| /* | 
 |  * net/sched/sch_qfq.c         Quick Fair Queueing Plus Scheduler. | 
 |  * | 
 |  * Copyright (c) 2009 Fabio Checconi, Luigi Rizzo, and Paolo Valente. | 
 |  * Copyright (c) 2012 Paolo Valente. | 
 |  * | 
 |  * This program is free software; you can redistribute it and/or | 
 |  * modify it under the terms of the GNU General Public License | 
 |  * version 2 as published by the Free Software Foundation. | 
 |  */ | 
 |  | 
 | #include <linux/module.h> | 
 | #include <linux/init.h> | 
 | #include <linux/bitops.h> | 
 | #include <linux/errno.h> | 
 | #include <linux/netdevice.h> | 
 | #include <linux/pkt_sched.h> | 
 | #include <net/sch_generic.h> | 
 | #include <net/pkt_sched.h> | 
 | #include <net/pkt_cls.h> | 
 |  | 
 |  | 
 | /*  Quick Fair Queueing Plus | 
 |     ======================== | 
 |  | 
 |     Sources: | 
 |  | 
 |     [1] Paolo Valente, | 
 |     "Reducing the Execution Time of Fair-Queueing Schedulers." | 
 |     http://algo.ing.unimo.it/people/paolo/agg-sched/agg-sched.pdf | 
 |  | 
 |     Sources for QFQ: | 
 |  | 
 |     [2] Fabio Checconi, Luigi Rizzo, and Paolo Valente: "QFQ: Efficient | 
 |     Packet Scheduling with Tight Bandwidth Distribution Guarantees." | 
 |  | 
 |     See also: | 
 |     http://retis.sssup.it/~fabio/linux/qfq/ | 
 |  */ | 
 |  | 
 | /* | 
 |  | 
 |   QFQ+ divides classes into aggregates of at most MAX_AGG_CLASSES | 
 |   classes. Each aggregate is timestamped with a virtual start time S | 
 |   and a virtual finish time F, and scheduled according to its | 
 |   timestamps. S and F are computed as a function of a system virtual | 
 |   time function V. The classes within each aggregate are instead | 
 |   scheduled with DRR. | 
 |  | 
 |   To speed up operations, QFQ+ divides also aggregates into a limited | 
 |   number of groups. Which group a class belongs to depends on the | 
 |   ratio between the maximum packet length for the class and the weight | 
 |   of the class. Groups have their own S and F. In the end, QFQ+ | 
 |   schedules groups, then aggregates within groups, then classes within | 
 |   aggregates. See [1] and [2] for a full description. | 
 |  | 
 |   Virtual time computations. | 
 |  | 
 |   S, F and V are all computed in fixed point arithmetic with | 
 |   FRAC_BITS decimal bits. | 
 |  | 
 |   QFQ_MAX_INDEX is the maximum index allowed for a group. We need | 
 | 	one bit per index. | 
 |   QFQ_MAX_WSHIFT is the maximum power of two supported as a weight. | 
 |  | 
 |   The layout of the bits is as below: | 
 |  | 
 |                    [ MTU_SHIFT ][      FRAC_BITS    ] | 
 |                    [ MAX_INDEX    ][ MIN_SLOT_SHIFT ] | 
 | 				 ^.__grp->index = 0 | 
 | 				 *.__grp->slot_shift | 
 |  | 
 |   where MIN_SLOT_SHIFT is derived by difference from the others. | 
 |  | 
 |   The max group index corresponds to Lmax/w_min, where | 
 |   Lmax=1<<MTU_SHIFT, w_min = 1 . | 
 |   From this, and knowing how many groups (MAX_INDEX) we want, | 
 |   we can derive the shift corresponding to each group. | 
 |  | 
 |   Because we often need to compute | 
 | 	F = S + len/w_i  and V = V + len/wsum | 
 |   instead of storing w_i store the value | 
 | 	inv_w = (1<<FRAC_BITS)/w_i | 
 |   so we can do F = S + len * inv_w * wsum. | 
 |   We use W_TOT in the formulas so we can easily move between | 
 |   static and adaptive weight sum. | 
 |  | 
 |   The per-scheduler-instance data contain all the data structures | 
 |   for the scheduler: bitmaps and bucket lists. | 
 |  | 
 |  */ | 
 |  | 
 | /* | 
 |  * Maximum number of consecutive slots occupied by backlogged classes | 
 |  * inside a group. | 
 |  */ | 
 | #define QFQ_MAX_SLOTS	32 | 
 |  | 
 | /* | 
 |  * Shifts used for aggregate<->group mapping.  We allow class weights that are | 
 |  * in the range [1, 2^MAX_WSHIFT], and we try to map each aggregate i to the | 
 |  * group with the smallest index that can support the L_i / r_i configured | 
 |  * for the classes in the aggregate. | 
 |  * | 
 |  * grp->index is the index of the group; and grp->slot_shift | 
 |  * is the shift for the corresponding (scaled) sigma_i. | 
 |  */ | 
 | #define QFQ_MAX_INDEX		24 | 
 | #define QFQ_MAX_WSHIFT		10 | 
 |  | 
 | #define	QFQ_MAX_WEIGHT		(1<<QFQ_MAX_WSHIFT) /* see qfq_slot_insert */ | 
 | #define QFQ_MAX_WSUM		(64*QFQ_MAX_WEIGHT) | 
 |  | 
 | #define FRAC_BITS		30	/* fixed point arithmetic */ | 
 | #define ONE_FP			(1UL << FRAC_BITS) | 
 | #define IWSUM			(ONE_FP/QFQ_MAX_WSUM) | 
 |  | 
 | #define QFQ_MTU_SHIFT		16	/* to support TSO/GSO */ | 
 | #define QFQ_MIN_LMAX		512	/* see qfq_slot_insert */ | 
 |  | 
 | #define QFQ_MAX_AGG_CLASSES	8 /* max num classes per aggregate allowed */ | 
 |  | 
 | /* | 
 |  * Possible group states.  These values are used as indexes for the bitmaps | 
 |  * array of struct qfq_queue. | 
 |  */ | 
 | enum qfq_state { ER, IR, EB, IB, QFQ_MAX_STATE }; | 
 |  | 
 | struct qfq_group; | 
 |  | 
 | struct qfq_aggregate; | 
 |  | 
 | struct qfq_class { | 
 | 	struct Qdisc_class_common common; | 
 |  | 
 | 	unsigned int refcnt; | 
 | 	unsigned int filter_cnt; | 
 |  | 
 | 	struct gnet_stats_basic_packed bstats; | 
 | 	struct gnet_stats_queue qstats; | 
 | 	struct gnet_stats_rate_est rate_est; | 
 | 	struct Qdisc *qdisc; | 
 | 	struct list_head alist;		/* Link for active-classes list. */ | 
 | 	struct qfq_aggregate *agg;	/* Parent aggregate. */ | 
 | 	int deficit;			/* DRR deficit counter. */ | 
 | }; | 
 |  | 
 | struct qfq_aggregate { | 
 | 	struct hlist_node next;	/* Link for the slot list. */ | 
 | 	u64 S, F;		/* flow timestamps (exact) */ | 
 |  | 
 | 	/* group we belong to. In principle we would need the index, | 
 | 	 * which is log_2(lmax/weight), but we never reference it | 
 | 	 * directly, only the group. | 
 | 	 */ | 
 | 	struct qfq_group *grp; | 
 |  | 
 | 	/* these are copied from the flowset. */ | 
 | 	u32	class_weight; /* Weight of each class in this aggregate. */ | 
 | 	/* Max pkt size for the classes in this aggregate, DRR quantum. */ | 
 | 	int	lmax; | 
 |  | 
 | 	u32	inv_w;	    /* ONE_FP/(sum of weights of classes in aggr.). */ | 
 | 	u32	budgetmax;  /* Max budget for this aggregate. */ | 
 | 	u32	initial_budget, budget;     /* Initial and current budget. */ | 
 |  | 
 | 	int		  num_classes;	/* Number of classes in this aggr. */ | 
