0; |
| |
| err_unsupported: |
| ath10k_err(ar, "device %04x with chip_id %08x isn't supported\n", |
| pdev->device, bus_params.chip_id); |
| |
| err_free_irq: |
| ath10k_pci_free_irq(ar); |
| |
| err_deinit_irq: |
| ath10k_pci_release_resource(ar); |
| |
| err_sleep: |
| ath10k_pci_sleep_sync(ar); |
| ath10k_pci_release(ar); |
| |
| err_free_pipes: |
| ath10k_pci_free_pipes(ar); |
| |
| err_core_destroy: |
| ath10k_core_destroy(ar); |
| |
| return ret; |
| } |
| |
| static void ath10k_pci_remove(struct pci_dev *pdev) |
| { |
| struct ath10k *ar = pci_get_drvdata(pdev); |
| |
| ath10k_dbg(ar, ATH10K_DBG_PCI, "pci remove\n"); |
| |
| if (!ar) |
| return; |
| |
| ath10k_core_unregister(ar); |
| ath10k_pci_free_irq(ar); |
| ath10k_pci_deinit_irq(ar); |
| ath10k_pci_release_resource(ar); |
| ath10k_pci_sleep_sync(ar); |
| ath10k_pci_release(ar); |
| ath10k_core_destroy(ar); |
| } |
| |
| MODULE_DEVICE_TABLE(pci, ath10k_pci_id_table); |
| |
| static __maybe_unused int ath10k_pci_pm_suspend(struct device *dev) |
| { |
| struct ath10k *ar = dev_get_drvdata(dev); |
| int ret; |
| |
| ret = ath10k_pci_suspend(ar); |
| if (ret) |
| ath10k_warn(ar, "failed to suspend hif: %d\n", ret); |
| |
| return ret; |
| } |
| |
| static __maybe_unused int ath10k_pci_pm_resume(struct device *dev) |
| { |
| struct ath10k *ar = dev_get_drvdata(dev); |
| int ret; |
| |
| ret = ath10k_pci_resume(ar); |
| if (ret) |
| ath10k_warn(ar, "failed to resume hif: %d\n", ret); |
| |
| return ret; |
| } |
| |
| static SIMPLE_DEV_PM_OPS(ath10k_pci_pm_ops, |
| ath10k_pci_pm_suspend, |
| ath10k_pci_pm_resume); |
| |
| static struct pci_driver ath10k_pci_driver = { |
| .name = "ath10k_pci", |
| .id_table = ath10k_pci_id_table, |
| .probe = ath10k_pci_probe, |
| .remove = ath10k_pci_remove, |
| #ifdef CONFIG_PM |
| .driver.pm = &ath10k_pci_pm_ops, |
| #endif |
| }; |
| |
| static int __init ath10k_pci_init(void) |
| { |
| int ret; |
| |
| ret = pci_register_driver(&ath10k_pci_driver); |
| if (ret) |
| printk(KERN_ERR "failed to register ath10k pci driver: %d\n", |
| ret); |
| |
| ret = ath10k_ahb_init(); |
| if (ret) |
| printk(KERN_ERR "ahb init failed: %d\n", ret); |
| |
| return ret; |
| } |
| module_init(ath10k_pci_init); |
| |
| static void __exit ath10k_pci_exit(void) |
| { |
| pci_unregister_driver(&ath10k_pci_driver); |
| ath10k_ahb_exit(); |
| } |
| |
| module_exit(ath10k_pci_exit); |
| |
| MODULE_AUTHOR("Qualcomm Atheros"); |
| MODULE_DESCRIPTION("Driver support for Qualcomm Atheros 802.11ac WLAN PCIe/AHB devices"); |
| MODULE_LICENSE("Dual BSD/GPL"); |
| |
| /* QCA988x 2.0 firmware files */ |
| MODULE_FIRMWARE(QCA988X_HW_2_0_FW_DIR "/" ATH10K_FW_API2_FILE); |
| MODULE_FIRMWARE(QCA988X_HW_2_0_FW_DIR "/" ATH10K_FW_API3_FILE); |
| MODULE_FIRMWARE(QCA988X_HW_2_0_FW_DIR "/" ATH10K_FW_API4_FILE); |
| MODULE_FIRMWARE(QCA988X_HW_2_0_FW_DIR "/" ATH10K_FW_API5_FILE); |
| MODULE_FIRMWARE(QCA988X_HW_2_0_FW_DIR "/" QCA988X_HW_2_0_BOARD_DATA_FILE); |
| MODULE_FIRMWARE(QCA988X_HW_2_0_FW_DIR "/" ATH10K_BOARD_API2_FILE); |
| |
| /* QCA9887 1.0 firmware files */ |
| MODULE_FIRMWARE(QCA9887_HW_1_0_FW_DIR "/" ATH10K_FW_API5_FILE); |
| MODULE_FIRMWARE(QCA9887_HW_1_0_FW_DIR "/" QCA9887_HW_1_0_BOARD_DATA_FILE); |
| MODULE_FIRMWARE(QCA9887_HW_1_0_FW_DIR "/" ATH10K_BOARD_API2_FILE); |
| |
| /* QCA6174 2.1 firmware files */ |
| MODULE_FIRMWARE(QCA6174_HW_2_1_FW_DIR "/" ATH10K_FW_API4_FILE); |
| MODULE_FIRMWARE(QCA6174_HW_2_1_FW_DIR "/" ATH10K_FW_API5_FILE); |
| MODULE_FIRMWARE(QCA6174_HW_2_1_FW_DIR "/" QCA6174_HW_2_1_BOARD_DATA_FILE); |
| MODULE_FIRMWARE(QCA6174_HW_2_1_FW_DIR "/" ATH10K_BOARD_API2_FILE); |
| |
| /* QCA6174 3.1 firmware files */ |
| MODULE_FIRMWARE(QCA6174_HW_3_0_FW_DIR "/" ATH10K_FW_API4_FILE); |
| MODULE_FIRMWARE(QCA6174_HW_3_0_FW_DIR "/" ATH10K_FW_API5_FILE); |
| MODULE_FIRMWARE(QCA6174_HW_3_0_FW_DIR "/" ATH10K_FW_API6_FILE); |
| MODULE_FIRMWARE(QCA6174_HW_3_0_FW_DIR "/" QCA6174_HW_3_0_BOARD_DATA_FILE); |
| MODULE_FIRMWARE(QCA6174_HW_3_0_FW_DIR "/" ATH10K_BOARD_API2_FILE); |
| |
| /* QCA9377 1.0 firmware files */ |
| MODULE_FIRMWARE(QCA9377_HW_1_0_FW_DIR "/" ATH10K_FW_API6_FILE); |
| MODULE_FIRMWARE(QCA9377_HW_1_0_FW_DIR "/" ATH10K_FW_API5_FILE); |
| MODULE_FIRMWARE(QCA9377_HW_1_0_FW_DIR "/" QCA9377_HW_1_0_BOARD_DATA_FILE); |