|  | /* | 
|  | * Copyright 2010 Tilera Corporation. All Rights Reserved. | 
|  | * | 
|  | *   This program is free software; you can redistribute it and/or | 
|  | *   modify it under the terms of the GNU General Public License | 
|  | *   as published by the Free Software Foundation, version 2. | 
|  | * | 
|  | *   This program is distributed in the hope that it will be useful, but | 
|  | *   WITHOUT ANY WARRANTY; without even the implied warranty of | 
|  | *   MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or | 
|  | *   NON INFRINGEMENT.  See the GNU General Public License for | 
|  | *   more details. | 
|  | */ | 
|  |  | 
|  | #include <linux/mm.h> | 
|  | #include <linux/dma-mapping.h> | 
|  | #include <linux/swiotlb.h> | 
|  | #include <linux/vmalloc.h> | 
|  | #include <linux/export.h> | 
|  | #include <asm/tlbflush.h> | 
|  | #include <asm/homecache.h> | 
|  |  | 
|  | /* Generic DMA mapping functions: */ | 
|  |  | 
|  | /* | 
|  | * Allocate what Linux calls "coherent" memory.  On TILEPro this is | 
|  | * uncached memory; on TILE-Gx it is hash-for-home memory. | 
|  | */ | 
|  | #ifdef __tilepro__ | 
|  | #define PAGE_HOME_DMA PAGE_HOME_UNCACHED | 
|  | #else | 
|  | #define PAGE_HOME_DMA PAGE_HOME_HASH | 
|  | #endif | 
|  |  | 
|  | static void *tile_dma_alloc_coherent(struct device *dev, size_t size, | 
|  | dma_addr_t *dma_handle, gfp_t gfp, | 
|  | struct dma_attrs *attrs) | 
|  | { | 
|  | u64 dma_mask = (dev && dev->coherent_dma_mask) ? | 
|  | dev->coherent_dma_mask : DMA_BIT_MASK(32); | 
|  | int node = dev ? dev_to_node(dev) : 0; | 
|  | int order = get_order(size); | 
|  | struct page *pg; | 
|  | dma_addr_t addr; | 
|  |  | 
|  | gfp |= __GFP_ZERO; | 
|  |  | 
|  | /* | 
|  | * If the mask specifies that the memory be in the first 4 GB, then | 
|  | * we force the allocation to come from the DMA zone.  We also | 
|  | * force the node to 0 since that's the only node where the DMA | 
|  | * zone isn't empty.  If the mask size is smaller than 32 bits, we | 
|  | * may still not be able to guarantee a suitable memory address, in | 
|  | * which case we will return NULL.  But such devices are uncommon. | 
|  | */ | 
|  | if (dma_mask <= DMA_BIT_MASK(32)) { | 
|  | gfp |= GFP_DMA; | 
|  | node = 0; | 
|  | } | 
|  |  | 
|  | pg = homecache_alloc_pages_node(node, gfp, order, PAGE_HOME_DMA); | 
|  | if (pg == NULL) | 
|  | return NULL; | 
|  |  | 
|  | addr = page_to_phys(pg); | 
|  | if (addr + size > dma_mask) { | 
|  | __homecache_free_pages(pg, order); | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | *dma_handle = addr; | 
|  |  | 
|  | return page_address(pg); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Free memory that was allocated with tile_dma_alloc_coherent. | 
|  | */ | 
|  | static void tile_dma_free_coherent(struct device *dev, size_t size, | 
|  | void *vaddr, dma_addr_t dma_handle, | 
|  | struct dma_attrs *attrs) | 
|  | { | 
|  | homecache_free_pages((unsigned long)vaddr, get_order(size)); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * The map routines "map" the specified address range for DMA | 
