| /* |
| * Xen event channels |
| * |
| * Xen models interrupts with abstract event channels. Because each |
| * domain gets 1024 event channels, but NR_IRQ is not that large, we |
| * must dynamically map irqs<->event channels. The event channels |
| * interface with the rest of the kernel by defining a xen interrupt |
| * chip. When an event is recieved, it is mapped to an irq and sent |
| * through the normal interrupt processing path. |
| * |
| * There are four kinds of events which can be mapped to an event |
| * channel: |
| * |
| * 1. Inter-domain notifications. This includes all the virtual |
| * device events, since they're driven by front-ends in another domain |
| * (typically dom0). |
| * 2. VIRQs, typically used for timers. These are per-cpu events. |
| * 3. IPIs. |
| * 4. Hardware interrupts. Not supported at present. |
| * |
| * Jeremy Fitzhardinge <jeremy@xensource.com>, XenSource Inc, 2007 |
| */ |
| |
| #include <linux/linkage.h> |
| #include <linux/interrupt.h> |
| #include <linux/irq.h> |
| #include <linux/module.h> |
| #include <linux/string.h> |
| |
| #include <asm/ptrace.h> |
| #include <asm/irq.h> |
| #include <asm/sync_bitops.h> |
| #include <asm/xen/hypercall.h> |
| #include <asm/xen/hypervisor.h> |
| |
| #include <xen/events.h> |
| #include <xen/interface/xen.h> |
| #include <xen/interface/event_channel.h> |
| |
| #include "xen-ops.h" |
| |
| /* |
| * This lock protects updates to the following mapping and reference-count |
| * arrays. The lock does not need to be acquired to read the mapping tables. |
| */ |
| static DEFINE_SPINLOCK(irq_mapping_update_lock); |
| |
| /* IRQ <-> VIRQ mapping. */ |
| static DEFINE_PER_CPU(int, virq_to_irq[NR_VIRQS]) = {[0 ... NR_VIRQS-1] = -1}; |
| |
| /* IRQ <-> IPI mapping */ |
| static DEFINE_PER_CPU(int, ipi_to_irq[XEN_NR_IPIS]) = {[0 ... XEN_NR_IPIS-1] = -1}; |
| |
| /* Packed IRQ information: binding type, sub-type index, and event channel. */ |
| struct packed_irq |
| { |
| unsigned short evtchn; |
| unsigned char index; |
| unsigned char type; |
| }; |
| |
| static struct packed_irq irq_info[NR_IRQS]; |
| |
| /* Binding types. */ |
| enum { |
| IRQT_UNBOUND, |
| IRQT_PIRQ, |
| IRQT_VIRQ, |
| IRQT_IPI, |
| IRQT_EVTCHN |
| }; |
| |
| /* Convenient shorthand for packed representation of an unbound IRQ. */ |
| #define IRQ_UNBOUND mk_irq_info(IRQT_UNBOUND, 0, 0) |
| |
| static int evtchn_to_irq[NR_EVENT_CHANNELS] = { |
| [0 ... NR_EVENT_CHANNELS-1] = -1 |
| }; |
| static unsigned long cpu_evtchn_mask[NR_CPUS][NR_EVENT_CHANNELS/BITS_PER_LONG]; |
| static u8 cpu_evtchn[NR_EVENT_CHANNELS]; |
| |
| /* Reference counts for bindings to IRQs. */ |
| static int irq_bindcount[NR_IRQS]; |
| |
| /* Xen will never allocate port zero for any purpose. */ |
| #define VALID_EVTCHN(chn) ((chn) != 0) |
| |
| /* |
| * Force a proper event-channel callback from Xen after clearing the |
| * callback mask. We do this in a very simple manner, by making a call |
| * down into Xen. The pending flag will be checked by Xen on return. |
| */ |
| void force_evtchn_callback(void) |
| { |