 | 	struct list_head  active;	/* DRR queue of active classes. */ | 
 |  | 
 | 	struct hlist_node nonfull_next;	/* See nonfull_aggs in qfq_sched. */ | 
 | }; | 
 |  | 
 | struct qfq_group { | 
 | 	u64 S, F;			/* group timestamps (approx). */ | 
 | 	unsigned int slot_shift;	/* Slot shift. */ | 
 | 	unsigned int index;		/* Group index. */ | 
 | 	unsigned int front;		/* Index of the front slot. */ | 
 | 	unsigned long full_slots;	/* non-empty slots */ | 
 |  | 
 | 	/* Array of RR lists of active aggregates. */ | 
 | 	struct hlist_head slots[QFQ_MAX_SLOTS]; | 
 | }; | 
 |  | 
 | struct qfq_sched { | 
 | 	struct tcf_proto *filter_list; | 
 | 	struct Qdisc_class_hash clhash; | 
 |  | 
 | 	u64			oldV, V;	/* Precise virtual times. */ | 
 | 	struct qfq_aggregate	*in_serv_agg;   /* Aggregate being served. */ | 
 | 	u32			num_active_agg; /* Num. of active aggregates */ | 
 | 	u32			wsum;		/* weight sum */ | 
 |  | 
 | 	unsigned long bitmaps[QFQ_MAX_STATE];	    /* Group bitmaps. */ | 
 | 	struct qfq_group groups[QFQ_MAX_INDEX + 1]; /* The groups. */ | 
 | 	u32 min_slot_shift;	/* Index of the group-0 bit in the bitmaps. */ | 
 |  | 
 | 	u32 max_agg_classes;		/* Max number of classes per aggr. */ | 
 | 	struct hlist_head nonfull_aggs; /* Aggs with room for more classes. */ | 
 | }; | 
 |  | 
 | /* | 
 |  * Possible reasons why the timestamps of an aggregate are updated | 
 |  * enqueue: the aggregate switches from idle to active and must scheduled | 
 |  *	    for service | 
 |  * requeue: the aggregate finishes its budget, so it stops being served and | 
 |  *	    must be rescheduled for service | 
 |  */ | 
 | enum update_reason {enqueue, requeue}; | 
 |  | 
 | static struct qfq_class *qfq_find_class(struct Qdisc *sch, u32 classid) | 
 | { | 
 | 	struct qfq_sched *q = qdisc_priv(sch); | 
 | 	struct Qdisc_class_common *clc; | 
 |  | 
 | 	clc = qdisc_class_find(&q->clhash, classid); | 
 | 	if (clc == NULL) | 
 | 		return NULL; | 
 | 	return container_of(clc, struct qfq_class, common); | 
 | } | 
 |  | 
 | static void qfq_purge_queue(struct qfq_class *cl) | 
 | { | 
 | 	unsigned int len = cl->qdisc->q.qlen; | 
 |  | 
 | 	qdisc_reset(cl->qdisc); | 
 | 	qdisc_tree_decrease_qlen(cl->qdisc, len); | 
 | } | 
 |  | 
 | static const struct nla_policy qfq_policy[TCA_QFQ_MAX + 1] = { | 
 | 	[TCA_QFQ_WEIGHT] = { .type = NLA_U32 }, | 
 | 	[TCA_QFQ_LMAX] = { .type = NLA_U32 }, | 
 | }; | 
 |  | 
 | /* | 
 |  * Calculate a flow index, given its weight and maximum packet length. | 
 |  * index = log_2(maxlen/weight) but we need to apply the scaling. | 
 |  * This is used only once at flow creation. | 
 |  */ | 
 | static int qfq_calc_index(u32 inv_w, unsigned int maxlen, u32 min_slot_shift) | 
 | { | 
 | 	u64 slot_size = (u64)maxlen * inv_w; | 
 | 	unsigned long size_map; | 
 | 	int index = 0; | 
 |  | 
 | 	size_map = slot_size >> min_slot_shift; | 
 | 	if (!size_map) | 
 | 		goto out; | 
 |  | 
 | 	index = __fls(size_map) + 1;	/* basically a log_2 */ | 
 | 	index -= !(slot_size - (1ULL << (index + min_slot_shift - 1))); | 
 |  | 
 | 	if (index < 0) | 
 | 		index = 0; | 
 | out: | 
 | 	pr_debug("qfq calc_index: W = %lu, L = %u, I = %d\n", | 
 | 		 (unsigned long) ONE_FP/inv_w, maxlen, index); | 
 |  | 
 | 	return index; | 
 | } | 
 |  | 
 | static void qfq_deactivate_agg(struct qfq_sched *, struct qfq_aggregate *); | 
 | static void qfq_activate_agg(struct qfq_sched *, struct qfq_aggregate *, | 
 | 			     enum update_reason); | 
 |  | 
 | static void qfq_init_agg(struct qfq_sched *q, struct qfq_aggregate *agg, | 
 | 			 u32 lmax, u32 weight) | 
 | { | 
 | 	INIT_LIST_HEAD(&agg->active); | 
 | 	hlist_add_head(&agg->nonfull_next, &q->nonfull_aggs); | 
 |  | 
 | 	agg->lmax = lmax; | 
 | 	agg->class_weight = weight; | 
 | } | 
 |  | 
 | static struct qfq_aggregate *qfq_find_agg(struct qfq_sched *q, | 
 | 					  u32 lmax, u32 weight) | 
 | { | 
 | 	struct qfq_aggregate *agg; | 
 | 	struct hlist_node *n; | 
 |  | 
 | 	hlist_for_each_entry(agg, n, &q->nonfull_aggs, nonfull_next) | 
 | 		if (agg->lmax == lmax && agg->class_weight == weight) | 
 | 			return agg; | 
 |  | 
 | 	return NULL; | 
 | } | 
 |  | 
 |  | 
 | /* Update aggregate as a function of the new number of classes. */ | 
 | static void qfq_update_agg(struct qfq_sched *q, struct qfq_aggregate *agg, | 
 | 			   int new_num_classes) | 
 | { | 
 | 	u32 new_agg_weight; | 
 |  | 
 | 	if (new_num_classes == q->max_agg_classes) | 
 | 		hlist_del_init(&agg->nonfull_next); | 
 |  | 
 | 	if (agg->num_classes > new_num_classes && | 
 | 	    new_num_classes == q->max_agg_classes - 1) /* agg no more full */ | 
 | 		hlist_add_head(&agg->nonfull_next, &q->nonfull_aggs); | 
 |  | 
 | 	agg->budgetmax = new_num_classes * agg->lmax; | 
 | 	new_agg_weight = agg->class_weight * new_num_classes; | 
 | 	agg->inv_w = ONE_FP/new_agg_weight; | 
 |  | 
 | 	if (agg->grp == NULL) { | 
 | 		int i = qfq_calc_index(agg->inv_w, agg->budgetmax, | 
 | 				       q->min_slot_shift); | 
 | 		agg->grp = &q->groups[i]; | 
 | 	} | 
 |  | 
 | 	q->wsum += | 
 | 		(int) agg->class_weight * (new_num_classes - agg->num_classes); | 
 |  | 
 | 	agg->num_classes = new_num_classes; | 
 | } | 
 |  | 
 | /* Add class to aggregate. */ | 
 | static void qfq_add_to_agg(struct qfq_sched *q, | 
 | 			   struct qfq_aggregate *agg, | 
 | 			   struct qfq_class *cl) | 
 | { | 
 | 	cl->agg = agg; | 
 |  | 
 | 	qfq_update_agg(q, agg, agg->num_classes+1); | 
 | 	if (cl->qdisc->q.qlen > 0) { /* adding an active class */ | 
 | 		list_add_tail(&cl->alist, &agg->active); | 
 | 		if (list_first_entry(&agg->active, struct qfq_class, alist) == | 
 | 		    cl && q->in_serv_agg != agg) /* agg was inactive */ | 
 | 			qfq_activate_agg(q, agg, enqueue); /* schedule agg */ | 
 | 	} | 
 | } | 
 |  | 
 | static struct qfq_aggregate *qfq_choose_next_agg(struct qfq_sched *); | 
 |  | 
 | static void qfq_destroy_agg(struct qfq_sched *q, struct qfq_aggregate *agg) | 
 | { | 
 | 	if (!hlist_unhashed(&agg->nonfull_next)) | 
 | 		hlist_del_init(&agg->nonfull_next); | 
 | 	if (q->in_serv_agg == agg) | 
 | 		q->in_serv_agg = qfq_choose_next_agg(q); | 
 | 	kfree(agg); | 
 | } | 
 |  | 
 | /* Deschedule class from within its parent aggregate. */ | 
 | static void qfq_deactivate_class(struct qfq_sched *q, struct qfq_class *cl) | 
 | { | 
 | 	struct qfq_aggregate *agg = cl->agg; | 