|  | * accesses.  The memory belongs to the device after this call is | 
|  | * issued, until it is unmapped with dma_unmap_single. | 
|  | * | 
|  | * We don't need to do any mapping, we just flush the address range | 
|  | * out of the cache and return a DMA address. | 
|  | * | 
|  | * The unmap routines do whatever is necessary before the processor | 
|  | * accesses the memory again, and must be called before the driver | 
|  | * touches the memory.  We can get away with a cache invalidate if we | 
|  | * can count on nothing having been touched. | 
|  | */ | 
|  |  | 
|  | /* Set up a single page for DMA access. */ | 
|  | static void __dma_prep_page(struct page *page, unsigned long offset, | 
|  | size_t size, enum dma_data_direction direction) | 
|  | { | 
|  | /* | 
|  | * Flush the page from cache if necessary. | 
|  | * On tilegx, data is delivered to hash-for-home L3; on tilepro, | 
|  | * data is delivered direct to memory. | 
|  | * | 
|  | * NOTE: If we were just doing DMA_TO_DEVICE we could optimize | 
|  | * this to be a "flush" not a "finv" and keep some of the | 
|  | * state in cache across the DMA operation, but it doesn't seem | 
|  | * worth creating the necessary flush_buffer_xxx() infrastructure. | 
|  | */ | 
|  | int home = page_home(page); | 
|  | switch (home) { | 
|  | case PAGE_HOME_HASH: | 
|  | #ifdef __tilegx__ | 
|  | return; | 
|  | #endif | 
|  | break; | 
|  | case PAGE_HOME_UNCACHED: | 
|  | #ifdef __tilepro__ | 
|  | return; | 
|  | #endif | 
|  | break; | 
|  | case PAGE_HOME_IMMUTABLE: | 
|  | /* Should be going to the device only. */ | 
|  | BUG_ON(direction == DMA_FROM_DEVICE || | 
|  | direction == DMA_BIDIRECTIONAL); | 
|  | return; | 
|  | case PAGE_HOME_INCOHERENT: | 
|  | /* Incoherent anyway, so no need to work hard here. */ | 
|  | return; | 
|  | default: | 
|  | BUG_ON(home < 0 || home >= NR_CPUS); | 
|  | break; | 
|  | } | 
|  | homecache_finv_page(page); | 
|  |  | 
|  | #ifdef DEBUG_ALIGNMENT | 
|  | /* Warn if the region isn't cacheline aligned. */ | 
|  | if (offset & (L2_CACHE_BYTES - 1) || (size & (L2_CACHE_BYTES - 1))) | 
|  | pr_warn("Unaligned DMA to non-hfh memory: PA %#llx/%#lx\n", | 
|  | PFN_PHYS(page_to_pfn(page)) + offset, size); | 
|  | #endif | 
|  | } | 
|  |  | 
|  | /* Make the page ready to be read by the core. */ | 
|  | static void __dma_complete_page(struct page *page, unsigned long offset, | 
|  | size_t size, enum dma_data_direction direction) | 
|  | { | 
|  | #ifdef __tilegx__ | 
|  | switch (page_home(page)) { | 
|  | case PAGE_HOME_HASH: | 
|  | /* I/O device delivered data the way the cpu wanted it. */ | 
|  | break; | 
|  | case PAGE_HOME_INCOHERENT: | 
|  | /* Incoherent anyway, so no need to work hard here. */ | 
|  | break; | 
|  | case PAGE_HOME_IMMUTABLE: | 
|  | /* Extra read-only copies are not a problem. */ | 
|  | break; | 
|  | default: | 
|  | /* Flush the bogus hash-for-home I/O entries to memory. */ | 
|  | homecache_finv_map_page(page, PAGE_HOME_HASH); | 
|  | break; | 
|  | } | 
|  | #endif | 
