blob: a47948a1623fd49ee8fe7c612d80053f6b45571c [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0
/*
* Cadence CDNSP DRD Driver.
*
* Copyright (C) 2020 Cadence.
*
* Author: Pawel Laszczak <pawell@cadence.com>
*
* Code based on Linux XHCI driver.
* Origin: Copyright (C) 2008 Intel Corp.
*/
#include <linux/dma-mapping.h>
#include <linux/dmapool.h>
#include <linux/slab.h>
#include <linux/usb.h>
#include "cdnsp-gadget.h"
#include "cdnsp-trace.h"
static void cdnsp_free_stream_info(struct cdnsp_device *pdev,
struct cdnsp_ep *pep);
/*
* Allocates a generic ring segment from the ring pool, sets the dma address,
* initializes the segment to zero, and sets the private next pointer to NULL.
*
* "All components of all Command and Transfer TRBs shall be initialized to '0'"
*/
static struct cdnsp_segment *cdnsp_segment_alloc(struct cdnsp_device *pdev,
unsigned int cycle_state,
unsigned int max_packet,
gfp_t flags)
{
struct cdnsp_segment *seg;
dma_addr_t dma;
int i;
seg = kzalloc(sizeof(*seg), flags);
if (!seg)
return NULL;
seg->trbs = dma_pool_zalloc(pdev->segment_pool, flags, &dma);
if (!seg->trbs) {
kfree(seg);
return NULL;
}
if (max_packet) {
seg->bounce_buf = kzalloc(max_packet, flags | GFP_DMA);
if (!seg->bounce_buf)
goto free_dma;
}
/* If the cycle state is 0, set the cycle bit to 1 for all the TRBs. */
if (cycle_state == 0) {
for (i = 0; i < TRBS_PER_SEGMENT; i++)
seg->trbs[i].link.control |= cpu_to_le32(TRB_CYCLE);
}
seg->dma = dma;
seg->next = NULL;
return seg;
free_dma:
dma_pool_free(pdev->segment_pool, seg->trbs, dma);
kfree(seg);
return NULL;
}
static void cdnsp_segment_free(struct cdnsp_device *pdev,
struct cdnsp_segment *seg)
{
if (seg->trbs)
dma_pool_free(pdev->segment_pool, seg->trbs, seg->dma);
kfree(seg->bounce_buf);
kfree(seg);
}
static void cdnsp_free_segments_for_ring(struct cdnsp_device *pdev,
struct cdnsp_segment *first)
{
struct cdnsp_segment *seg;
seg = first->next;
while (seg != first) {
struct cdnsp_segment *next = seg->next;
cdnsp_segment_free(pdev, seg);
seg = next;
}
cdnsp_segment_free(pdev, first);
}
/*
* Make the prev segment point to the next segment.
*
* Change the last TRB in the prev segment to be a Link TRB which points to the
* DMA address of the next segment. The caller needs to set any Link TRB
* related flags, such as End TRB, Toggle Cycle, and no snoop.
*/
static void cdnsp_link_segments(struct cdnsp_device *pdev,
struct cdnsp_segment *prev,
struct cdnsp_segment *next,
enum cdnsp_ring_type type)
{
struct cdnsp_link_trb *link;
u32 val;
if (!prev || !next)
return;
prev->next = next;
if (type != TYPE_EVENT) {
link = &prev->trbs[TRBS_PER_SEGMENT - 1].link;
link->segment_ptr = cpu_to_le64(next->dma);
/*
* Set the last TRB in the segment to have a TRB type ID
* of Link TRB
*/
val = le32_to_cpu(link->control);
val &= ~TRB_TYPE_BITMASK;
val |= TRB_TYPE(TRB_LINK);
link->control = cpu_to_le32(val);
}
}
/*
* Link the ring to the new segments.
* Set Toggle Cycle for the new ring if needed.
*/
static void cdnsp_link_rings(struct cdnsp_device *pdev,
struct cdnsp_ring *ring,
struct cdnsp_segment *first,
struct cdnsp_segment *last,
unsigned int num_segs)
{
struct cdnsp_segment *next;
if (!ring || !first || !last)
return;
next = ring->enq_seg->next;
cdnsp_link_segments(pdev, ring->enq_seg, first, ring->type);
cdnsp_link_segments(pdev, last, next, ring->type);
ring->num_segs += num_segs;
ring->num_trbs_free += (TRBS_PER_SEGMENT - 1) * num_segs;
if (ring->type != TYPE_EVENT && ring->enq_seg == ring->last_seg) {
ring->last_seg->trbs[TRBS_PER_SEGMENT - 1].link.control &=
~cpu_to_le32(LINK_TOGGLE);
last->trbs[TRBS_PER_SEGMENT - 1].link.control |=
cpu_to_le32(LINK_TOGGLE);
ring->last_seg = last;
}
}
/*
* We need a radix tree for mapping physical addresses of TRBs to which stream
* ID they belong to. We need to do this because the device controller won't
* tell us which stream ring the TRB came from. We could store the stream ID
* in an event data TRB, but that doesn't help us for the cancellation case,
* since the endpoint may stop before it reaches that event data TRB.
*
* The radix tree maps the upper portion of the TRB DMA address to a ring
* segment that has the same upper portion of DMA addresses. For example,
* say I have segments of size 1KB, that are always 1KB aligned. A segment may
* start at 0x10c91000 and end at 0x10c913f0. If I use the upper 10 bits, the
* key to the stream ID is 0x43244. I can use the DMA address of the TRB to
* pass the radix tree a key to get the right stream ID:
*
* 0x10c90fff >> 10 = 0x43243
* 0x10c912c0 >> 10 = 0x43244
* 0x10c91400 >> 10 = 0x43245
*
* Obviously, only those TRBs with DMA addresses that are within the segment
* will make the radix tree return the stream ID for that ring.
