| // SPDX-License-Identifier: GPL-2.0+ |
| /* |
| * PowerPC Memory Protection Keys management |
| * |
| * Copyright 2017, Ram Pai, IBM Corporation. |
| */ |
| |
| #include <asm/mman.h> |
| #include <asm/mmu_context.h> |
| #include <asm/mmu.h> |
| #include <asm/setup.h> |
| #include <asm/smp.h> |
| #include <asm/firmware.h> |
| |
| #include <linux/pkeys.h> |
| #include <linux/of_fdt.h> |
| |
| |
| int num_pkey; /* Max number of pkeys supported */ |
| /* |
| * Keys marked in the reservation list cannot be allocated by userspace |
| */ |
| u32 reserved_allocation_mask __ro_after_init; |
| |
| /* Bits set for the initially allocated keys */ |
| static u32 initial_allocation_mask __ro_after_init; |
| |
| /* |
| * Even if we allocate keys with sys_pkey_alloc(), we need to make sure |
| * other thread still find the access denied using the same keys. |
| */ |
| u64 default_amr __ro_after_init = ~0x0UL; |
| u64 default_iamr __ro_after_init = 0x5555555555555555UL; |
| u64 default_uamor __ro_after_init; |
| EXPORT_SYMBOL(default_amr); |
| /* |
| * Key used to implement PROT_EXEC mmap. Denies READ/WRITE |
| * We pick key 2 because 0 is special key and 1 is reserved as per ISA. |
| */ |
| static int execute_only_key = 2; |
| static bool pkey_execute_disable_supported; |
| |
| |
| #define AMR_BITS_PER_PKEY 2 |
| #define AMR_RD_BIT 0x1UL |
| #define AMR_WR_BIT 0x2UL |
| #define IAMR_EX_BIT 0x1UL |
| #define PKEY_REG_BITS (sizeof(u64) * 8) |
| #define pkeyshift(pkey) (PKEY_REG_BITS - ((pkey+1) * AMR_BITS_PER_PKEY)) |
| |
| static int __init dt_scan_storage_keys(unsigned long node, |
| const char *uname, int depth, |
| void *data) |
| { |
| const char *type = of_get_flat_dt_prop(node, "device_type", NULL); |
| const __be32 *prop; |
| int *pkeys_total = (int *) data; |
| |
| /* We are scanning "cpu" nodes only */ |
| if (type == NULL || strcmp(type, "cpu") != 0) |
| return 0; |
| |
| prop = of_get_flat_dt_prop(node, "ibm,processor-storage-keys", NULL); |
| if (!prop) |
| return 0; |
| *pkeys_total = be32_to_cpu(prop[0]); |
| return 1; |
| } |
| |
| static int __init scan_pkey_feature(void) |
| { |
| int ret; |
| int pkeys_total = 0; |
| |
| /* |
| * Pkey is not supported with Radix translation. |
| */ |
| if (early_radix_enabled()) |
| return 0; |
| |
| ret = of_scan_flat_dt(dt_scan_storage_keys, &pkeys_total); |
| if (ret == 0) { |
| /* |
| * Let's assume 32 pkeys on P8/P9 bare metal, if its not defined by device |
| * tree. We make this exception since some version of skiboot forgot to |
| * expose this property on power8/9. |
| */ |
| if (!firmware_has_feature(FW_FEATURE_LPAR)) { |
| unsigned long pvr = mfspr(SPRN_PVR); |
| |
| if (PVR_VER(pvr) == PVR_POWER8 || PVR_VER(pvr) == PVR_POWER8E || |
| PVR_VER(pvr) == PVR_POWER8NVL || PVR_VER(pvr) == PVR_POWER9) |
| pkeys_total = 32; |
| } |
| } |
| |
| #ifdef CONFIG_PPC_MEM_KEYS |
| /* |
| * Adjust the upper limit, based on the number of bits supported by |
| * arch-neutral code. |
| */ |
| pkeys_total = min_t(int, pkeys_total, |
| ((ARCH_VM_PKEY_FLAGS >> VM_PKEY_SHIFT) + 1)); |
| #endif |
| return pkeys_total; |
| } |
| |
| void __init pkey_early_init_devtree(void) |
| { |
| int pkeys_total, i; |
| |
| #ifdef CONFIG_PPC_MEM_KEYS |
| /* |
| * We define PKEY_DISABLE_EXECUTE in addition to the arch-neutral |
| * generic defines for PKEY_DISABLE_ACCESS and PKEY_DISABLE_WRITE. |