 |  | 
 |  | 
 | 	list_del(&cl->alist); /* remove from RR queue of the aggregate */ | 
 | 	if (list_empty(&agg->active)) /* agg is now inactive */ | 
 | 		qfq_deactivate_agg(q, agg); | 
 | } | 
 |  | 
 | /* Remove class from its parent aggregate. */ | 
 | static void qfq_rm_from_agg(struct qfq_sched *q, struct qfq_class *cl) | 
 | { | 
 | 	struct qfq_aggregate *agg = cl->agg; | 
 |  | 
 | 	cl->agg = NULL; | 
 | 	if (agg->num_classes == 1) { /* agg being emptied, destroy it */ | 
 | 		qfq_destroy_agg(q, agg); | 
 | 		return; | 
 | 	} | 
 | 	qfq_update_agg(q, agg, agg->num_classes-1); | 
 | } | 
 |  | 
 | /* Deschedule class and remove it from its parent aggregate. */ | 
 | static void qfq_deact_rm_from_agg(struct qfq_sched *q, struct qfq_class *cl) | 
 | { | 
 | 	if (cl->qdisc->q.qlen > 0) /* class is active */ | 
 | 		qfq_deactivate_class(q, cl); | 
 |  | 
 | 	qfq_rm_from_agg(q, cl); | 
 | } | 
 |  | 
 | /* Move class to a new aggregate, matching the new class weight and/or lmax */ | 
 | static int qfq_change_agg(struct Qdisc *sch, struct qfq_class *cl, u32 weight, | 
 | 			   u32 lmax) | 
 | { | 
 | 	struct qfq_sched *q = qdisc_priv(sch); | 
 | 	struct qfq_aggregate *new_agg = qfq_find_agg(q, lmax, weight); | 
 |  | 
 | 	if (new_agg == NULL) { /* create new aggregate */ | 
 | 		new_agg = kzalloc(sizeof(*new_agg), GFP_ATOMIC); | 
 | 		if (new_agg == NULL) | 
 | 			return -ENOBUFS; | 
 | 		qfq_init_agg(q, new_agg, lmax, weight); | 
 | 	} | 
 | 	qfq_deact_rm_from_agg(q, cl); | 
 | 	qfq_add_to_agg(q, new_agg, cl); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int qfq_change_class(struct Qdisc *sch, u32 classid, u32 parentid, | 
 | 			    struct nlattr **tca, unsigned long *arg) | 
 | { | 
 | 	struct qfq_sched *q = qdisc_priv(sch); | 
 | 	struct qfq_class *cl = (struct qfq_class *)*arg; | 
 | 	bool existing = false; | 
 | 	struct nlattr *tb[TCA_QFQ_MAX + 1]; | 
 | 	struct qfq_aggregate *new_agg = NULL; | 
 | 	u32 weight, lmax, inv_w; | 
 | 	int err; | 
 | 	int delta_w; | 
 |  | 
 | 	if (tca[TCA_OPTIONS] == NULL) { | 
 | 		pr_notice("qfq: no options\n"); | 
 | 		return -EINVAL; | 
 | 	} | 
 |  | 
 | 	err = nla_parse_nested(tb, TCA_QFQ_MAX, tca[TCA_OPTIONS], qfq_policy); | 
 | 	if (err < 0) | 
 | 		return err; | 
 |  | 
 | 	if (tb[TCA_QFQ_WEIGHT]) { | 
 | 		weight = nla_get_u32(tb[TCA_QFQ_WEIGHT]); | 
 | 		if (!weight || weight > (1UL << QFQ_MAX_WSHIFT)) { | 
 | 			pr_notice("qfq: invalid weight %u\n", weight); | 
 | 			return -EINVAL; | 
 | 		} | 
 | 	} else | 
 | 		weight = 1; | 
 |  | 
 | 	if (tb[TCA_QFQ_LMAX]) { | 
 | 		lmax = nla_get_u32(tb[TCA_QFQ_LMAX]); | 
 | 		if (lmax < QFQ_MIN_LMAX || lmax > (1UL << QFQ_MTU_SHIFT)) { | 
 | 			pr_notice("qfq: invalid max length %u\n", lmax); | 
 | 			return -EINVAL; | 
 | 		} | 
 | 	} else | 
 | 		lmax = psched_mtu(qdisc_dev(sch)); | 
 |  | 
 | 	inv_w = ONE_FP / weight; | 
 | 	weight = ONE_FP / inv_w; | 
 |  | 
 | 	if (cl != NULL && | 
 | 	    lmax == cl->agg->lmax && | 
 | 	    weight == cl->agg->class_weight) | 
 | 		return 0; /* nothing to change */ | 
 |  | 
 | 	delta_w = weight - (cl ? cl->agg->class_weight : 0); | 
 |  | 
 | 	if (q->wsum + delta_w > QFQ_MAX_WSUM) { | 
 | 		pr_notice("qfq: total weight out of range (%d + %u)\n", | 
 | 			  delta_w, q->wsum); | 
 | 		return -EINVAL; | 
 | 	} | 
 |  | 
 | 	if (cl != NULL) { /* modify existing class */ | 
 | 		if (tca[TCA_RATE]) { | 
 | 			err = gen_replace_estimator(&cl->bstats, &cl->rate_est, | 
 | 						    qdisc_root_sleeping_lock(sch), | 
 | 						    tca[TCA_RATE]); | 
 | 			if (err) | 
 | 				return err; | 
 | 		} | 
 | 		existing = true; | 
 | 		goto set_change_agg; | 
 | 	} | 
 |  | 
 | 	/* create and init new class */ | 
 | 	cl = kzalloc(sizeof(struct qfq_class), GFP_KERNEL); | 
 | 	if (cl == NULL) | 
 | 		return -ENOBUFS; | 
 |  | 
 | 	cl->refcnt = 1; | 
 | 	cl->common.classid = classid; | 
 | 	cl->deficit = lmax; | 
 |  | 
 | 	cl->qdisc = qdisc_create_dflt(sch->dev_queue, | 
 | 				      &pfifo_qdisc_ops, classid); | 
 | 	if (cl->qdisc == NULL) | 
 | 		cl->qdisc = &noop_qdisc; | 
 |  | 
 | 	if (tca[TCA_RATE]) { | 
 | 		err = gen_new_estimator(&cl->bstats, &cl->rate_est, | 
 | 					qdisc_root_sleeping_lock(sch), | 
 | 					tca[TCA_RATE]); | 
 | 		if (err) | 
 | 			goto destroy_class; | 
 | 	} | 
 |  | 
 | 	sch_tree_lock(sch); | 
 | 	qdisc_class_hash_insert(&q->clhash, &cl->common); | 
 | 	sch_tree_unlock(sch); | 
 |  | 
 | 	qdisc_class_hash_grow(sch, &q->clhash); | 
 |  | 
 | set_change_agg: | 
 | 	sch_tree_lock(sch); | 
 | 	new_agg = qfq_find_agg(q, lmax, weight); | 
 | 	if (new_agg == NULL) { /* create new aggregate */ | 
 | 		sch_tree_unlock(sch); | 
 | 		new_agg = kzalloc(sizeof(*new_agg), GFP_KERNEL); | 
 | 		if (new_agg == NULL) { | 
 | 			err = -ENOBUFS; | 
 | 			gen_kill_estimator(&cl->bstats, &cl->rate_est); | 
 | 			goto destroy_class; | 
 | 		} | 
 | 		sch_tree_lock(sch); | 
 | 		qfq_init_agg(q, new_agg, lmax, weight); | 
 | 	} | 
 | 	if (existing) | 
 | 		qfq_deact_rm_from_agg(q, cl); | 
 | 	qfq_add_to_agg(q, new_agg, cl); | 
 | 	sch_tree_unlock(sch); | 
 |  | 
 | 	*arg = (unsigned long)cl; | 
 | 	return 0; | 
 |  | 
 | destroy_class: | 
 | 	qdisc_destroy(cl->qdisc); | 
 | 	kfree(cl); | 
 | 	return err; | 
 | } | 
 |  | 
 | static void qfq_destroy_class(struct Qdisc *sch, struct qfq_class *cl) | 
 | { | 
 | 	struct qfq_sched *q = qdisc_priv(sch); | 
 |  | 
 | 	qfq_rm_from_agg(q, cl); | 
 | 	gen_kill_estimator(&cl->bstats, &cl->rate_est); | 
 | 	qdisc_destroy(cl->qdisc); | 
 | 	kfree(cl); | 
 | } | 
 |  | 
 | static int qfq_delete_class(struct Qdisc *sch, unsigned long arg) | 
 | { | 
 | 	struct qfq_sched *q = qdisc_priv(sch); | 
 | 	struct qfq_class *cl = (struct qfq_class *)arg; | 
 |  | 
 | 	if (cl->filter_cnt > 0) | 
 | 		return -EBUSY; | 
 |  | 
 | 	sch_tree_lock(sch); | 
 |  | 
 | 	qfq_purge_queue(cl); | 
 | 	qdisc_class_hash_remove(&q->clhash, &cl->common); | 
 |  | 
 | 	BUG_ON(--cl->refcnt == 0); | 
 | 	/* | 
 | 	 * This shouldn't happen: we "hold" one cops->get() when called | 
 | 	 * from tc_ctl_tclass; the destroy method is done from cops->put(). | 
 | 	 */ | 
 |  | 
 | 	sch_tree_unlock(sch); | 
 | 	return 0; | 
 | } | 
 |  | 
 | static unsigned long qfq_get_class(struct Qdisc *sch, u32 classid) | 
 | { | 
 | 	struct qfq_class *cl = qfq_find_class(sch, classid); | 
 |  | 