|  | } | 
|  |  | 
|  | static void __dma_prep_pa_range(dma_addr_t dma_addr, size_t size, | 
|  | enum dma_data_direction direction) | 
|  | { | 
|  | struct page *page = pfn_to_page(PFN_DOWN(dma_addr)); | 
|  | unsigned long offset = dma_addr & (PAGE_SIZE - 1); | 
|  | size_t bytes = min(size, (size_t)(PAGE_SIZE - offset)); | 
|  |  | 
|  | while (size != 0) { | 
|  | __dma_prep_page(page, offset, bytes, direction); | 
|  | size -= bytes; | 
|  | ++page; | 
|  | offset = 0; | 
|  | bytes = min((size_t)PAGE_SIZE, size); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void __dma_complete_pa_range(dma_addr_t dma_addr, size_t size, | 
|  | enum dma_data_direction direction) | 
|  | { | 
|  | struct page *page = pfn_to_page(PFN_DOWN(dma_addr)); | 
|  | unsigned long offset = dma_addr & (PAGE_SIZE - 1); | 
|  | size_t bytes = min(size, (size_t)(PAGE_SIZE - offset)); | 
|  |  | 
|  | while (size != 0) { | 
|  | __dma_complete_page(page, offset, bytes, direction); | 
|  | size -= bytes; | 
|  | ++page; | 
|  | offset = 0; | 
|  | bytes = min((size_t)PAGE_SIZE, size); | 
|  | } | 
|  | } | 
|  |  | 
|  | static int tile_dma_map_sg(struct device *dev, struct scatterlist *sglist, | 
|  | int nents, enum dma_data_direction direction, | 
|  | struct dma_attrs *attrs) | 
|  | { | 
|  | struct scatterlist *sg; | 
|  | int i; | 
|  |  | 
|  | BUG_ON(!valid_dma_direction(direction)); | 
|  |  | 
|  | WARN_ON(nents == 0 || sglist->length == 0); | 
|  |  | 
|  | for_each_sg(sglist, sg, nents, i) { | 
|  | sg->dma_address = sg_phys(sg); | 
|  | __dma_prep_pa_range(sg->dma_address, sg->length, direction); | 
|  | #ifdef CONFIG_NEED_SG_DMA_LENGTH | 
|  | sg->dma_length = sg->length; | 
|  | #endif | 
|  | } | 
|  |  | 
|  | return nents; | 
|  | } | 
|  |  | 
|  | static void tile_dma_unmap_sg(struct device *dev, struct scatterlist *sglist, | 
|  | int nents, enum dma_data_direction direction, | 
|  | struct dma_attrs *attrs) | 
|  | { | 
|  | struct scatterlist *sg; | 
|  | int i; | 
|  |  | 
|  | BUG_ON(!valid_dma_direction(direction)); | 
|  | for_each_sg(sglist, sg, nents, i) { | 
|  | sg->dma_address = sg_phys(sg); | 
|  | __dma_complete_pa_range(sg->dma_address, sg->length, | 
|  | direction); | 
|  | } | 
|  | } | 
|  |  | 
|  | static dma_addr_t tile_dma_map_page(struct device *dev, struct page *page, | 
|  | unsigned long offset, size_t size, | 
|  | enum dma_data_direction direction, | 
|  | struct dma_attrs *attrs) | 
|  | { | 
|  | BUG_ON(!valid_dma_direction(direction)); | 
|  |  | 
|  | BUG_ON(offset + size > PAGE_SIZE); | 
|  | __dma_prep_page(page, offset, size, direction); | 
|  |  | 
|  | return page_to_pa(page) + offset; | 
|  | } | 
|  |  | 
|  | static void tile_dma_unmap_page(struct device *dev, dma_addr_t dma_address, | 
|  | size_t size, enum dma_data_direction direction, | 
|  | struct dma_attrs *attrs) | 
|  | { | 
|  | BUG_ON(!valid_dma_direction(direction)); | 
|  |  | 
|  | __dma_complete_page(pfn_to_page(PFN_DOWN(dma_address)), | 
|  | dma_address & (PAGE_SIZE - 1), size, direction); | 
|  | } | 
|  |  | 