| (void)HYPERVISOR_xen_version(0, NULL); |
| } |
| EXPORT_SYMBOL_GPL(force_evtchn_callback); |
| |
| static struct irq_chip xen_dynamic_chip; |
| |
| /* Constructor for packed IRQ information. */ |
| static inline struct packed_irq mk_irq_info(u32 type, u32 index, u32 evtchn) |
| { |
| return (struct packed_irq) { evtchn, index, type }; |
| } |
| |
| /* |
| * Accessors for packed IRQ information. |
| */ |
| static inline unsigned int evtchn_from_irq(int irq) |
| { |
| return irq_info[irq].evtchn; |
| } |
| |
| static inline unsigned int index_from_irq(int irq) |
| { |
| return irq_info[irq].index; |
| } |
| |
| static inline unsigned int type_from_irq(int irq) |
| { |
| return irq_info[irq].type; |
| } |
| |
| static inline unsigned long active_evtchns(unsigned int cpu, |
| struct shared_info *sh, |
| unsigned int idx) |
| { |
| return (sh->evtchn_pending[idx] & |
| cpu_evtchn_mask[cpu][idx] & |
| ~sh->evtchn_mask[idx]); |
| } |
| |
| static void bind_evtchn_to_cpu(unsigned int chn, unsigned int cpu) |
| { |
| int irq = evtchn_to_irq[chn]; |
| |
| BUG_ON(irq == -1); |
| #ifdef CONFIG_SMP |
| irq_desc[irq].affinity = cpumask_of_cpu(cpu); |
| #endif |
| |
| __clear_bit(chn, cpu_evtchn_mask[cpu_evtchn[chn]]); |
| __set_bit(chn, cpu_evtchn_mask[cpu]); |
| |
| cpu_evtchn[chn] = cpu; |
| } |
| |
| static void init_evtchn_cpu_bindings(void) |
| { |
| #ifdef CONFIG_SMP |
| int i; |
| /* By default all event channels notify CPU#0. */ |
| for (i = 0; i < NR_IRQS; i++) |
| irq_desc[i].affinity = cpumask_of_cpu(0); |
| #endif |
| |
| memset(cpu_evtchn, 0, sizeof(cpu_evtchn)); |
| memset(cpu_evtchn_mask[0], ~0, sizeof(cpu_evtchn_mask[0])); |
| } |
| |
| static inline unsigned int cpu_from_evtchn(unsigned int evtchn) |
| { |
| return cpu_evtchn[evtchn]; |
| } |
| |
| static inline void clear_evtchn(int port) |
| { |
| struct shared_info *s = HYPERVISOR_shared_info; |
| sync_clear_bit(port, &s->evtchn_pending[0]); |
| } |
| |
| static inline void set_evtchn(int port) |
| { |
| struct shared_info *s = HYPERVISOR_shared_info; |
| sync_set_bit(port, &s->evtchn_pending[0]); |
| } |
| |
| |
| /** |
| * notify_remote_via_irq - send event to remote end of event channel via irq |
| * @irq: irq of event channel to send event to |
| * |
| * Unlike notify_remote_via_evtchn(), this is safe to use across |
| * save/restore. Notifications on a broken connection are silently |
| * dropped. |
| */ |
| void notify_remote_via_irq(int irq) |
| { |
| int evtchn = evtchn_from_irq(irq); |
| |
| if (VALID_EVTCHN(evtchn)) |
| notify_remote_via_evtchn(evtchn); |
| } |
| EXPORT_SYMBOL_GPL(notify_remote_via_irq); |
| |
| static void mask_evtchn(int port) |
| { |
| struct shared_info *s = HYPERVISOR_shared_info; |
| sync_set_bit(port, &s->evtchn_mask[0]); |
| } |
| |
| static void unmask_evtchn(int port) |
| { |
| struct shared_info *s = HYPERVISOR_shared_info; |
| unsigned int cpu = get_cpu(); |
| |
| BUG_ON(!irqs_disabled()); |
| |
| /* Slow path (hypercall) if this is a non-local port. */ |
| if (unlikely(cpu != cpu_from_evtchn(port))) { |
| struct evtchn_unmask unmask = { .port = port }; |