 | 	if (cl != NULL) | 
 | 		cl->refcnt++; | 
 |  | 
 | 	return (unsigned long)cl; | 
 | } | 
 |  | 
 | static void qfq_put_class(struct Qdisc *sch, unsigned long arg) | 
 | { | 
 | 	struct qfq_class *cl = (struct qfq_class *)arg; | 
 |  | 
 | 	if (--cl->refcnt == 0) | 
 | 		qfq_destroy_class(sch, cl); | 
 | } | 
 |  | 
 | static struct tcf_proto **qfq_tcf_chain(struct Qdisc *sch, unsigned long cl) | 
 | { | 
 | 	struct qfq_sched *q = qdisc_priv(sch); | 
 |  | 
 | 	if (cl) | 
 | 		return NULL; | 
 |  | 
 | 	return &q->filter_list; | 
 | } | 
 |  | 
 | static unsigned long qfq_bind_tcf(struct Qdisc *sch, unsigned long parent, | 
 | 				  u32 classid) | 
 | { | 
 | 	struct qfq_class *cl = qfq_find_class(sch, classid); | 
 |  | 
 | 	if (cl != NULL) | 
 | 		cl->filter_cnt++; | 
 |  | 
 | 	return (unsigned long)cl; | 
 | } | 
 |  | 
 | static void qfq_unbind_tcf(struct Qdisc *sch, unsigned long arg) | 
 | { | 
 | 	struct qfq_class *cl = (struct qfq_class *)arg; | 
 |  | 
 | 	cl->filter_cnt--; | 
 | } | 
 |  | 
 | static int qfq_graft_class(struct Qdisc *sch, unsigned long arg, | 
 | 			   struct Qdisc *new, struct Qdisc **old) | 
 | { | 
 | 	struct qfq_class *cl = (struct qfq_class *)arg; | 
 |  | 
 | 	if (new == NULL) { | 
 | 		new = qdisc_create_dflt(sch->dev_queue, | 
 | 					&pfifo_qdisc_ops, cl->common.classid); | 
 | 		if (new == NULL) | 
 | 			new = &noop_qdisc; | 
 | 	} | 
 |  | 
 | 	sch_tree_lock(sch); | 
 | 	qfq_purge_queue(cl); | 
 | 	*old = cl->qdisc; | 
 | 	cl->qdisc = new; | 
 | 	sch_tree_unlock(sch); | 
 | 	return 0; | 
 | } | 
 |  | 
 | static struct Qdisc *qfq_class_leaf(struct Qdisc *sch, unsigned long arg) | 
 | { | 
 | 	struct qfq_class *cl = (struct qfq_class *)arg; | 
 |  | 
 | 	return cl->qdisc; | 
 | } | 
 |  | 
 | static int qfq_dump_class(struct Qdisc *sch, unsigned long arg, | 
 | 			  struct sk_buff *skb, struct tcmsg *tcm) | 
 | { | 
 | 	struct qfq_class *cl = (struct qfq_class *)arg; | 
 | 	struct nlattr *nest; | 
 |  | 
 | 	tcm->tcm_parent	= TC_H_ROOT; | 
 | 	tcm->tcm_handle	= cl->common.classid; | 
 | 	tcm->tcm_info	= cl->qdisc->handle; | 
 |  | 
 | 	nest = nla_nest_start(skb, TCA_OPTIONS); | 
 | 	if (nest == NULL) | 
 | 		goto nla_put_failure; | 
 | 	if (nla_put_u32(skb, TCA_QFQ_WEIGHT, cl->agg->class_weight) || | 
 | 	    nla_put_u32(skb, TCA_QFQ_LMAX, cl->agg->lmax)) | 
 | 		goto nla_put_failure; | 
 | 	return nla_nest_end(skb, nest); | 
 |  | 
 | nla_put_failure: | 
 | 	nla_nest_cancel(skb, nest); | 
 | 	return -EMSGSIZE; | 
 | } | 
 |  | 
 | static int qfq_dump_class_stats(struct Qdisc *sch, unsigned long arg, | 
 | 				struct gnet_dump *d) | 
 | { | 
 | 	struct qfq_class *cl = (struct qfq_class *)arg; | 
 | 	struct tc_qfq_stats xstats; | 
 |  | 
 | 	memset(&xstats, 0, sizeof(xstats)); | 
 | 	cl->qdisc->qstats.qlen = cl->qdisc->q.qlen; | 
 |  | 
 | 	xstats.weight = cl->agg->class_weight; | 
 | 	xstats.lmax = cl->agg->lmax; | 
 |  | 
 | 	if (gnet_stats_copy_basic(d, &cl->bstats) < 0 || | 
 | 	    gnet_stats_copy_rate_est(d, &cl->bstats, &cl->rate_est) < 0 || | 
 | 	    gnet_stats_copy_queue(d, &cl->qdisc->qstats) < 0) | 
 | 		return -1; | 
 |  | 
 | 	return gnet_stats_copy_app(d, &xstats, sizeof(xstats)); | 
 | } | 
 |  | 
 | static void qfq_walk(struct Qdisc *sch, struct qdisc_walker *arg) | 
 | { | 
 | 	struct qfq_sched *q = qdisc_priv(sch); | 
 | 	struct qfq_class *cl; | 
 | 	struct hlist_node *n; | 
 | 	unsigned int i; | 
 |  | 
 | 	if (arg->stop) | 
 | 		return; | 
 |  | 
 | 	for (i = 0; i < q->clhash.hashsize; i++) { | 
 | 		hlist_for_each_entry(cl, n, &q->clhash.hash[i], common.hnode) { | 
 | 			if (arg->count < arg->skip) { | 
 | 				arg->count++; | 
 | 				continue; | 
 | 			} | 
 | 			if (arg->fn(sch, (unsigned long)cl, arg) < 0) { | 
 | 				arg->stop = 1; | 
 | 				return; | 
 | 			} | 
 | 			arg->count++; | 
 | 		} | 
 | 	} | 
 | } | 
 |  | 
 | static struct qfq_class *qfq_classify(struct sk_buff *skb, struct Qdisc *sch, | 
 | 				      int *qerr) | 
 | { | 
 | 	struct qfq_sched *q = qdisc_priv(sch); | 
 | 	struct qfq_class *cl; | 
 | 	struct tcf_result res; | 
 | 	int result; | 
 |  | 
 | 	if (TC_H_MAJ(skb->priority ^ sch->handle) == 0) { | 
 | 		pr_debug("qfq_classify: found %d\n", skb->priority); | 
 | 		cl = qfq_find_class(sch, skb->priority); | 
 | 		if (cl != NULL) | 
 | 			return cl; | 
 | 	} | 
 |  | 
 | 	*qerr = NET_XMIT_SUCCESS | __NET_XMIT_BYPASS; | 
 | 	result = tc_classify(skb, q->filter_list, &res); | 
 | 	if (result >= 0) { | 
 | #ifdef CONFIG_NET_CLS_ACT | 
 | 		switch (result) { | 
 | 		case TC_ACT_QUEUED: | 
 | 		case TC_ACT_STOLEN: | 
 | 			*qerr = NET_XMIT_SUCCESS | __NET_XMIT_STOLEN; | 
 | 		case TC_ACT_SHOT: | 
 | 			return NULL; | 
 | 		} | 
 | #endif | 
 | 		cl = (struct qfq_class *)res.class; | 
 | 		if (cl == NULL) | 
 | 			cl = qfq_find_class(sch, res.classid); | 
 | 		return cl; | 
 | 	} | 
 |  | 
 | 	return NULL; | 
 | } | 
 |  | 
 | /* Generic comparison function, handling wraparound. */ | 
 | static inline int qfq_gt(u64 a, u64 b) | 
 | { | 
 | 	return (s64)(a - b) > 0; | 
 | } | 
 |  | 
 | /* Round a precise timestamp to its slotted value. */ | 
 | static inline u64 qfq_round_down(u64 ts, unsigned int shift) | 
 | { | 
 | 	return ts & ~((1ULL << shift) - 1); | 
 | } | 
 |  | 
 | /* return the pointer to the group with lowest index in the bitmap */ | 
 | static inline struct qfq_group *qfq_ffs(struct qfq_sched *q, | 
 | 					unsigned long bitmap) | 
 | { | 
 | 	int index = __ffs(bitmap); | 
 | 	return &q->groups[index]; | 
 | } | 
 | /* Calculate a mask to mimic what would be ffs_from(). */ | 
 | static inline unsigned long mask_from(unsigned long bitmap, int from) | 
 | { | 
 | 	return bitmap & ~((1UL << from) - 1); | 
 | } | 
 |  | 
 | /* | 
 |  * The state computation relies on ER=0, IR=1, EB=2, IB=3 | 
 |  * First compute eligibility comparing grp->S, q->V, | 
 |  * then check if someone is blocking us and possibly add EB | 
 |  */ | 
 | static int qfq_calc_state(struct qfq_sched *q, const struct qfq_group *grp) | 
 | { | 
 | 	/* if S > V we are not eligible */ | 
 | 	unsigned int state = qfq_gt(grp->S, q->V); | 
 | 	unsigned long mask = mask_from(q->bitmaps[ER], grp->index); | 
 | 	struct qfq_group *next; | 
 |  | 
 | 	if (mask) { | 
 | 		next = qfq_ffs(q, mask); | 
 | 		if (qfq_gt(grp->F, next->F)) | 
 | 			state |= EB; | 