| * Ensure that the bits a distinct. |
| */ |
| BUILD_BUG_ON(PKEY_DISABLE_EXECUTE & |
| (PKEY_DISABLE_ACCESS | PKEY_DISABLE_WRITE)); |
| |
| /* |
| * pkey_to_vmflag_bits() assumes that the pkey bits are contiguous |
| * in the vmaflag. Make sure that is really the case. |
| */ |
| BUILD_BUG_ON(__builtin_clzl(ARCH_VM_PKEY_FLAGS >> VM_PKEY_SHIFT) + |
| __builtin_popcountl(ARCH_VM_PKEY_FLAGS >> VM_PKEY_SHIFT) |
| != (sizeof(u64) * BITS_PER_BYTE)); |
| #endif |
| /* |
| * Only P7 and above supports SPRN_AMR update with MSR[PR] = 1 |
| */ |
| if (!early_cpu_has_feature(CPU_FTR_ARCH_206)) |
| return; |
| |
| /* scan the device tree for pkey feature */ |
| pkeys_total = scan_pkey_feature(); |
| if (!pkeys_total) |
| goto out; |
| |
| /* Allow all keys to be modified by default */ |
| default_uamor = ~0x0UL; |
| |
| cur_cpu_spec->mmu_features |= MMU_FTR_PKEY; |
| |
| /* |
| * The device tree cannot be relied to indicate support for |
| * execute_disable support. Instead we use a PVR check. |
| */ |
| if (pvr_version_is(PVR_POWER7) || pvr_version_is(PVR_POWER7p)) |
| pkey_execute_disable_supported = false; |
| else |
| pkey_execute_disable_supported = true; |
| |
| #ifdef CONFIG_PPC_4K_PAGES |
| /* |
| * The OS can manage only 8 pkeys due to its inability to represent them |
| * in the Linux 4K PTE. Mark all other keys reserved. |
| */ |
| num_pkey = min(8, pkeys_total); |
| #else |
| num_pkey = pkeys_total; |
| #endif |
| |
| if (unlikely(num_pkey <= execute_only_key) || !pkey_execute_disable_supported) { |
| /* |
| * Insufficient number of keys to support |
| * execute only key. Mark it unavailable. |
| */ |
| execute_only_key = -1; |
| } else { |
| /* |
| * Mark the execute_only_pkey as not available for |
| * user allocation via pkey_alloc. |
| */ |
| reserved_allocation_mask |= (0x1 << execute_only_key); |
| |
| /* |
| * Deny READ/WRITE for execute_only_key. |
| * Allow execute in IAMR. |
| */ |
| default_amr |= (0x3ul << pkeyshift(execute_only_key)); |
| default_iamr &= ~(0x1ul << pkeyshift(execute_only_key)); |
| |
| /* |
| * Clear the uamor bits for this key. |
| */ |
| default_uamor &= ~(0x3ul << pkeyshift(execute_only_key)); |
| } |
| |
| if (unlikely(num_pkey <= 3)) { |
| /* |
| * Insufficient number of keys to support |
| * KUAP/KUEP feature. |
| */ |
| disable_kuep = true; |
| disable_kuap = true; |
| WARN(1, "Disabling kernel user protection due to low (%d) max supported keys\n", num_pkey); |
| } else { |
| /* handle key which is used by kernel for KAUP */ |
| reserved_allocation_mask |= (0x1 << 3); |
| /* |
| * Mark access for kup_key in default amr so that |
| * we continue to operate with that AMR in |
| * copy_to/from_user(). |
| */ |
| default_amr &= ~(0x3ul << pkeyshift(3)); |
| default_iamr &= ~(0x1ul << pkeyshift(3)); |
| default_uamor &= ~(0x3ul << pkeyshift(3)); |
| } |
| |
| /* |
| * Allow access for only key 0. And prevent any other modification. |
| */ |
| default_amr &= ~(0x3ul << pkeyshift(0)); |
| default_iamr &= ~(0x1ul << pkeyshift(0)); |
| default_uamor &= ~(0x3ul << pkeyshift(0)); |
| /* |
| * key 0 is special in that we want to consider it an allocated |
| * key which is preallocated. We don't allow changing AMR bits |
| * w.r.t key 0. But one can pkey_free(key0) |
| */ |
| initial_allocation_mask |= (0x1 << 0); |
| |
| /* |
| * key 1 is recommended not to be used. PowerISA(3.0) page 1015, |