| (void)HYPERVISOR_event_channel_op(EVTCHNOP_unmask, &unmask); |
| } else { |
| struct vcpu_info *vcpu_info = __get_cpu_var(xen_vcpu); |
| |
| sync_clear_bit(port, &s->evtchn_mask[0]); |
| |
| /* |
| * The following is basically the equivalent of |
| * 'hw_resend_irq'. Just like a real IO-APIC we 'lose |
| * the interrupt edge' if the channel is masked. |
| */ |
| if (sync_test_bit(port, &s->evtchn_pending[0]) && |
| !sync_test_and_set_bit(port / BITS_PER_LONG, |
| &vcpu_info->evtchn_pending_sel)) |
| vcpu_info->evtchn_upcall_pending = 1; |
| } |
| |
| put_cpu(); |
| } |
| |
| static int find_unbound_irq(void) |
| { |
| int irq; |
| |
| /* Only allocate from dynirq range */ |
| for (irq = 0; irq < NR_IRQS; irq++) |
| if (irq_bindcount[irq] == 0) |
| break; |
| |
| if (irq == NR_IRQS) |
| panic("No available IRQ to bind to: increase NR_IRQS!\n"); |
| |
| return irq; |
| } |
| |
| int bind_evtchn_to_irq(unsigned int evtchn) |
| { |
| int irq; |
| |
| spin_lock(&irq_mapping_update_lock); |
| |
| irq = evtchn_to_irq[evtchn]; |
| |
| if (irq == -1) { |
| irq = find_unbound_irq(); |
| |
| dynamic_irq_init(irq); |
| set_irq_chip_and_handler_name(irq, &xen_dynamic_chip, |
| handle_level_irq, "event"); |
| |
| evtchn_to_irq[evtchn] = irq; |
| irq_info[irq] = mk_irq_info(IRQT_EVTCHN, 0, evtchn); |
| } |
| |
| irq_bindcount[irq]++; |
| |
| spin_unlock(&irq_mapping_update_lock); |
| |
| return irq; |
| } |
| EXPORT_SYMBOL_GPL(bind_evtchn_to_irq); |
| |
| static int bind_ipi_to_irq(unsigned int ipi, unsigned int cpu) |
| { |
| struct evtchn_bind_ipi bind_ipi; |
| int evtchn, irq; |
| |
| spin_lock(&irq_mapping_update_lock); |
| |
| irq = per_cpu(ipi_to_irq, cpu)[ipi]; |
| if (irq == -1) { |
| irq = find_unbound_irq(); |
| if (irq < 0) |
| goto out; |
| |
| dynamic_irq_init(irq); |
| set_irq_chip_and_handler_name(irq, &xen_dynamic_chip, |
| handle_level_irq, "ipi"); |
| |
| bind_ipi.vcpu = cpu; |
| if (HYPERVISOR_event_channel_op(EVTCHNOP_bind_ipi, |
| &bind_ipi) != 0) |
| BUG(); |
| evtchn = bind_ipi.port; |
| |
| evtchn_to_irq[evtchn] = irq; |
| irq_info[irq] = mk_irq_info(IRQT_IPI, ipi, evtchn); |
| |
| per_cpu(ipi_to_irq, cpu)[ipi] = irq; |
| |
| bind_evtchn_to_cpu(evtchn, cpu); |
| } |
| |
| irq_bindcount[irq]++; |
| |
| out: |
| spin_unlock(&irq_mapping_update_lock); |
| return irq; |
| } |
| |
| |
| static int bind_virq_to_irq(unsigned int virq, unsigned int cpu) |
| { |
| struct evtchn_bind_virq bind_virq; |
| int evtchn, irq; |
| |
| spin_lock(&irq_mapping_update_lock); |
| |
| irq = per_cpu(virq_to_irq, cpu)[virq]; |
| |
| if (irq == -1) { |
| bind_virq.virq = virq; |
| bind_virq.vcpu = cpu; |
| if (HYPERVISOR_event_channel_op(EVTCHNOP_bind_virq, |
| &bind_virq) != 0) |
| BUG(); |
| evtchn = bind_virq.port; |
| |
| irq = find_unbound_irq(); |
| |
| dynamic_irq_init(irq); |
| set_irq_chip_and_handler_name(irq, &xen_dynamic_chip, |
| handle_level_irq, "virq"); |
| |
| evtchn_to_irq[evtchn] = irq; |
| irq_info[irq] = mk_irq_info(IRQT_VIRQ, virq, evtchn); |
| |
| per_cpu(virq_to_irq, cpu)[virq] = irq; |
| |