 | 	} | 
 |  | 
 | 	return state; | 
 | } | 
 |  | 
 |  | 
 | /* | 
 |  * In principle | 
 |  *	q->bitmaps[dst] |= q->bitmaps[src] & mask; | 
 |  *	q->bitmaps[src] &= ~mask; | 
 |  * but we should make sure that src != dst | 
 |  */ | 
 | static inline void qfq_move_groups(struct qfq_sched *q, unsigned long mask, | 
 | 				   int src, int dst) | 
 | { | 
 | 	q->bitmaps[dst] |= q->bitmaps[src] & mask; | 
 | 	q->bitmaps[src] &= ~mask; | 
 | } | 
 |  | 
 | static void qfq_unblock_groups(struct qfq_sched *q, int index, u64 old_F) | 
 | { | 
 | 	unsigned long mask = mask_from(q->bitmaps[ER], index + 1); | 
 | 	struct qfq_group *next; | 
 |  | 
 | 	if (mask) { | 
 | 		next = qfq_ffs(q, mask); | 
 | 		if (!qfq_gt(next->F, old_F)) | 
 | 			return; | 
 | 	} | 
 |  | 
 | 	mask = (1UL << index) - 1; | 
 | 	qfq_move_groups(q, mask, EB, ER); | 
 | 	qfq_move_groups(q, mask, IB, IR); | 
 | } | 
 |  | 
 | /* | 
 |  * perhaps | 
 |  * | 
 | 	old_V ^= q->V; | 
 | 	old_V >>= q->min_slot_shift; | 
 | 	if (old_V) { | 
 | 		... | 
 | 	} | 
 |  * | 
 |  */ | 
 | static void qfq_make_eligible(struct qfq_sched *q) | 
 | { | 
 | 	unsigned long vslot = q->V >> q->min_slot_shift; | 
 | 	unsigned long old_vslot = q->oldV >> q->min_slot_shift; | 
 |  | 
 | 	if (vslot != old_vslot) { | 
 | 		unsigned long mask = (1UL << fls(vslot ^ old_vslot)) - 1; | 
 | 		qfq_move_groups(q, mask, IR, ER); | 
 | 		qfq_move_groups(q, mask, IB, EB); | 
 | 	} | 
 | } | 
 |  | 
 |  | 
 | /* | 
 |  * The index of the slot in which the aggregate is to be inserted must | 
 |  * not be higher than QFQ_MAX_SLOTS-2. There is a '-2' and not a '-1' | 
 |  * because the start time of the group may be moved backward by one | 
 |  * slot after the aggregate has been inserted, and this would cause | 
 |  * non-empty slots to be right-shifted by one position. | 
 |  * | 
 |  * If the weight and lmax (max_pkt_size) of the classes do not change, | 
 |  * then QFQ+ does meet the above contraint according to the current | 
 |  * values of its parameters. In fact, if the weight and lmax of the | 
 |  * classes do not change, then, from the theory, QFQ+ guarantees that | 
 |  * the slot index is never higher than | 
 |  * 2 + QFQ_MAX_AGG_CLASSES * ((1<<QFQ_MTU_SHIFT)/QFQ_MIN_LMAX) * | 
 |  * (QFQ_MAX_WEIGHT/QFQ_MAX_WSUM) = 2 + 8 * 128 * (1 / 64) = 18 | 
 |  * | 
 |  * When the weight of a class is increased or the lmax of the class is | 
 |  * decreased, a new aggregate with smaller slot size than the original | 
 |  * parent aggregate of the class may happen to be activated. The | 
 |  * activation of this aggregate should be properly delayed to when the | 
 |  * service of the class has finished in the ideal system tracked by | 
 |  * QFQ+. If the activation of the aggregate is not delayed to this | 
 |  * reference time instant, then this aggregate may be unjustly served | 
 |  * before other aggregates waiting for service. This may cause the | 
 |  * above bound to the slot index to be violated for some of these | 
 |  * unlucky aggregates. | 
 |  * | 
 |  * Instead of delaying the activation of the new aggregate, which is | 
 |  * quite complex, the following inaccurate but simple solution is used: | 
 |  * if the slot index is higher than QFQ_MAX_SLOTS-2, then the | 
 |  * timestamps of the aggregate are shifted backward so as to let the | 
 |  * slot index become equal to QFQ_MAX_SLOTS-2. | 
 |  */ | 
 | static void qfq_slot_insert(struct qfq_group *grp, struct qfq_aggregate *agg, | 
 | 			    u64 roundedS) | 
 | { | 
 | 	u64 slot = (roundedS - grp->S) >> grp->slot_shift; | 
 | 	unsigned int i; /* slot index in the bucket list */ | 
 |  | 
 | 	if (unlikely(slot > QFQ_MAX_SLOTS - 2)) { | 
 | 		u64 deltaS = roundedS - grp->S - | 
 | 			((u64)(QFQ_MAX_SLOTS - 2)<<grp->slot_shift); | 
 | 		agg->S -= deltaS; | 
 | 		agg->F -= deltaS; | 
 | 		slot = QFQ_MAX_SLOTS - 2; | 
 | 	} | 
 |  | 
 | 	i = (grp->front + slot) % QFQ_MAX_SLOTS; | 
 |  | 
 | 	hlist_add_head(&agg->next, &grp->slots[i]); | 
 | 	__set_bit(slot, &grp->full_slots); | 
 | } | 
 |  | 
 | /* Maybe introduce hlist_first_entry?? */ | 
 | static struct qfq_aggregate *qfq_slot_head(struct qfq_group *grp) | 
 | { | 
 | 	return hlist_entry(grp->slots[grp->front].first, | 
 | 			   struct qfq_aggregate, next); | 
 | } | 
 |  | 
 | /* | 
 |  * remove the entry from the slot | 
 |  */ | 
 | static void qfq_front_slot_remove(struct qfq_group *grp) | 
 | { | 
 | 	struct qfq_aggregate *agg = qfq_slot_head(grp); | 
 |  | 
 | 	BUG_ON(!agg); | 
 | 	hlist_del(&agg->next); | 
 | 	if (hlist_empty(&grp->slots[grp->front])) | 
 | 		__clear_bit(0, &grp->full_slots); | 
 | } | 
 |  | 
 | /* | 
 |  * Returns the first aggregate in the first non-empty bucket of the | 
 |  * group. As a side effect, adjusts the bucket list so the first | 
 |  * non-empty bucket is at position 0 in full_slots. | 
 |  */ | 
 | static struct qfq_aggregate *qfq_slot_scan(struct qfq_group *grp) | 
 | { | 
 | 	unsigned int i; | 
 |  | 
 | 	pr_debug("qfq slot_scan: grp %u full %#lx\n", | 
 | 		 grp->index, grp->full_slots); | 
 |  | 
 | 	if (grp->full_slots == 0) | 
 | 		return NULL; | 
 |  | 
 | 	i = __ffs(grp->full_slots);  /* zero based */ | 
 | 	if (i > 0) { | 
 | 		grp->front = (grp->front + i) % QFQ_MAX_SLOTS; | 
 | 		grp->full_slots >>= i; | 
 | 	} | 
 |  | 
 | 	return qfq_slot_head(grp); | 
 | } | 
 |  | 
 | /* | 
 |  * adjust the bucket list. When the start time of a group decreases, | 
 |  * we move the index down (modulo QFQ_MAX_SLOTS) so we don't need to | 
 |  * move the objects. The mask of occupied slots must be shifted | 
 |  * because we use ffs() to find the first non-empty slot. | 
 |  * This covers decreases in the group's start time, but what about | 
 |  * increases of the start time ? | 
 |  * Here too we should make sure that i is less than 32 | 
 |  */ | 
 | static void qfq_slot_rotate(struct qfq_group *grp, u64 roundedS) | 
 | { | 
 | 	unsigned int i = (grp->S - roundedS) >> grp->slot_shift; | 
 |  | 
 | 	grp->full_slots <<= i; | 
 | 	grp->front = (grp->front - i) % QFQ_MAX_SLOTS; | 
 | } | 
 |  | 
 | static void qfq_update_eligible(struct qfq_sched *q) | 
 | { | 
 | 	struct qfq_group *grp; | 
 | 	unsigned long ineligible; | 
 |  | 
 | 	ineligible = q->bitmaps[IR] | q->bitmaps[IB]; | 
 | 	if (ineligible) { | 
 | 		if (!q->bitmaps[ER]) { | 