| * programming note. |
| */ |
| reserved_allocation_mask |= (0x1 << 1); |
| default_uamor &= ~(0x3ul << pkeyshift(1)); |
| |
| /* |
| * Prevent the usage of OS reserved keys. Update UAMOR |
| * for those keys. Also mark the rest of the bits in the |
| * 32 bit mask as reserved. |
| */ |
| for (i = num_pkey; i < 32 ; i++) { |
| reserved_allocation_mask |= (0x1 << i); |
| default_uamor &= ~(0x3ul << pkeyshift(i)); |
| } |
| /* |
| * Prevent the allocation of reserved keys too. |
| */ |
| initial_allocation_mask |= reserved_allocation_mask; |
| |
| pr_info("Enabling pkeys with max key count %d\n", num_pkey); |
| out: |
| /* |
| * Setup uamor on boot cpu |
| */ |
| mtspr(SPRN_UAMOR, default_uamor); |
| |
| return; |
| } |
| |
| #ifdef CONFIG_PPC_KUEP |
| void setup_kuep(bool disabled) |
| { |
| if (disabled) |
| return; |
| /* |
| * On hash if PKEY feature is not enabled, disable KUAP too. |
| */ |
| if (!early_radix_enabled() && !early_mmu_has_feature(MMU_FTR_PKEY)) |
| return; |
| |
| if (smp_processor_id() == boot_cpuid) { |
| pr_info("Activating Kernel Userspace Execution Prevention\n"); |
| cur_cpu_spec->mmu_features |= MMU_FTR_BOOK3S_KUEP; |
| } |
| |
| /* |
| * Radix always uses key0 of the IAMR to determine if an access is |
| * allowed. We set bit 0 (IBM bit 1) of key0, to prevent instruction |
| * fetch. |
| */ |
| mtspr(SPRN_IAMR, AMR_KUEP_BLOCKED); |
| isync(); |
| } |
| #endif |
| |
| #ifdef CONFIG_PPC_KUAP |
| void setup_kuap(bool disabled) |
| { |
| if (disabled) |
| return; |
| /* |
| * On hash if PKEY feature is not enabled, disable KUAP too. |
| */ |
| if (!early_radix_enabled() && !early_mmu_has_feature(MMU_FTR_PKEY)) |
| return; |
| |
| if (smp_processor_id() == boot_cpuid) { |
| pr_info("Activating Kernel Userspace Access Prevention\n"); |
| cur_cpu_spec->mmu_features |= MMU_FTR_KUAP; |
| } |
| |
| /* |
| * Set the default kernel AMR values on all cpus. |
| */ |
| mtspr(SPRN_AMR, AMR_KUAP_BLOCKED); |
| isync(); |
| } |
| #endif |
| |
| #ifdef CONFIG_PPC_MEM_KEYS |
| void pkey_mm_init(struct mm_struct *mm) |
| { |
| if (!mmu_has_feature(MMU_FTR_PKEY)) |
| return; |
| mm_pkey_allocation_map(mm) = initial_allocation_mask; |
| mm->context.execute_only_pkey = execute_only_key; |
| } |
| |
| static inline void init_amr(int pkey, u8 init_bits) |
| { |
| u64 new_amr_bits = (((u64)init_bits & 0x3UL) << pkeyshift(pkey)); |
| u64 old_amr = current_thread_amr() & ~((u64)(0x3ul) << pkeyshift(pkey)); |
| |
| current->thread.regs->amr = old_amr | new_amr_bits; |
| } |
| |
| static inline void init_iamr(int pkey, u8 init_bits) |
| { |
| u64 new_iamr_bits = (((u64)init_bits & 0x1UL) << pkeyshift(pkey)); |
| u64 old_iamr = current_thread_iamr() & ~((u64)(0x1ul) << pkeyshift(pkey)); |
| |
| if (!likely(pkey_execute_disable_supported)) |
| return; |
| |
| current->thread.regs->iamr = old_iamr | new_iamr_bits; |
| } |
| |
| /* |
| * Set the access rights in AMR IAMR and UAMOR registers for @pkey to that |
| * specified in @init_val. |
| */ |
| int __arch_set_user_pkey_access(struct task_struct *tsk, int pkey, |
| unsigned long init_val) |
| { |
| u64 new_amr_bits = 0x0ul; |
| u64 new_iamr_bits = 0x0ul; |
| u64 pkey_bits, uamor_pkey_bits; |
| |
| /* |
| * Check whether the key is disabled by UAMOR. |
| */ |
| pkey_bits = 0x3ul << pkeyshift(pkey); |
| uamor_pkey_bits = (default_uamor & pkey_bits); |
| |
| /* |