| bind_evtchn_to_cpu(evtchn, cpu); |
| } |
| |
| irq_bindcount[irq]++; |
| |
| spin_unlock(&irq_mapping_update_lock); |
| |
| return irq; |
| } |
| |
| static void unbind_from_irq(unsigned int irq) |
| { |
| struct evtchn_close close; |
| int evtchn = evtchn_from_irq(irq); |
| |
| spin_lock(&irq_mapping_update_lock); |
| |
| if (VALID_EVTCHN(evtchn) && (--irq_bindcount[irq] == 0)) { |
| close.port = evtchn; |
| if (HYPERVISOR_event_channel_op(EVTCHNOP_close, &close) != 0) |
| BUG(); |
| |
| switch (type_from_irq(irq)) { |
| case IRQT_VIRQ: |
| per_cpu(virq_to_irq, cpu_from_evtchn(evtchn)) |
| [index_from_irq(irq)] = -1; |
| break; |
| default: |
| break; |
| } |
| |
| /* Closed ports are implicitly re-bound to VCPU0. */ |
| bind_evtchn_to_cpu(evtchn, 0); |
| |
| evtchn_to_irq[evtchn] = -1; |
| irq_info[irq] = IRQ_UNBOUND; |
| |
| dynamic_irq_init(irq); |
| } |
| |
| spin_unlock(&irq_mapping_update_lock); |
| } |
| |
| int bind_evtchn_to_irqhandler(unsigned int evtchn, |
| irq_handler_t handler, |
| unsigned long irqflags, |
| const char *devname, void *dev_id) |
| { |
| unsigned int irq; |
| int retval; |
| |
| irq = bind_evtchn_to_irq(evtchn); |
| retval = request_irq(irq, handler, irqflags, devname, dev_id); |
| if (retval != 0) { |
| unbind_from_irq(irq); |
| return retval; |
| } |
| |
| return irq; |
| } |
| EXPORT_SYMBOL_GPL(bind_evtchn_to_irqhandler); |
| |
| int bind_virq_to_irqhandler(unsigned int virq, unsigned int cpu, |
| irq_handler_t handler, |
| unsigned long irqflags, const char *devname, void *dev_id) |
| { |
| unsigned int irq; |
| int retval; |
| |
| irq = bind_virq_to_irq(virq, cpu); |
| retval = request_irq(irq, handler, irqflags, devname, dev_id); |
| if (retval != 0) { |
| unbind_from_irq(irq); |
| return retval; |
| } |
| |
| return irq; |
| } |
| EXPORT_SYMBOL_GPL(bind_virq_to_irqhandler); |
| |
| int bind_ipi_to_irqhandler(enum ipi_vector ipi, |
| unsigned int cpu, |
| irq_handler_t handler, |
| unsigned long irqflags, |
| const char *devname, |
| void *dev_id) |
| { |
| int irq, retval; |
| |
| irq = bind_ipi_to_irq(ipi, cpu); |
| if (irq < 0) |
| return irq; |
| |
| retval = request_irq(irq, handler, irqflags, devname, dev_id); |
| if (retval != 0) { |
| unbind_from_irq(irq); |
| return retval; |
| } |
| |
| return irq; |
| } |
| |
| void unbind_from_irqhandler(unsigned int irq, void *dev_id) |
| { |
| free_irq(irq, dev_id); |
| unbind_from_irq(irq); |
| } |
| EXPORT_SYMBOL_GPL(unbind_from_irqhandler); |
| |
| void xen_send_IPI_one(unsigned int cpu, enum ipi_vector vector) |
| { |
| int irq = per_cpu(ipi_to_irq, cpu)[vector]; |
| BUG_ON(irq < 0); |
| notify_remote_via_irq(irq); |
| } |
| |
| |
| /* |
| * Search the CPUs pending events bitmasks. For each one found, map |
| * the event number to an irq, and feed it into do_IRQ() for |
| * handling. |
| * |
| * Xen uses a two-level bitmap to speed searching. The first level is |
| * a bitset of words which contain pending event bits. The second |
| * level is a bitset of pending events themselves. |
| */ |
| fastcall void xen_evtchn_do_upcall(struct pt_regs *regs) |