*
* Caveats for the radix tree:
*
* The radix tree uses an unsigned long as a key pair. On 32-bit systems, an
* unsigned long will be 32-bits; on a 64-bit system an unsigned long will be
* 64-bits. Since we only request 32-bit DMA addresses, we can use that as the
* key on 32-bit or 64-bit systems (it would also be fine if we asked for 64-bit
* PCI DMA addresses on a 64-bit system). There might be a problem on 32-bit
* extended systems (where the DMA address can be bigger than 32-bits),
* if we allow the PCI dma mask to be bigger than 32-bits. So don't do that.
*/
static int cdnsp_insert_segment_mapping(struct radix_tree_root *trb_address_map,
struct cdnsp_ring *ring,
struct cdnsp_segment *seg,
gfp_t mem_flags)
{
unsigned long key;
int ret;
key = (unsigned long)(seg->dma >> TRB_SEGMENT_SHIFT);
/* Skip any segments that were already added. */
if (radix_tree_lookup(trb_address_map, key))
return 0;
ret = radix_tree_maybe_preload(mem_flags);
if (ret)
return ret;
ret = radix_tree_insert(trb_address_map, key, ring);
radix_tree_preload_end();
return ret;
}
static void cdnsp_remove_segment_mapping(struct radix_tree_root *trb_address_map,
struct cdnsp_segment *seg)
{
unsigned long key;
key = (unsigned long)(seg->dma >> TRB_SEGMENT_SHIFT);
if (radix_tree_lookup(trb_address_map, key))
radix_tree_delete(trb_address_map, key);
}
static int cdnsp_update_stream_segment_mapping(struct radix_tree_root *trb_address_map,
struct cdnsp_ring *ring,
struct cdnsp_segment *first_seg,
struct cdnsp_segment *last_seg,
gfp_t mem_flags)
{
struct cdnsp_segment *failed_seg;
struct cdnsp_segment *seg;
int ret;
seg = first_seg;
do {
ret = cdnsp_insert_segment_mapping(trb_address_map, ring, seg,
mem_flags);
if (ret)
goto remove_streams;
if (seg == last_seg)
return 0;
seg = seg->next;
} while (seg != first_seg);
return 0;
remove_streams:
failed_seg = seg;
seg = first_seg;
do {
cdnsp_remove_segment_mapping(trb_address_map, seg);
if (seg == failed_seg)
return ret;
seg = seg->next;
} while (seg != first_seg);
return ret;
}
static void cdnsp_remove_stream_mapping(struct cdnsp_ring *ring)
{
struct cdnsp_segment *seg;
seg = ring->first_seg;
do {
cdnsp_remove_segment_mapping(ring->trb_address_map, seg);
seg = seg->next;
} while (seg != ring->first_seg);
}
static int cdnsp_update_stream_mapping(struct cdnsp_ring *ring)
{
return cdnsp_update_stream_segment_mapping(ring->trb_address_map, ring,
ring->first_seg, ring->last_seg, GFP_ATOMIC);
}
static void cdnsp_ring_free(struct cdnsp_device *pdev, struct cdnsp_ring *ring)
{
if (!ring)
return;
trace_cdnsp_ring_free(ring);
if (ring->first_seg) {
if (ring->type == TYPE_STREAM)
cdnsp_remove_stream_mapping(ring);
cdnsp_free_segments_for_ring(pdev, ring->first_seg);
}
kfree(ring);
}
void cdnsp_initialize_ring_info(struct cdnsp_ring *ring)
{
ring->enqueue = ring->first_seg->trbs;
ring->enq_seg = ring->first_seg;
ring->dequeue = ring->enqueue;
ring->deq_seg = ring->first_seg;
/*
* The ring is initialized to 0. The producer must write 1 to the cycle
* bit to handover ownership of the TRB, so PCS = 1. The consumer must
* compare CCS to the cycle bit to check ownership, so CCS = 1.
*
* New rings are initialized with cycle state equal to 1; if we are
* handling ring expansion, set the cycle state equal to the old ring.
*/
ring->cycle_state = 1;
/*
* Each segment has a link TRB, and leave an extra TRB for SW
* accounting purpose
*/
ring->num_trbs_free = ring->num_segs * (TRBS_PER_SEGMENT - 1) - 1;
}
/* Allocate segments and link them for a ring. */
static int cdnsp_alloc_segments_for_ring(struct cdnsp_device *pdev,
struct cdnsp_segment **first,
struct cdnsp_segment **last,
unsigned int num_segs,
unsigned int cycle_state,
enum cdnsp_ring_type type,
unsigned int max_packet,
gfp_t flags)
{
struct cdnsp_segment *prev;
/* Allocate first segment. */
prev = cdnsp_segment_alloc(pdev, cycle_state, max_packet, flags);
if (!prev)
return -ENOMEM;
num_segs--;
*first = prev;
/* Allocate all other segments. */
while (num_segs > 0) {
struct cdnsp_segment *next;
next = cdnsp_segment_alloc(pdev, cycle_state,
max_packet, flags);
if (!next) {
cdnsp_free_segments_for_ring(pdev, *first);
return -ENOMEM;
}
cdnsp_link_segments(pdev, prev, next, type);
prev = next;
num_segs--;
}
cdnsp_link_segments(pdev, prev, *first, type);
*last = prev;
return 0;
}
/*
* Create a new ring with zero or more segments.
*
* Link each segment together into a ring.
* Set the end flag and the cycle toggle bit on the last segment.