|  | static void tile_dma_sync_single_for_cpu(struct device *dev, | 
|  | dma_addr_t dma_handle, | 
|  | size_t size, | 
|  | enum dma_data_direction direction) | 
|  | { | 
|  | BUG_ON(!valid_dma_direction(direction)); | 
|  |  | 
|  | __dma_complete_pa_range(dma_handle, size, direction); | 
|  | } | 
|  |  | 
|  | static void tile_dma_sync_single_for_device(struct device *dev, | 
|  | dma_addr_t dma_handle, size_t size, | 
|  | enum dma_data_direction direction) | 
|  | { | 
|  | __dma_prep_pa_range(dma_handle, size, direction); | 
|  | } | 
|  |  | 
|  | static void tile_dma_sync_sg_for_cpu(struct device *dev, | 
|  | struct scatterlist *sglist, int nelems, | 
|  | enum dma_data_direction direction) | 
|  | { | 
|  | struct scatterlist *sg; | 
|  | int i; | 
|  |  | 
|  | BUG_ON(!valid_dma_direction(direction)); | 
|  | WARN_ON(nelems == 0 || sglist->length == 0); | 
|  |  | 
|  | for_each_sg(sglist, sg, nelems, i) { | 
|  | dma_sync_single_for_cpu(dev, sg->dma_address, | 
|  | sg_dma_len(sg), direction); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void tile_dma_sync_sg_for_device(struct device *dev, | 
|  | struct scatterlist *sglist, int nelems, | 
|  | enum dma_data_direction direction) | 
|  | { | 
|  | struct scatterlist *sg; | 
|  | int i; | 
|  |  | 
|  | BUG_ON(!valid_dma_direction(direction)); | 
|  | WARN_ON(nelems == 0 || sglist->length == 0); | 
|  |  | 
|  | for_each_sg(sglist, sg, nelems, i) { | 
|  | dma_sync_single_for_device(dev, sg->dma_address, | 
|  | sg_dma_len(sg), direction); | 
|  | } | 
|  | } | 
|  |  | 
|  | static inline int | 
|  | tile_dma_mapping_error(struct device *dev, dma_addr_t dma_addr) | 
|  | { | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static inline int | 
|  | tile_dma_supported(struct device *dev, u64 mask) | 
|  | { | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | static struct dma_map_ops tile_default_dma_map_ops = { | 
|  | .alloc = tile_dma_alloc_coherent, | 
|  | .free = tile_dma_free_coherent, | 
|  | .map_page = tile_dma_map_page, | 
|  | .unmap_page = tile_dma_unmap_page, | 
|  | .map_sg = tile_dma_map_sg, | 
|  | .unmap_sg = tile_dma_unmap_sg, | 
|  | .sync_single_for_cpu = tile_dma_sync_single_for_cpu, | 
|  | .sync_single_for_device = tile_dma_sync_single_for_device, | 
|  | .sync_sg_for_cpu = tile_dma_sync_sg_for_cpu, | 
|  | .sync_sg_for_device = tile_dma_sync_sg_for_device, | 
|  | .mapping_error = tile_dma_mapping_error, | 
|  | .dma_supported = tile_dma_supported | 
|  | }; | 
|  |  | 
|  | struct dma_map_ops *tile_dma_map_ops = &tile_default_dma_map_ops; | 
|  | EXPORT_SYMBOL(tile_dma_map_ops); | 
|  |  | 
|  | /* Generic PCI DMA mapping functions */ | 
|  |  | 
|  | static void *tile_pci_dma_alloc_coherent(struct device *dev, size_t size, | 
|  | dma_addr_t *dma_handle, gfp_t gfp, | 
|  | struct dma_attrs *attrs) | 
|  | { | 
|  | int node = dev_to_node(dev); | 
|  | int order = get_order(size); | 
|  | struct page *pg; | 
|  | dma_addr_t addr; | 
|  |  | 
|  | gfp |= __GFP_ZERO; | 
|  |  | 
|  | pg = homecache_alloc_pages_node(node, gfp, order, PAGE_HOME_DMA); | 