| { |
| int cpu = get_cpu(); |
| struct shared_info *s = HYPERVISOR_shared_info; |
| struct vcpu_info *vcpu_info = __get_cpu_var(xen_vcpu); |
| unsigned long pending_words; |
| |
| vcpu_info->evtchn_upcall_pending = 0; |
| |
| /* NB. No need for a barrier here -- XCHG is a barrier on x86. */ |
| pending_words = xchg(&vcpu_info->evtchn_pending_sel, 0); |
| while (pending_words != 0) { |
| unsigned long pending_bits; |
| int word_idx = __ffs(pending_words); |
| pending_words &= ~(1UL << word_idx); |
| |
| while ((pending_bits = active_evtchns(cpu, s, word_idx)) != 0) { |
| int bit_idx = __ffs(pending_bits); |
| int port = (word_idx * BITS_PER_LONG) + bit_idx; |
| int irq = evtchn_to_irq[port]; |
| |
| if (irq != -1) { |
| regs->orig_eax = ~irq; |
| do_IRQ(regs); |
| } |
| } |
| } |
| |
| put_cpu(); |
| } |
| |
| /* Rebind an evtchn so that it gets delivered to a specific cpu */ |
| static void rebind_irq_to_cpu(unsigned irq, unsigned tcpu) |
| { |
| struct evtchn_bind_vcpu bind_vcpu; |
| int evtchn = evtchn_from_irq(irq); |
| |
| if (!VALID_EVTCHN(evtchn)) |
| return; |
| |
| /* Send future instances of this interrupt to other vcpu. */ |
| bind_vcpu.port = evtchn; |
| bind_vcpu.vcpu = tcpu; |
| |
| /* |
| * If this fails, it usually just indicates that we're dealing with a |
| * virq or IPI channel, which don't actually need to be rebound. Ignore |
| * it, but don't do the xenlinux-level rebind in that case. |
| */ |
| if (HYPERVISOR_event_channel_op(EVTCHNOP_bind_vcpu, &bind_vcpu) >= 0) |
| bind_evtchn_to_cpu(evtchn, tcpu); |
| } |
| |
| |
| static void set_affinity_irq(unsigned irq, cpumask_t dest) |
| { |
| unsigned tcpu = first_cpu(dest); |
| rebind_irq_to_cpu(irq, tcpu); |
| } |
| |
| static void enable_dynirq(unsigned int irq) |
| { |
| int evtchn = evtchn_from_irq(irq); |
| |
| if (VALID_EVTCHN(evtchn)) |
| unmask_evtchn(evtchn); |
| } |
| |
| static void disable_dynirq(unsigned int irq) |
| { |
| int evtchn = evtchn_from_irq(irq); |
| |
| if (VALID_EVTCHN(evtchn)) |
| mask_evtchn(evtchn); |
| } |
| |
| static void ack_dynirq(unsigned int irq) |
| { |
| int evtchn = evtchn_from_irq(irq); |
| |
| move_native_irq(irq); |
| |
| if (VALID_EVTCHN(evtchn)) |
| clear_evtchn(evtchn); |
| } |
| |
| static int retrigger_dynirq(unsigned int irq) |
| { |
| int evtchn = evtchn_from_irq(irq); |
| int ret = 0; |
| |
| if (VALID_EVTCHN(evtchn)) { |
| set_evtchn(evtchn); |
| ret = 1; |
| } |
| |
| return ret; |
| } |
| |
| static struct irq_chip xen_dynamic_chip __read_mostly = { |
| .name = "xen-dyn", |
| .mask = disable_dynirq, |
| .unmask = enable_dynirq, |
| .ack = ack_dynirq, |
| .set_affinity = set_affinity_irq, |
| .retrigger = retrigger_dynirq, |
| }; |
| |
| void __init xen_init_IRQ(void) |
| { |
| int i; |
| |
| init_evtchn_cpu_bindings(); |
| |
| /* No event channels are 'live' right now. */ |
| for (i = 0; i < NR_EVENT_CHANNELS; i++) |
| mask_evtchn(i); |
| |
| /* Dynamic IRQ space is currently unbound. Zero the refcnts. */ |
| for (i = 0; i < NR_IRQS; i++) |
| irq_bindcount[i] = 0; |
| |
| irq_ctx_init(smp_processor_id()); |
| } |