*/
static struct cdnsp_ring *cdnsp_ring_alloc(struct cdnsp_device *pdev,
unsigned int num_segs,
enum cdnsp_ring_type type,
unsigned int max_packet,
gfp_t flags)
{
struct cdnsp_ring *ring;
int ret;
ring = kzalloc(sizeof *(ring), flags);
if (!ring)
return NULL;
ring->num_segs = num_segs;
ring->bounce_buf_len = max_packet;
INIT_LIST_HEAD(&ring->td_list);
ring->type = type;
if (num_segs == 0)
return ring;
ret = cdnsp_alloc_segments_for_ring(pdev, &ring->first_seg,
&ring->last_seg, num_segs,
1, type, max_packet, flags);
if (ret)
goto fail;
/* Only event ring does not use link TRB. */
if (type != TYPE_EVENT)
ring->last_seg->trbs[TRBS_PER_SEGMENT - 1].link.control |=
cpu_to_le32(LINK_TOGGLE);
cdnsp_initialize_ring_info(ring);
trace_cdnsp_ring_alloc(ring);
return ring;
fail:
kfree(ring);
return NULL;
}
void cdnsp_free_endpoint_rings(struct cdnsp_device *pdev, struct cdnsp_ep *pep)
{
cdnsp_ring_free(pdev, pep->ring);
pep->ring = NULL;
cdnsp_free_stream_info(pdev, pep);
}
/*
* Expand an existing ring.
* Allocate a new ring which has same segment numbers and link the two rings.
*/
int cdnsp_ring_expansion(struct cdnsp_device *pdev,
struct cdnsp_ring *ring,
unsigned int num_trbs,
gfp_t flags)
{
unsigned int num_segs_needed;
struct cdnsp_segment *first;
struct cdnsp_segment *last;
unsigned int num_segs;
int ret;
num_segs_needed = (num_trbs + (TRBS_PER_SEGMENT - 1) - 1) /
(TRBS_PER_SEGMENT - 1);
/* Allocate number of segments we needed, or double the ring size. */
num_segs = max(ring->num_segs, num_segs_needed);
ret = cdnsp_alloc_segments_for_ring(pdev, &first, &last, num_segs,
ring->cycle_state, ring->type,
ring->bounce_buf_len, flags);
if (ret)
return -ENOMEM;
if (ring->type == TYPE_STREAM)
ret = cdnsp_update_stream_segment_mapping(ring->trb_address_map,
ring, first,
last, flags);
if (ret) {
cdnsp_free_segments_for_ring(pdev, first);
return ret;
}
cdnsp_link_rings(pdev, ring, first, last, num_segs);
trace_cdnsp_ring_expansion(ring);
return 0;
}
static int cdnsp_init_device_ctx(struct cdnsp_device *pdev)
{
int size = HCC_64BYTE_CONTEXT(pdev->hcc_params) ? 2048 : 1024;
pdev->out_ctx.type = CDNSP_CTX_TYPE_DEVICE;
pdev->out_ctx.size = size;
pdev->out_ctx.ctx_size = CTX_SIZE(pdev->hcc_params);
pdev->out_ctx.bytes = dma_pool_zalloc(pdev->device_pool, GFP_ATOMIC,
&pdev->out_ctx.dma);
if (!pdev->out_ctx.bytes)
return -ENOMEM;
pdev->in_ctx.type = CDNSP_CTX_TYPE_INPUT;
pdev->in_ctx.ctx_size = pdev->out_ctx.ctx_size;
pdev->in_ctx.size = size + pdev->out_ctx.ctx_size;
pdev->in_ctx.bytes = dma_pool_zalloc(pdev->device_pool, GFP_ATOMIC,
&pdev->in_ctx.dma);
if (!pdev->in_ctx.bytes) {
dma_pool_free(pdev->device_pool, pdev->out_ctx.bytes,
pdev->out_ctx.dma);
return -ENOMEM;
}
return 0;
}
struct cdnsp_input_control_ctx
*cdnsp_get_input_control_ctx(struct cdnsp_container_ctx *ctx)
{
if (ctx->type != CDNSP_CTX_TYPE_INPUT)
return NULL;
return (struct cdnsp_input_control_ctx *)ctx->bytes;
}
struct cdnsp_slot_ctx *cdnsp_get_slot_ctx(struct cdnsp_container_ctx *ctx)
{
if (ctx->type == CDNSP_CTX_TYPE_DEVICE)
return (struct cdnsp_slot_ctx *)ctx->bytes;
return (struct cdnsp_slot_ctx *)(ctx->bytes + ctx->ctx_size);
}
struct cdnsp_ep_ctx *cdnsp_get_ep_ctx(struct cdnsp_container_ctx *ctx,
unsigned int ep_index)
{
/* Increment ep index by offset of start of ep ctx array. */
ep_index++;
if (ctx->type == CDNSP_CTX_TYPE_INPUT)
ep_index++;
return (struct cdnsp_ep_ctx *)(ctx->bytes + (ep_index * ctx->ctx_size));
}
static void cdnsp_free_stream_ctx(struct cdnsp_device *pdev,
struct cdnsp_ep *pep)
{
dma_pool_free(pdev->device_pool, pep->stream_info.stream_ctx_array,
pep->stream_info.ctx_array_dma);
}
/* The stream context array must be a power of 2. */
static struct cdnsp_stream_ctx
*cdnsp_alloc_stream_ctx(struct cdnsp_device *pdev, struct cdnsp_ep *pep)
{
size_t size = sizeof(struct cdnsp_stream_ctx) *
pep->stream_info.num_stream_ctxs;
if (size > CDNSP_CTX_SIZE)
return NULL;
/**
* Driver uses intentionally the device_pool to allocated stream
* context array. Device Pool has 2048 bytes of size what gives us
* 128 entries.