|  | if (pg == NULL) | 
|  | return NULL; | 
|  |  | 
|  | addr = page_to_phys(pg); | 
|  |  | 
|  | *dma_handle = addr + get_dma_offset(dev); | 
|  |  | 
|  | return page_address(pg); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Free memory that was allocated with tile_pci_dma_alloc_coherent. | 
|  | */ | 
|  | static void tile_pci_dma_free_coherent(struct device *dev, size_t size, | 
|  | void *vaddr, dma_addr_t dma_handle, | 
|  | struct dma_attrs *attrs) | 
|  | { | 
|  | homecache_free_pages((unsigned long)vaddr, get_order(size)); | 
|  | } | 
|  |  | 
|  | static int tile_pci_dma_map_sg(struct device *dev, struct scatterlist *sglist, | 
|  | int nents, enum dma_data_direction direction, | 
|  | struct dma_attrs *attrs) | 
|  | { | 
|  | struct scatterlist *sg; | 
|  | int i; | 
|  |  | 
|  | BUG_ON(!valid_dma_direction(direction)); | 
|  |  | 
|  | WARN_ON(nents == 0 || sglist->length == 0); | 
|  |  | 
|  | for_each_sg(sglist, sg, nents, i) { | 
|  | sg->dma_address = sg_phys(sg); | 
|  | __dma_prep_pa_range(sg->dma_address, sg->length, direction); | 
|  |  | 
|  | sg->dma_address = sg->dma_address + get_dma_offset(dev); | 
|  | #ifdef CONFIG_NEED_SG_DMA_LENGTH | 
|  | sg->dma_length = sg->length; | 
|  | #endif | 
|  | } | 
|  |  | 
|  | return nents; | 
|  | } | 
|  |  | 
|  | static void tile_pci_dma_unmap_sg(struct device *dev, | 
|  | struct scatterlist *sglist, int nents, | 
|  | enum dma_data_direction direction, | 
|  | struct dma_attrs *attrs) | 
|  | { | 
|  | struct scatterlist *sg; | 
|  | int i; | 
|  |  | 
|  | BUG_ON(!valid_dma_direction(direction)); | 
|  | for_each_sg(sglist, sg, nents, i) { | 
|  | sg->dma_address = sg_phys(sg); | 
|  | __dma_complete_pa_range(sg->dma_address, sg->length, | 
|  | direction); | 
|  | } | 
|  | } | 
|  |  | 
|  | static dma_addr_t tile_pci_dma_map_page(struct device *dev, struct page *page, | 
|  | unsigned long offset, size_t size, | 
|  | enum dma_data_direction direction, | 
|  | struct dma_attrs *attrs) | 
|  | { | 
|  | BUG_ON(!valid_dma_direction(direction)); | 
|  |  | 
|  | BUG_ON(offset + size > PAGE_SIZE); | 
|  | __dma_prep_page(page, offset, size, direction); | 
|  |  | 
|  | return page_to_pa(page) + offset + get_dma_offset(dev); | 
|  | } | 
|  |  | 
|  | static void tile_pci_dma_unmap_page(struct device *dev, dma_addr_t dma_address, | 
|  | size_t size, | 
|  | enum dma_data_direction direction, | 
|  | struct dma_attrs *attrs) | 
|  | { | 
|  | BUG_ON(!valid_dma_direction(direction)); | 
|  |  | 
|  | dma_address -= get_dma_offset(dev); | 
|  |  | 
|  | __dma_complete_page(pfn_to_page(PFN_DOWN(dma_address)), | 
|  | dma_address & (PAGE_SIZE - 1), size, direction); | 
|  | } | 
|  |  | 
|  | static void tile_pci_dma_sync_single_for_cpu(struct device *dev, | 
|  | dma_addr_t dma_handle, | 
|  | size_t size, | 
|  | enum dma_data_direction direction) | 
|  | { | 
|  | BUG_ON(!valid_dma_direction(direction)); | 
|  |  | 
|  | dma_handle -= get_dma_offset(dev); | 
|  |  | 
|  | __dma_complete_pa_range(dma_handle, size, direction); | 