 | 			grp = qfq_ffs(q, ineligible); | 
 | 			if (qfq_gt(grp->S, q->V)) | 
 | 				q->V = grp->S; | 
 | 		} | 
 | 		qfq_make_eligible(q); | 
 | 	} | 
 | } | 
 |  | 
 | /* Dequeue head packet of the head class in the DRR queue of the aggregate. */ | 
 | static void agg_dequeue(struct qfq_aggregate *agg, | 
 | 			struct qfq_class *cl, unsigned int len) | 
 | { | 
 | 	qdisc_dequeue_peeked(cl->qdisc); | 
 |  | 
 | 	cl->deficit -= (int) len; | 
 |  | 
 | 	if (cl->qdisc->q.qlen == 0) /* no more packets, remove from list */ | 
 | 		list_del(&cl->alist); | 
 | 	else if (cl->deficit < qdisc_pkt_len(cl->qdisc->ops->peek(cl->qdisc))) { | 
 | 		cl->deficit += agg->lmax; | 
 | 		list_move_tail(&cl->alist, &agg->active); | 
 | 	} | 
 | } | 
 |  | 
 | static inline struct sk_buff *qfq_peek_skb(struct qfq_aggregate *agg, | 
 | 					   struct qfq_class **cl, | 
 | 					   unsigned int *len) | 
 | { | 
 | 	struct sk_buff *skb; | 
 |  | 
 | 	*cl = list_first_entry(&agg->active, struct qfq_class, alist); | 
 | 	skb = (*cl)->qdisc->ops->peek((*cl)->qdisc); | 
 | 	if (skb == NULL) | 
 | 		WARN_ONCE(1, "qfq_dequeue: non-workconserving leaf\n"); | 
 | 	else | 
 | 		*len = qdisc_pkt_len(skb); | 
 |  | 
 | 	return skb; | 
 | } | 
 |  | 
 | /* Update F according to the actual service received by the aggregate. */ | 
 | static inline void charge_actual_service(struct qfq_aggregate *agg) | 
 | { | 
 | 	/* compute the service received by the aggregate */ | 
 | 	u32 service_received = agg->initial_budget - agg->budget; | 
 |  | 
 | 	agg->F = agg->S + (u64)service_received * agg->inv_w; | 
 | } | 
 |  | 
 | static struct sk_buff *qfq_dequeue(struct Qdisc *sch) | 
 | { | 
 | 	struct qfq_sched *q = qdisc_priv(sch); | 
 | 	struct qfq_aggregate *in_serv_agg = q->in_serv_agg; | 
 | 	struct qfq_class *cl; | 
 | 	struct sk_buff *skb = NULL; | 
 | 	/* next-packet len, 0 means no more active classes in in-service agg */ | 
 | 	unsigned int len = 0; | 
 |  | 
 | 	if (in_serv_agg == NULL) | 
 | 		return NULL; | 
 |  | 
 | 	if (!list_empty(&in_serv_agg->active)) | 
 | 		skb = qfq_peek_skb(in_serv_agg, &cl, &len); | 
 |  | 
 | 	/* | 
 | 	 * If there are no active classes in the in-service aggregate, | 
 | 	 * or if the aggregate has not enough budget to serve its next | 
 | 	 * class, then choose the next aggregate to serve. | 
 | 	 */ | 
 | 	if (len == 0 || in_serv_agg->budget < len) { | 
 | 		charge_actual_service(in_serv_agg); | 
 |  | 
 | 		/* recharge the budget of the aggregate */ | 
 | 		in_serv_agg->initial_budget = in_serv_agg->budget = | 
 | 			in_serv_agg->budgetmax; | 
 |  | 
 | 		if (!list_empty(&in_serv_agg->active)) | 
 | 			/* | 
 | 			 * Still active: reschedule for | 
 | 			 * service. Possible optimization: if no other | 
 | 			 * aggregate is active, then there is no point | 
 | 			 * in rescheduling this aggregate, and we can | 
 | 			 * just keep it as the in-service one. This | 
 | 			 * should be however a corner case, and to | 
 | 			 * handle it, we would need to maintain an | 
 | 			 * extra num_active_aggs field. | 
 | 			*/ | 
 | 			qfq_activate_agg(q, in_serv_agg, requeue); | 
 | 		else if (sch->q.qlen == 0) { /* no aggregate to serve */ | 
 | 			q->in_serv_agg = NULL; | 
 | 			return NULL; | 
 | 		} | 
 |  | 
 | 		/* | 
 | 		 * If we get here, there are other aggregates queued: | 
 | 		 * choose the new aggregate to serve. | 
 | 		 */ | 
 | 		in_serv_agg = q->in_serv_agg = qfq_choose_next_agg(q); | 
 | 		skb = qfq_peek_skb(in_serv_agg, &cl, &len); | 
 | 	} | 
 | 	if (!skb) | 
 | 		return NULL; | 
 |  | 
 | 	sch->q.qlen--; | 
 | 	qdisc_bstats_update(sch, skb); | 
 |  | 
 | 	agg_dequeue(in_serv_agg, cl, len); | 
 | 	in_serv_agg->budget -= len; | 
 | 	q->V += (u64)len * IWSUM; | 
 | 	pr_debug("qfq dequeue: len %u F %lld now %lld\n", | 
 | 		 len, (unsigned long long) in_serv_agg->F, | 
 | 		 (unsigned long long) q->V); | 
 |  | 
 | 	return skb; | 
 | } | 
 |  | 
 | static struct qfq_aggregate *qfq_choose_next_agg(struct qfq_sched *q) | 
 | { | 
 | 	struct qfq_group *grp; | 
 | 	struct qfq_aggregate *agg, *new_front_agg; | 
 | 	u64 old_F; | 
 |  | 
 | 	qfq_update_eligible(q); | 
 | 	q->oldV = q->V; | 
 |  | 
 | 	if (!q->bitmaps[ER]) | 
 | 		return NULL; | 
 |  | 
 | 	grp = qfq_ffs(q, q->bitmaps[ER]); | 
 | 	old_F = grp->F; | 
 |  | 
 | 	agg = qfq_slot_head(grp); | 
 |  | 
 | 	/* agg starts to be served, remove it from schedule */ | 
 | 	qfq_front_slot_remove(grp); | 
 |  | 
 | 	new_front_agg = qfq_slot_scan(grp); | 
 |  | 
 | 	if (new_front_agg == NULL) /* group is now inactive, remove from ER */ | 
 | 		__clear_bit(grp->index, &q->bitmaps[ER]); | 
 | 	else { | 
 | 		u64 roundedS = qfq_round_down(new_front_agg->S, | 
 | 					      grp->slot_shift); | 
 | 		unsigned int s; | 
 |  | 
 | 		if (grp->S == roundedS) | 
 | 			return agg; | 
 | 		grp->S = roundedS; | 
 | 		grp->F = roundedS + (2ULL << grp->slot_shift); | 
 | 		__clear_bit(grp->index, &q->bitmaps[ER]); | 
 | 		s = qfq_calc_state(q, grp); | 
 | 		__set_bit(grp->index, &q->bitmaps[s]); | 
 | 	} | 
 |  | 
 | 	qfq_unblock_groups(q, grp->index, old_F); | 
 |  | 
 | 	return agg; | 
 | } | 
 |  | 
 | /* | 
 |  * Assign a reasonable start time for a new aggregate in group i. | 
 |  * Admissible values for \hat(F) are multiples of \sigma_i | 
 |  * no greater than V+\sigma_i . Larger values mean that | 
 |  * we had a wraparound so we consider the timestamp to be stale. | 
 |  * | 
 |  * If F is not stale and F >= V then we set S = F. | 
 |  * Otherwise we should assign S = V, but this may violate | 
 |  * the ordering in EB (see [2]). So, if we have groups in ER, | 
 |  * set S to the F_j of the first group j which would be blocking us. | 
 |  * We are guaranteed not to move S backward because | 
 |  * otherwise our group i would still be blocked. | 
 |  */ | 
 | static void qfq_update_start(struct qfq_sched *q, struct qfq_aggregate *agg) | 
 | { | 
 | 	unsigned long mask; | 
 | 	u64 limit, roundedF; | 
 | 	int slot_shift = agg->grp->slot_shift; | 
 |  | 
 | 	roundedF = qfq_round_down(agg->F, slot_shift); | 
 | 	limit = qfq_round_down(q->V, slot_shift) + (1ULL << slot_shift); | 
 |  | 
 | 	if (!qfq_gt(agg->F, q->V) || qfq_gt(roundedF, limit)) { | 
 | 		/* timestamp was stale */ | 
 | 		mask = mask_from(q->bitmaps[ER], agg->grp->index); | 
 | 		if (mask) { | 