*/
return dma_pool_zalloc(pdev->device_pool, GFP_DMA32 | GFP_ATOMIC,
&pep->stream_info.ctx_array_dma);
}
struct cdnsp_ring *cdnsp_dma_to_transfer_ring(struct cdnsp_ep *pep, u64 address)
{
if (pep->ep_state & EP_HAS_STREAMS)
return radix_tree_lookup(&pep->stream_info.trb_address_map,
address >> TRB_SEGMENT_SHIFT);
return pep->ring;
}
/*
* Change an endpoint's internal structure so it supports stream IDs.
* The number of requested streams includes stream 0, which cannot be used by
* driver.
*
* The number of stream contexts in the stream context array may be bigger than
* the number of streams the driver wants to use. This is because the number of
* stream context array entries must be a power of two.
*/
int cdnsp_alloc_stream_info(struct cdnsp_device *pdev,
struct cdnsp_ep *pep,
unsigned int num_stream_ctxs,
unsigned int num_streams)
{
struct cdnsp_stream_info *stream_info;
struct cdnsp_ring *cur_ring;
u32 cur_stream;
u64 addr;
int ret;
int mps;
stream_info = &pep->stream_info;
stream_info->num_streams = num_streams;
stream_info->num_stream_ctxs = num_stream_ctxs;
/* Initialize the array of virtual pointers to stream rings. */
stream_info->stream_rings = kcalloc(num_streams,
sizeof(struct cdnsp_ring *),
GFP_ATOMIC);
if (!stream_info->stream_rings)
return -ENOMEM;
/* Initialize the array of DMA addresses for stream rings for the HW. */
stream_info->stream_ctx_array = cdnsp_alloc_stream_ctx(pdev, pep);
if (!stream_info->stream_ctx_array)
goto cleanup_stream_rings;
memset(stream_info->stream_ctx_array, 0,
sizeof(struct cdnsp_stream_ctx) * num_stream_ctxs);
INIT_RADIX_TREE(&stream_info->trb_address_map, GFP_ATOMIC);
mps = usb_endpoint_maxp(pep->endpoint.desc);
/*
* Allocate rings for all the streams that the driver will use,
* and add their segment DMA addresses to the radix tree.
* Stream 0 is reserved.
*/
for (cur_stream = 1; cur_stream < num_streams; cur_stream++) {
cur_ring = cdnsp_ring_alloc(pdev, 2, TYPE_STREAM, mps,
GFP_ATOMIC);
stream_info->stream_rings[cur_stream] = cur_ring;
if (!cur_ring)
goto cleanup_rings;
cur_ring->stream_id = cur_stream;
cur_ring->trb_address_map = &stream_info->trb_address_map;
/* Set deq ptr, cycle bit, and stream context type. */
addr = cur_ring->first_seg->dma | SCT_FOR_CTX(SCT_PRI_TR) |
cur_ring->cycle_state;
stream_info->stream_ctx_array[cur_stream].stream_ring =
cpu_to_le64(addr);
trace_cdnsp_set_stream_ring(cur_ring);
ret = cdnsp_update_stream_mapping(cur_ring);
if (ret)
goto cleanup_rings;
}
return 0;
cleanup_rings:
for (cur_stream = 1; cur_stream < num_streams; cur_stream++) {
cur_ring = stream_info->stream_rings[cur_stream];
if (cur_ring) {
cdnsp_ring_free(pdev, cur_ring);
stream_info->stream_rings[cur_stream] = NULL;
}
}
cleanup_stream_rings:
kfree(pep->stream_info.stream_rings);
return -ENOMEM;
}
/* Frees all stream contexts associated with the endpoint. */
static void cdnsp_free_stream_info(struct cdnsp_device *pdev,
struct cdnsp_ep *pep)
{
struct cdnsp_stream_info *stream_info = &pep->stream_info;
struct cdnsp_ring *cur_ring;
int cur_stream;
if (!(pep->ep_state & EP_HAS_STREAMS))
return;
for (cur_stream = 1; cur_stream < stream_info->num_streams;
cur_stream++) {
cur_ring = stream_info->stream_rings[cur_stream];
if (cur_ring) {
cdnsp_ring_free(pdev, cur_ring);
stream_info->stream_rings[cur_stream] = NULL;
}
}
if (stream_info->stream_ctx_array)
cdnsp_free_stream_ctx(pdev, pep);
kfree(stream_info->stream_rings);
pep->ep_state &= ~EP_HAS_STREAMS;
}
/* All the cdnsp_tds in the ring's TD list should be freed at this point.*/
static void cdnsp_free_priv_device(struct cdnsp_device *pdev)
{
pdev->dcbaa->dev_context_ptrs[1] = 0;
cdnsp_free_endpoint_rings(pdev, &pdev->eps[0]);
if (pdev->in_ctx.bytes)
dma_pool_free(pdev->device_pool, pdev->in_ctx.bytes,
pdev->in_ctx.dma);
if (pdev->out_ctx.bytes)
dma_pool_free(pdev->device_pool, pdev->out_ctx.bytes,
pdev->out_ctx.dma);
pdev->in_ctx.bytes = NULL;
pdev->out_ctx.bytes = NULL;
}
static int cdnsp_alloc_priv_device(struct cdnsp_device *pdev)
{
int ret;
ret = cdnsp_init_device_ctx(pdev);
if (ret)
return ret;
/* Allocate endpoint 0 ring. */
pdev->eps[0].ring = cdnsp_ring_alloc(pdev, 2, TYPE_CTRL, 0, GFP_ATOMIC);
if (!pdev->eps[0].ring)
goto fail;
/* Point to output device context in dcbaa. */
pdev->dcbaa->dev_context_ptrs[1] = cpu_to_le64(pdev->out_ctx.dma);
pdev->cmd.in_ctx = &pdev->in_ctx;
trace_cdnsp_alloc_priv_device(pdev);
return 0;
fail:
dma_pool_free(pdev->device_pool, pdev->out_ctx.bytes,
pdev->out_ctx.dma);
dma_pool_free(pdev->device_pool, pdev->in_ctx.bytes,
pdev->in_ctx.dma);
return ret;
}
void cdnsp_copy_ep0_dequeue_into_input_ctx(struct cdnsp_device *pdev)
{
struct cdnsp_ep_ctx *ep0_ctx = pdev->eps[0].in_ctx;
struct cdnsp_ring *ep_ring = pdev->eps[0].ring;
dma_addr_t dma;
dma = cdnsp_trb_virt_to_dma(ep_ring->enq_seg, ep_ring->enqueue);
ep0_ctx->deq = cpu_to_le64(dma | ep_ring->cycle_state);
}
/* Setup an controller private device for a Set Address command. */
int cdnsp_setup_addressable_priv_dev(struct cdnsp_device *pdev)
{
struct cdnsp_slot_ctx *slot_ctx;
struct cdnsp_ep_ctx *ep0_ctx;
u32 max_packets, port;
ep0_ctx = cdnsp_get_ep_ctx(&pdev->in_ctx, 0);
slot_ctx = cdnsp_get_slot_ctx(&pdev->in_ctx);
/* Only the control endpoint is valid - one endpoint context. */
slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(1));
switch (pdev->gadget.speed) {
case USB_SPEED_SUPER_PLUS:
slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_SSP);
max_packets = MAX_PACKET(512);
break;
case USB_SPEED_SUPER:
slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_SS);
max_packets = MAX_PACKET(512);
break;
case USB_SPEED_HIGH:
slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_HS);
max_packets = MAX_PACKET(64);
break;
case USB_SPEED_FULL:
slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_FS);
max_packets = MAX_PACKET(64);
break;
default:
/* Speed was not set , this shouldn't happen. */
return -EINVAL;
}
port = DEV_PORT(pdev->active_port->port_num);
slot_ctx->dev_port |= cpu_to_le32(port);
slot_ctx->dev_state = cpu_to_le32((pdev->device_address &
DEV_ADDR_MASK));
ep0_ctx->tx_info = cpu_to_le32(EP_AVG_TRB_LENGTH(0x8));
ep0_ctx->ep_info2 = cpu_to_le32(EP_TYPE(CTRL_EP));
ep0_ctx->ep_info2 |= cpu_to_le32(MAX_BURST(0) | ERROR_COUNT(3) |
max_packets);
ep0_ctx->deq = cpu_to_le64(pdev->eps[0].ring->first_seg->dma |
pdev->eps[0].ring->cycle_state);
trace_cdnsp_setup_addressable_priv_device(pdev);
return 0;
}
/*
* Convert interval expressed as 2^(bInterval - 1) == interval into
* straight exponent value 2^n == interval.
*/
static unsigned int cdnsp_parse_exponent_interval(struct usb_gadget *g,
struct cdnsp_ep *pep)
{
unsigned int interval;
interval = clamp_val(pep->endpoint.desc->bInterval, 1, 16) - 1;
if (interval != pep->endpoint.desc->bInterval - 1)
dev_warn(&g->dev, "ep %s - rounding interval to %d %sframes\n",
pep->name, 1 << interval,
g->speed == USB_SPEED_FULL ? "" : "micro");
/*
* Full speed isoc endpoints specify interval in frames,
* not microframes. We are using microframes everywhere,
* so adjust accordingly.
*/
if (g->speed == USB_SPEED_FULL)
interval += 3; /* 1 frame = 2^3 uframes */
/* Controller handles only up to 512ms (2^12). */
if (interval > 12)
interval = 12;
return interval;
}
/*
* Convert bInterval expressed in microframes (in 1-255 range) to exponent of
* microframes, rounded down to nearest power of 2.
*/
static unsigned int cdnsp_microframes_to_exponent(struct usb_gadget *g,
struct cdnsp_ep *pep,
unsigned int desc_interval,
unsigned int min_exponent,
unsigned int max_exponent)
{
unsigned int interval;
interval = fls(desc_interval) - 1;
return clamp_val(interval, min_exponent, max_exponent);
}
/*
* Return the polling interval.
*
* The polling interval is expressed in "microframes". If controllers's Interval
* field is set to N, it will service the endpoint every 2^(Interval)*125us.
*/
static unsigned int cdnsp_get_endpoint_interval(struct usb_gadget *g,
struct cdnsp_ep *pep)
{
unsigned int interval = 0;
switch (g->speed) {
case USB_SPEED_HIGH:
case USB_SPEED_SUPER_PLUS:
case USB_SPEED_SUPER:
if (usb_endpoint_xfer_int(pep->endpoint.desc) ||
usb_endpoint_xfer_isoc(pep->endpoint.desc))
interval = cdnsp_parse_exponent_interval(g, pep);
break;
case USB_SPEED_FULL:
if (usb_endpoint_xfer_isoc(pep->endpoint.desc)) {
interval = cdnsp_parse_exponent_interval(g, pep);
} else if (usb_endpoint_xfer_int(pep->endpoint.desc)) {
interval = pep->endpoint.desc->bInterval << 3;
interval = cdnsp_microframes_to_exponent(g, pep,
interval,
3, 10);
}
break;
default:
WARN_ON(1);
}
return interval;
}
/*
* The "Mult" field in the endpoint context is only set for SuperSpeed isoc eps.
* High speed endpoint descriptors can define "the number of additional
* transaction opportunities per microframe", but that goes in the Max Burst
* endpoint context field.