|  | } | 
|  |  | 
|  | static void tile_pci_dma_sync_single_for_device(struct device *dev, | 
|  | dma_addr_t dma_handle, | 
|  | size_t size, | 
|  | enum dma_data_direction | 
|  | direction) | 
|  | { | 
|  | dma_handle -= get_dma_offset(dev); | 
|  |  | 
|  | __dma_prep_pa_range(dma_handle, size, direction); | 
|  | } | 
|  |  | 
|  | static void tile_pci_dma_sync_sg_for_cpu(struct device *dev, | 
|  | struct scatterlist *sglist, | 
|  | int nelems, | 
|  | enum dma_data_direction direction) | 
|  | { | 
|  | struct scatterlist *sg; | 
|  | int i; | 
|  |  | 
|  | BUG_ON(!valid_dma_direction(direction)); | 
|  | WARN_ON(nelems == 0 || sglist->length == 0); | 
|  |  | 
|  | for_each_sg(sglist, sg, nelems, i) { | 
|  | dma_sync_single_for_cpu(dev, sg->dma_address, | 
|  | sg_dma_len(sg), direction); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void tile_pci_dma_sync_sg_for_device(struct device *dev, | 
|  | struct scatterlist *sglist, | 
|  | int nelems, | 
|  | enum dma_data_direction direction) | 
|  | { | 
|  | struct scatterlist *sg; | 
|  | int i; | 
|  |  | 
|  | BUG_ON(!valid_dma_direction(direction)); | 
|  | WARN_ON(nelems == 0 || sglist->length == 0); | 
|  |  | 
|  | for_each_sg(sglist, sg, nelems, i) { | 
|  | dma_sync_single_for_device(dev, sg->dma_address, | 
|  | sg_dma_len(sg), direction); | 
|  | } | 
|  | } | 
|  |  | 
|  | static inline int | 
|  | tile_pci_dma_mapping_error(struct device *dev, dma_addr_t dma_addr) | 
|  | { | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static inline int | 
|  | tile_pci_dma_supported(struct device *dev, u64 mask) | 
|  | { | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | static struct dma_map_ops tile_pci_default_dma_map_ops = { | 
|  | .alloc = tile_pci_dma_alloc_coherent, | 
|  | .free = tile_pci_dma_free_coherent, | 
|  | .map_page = tile_pci_dma_map_page, | 
|  | .unmap_page = tile_pci_dma_unmap_page, | 
|  | .map_sg = tile_pci_dma_map_sg, | 
|  | .unmap_sg = tile_pci_dma_unmap_sg, | 
|  | .sync_single_for_cpu = tile_pci_dma_sync_single_for_cpu, | 
|  | .sync_single_for_device = tile_pci_dma_sync_single_for_device, | 
|  | .sync_sg_for_cpu = tile_pci_dma_sync_sg_for_cpu, | 
|  | .sync_sg_for_device = tile_pci_dma_sync_sg_for_device, | 
|  | .mapping_error = tile_pci_dma_mapping_error, | 
|  | .dma_supported = tile_pci_dma_supported | 
|  | }; | 
|  |  | 
|  | struct dma_map_ops *gx_pci_dma_map_ops = &tile_pci_default_dma_map_ops; | 
|  | EXPORT_SYMBOL(gx_pci_dma_map_ops); | 
|  |  | 
|  | /* PCI DMA mapping functions for legacy PCI devices */ | 
|  |  | 
|  | #ifdef CONFIG_SWIOTLB | 
|  | static void *tile_swiotlb_alloc_coherent(struct device *dev, size_t size, | 
|  | dma_addr_t *dma_handle, gfp_t gfp, | 
|  | struct dma_attrs *attrs) | 
|  | { | 
|  | gfp |= GFP_DMA; | 
|  | return swiotlb_alloc_coherent(dev, size, dma_handle, gfp); | 
|  | } | 
|  |  | 
|  | static void tile_swiotlb_free_coherent(struct device *dev, size_t size, | 
|  | void *vaddr, dma_addr_t dma_addr, | 
|  | struct dma_attrs *attrs) | 
|  | { | 