 | 			struct qfq_group *next = qfq_ffs(q, mask); | 
 | 			if (qfq_gt(roundedF, next->F)) { | 
 | 				if (qfq_gt(limit, next->F)) | 
 | 					agg->S = next->F; | 
 | 				else /* preserve timestamp correctness */ | 
 | 					agg->S = limit; | 
 | 				return; | 
 | 			} | 
 | 		} | 
 | 		agg->S = q->V; | 
 | 	} else  /* timestamp is not stale */ | 
 | 		agg->S = agg->F; | 
 | } | 
 |  | 
 | /* | 
 |  * Update the timestamps of agg before scheduling/rescheduling it for | 
 |  * service.  In particular, assign to agg->F its maximum possible | 
 |  * value, i.e., the virtual finish time with which the aggregate | 
 |  * should be labeled if it used all its budget once in service. | 
 |  */ | 
 | static inline void | 
 | qfq_update_agg_ts(struct qfq_sched *q, | 
 | 		    struct qfq_aggregate *agg, enum update_reason reason) | 
 | { | 
 | 	if (reason != requeue) | 
 | 		qfq_update_start(q, agg); | 
 | 	else /* just charge agg for the service received */ | 
 | 		agg->S = agg->F; | 
 |  | 
 | 	agg->F = agg->S + (u64)agg->budgetmax * agg->inv_w; | 
 | } | 
 |  | 
 | static void qfq_schedule_agg(struct qfq_sched *, struct qfq_aggregate *); | 
 |  | 
 | static int qfq_enqueue(struct sk_buff *skb, struct Qdisc *sch) | 
 | { | 
 | 	struct qfq_sched *q = qdisc_priv(sch); | 
 | 	struct qfq_class *cl; | 
 | 	struct qfq_aggregate *agg; | 
 | 	int err = 0; | 
 |  | 
 | 	cl = qfq_classify(skb, sch, &err); | 
 | 	if (cl == NULL) { | 
 | 		if (err & __NET_XMIT_BYPASS) | 
 | 			sch->qstats.drops++; | 
 | 		kfree_skb(skb); | 
 | 		return err; | 
 | 	} | 
 | 	pr_debug("qfq_enqueue: cl = %x\n", cl->common.classid); | 
 |  | 
 | 	if (unlikely(cl->agg->lmax < qdisc_pkt_len(skb))) { | 
 | 		pr_debug("qfq: increasing maxpkt from %u to %u for class %u", | 
 | 			 cl->agg->lmax, qdisc_pkt_len(skb), cl->common.classid); | 
 | 		err = qfq_change_agg(sch, cl, cl->agg->class_weight, | 
 | 				     qdisc_pkt_len(skb)); | 
 | 		if (err) | 
 | 			return err; | 
 | 	} | 
 |  | 
 | 	err = qdisc_enqueue(skb, cl->qdisc); | 
 | 	if (unlikely(err != NET_XMIT_SUCCESS)) { | 
 | 		pr_debug("qfq_enqueue: enqueue failed %d\n", err); | 
 | 		if (net_xmit_drop_count(err)) { | 
 | 			cl->qstats.drops++; | 
 | 			sch->qstats.drops++; | 
 | 		} | 
 | 		return err; | 
 | 	} | 
 |  | 
 | 	bstats_update(&cl->bstats, skb); | 
 | 	++sch->q.qlen; | 
 |  | 
 | 	agg = cl->agg; | 
 | 	/* if the queue was not empty, then done here */ | 
 | 	if (cl->qdisc->q.qlen != 1) { | 
 | 		if (unlikely(skb == cl->qdisc->ops->peek(cl->qdisc)) && | 
 | 		    list_first_entry(&agg->active, struct qfq_class, alist) | 
 | 		    == cl && cl->deficit < qdisc_pkt_len(skb)) | 
 | 			list_move_tail(&cl->alist, &agg->active); | 
 |  | 
 | 		return err; | 
 | 	} | 
 |  | 
 | 	/* schedule class for service within the aggregate */ | 
 | 	cl->deficit = agg->lmax; | 
 | 	list_add_tail(&cl->alist, &agg->active); | 
 |  | 
 | 	if (list_first_entry(&agg->active, struct qfq_class, alist) != cl) | 
 | 		return err; /* aggregate was not empty, nothing else to do */ | 
 |  | 
 | 	/* recharge budget */ | 
 | 	agg->initial_budget = agg->budget = agg->budgetmax; | 
 |  | 
 | 	qfq_update_agg_ts(q, agg, enqueue); | 
 | 	if (q->in_serv_agg == NULL) | 
 | 		q->in_serv_agg = agg; | 
 | 	else if (agg != q->in_serv_agg) | 
 | 		qfq_schedule_agg(q, agg); | 
 |  | 
 | 	return err; | 
 | } | 
 |  | 
 | /* | 
 |  * Schedule aggregate according to its timestamps. | 
 |  */ | 
 | static void qfq_schedule_agg(struct qfq_sched *q, struct qfq_aggregate *agg) | 
 | { | 
 | 	struct qfq_group *grp = agg->grp; | 
 | 	u64 roundedS; | 
 | 	int s; | 
 |  | 
 | 	roundedS = qfq_round_down(agg->S, grp->slot_shift); | 
 |  | 
 | 	/* | 
 | 	 * Insert agg in the correct bucket. | 
 | 	 * If agg->S >= grp->S we don't need to adjust the | 
 | 	 * bucket list and simply go to the insertion phase. | 
 | 	 * Otherwise grp->S is decreasing, we must make room | 
 | 	 * in the bucket list, and also recompute the group state. | 
 | 	 * Finally, if there were no flows in this group and nobody | 
 | 	 * was in ER make sure to adjust V. | 
 | 	 */ | 
 | 	if (grp->full_slots) { | 
 | 		if (!qfq_gt(grp->S, agg->S)) | 
 | 			goto skip_update; | 
 |  | 
 | 		/* create a slot for this agg->S */ | 
 | 		qfq_slot_rotate(grp, roundedS); | 
 | 		/* group was surely ineligible, remove */ | 
 | 		__clear_bit(grp->index, &q->bitmaps[IR]); | 
 | 		__clear_bit(grp->index, &q->bitmaps[IB]); | 
 | 	} else if (!q->bitmaps[ER] && qfq_gt(roundedS, q->V)) | 
 | 		q->V = roundedS; | 
 |  | 
 | 	grp->S = roundedS; | 
 | 	grp->F = roundedS + (2ULL << grp->slot_shift); | 
 | 	s = qfq_calc_state(q, grp); | 
 | 	__set_bit(grp->index, &q->bitmaps[s]); | 
 |  | 
 | 	pr_debug("qfq enqueue: new state %d %#lx S %lld F %lld V %lld\n", | 
 | 		 s, q->bitmaps[s], | 
 | 		 (unsigned long long) agg->S, | 
 | 		 (unsigned long long) agg->F, | 
 | 		 (unsigned long long) q->V); | 
 |  | 
 | skip_update: | 
 | 	qfq_slot_insert(grp, agg, roundedS); | 
 | } | 
 |  | 
 |  | 
 | /* Update agg ts and schedule agg for service */ | 
 | static void qfq_activate_agg(struct qfq_sched *q, struct qfq_aggregate *agg, | 
 | 			     enum update_reason reason) | 
 | { | 
 | 	qfq_update_agg_ts(q, agg, reason); | 
 | 	qfq_schedule_agg(q, agg); | 
 | } | 
 |  | 
 | static void qfq_slot_remove(struct qfq_sched *q, struct qfq_group *grp, | 
 | 			    struct qfq_aggregate *agg) | 
 | { | 
 | 	unsigned int i, offset; | 
 | 	u64 roundedS; | 
 |  | 
 | 	roundedS = qfq_round_down(agg->S, grp->slot_shift); | 
 | 	offset = (roundedS - grp->S) >> grp->slot_shift; | 
 |  | 
 | 	i = (grp->front + offset) % QFQ_MAX_SLOTS; | 
 |  | 
 | 	hlist_del(&agg->next); | 
 | 	if (hlist_empty(&grp->slots[i])) | 
 | 		__clear_bit(offset, &grp->full_slots); | 
 | } | 
 |  | 
 | /* | 
 |  * Called to forcibly deschedule an aggregate.  If the aggregate is | 
 |  * not in the front bucket, or if the latter has other aggregates in | 
 |  * the front bucket, we can simply remove the aggregate with no other | 
 |  * side effects. | 
 |  * Otherwise we must propagate the event up. | 
 |  */ | 
 | static void qfq_deactivate_agg(struct qfq_sched *q, struct qfq_aggregate *agg) | 
 | { | 
 | 	struct qfq_group *grp = agg->grp; | 
 | 	unsigned long mask; | 
 | 	u64 roundedS; | 
 | 	int s; | 
 |  | 
 | 	if (agg == q->in_serv_agg) { | 