*/
static u32 cdnsp_get_endpoint_mult(struct usb_gadget *g, struct cdnsp_ep *pep)
{
if (g->speed < USB_SPEED_SUPER ||
!usb_endpoint_xfer_isoc(pep->endpoint.desc))
return 0;
return pep->endpoint.comp_desc->bmAttributes;
}
static u32 cdnsp_get_endpoint_max_burst(struct usb_gadget *g,
struct cdnsp_ep *pep)
{
/* Super speed and Plus have max burst in ep companion desc */
if (g->speed >= USB_SPEED_SUPER)
return pep->endpoint.comp_desc->bMaxBurst;
if (g->speed == USB_SPEED_HIGH &&
(usb_endpoint_xfer_isoc(pep->endpoint.desc) ||
usb_endpoint_xfer_int(pep->endpoint.desc)))
return (usb_endpoint_maxp(pep->endpoint.desc) & 0x1800) >> 11;
return 0;
}
static u32 cdnsp_get_endpoint_type(const struct usb_endpoint_descriptor *desc)
{
int in;
in = usb_endpoint_dir_in(desc);
switch (usb_endpoint_type(desc)) {
case USB_ENDPOINT_XFER_CONTROL:
return CTRL_EP;
case USB_ENDPOINT_XFER_BULK:
return in ? BULK_IN_EP : BULK_OUT_EP;
case USB_ENDPOINT_XFER_ISOC:
return in ? ISOC_IN_EP : ISOC_OUT_EP;
case USB_ENDPOINT_XFER_INT:
return in ? INT_IN_EP : INT_OUT_EP;
}
return 0;
}
/*
* Return the maximum endpoint service interval time (ESIT) payload.
* Basically, this is the maxpacket size, multiplied by the burst size
* and mult size.
*/
static u32 cdnsp_get_max_esit_payload(struct usb_gadget *g,
struct cdnsp_ep *pep)
{
int max_packet;
int max_burst;
/* Only applies for interrupt or isochronous endpoints*/
if (usb_endpoint_xfer_control(pep->endpoint.desc) ||
usb_endpoint_xfer_bulk(pep->endpoint.desc))
return 0;
/* SuperSpeedPlus Isoc ep sending over 48k per EIST. */
if (g->speed >= USB_SPEED_SUPER_PLUS &&
USB_SS_SSP_ISOC_COMP(pep->endpoint.desc->bmAttributes))
return le16_to_cpu(pep->endpoint.comp_desc->wBytesPerInterval);
/* SuperSpeed or SuperSpeedPlus Isoc ep with less than 48k per esit */
else if (g->speed >= USB_SPEED_SUPER)
return le16_to_cpu(pep->endpoint.comp_desc->wBytesPerInterval);
max_packet = usb_endpoint_maxp(pep->endpoint.desc);
max_burst = usb_endpoint_maxp_mult(pep->endpoint.desc);
/* A 0 in max burst means 1 transfer per ESIT */
return max_packet * max_burst;
}
int cdnsp_endpoint_init(struct cdnsp_device *pdev,
struct cdnsp_ep *pep,
gfp_t mem_flags)
{
enum cdnsp_ring_type ring_type;
struct cdnsp_ep_ctx *ep_ctx;
unsigned int err_count = 0;
unsigned int avg_trb_len;
unsigned int max_packet;
unsigned int max_burst;
unsigned int interval;
u32 max_esit_payload;
unsigned int mult;
u32 endpoint_type;
int ret;
ep_ctx = pep->in_ctx;
endpoint_type = cdnsp_get_endpoint_type(pep->endpoint.desc);
if (!endpoint_type)
return -EINVAL;
ring_type = usb_endpoint_type(pep->endpoint.desc);
/*
* Get values to fill the endpoint context, mostly from ep descriptor.
* The average TRB buffer length for bulk endpoints is unclear as we
* have no clue on scatter gather list entry size. For Isoc and Int,
* set it to max available.
*/
max_esit_payload = cdnsp_get_max_esit_payload(&pdev->gadget, pep);
interval = cdnsp_get_endpoint_interval(&pdev->gadget, pep);
mult = cdnsp_get_endpoint_mult(&pdev->gadget, pep);
max_packet = usb_endpoint_maxp(pep->endpoint.desc);
max_burst = cdnsp_get_endpoint_max_burst(&pdev->gadget, pep);
avg_trb_len = max_esit_payload;
/* Allow 3 retries for everything but isoc, set CErr = 3. */
if (!usb_endpoint_xfer_isoc(pep->endpoint.desc))
err_count = 3;
if (usb_endpoint_xfer_bulk(pep->endpoint.desc) &&
pdev->gadget.speed == USB_SPEED_HIGH)
max_packet = 512;
/* Controller spec indicates that ctrl ep avg TRB Length should be 8. */
if (usb_endpoint_xfer_control(pep->endpoint.desc))
avg_trb_len = 8;
/* Set up the endpoint ring. */
pep->ring = cdnsp_ring_alloc(pdev, 2, ring_type, max_packet, mem_flags);
pep->skip = false;
/* Fill the endpoint context */
ep_ctx->ep_info = cpu_to_le32(EP_MAX_ESIT_PAYLOAD_HI(max_esit_payload) |
EP_INTERVAL(interval) | EP_MULT(mult));
ep_ctx->ep_info2 = cpu_to_le32(EP_TYPE(endpoint_type) |
MAX_PACKET(max_packet) | MAX_BURST(max_burst) |
ERROR_COUNT(err_count));
ep_ctx->deq = cpu_to_le64(pep->ring->first_seg->dma |
pep->ring->cycle_state);
ep_ctx->tx_info = cpu_to_le32(EP_MAX_ESIT_PAYLOAD_LO(max_esit_payload) |
EP_AVG_TRB_LENGTH(avg_trb_len));
if (usb_endpoint_xfer_bulk(pep->endpoint.desc) &&
pdev->gadget.speed > USB_SPEED_HIGH) {
ret = cdnsp_alloc_streams(pdev, pep);
if (ret < 0)
return ret;
}
return 0;
}