| * Both the bits in UAMOR corresponding to the key should be set |
| */ |
| if (uamor_pkey_bits != pkey_bits) |
| return -EINVAL; |
| |
| if (init_val & PKEY_DISABLE_EXECUTE) { |
| if (!pkey_execute_disable_supported) |
| return -EINVAL; |
| new_iamr_bits |= IAMR_EX_BIT; |
| } |
| init_iamr(pkey, new_iamr_bits); |
| |
| /* Set the bits we need in AMR: */ |
| if (init_val & PKEY_DISABLE_ACCESS) |
| new_amr_bits |= AMR_RD_BIT | AMR_WR_BIT; |
| else if (init_val & PKEY_DISABLE_WRITE) |
| new_amr_bits |= AMR_WR_BIT; |
| |
| init_amr(pkey, new_amr_bits); |
| return 0; |
| } |
| |
| int execute_only_pkey(struct mm_struct *mm) |
| { |
| return mm->context.execute_only_pkey; |
| } |
| |
| static inline bool vma_is_pkey_exec_only(struct vm_area_struct *vma) |
| { |
| /* Do this check first since the vm_flags should be hot */ |
| if ((vma->vm_flags & VM_ACCESS_FLAGS) != VM_EXEC) |
| return false; |
| |
| return (vma_pkey(vma) == vma->vm_mm->context.execute_only_pkey); |
| } |
| |
| /* |
| * This should only be called for *plain* mprotect calls. |
| */ |
| int __arch_override_mprotect_pkey(struct vm_area_struct *vma, int prot, |
| int pkey) |
| { |
| /* |
| * If the currently associated pkey is execute-only, but the requested |
| * protection is not execute-only, move it back to the default pkey. |
| */ |
| if (vma_is_pkey_exec_only(vma) && (prot != PROT_EXEC)) |
| return 0; |
| |
| /* |
| * The requested protection is execute-only. Hence let's use an |
| * execute-only pkey. |
| */ |
| if (prot == PROT_EXEC) { |
| pkey = execute_only_pkey(vma->vm_mm); |
| if (pkey > 0) |
| return pkey; |
| } |
| |
| /* Nothing to override. */ |
| return vma_pkey(vma); |
| } |
| |
| static bool pkey_access_permitted(int pkey, bool write, bool execute) |
| { |
| int pkey_shift; |
| u64 amr; |
| |
| pkey_shift = pkeyshift(pkey); |
| if (execute) |
| return !(current_thread_iamr() & (IAMR_EX_BIT << pkey_shift)); |
| |
| amr = current_thread_amr(); |
| if (write) |
| return !(amr & (AMR_WR_BIT << pkey_shift)); |
| |
| return !(amr & (AMR_RD_BIT << pkey_shift)); |
| } |
| |
| bool arch_pte_access_permitted(u64 pte, bool write, bool execute) |
| { |
| if (!mmu_has_feature(MMU_FTR_PKEY)) |
| return true; |
| |
| return pkey_access_permitted(pte_to_pkey_bits(pte), write, execute); |
| } |
| |
| /* |
| * We only want to enforce protection keys on the current thread because we |
| * effectively have no access to AMR/IAMR for other threads or any way to tell |
| * which AMR/IAMR in a threaded process we could use. |
| * |
| * So do not enforce things if the VMA is not from the current mm, or if we are |
| * in a kernel thread. |
| */ |
| bool arch_vma_access_permitted(struct vm_area_struct *vma, bool write, |
| bool execute, bool foreign) |
| { |
| if (!mmu_has_feature(MMU_FTR_PKEY)) |
| return true; |
| /* |
| * Do not enforce our key-permissions on a foreign vma. |
| */ |
| if (foreign || vma_is_foreign(vma)) |
| return true; |
| |
| return pkey_access_permitted(vma_pkey(vma), write, execute); |
| } |
| |
| void arch_dup_pkeys(struct mm_struct *oldmm, struct mm_struct *mm) |
| { |
| if (!mmu_has_feature(MMU_FTR_PKEY)) |
| return; |
| |
| /* Duplicate the oldmm pkey state in mm: */ |
| mm_pkey_allocation_map(mm) = mm_pkey_allocation_map(oldmm); |
| mm->context.execute_only_pkey = oldmm->context.execute_only_pkey; |
| } |
| |
| #endif /* CONFIG_PPC_MEM_KEYS */ |