 | 		charge_actual_service(agg); | 
 | 		q->in_serv_agg = qfq_choose_next_agg(q); | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	agg->F = agg->S; | 
 | 	qfq_slot_remove(q, grp, agg); | 
 |  | 
 | 	if (!grp->full_slots) { | 
 | 		__clear_bit(grp->index, &q->bitmaps[IR]); | 
 | 		__clear_bit(grp->index, &q->bitmaps[EB]); | 
 | 		__clear_bit(grp->index, &q->bitmaps[IB]); | 
 |  | 
 | 		if (test_bit(grp->index, &q->bitmaps[ER]) && | 
 | 		    !(q->bitmaps[ER] & ~((1UL << grp->index) - 1))) { | 
 | 			mask = q->bitmaps[ER] & ((1UL << grp->index) - 1); | 
 | 			if (mask) | 
 | 				mask = ~((1UL << __fls(mask)) - 1); | 
 | 			else | 
 | 				mask = ~0UL; | 
 | 			qfq_move_groups(q, mask, EB, ER); | 
 | 			qfq_move_groups(q, mask, IB, IR); | 
 | 		} | 
 | 		__clear_bit(grp->index, &q->bitmaps[ER]); | 
 | 	} else if (hlist_empty(&grp->slots[grp->front])) { | 
 | 		agg = qfq_slot_scan(grp); | 
 | 		roundedS = qfq_round_down(agg->S, grp->slot_shift); | 
 | 		if (grp->S != roundedS) { | 
 | 			__clear_bit(grp->index, &q->bitmaps[ER]); | 
 | 			__clear_bit(grp->index, &q->bitmaps[IR]); | 
 | 			__clear_bit(grp->index, &q->bitmaps[EB]); | 
 | 			__clear_bit(grp->index, &q->bitmaps[IB]); | 
 | 			grp->S = roundedS; | 
 | 			grp->F = roundedS + (2ULL << grp->slot_shift); | 
 | 			s = qfq_calc_state(q, grp); | 
 | 			__set_bit(grp->index, &q->bitmaps[s]); | 
 | 		} | 
 | 	} | 
 |  | 
 | 	qfq_update_eligible(q); | 
 | } | 
 |  | 
 | static void qfq_qlen_notify(struct Qdisc *sch, unsigned long arg) | 
 | { | 
 | 	struct qfq_sched *q = qdisc_priv(sch); | 
 | 	struct qfq_class *cl = (struct qfq_class *)arg; | 
 |  | 
 | 	if (cl->qdisc->q.qlen == 0) | 
 | 		qfq_deactivate_class(q, cl); | 
 | } | 
 |  | 
 | static unsigned int qfq_drop_from_slot(struct qfq_sched *q, | 
 | 				       struct hlist_head *slot) | 
 | { | 
 | 	struct qfq_aggregate *agg; | 
 | 	struct hlist_node *n; | 
 | 	struct qfq_class *cl; | 
 | 	unsigned int len; | 
 |  | 
 | 	hlist_for_each_entry(agg, n, slot, next) { | 
 | 		list_for_each_entry(cl, &agg->active, alist) { | 
 |  | 
 | 			if (!cl->qdisc->ops->drop) | 
 | 				continue; | 
 |  | 
 | 			len = cl->qdisc->ops->drop(cl->qdisc); | 
 | 			if (len > 0) { | 
 | 				if (cl->qdisc->q.qlen == 0) | 
 | 					qfq_deactivate_class(q, cl); | 
 |  | 
 | 				return len; | 
 | 			} | 
 | 		} | 
 | 	} | 
 | 	return 0; | 
 | } | 
 |  | 
 | static unsigned int qfq_drop(struct Qdisc *sch) | 
 | { | 
 | 	struct qfq_sched *q = qdisc_priv(sch); | 
 | 	struct qfq_group *grp; | 
 | 	unsigned int i, j, len; | 
 |  | 
 | 	for (i = 0; i <= QFQ_MAX_INDEX; i++) { | 
 | 		grp = &q->groups[i]; | 
 | 		for (j = 0; j < QFQ_MAX_SLOTS; j++) { | 
 | 			len = qfq_drop_from_slot(q, &grp->slots[j]); | 
 | 			if (len > 0) { | 
 | 				sch->q.qlen--; | 
 | 				return len; | 
 | 			} | 
 | 		} | 
 |  | 
 | 	} | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int qfq_init_qdisc(struct Qdisc *sch, struct nlattr *opt) | 
 | { | 
 | 	struct qfq_sched *q = qdisc_priv(sch); | 
 | 	struct qfq_group *grp; | 
 | 	int i, j, err; | 
 | 	u32 max_cl_shift, maxbudg_shift, max_classes; | 
 |  | 
 | 	err = qdisc_class_hash_init(&q->clhash); | 
 | 	if (err < 0) | 
 | 		return err; | 
 |  | 
 | 	if (qdisc_dev(sch)->tx_queue_len + 1 > QFQ_MAX_AGG_CLASSES) | 
 | 		max_classes = QFQ_MAX_AGG_CLASSES; | 
 | 	else | 
 | 		max_classes = qdisc_dev(sch)->tx_queue_len + 1; | 
 | 	/* max_cl_shift = floor(log_2(max_classes)) */ | 
 | 	max_cl_shift = __fls(max_classes); | 
 | 	q->max_agg_classes = 1<<max_cl_shift; | 
 |  | 
 | 	/* maxbudg_shift = log2(max_len * max_classes_per_agg) */ | 
 | 	maxbudg_shift = QFQ_MTU_SHIFT + max_cl_shift; | 
 | 	q->min_slot_shift = FRAC_BITS + maxbudg_shift - QFQ_MAX_INDEX; | 
 |  | 
 | 	for (i = 0; i <= QFQ_MAX_INDEX; i++) { | 
 | 		grp = &q->groups[i]; | 
 | 		grp->index = i; | 
 | 		grp->slot_shift = q->min_slot_shift + i; | 
 | 		for (j = 0; j < QFQ_MAX_SLOTS; j++) | 
 | 			INIT_HLIST_HEAD(&grp->slots[j]); | 
 | 	} | 
 |  | 
 | 	INIT_HLIST_HEAD(&q->nonfull_aggs); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static void qfq_reset_qdisc(struct Qdisc *sch) | 
 | { | 
 | 	struct qfq_sched *q = qdisc_priv(sch); | 
 | 	struct qfq_class *cl; | 
 | 	struct hlist_node *n; | 
 | 	unsigned int i; | 
 |  | 
 | 	for (i = 0; i < q->clhash.hashsize; i++) { | 
 | 		hlist_for_each_entry(cl, n, &q->clhash.hash[i], common.hnode) { | 
 | 			if (cl->qdisc->q.qlen > 0) | 
 | 				qfq_deactivate_class(q, cl); | 
 |  | 
 | 			qdisc_reset(cl->qdisc); | 
 | 		} | 
 | 	} | 
 | 	sch->q.qlen = 0; | 
 | } | 
 |  | 
 | static void qfq_destroy_qdisc(struct Qdisc *sch) | 
 | { | 
 | 	struct qfq_sched *q = qdisc_priv(sch); | 
 | 	struct qfq_class *cl; | 
 | 	struct hlist_node *n, *next; | 
 | 	unsigned int i; | 
 |  | 
 | 	tcf_destroy_chain(&q->filter_list); | 
 |  | 
 | 	for (i = 0; i < q->clhash.hashsize; i++) { | 
 | 		hlist_for_each_entry_safe(cl, n, next, &q->clhash.hash[i], | 
 | 					  common.hnode) { | 
 | 			qfq_destroy_class(sch, cl); | 
 | 		} | 
 | 	} | 
 | 	qdisc_class_hash_destroy(&q->clhash); | 
 | } | 
 |  | 
 | static const struct Qdisc_class_ops qfq_class_ops = { | 
 | 	.change		= qfq_change_class, | 
 | 	.delete		= qfq_delete_class, | 
 | 	.get		= qfq_get_class, | 
 | 	.put		= qfq_put_class, | 
 | 	.tcf_chain	= qfq_tcf_chain, | 
 | 	.bind_tcf	= qfq_bind_tcf, | 
 | 	.unbind_tcf	= qfq_unbind_tcf, | 
 | 	.graft		= qfq_graft_class, | 
 | 	.leaf		= qfq_class_leaf, | 
 | 	.qlen_notify	= qfq_qlen_notify, | 
 | 	.dump		= qfq_dump_class, | 
 | 	.dump_stats	= qfq_dump_class_stats, | 
 | 	.walk		= qfq_walk, | 
 | }; | 
 |  | 
 | static struct Qdisc_ops qfq_qdisc_ops __read_mostly = { | 
 | 	.cl_ops		= &qfq_class_ops, | 
 | 	.id		= "qfq", | 
 | 	.priv_size	= sizeof(struct qfq_sched), | 
 | 	.enqueue	= qfq_enqueue, | 
 | 	.dequeue	= qfq_dequeue, | 
 | 	.peek		= qdisc_peek_dequeued, | 
 | 	.drop		= qfq_drop, | 
 | 	.init		= qfq_init_qdisc, | 
 | 	.reset		= qfq_reset_qdisc, | 
 | 	.destroy	= qfq_destroy_qdisc, | 
 | 	.owner		= THIS_MODULE, | 
 | }; | 
 |  | 
 | static int __init qfq_init(void) | 
 | { | 
 | 	return register_qdisc(&qfq_qdisc_ops); | 
 | } | 
 |  | 
 | static void __exit qfq_exit(void) | 
 | { | 
 | 	unregister_qdisc(&qfq_qdisc_ops); | 
 | } | 
 |  | 
 | module_init(qfq_init); | 
 | module_exit(qfq_exit); | 
 | MODULE_LICENSE("GPL"); |