void cdnsp_endpoint_zero(struct cdnsp_device *pdev, struct cdnsp_ep *pep)
{
pep->in_ctx->ep_info = 0;
pep->in_ctx->ep_info2 = 0;
pep->in_ctx->deq = 0;
pep->in_ctx->tx_info = 0;
}
static int cdnsp_alloc_erst(struct cdnsp_device *pdev,
struct cdnsp_ring *evt_ring,
struct cdnsp_erst *erst)
{
struct cdnsp_erst_entry *entry;
struct cdnsp_segment *seg;
unsigned int val;
size_t size;
size = sizeof(struct cdnsp_erst_entry) * evt_ring->num_segs;
erst->entries = dma_alloc_coherent(pdev->dev, size,
&erst->erst_dma_addr, GFP_KERNEL);
if (!erst->entries)
return -ENOMEM;
erst->num_entries = evt_ring->num_segs;
seg = evt_ring->first_seg;
for (val = 0; val < evt_ring->num_segs; val++) {
entry = &erst->entries[val];
entry->seg_addr = cpu_to_le64(seg->dma);
entry->seg_size = cpu_to_le32(TRBS_PER_SEGMENT);
entry->rsvd = 0;
seg = seg->next;
}
return 0;
}
static void cdnsp_free_erst(struct cdnsp_device *pdev, struct cdnsp_erst *erst)
{
size_t size = sizeof(struct cdnsp_erst_entry) * (erst->num_entries);
struct device *dev = pdev->dev;
if (erst->entries)
dma_free_coherent(dev, size, erst->entries,
erst->erst_dma_addr);
erst->entries = NULL;
}
void cdnsp_mem_cleanup(struct cdnsp_device *pdev)
{
struct device *dev = pdev->dev;
cdnsp_free_priv_device(pdev);
cdnsp_free_erst(pdev, &pdev->erst);
if (pdev->event_ring)
cdnsp_ring_free(pdev, pdev->event_ring);
pdev->event_ring = NULL;
if (pdev->cmd_ring)
cdnsp_ring_free(pdev, pdev->cmd_ring);
pdev->cmd_ring = NULL;
dma_pool_destroy(pdev->segment_pool);
pdev->segment_pool = NULL;
dma_pool_destroy(pdev->device_pool);
pdev->device_pool = NULL;
dma_free_coherent(dev, sizeof(*pdev->dcbaa),
pdev->dcbaa, pdev->dcbaa->dma);
pdev->dcbaa = NULL;
pdev->usb2_port.exist = 0;
pdev->usb3_port.exist = 0;
pdev->usb2_port.port_num = 0;
pdev->usb3_port.port_num = 0;
pdev->active_port = NULL;
}
static void cdnsp_set_event_deq(struct cdnsp_device *pdev)
{
dma_addr_t deq;
u64 temp;
deq = cdnsp_trb_virt_to_dma(pdev->event_ring->deq_seg,
pdev->event_ring->dequeue);
/* Update controller event ring dequeue pointer */
temp = cdnsp_read_64(&pdev->ir_set->erst_dequeue);
temp &= ERST_PTR_MASK;
/*
* Don't clear the EHB bit (which is RW1C) because
* there might be more events to service.
*/
temp &= ~ERST_EHB;
cdnsp_write_64(((u64)deq & (u64)~ERST_PTR_MASK) | temp,
&pdev->ir_set->erst_dequeue);
}
static void cdnsp_add_in_port(struct cdnsp_device *pdev,
struct cdnsp_port *port,
__le32 __iomem *addr)
{
u32 temp, port_offset, port_count;
temp = readl(addr);
port->maj_rev = CDNSP_EXT_PORT_MAJOR(temp);
port->min_rev = CDNSP_EXT_PORT_MINOR(temp);
/* Port offset and count in the third dword.*/
temp = readl(addr + 2);
port_offset = CDNSP_EXT_PORT_OFF(temp);
port_count = CDNSP_EXT_PORT_COUNT(temp);
trace_cdnsp_port_info(addr, port_offset, port_count, port->maj_rev);
port->port_num = port_offset;
port->exist = 1;
}
/*
* Scan the Extended Capabilities for the "Supported Protocol Capabilities" that
* specify what speeds each port is supposed to be.
*/
static int cdnsp_setup_port_arrays(struct cdnsp_device *pdev)
{
void __iomem *base;
u32 offset;
int i;
base = &pdev->cap_regs->hc_capbase;
offset = cdnsp_find_next_ext_cap(base, 0,
EXT_CAP_CFG_DEV_20PORT_CAP_ID);
pdev->port20_regs = base + offset;
offset = cdnsp_find_next_ext_cap(base, 0, D_XEC_CFG_3XPORT_CAP);
pdev->port3x_regs = base + offset;
offset = 0;
base = &pdev->cap_regs->hc_capbase;
/* Driver expects max 2 extended protocol capability. */
for (i = 0; i < 2; i++) {
u32 temp;
offset = cdnsp_find_next_ext_cap(base, offset,
EXT_CAPS_PROTOCOL);
temp = readl(base + offset);
if (CDNSP_EXT_PORT_MAJOR(temp) == 0x03 &&
!pdev->usb3_port.port_num)
cdnsp_add_in_port(pdev, &pdev->usb3_port,
base + offset);
if (CDNSP_EXT_PORT_MAJOR(temp) == 0x02 &&
!pdev->usb2_port.port_num)
cdnsp_add_in_port(pdev, &pdev->usb2_port,
base + offset);
}
if (!pdev->usb2_port.exist || !pdev->usb3_port.exist) {
dev_err(pdev->dev, "Error: Only one port detected\n");
return -ENODEV;
}
trace_cdnsp_init("Found USB 2.0 ports and USB 3.0 ports.");
pdev->usb2_port.regs = (struct cdnsp_port_regs __iomem *)
(&pdev->op_regs->port_reg_base + NUM_PORT_REGS *
(pdev->usb2_port.port_num - 1));
pdev->usb3_port.regs = (struct cdnsp_port_regs __iomem *)
(&pdev->op_regs->port_reg_base + NUM_PORT_REGS *
(pdev->usb3_port.port_num - 1));
return 0;
}
/*
* Initialize memory for CDNSP (one-time init).
*
* Program the PAGESIZE register, initialize the device context array, create
* device contexts, set up a command ring segment, create event
* ring (one for now).
*/
int cdnsp_mem_init(struct cdnsp_device *pdev)
{
struct device *dev = pdev->dev;
int ret = -ENOMEM;
unsigned int val;
dma_addr_t dma;
u32 page_size;
u64 val_64;
/*
* Use 4K pages, since that's common and the minimum the
* controller supports
*/
page_size = 1 << 12;
val = readl(&pdev->op_regs->config_reg);
val |= ((val & ~MAX_DEVS) | CDNSP_DEV_MAX_SLOTS) | CONFIG_U3E;
writel(val, &pdev->op_regs->config_reg);
/*
* Doorbell array must be physically contiguous
* and 64-byte (cache line) aligned.
*/
pdev->dcbaa = dma_alloc_coherent(dev, sizeof(*pdev->dcbaa),
&dma, GFP_KERNEL);
if (!pdev->dcbaa)
return -ENOMEM;
pdev->dcbaa->dma = dma;
cdnsp_write_64(dma, &pdev->op_regs->dcbaa_ptr);
/*
* Initialize the ring segment pool. The ring must be a contiguous
* structure comprised of TRBs. The TRBs must be 16 byte aligned,
* however, the command ring segment needs 64-byte aligned segments
* and our use of dma addresses in the trb_address_map radix tree needs
* TRB_SEGMENT_SIZE alignment, so driver pick the greater alignment
* need.
*/
pdev->segment_pool = dma_pool_create("CDNSP ring segments", dev,
TRB_SEGMENT_SIZE, TRB_SEGMENT_SIZE,
page_size);
if (!pdev->segment_pool)
goto release_dcbaa;
pdev->device_pool = dma_pool_create("CDNSP input/output contexts", dev,
CDNSP_CTX_SIZE, 64, page_size);
if (!pdev->device_pool)
goto destroy_segment_pool;
/* Set up the command ring to have one segments for now. */
pdev->cmd_ring = cdnsp_ring_alloc(pdev, 1, TYPE_COMMAND, 0, GFP_KERNEL);
if (!pdev->cmd_ring)
goto destroy_device_pool;
/* Set the address in the Command Ring Control register */
val_64 = cdnsp_read_64(&pdev->op_regs->cmd_ring);
val_64 = (val_64 & (u64)CMD_RING_RSVD_BITS) |
(pdev->cmd_ring->first_seg->dma & (u64)~CMD_RING_RSVD_BITS) |
pdev->cmd_ring->cycle_state;
cdnsp_write_64(val_64, &pdev->op_regs->cmd_ring);
val = readl(&pdev->cap_regs->db_off);
val &= DBOFF_MASK;
pdev->dba = (void __iomem *)pdev->cap_regs + val;
/* Set ir_set to interrupt register set 0 */
pdev->ir_set = &pdev->run_regs->ir_set[0];
/*
* Event ring setup: Allocate a normal ring, but also setup
* the event ring segment table (ERST).
*/
pdev->event_ring = cdnsp_ring_alloc(pdev, ERST_NUM_SEGS, TYPE_EVENT,
0, GFP_KERNEL);
if (!pdev->event_ring)
goto free_cmd_ring;
ret = cdnsp_alloc_erst(pdev, pdev->event_ring, &pdev->erst);
if (ret)
goto free_event_ring;
/* Set ERST count with the number of entries in the segment table. */
val = readl(&pdev->ir_set->erst_size);
val &= ERST_SIZE_MASK;
val |= ERST_NUM_SEGS;
writel(val, &pdev->ir_set->erst_size);
/* Set the segment table base address. */
val_64 = cdnsp_read_64(&pdev->ir_set->erst_base);
val_64 &= ERST_PTR_MASK;
val_64 |= (pdev->erst.erst_dma_addr & (u64)~ERST_PTR_MASK);
cdnsp_write_64(val_64, &pdev->ir_set->erst_base);
/* Set the event ring dequeue address. */
cdnsp_set_event_deq(pdev);
ret = cdnsp_setup_port_arrays(pdev);
if (ret)
goto free_erst;
ret = cdnsp_alloc_priv_device(pdev);
if (ret) {
dev_err(pdev->dev,
"Could not allocate cdnsp_device data structures\n");
goto free_erst;
}
return 0;
free_erst:
cdnsp_free_erst(pdev, &pdev->erst);
free_event_ring:
cdnsp_ring_free(pdev, pdev->event_ring);
free_cmd_ring:
cdnsp_ring_free(pdev, pdev->cmd_ring);
destroy_device_pool:
dma_pool_destroy(pdev->device_pool);
destroy_segment_pool:
dma_pool_destroy(pdev->segment_pool);
release_dcbaa:
dma_free_coherent(dev, sizeof(*pdev->dcbaa), pdev->dcbaa,
pdev->dcbaa->dma);
cdnsp_reset(pdev);
return ret;
}