|  | swiotlb_free_coherent(dev, size, vaddr, dma_addr); | 
|  | } | 
|  |  | 
|  | static struct dma_map_ops pci_swiotlb_dma_ops = { | 
|  | .alloc = tile_swiotlb_alloc_coherent, | 
|  | .free = tile_swiotlb_free_coherent, | 
|  | .map_page = swiotlb_map_page, | 
|  | .unmap_page = swiotlb_unmap_page, | 
|  | .map_sg = swiotlb_map_sg_attrs, | 
|  | .unmap_sg = swiotlb_unmap_sg_attrs, | 
|  | .sync_single_for_cpu = swiotlb_sync_single_for_cpu, | 
|  | .sync_single_for_device = swiotlb_sync_single_for_device, | 
|  | .sync_sg_for_cpu = swiotlb_sync_sg_for_cpu, | 
|  | .sync_sg_for_device = swiotlb_sync_sg_for_device, | 
|  | .dma_supported = swiotlb_dma_supported, | 
|  | .mapping_error = swiotlb_dma_mapping_error, | 
|  | }; | 
|  |  | 
|  | static struct dma_map_ops pci_hybrid_dma_ops = { | 
|  | .alloc = tile_swiotlb_alloc_coherent, | 
|  | .free = tile_swiotlb_free_coherent, | 
|  | .map_page = tile_pci_dma_map_page, | 
|  | .unmap_page = tile_pci_dma_unmap_page, | 
|  | .map_sg = tile_pci_dma_map_sg, | 
|  | .unmap_sg = tile_pci_dma_unmap_sg, | 
|  | .sync_single_for_cpu = tile_pci_dma_sync_single_for_cpu, | 
|  | .sync_single_for_device = tile_pci_dma_sync_single_for_device, | 
|  | .sync_sg_for_cpu = tile_pci_dma_sync_sg_for_cpu, | 
|  | .sync_sg_for_device = tile_pci_dma_sync_sg_for_device, | 
|  | .mapping_error = tile_pci_dma_mapping_error, | 
|  | .dma_supported = tile_pci_dma_supported | 
|  | }; | 
|  |  | 
|  | struct dma_map_ops *gx_legacy_pci_dma_map_ops = &pci_swiotlb_dma_ops; | 
|  | struct dma_map_ops *gx_hybrid_pci_dma_map_ops = &pci_hybrid_dma_ops; | 
|  | #else | 
|  | struct dma_map_ops *gx_legacy_pci_dma_map_ops; | 
|  | struct dma_map_ops *gx_hybrid_pci_dma_map_ops; | 
|  | #endif | 
|  | EXPORT_SYMBOL(gx_legacy_pci_dma_map_ops); | 
|  | EXPORT_SYMBOL(gx_hybrid_pci_dma_map_ops); | 
|  |  | 
|  | #ifdef CONFIG_ARCH_HAS_DMA_SET_COHERENT_MASK | 
|  | int dma_set_coherent_mask(struct device *dev, u64 mask) | 
|  | { | 
|  | struct dma_map_ops *dma_ops = get_dma_ops(dev); | 
|  |  | 
|  | /* | 
|  | * For PCI devices with 64-bit DMA addressing capability, promote | 
|  | * the dma_ops to full capability for both streams and consistent | 
|  | * memory access. For 32-bit capable devices, limit the consistent | 
|  | * memory DMA range to max_direct_dma_addr. | 
|  | */ | 
|  | if (dma_ops == gx_pci_dma_map_ops || | 
|  | dma_ops == gx_hybrid_pci_dma_map_ops || | 
|  | dma_ops == gx_legacy_pci_dma_map_ops) { | 
|  | if (mask == DMA_BIT_MASK(64)) | 
|  | set_dma_ops(dev, gx_pci_dma_map_ops); | 
|  | else if (mask > dev->archdata.max_direct_dma_addr) | 
|  | mask = dev->archdata.max_direct_dma_addr; | 
|  | } | 
|  |  | 
|  | if (!dma_supported(dev, mask)) | 
|  | return -EIO; | 
|  | dev->coherent_dma_mask = mask; | 
|  | return 0; | 
|  | } | 
|  | EXPORT_SYMBOL(dma_set_coherent_mask); | 
|  | #endif | 
|  |  | 
|  | #ifdef ARCH_HAS_DMA_GET_REQUIRED_MASK | 
|  | /* | 
|  | * The generic dma_get_required_mask() uses the highest physical address | 
|  | * (max_pfn) to provide the hint to the PCI drivers regarding 32-bit or | 
|  | * 64-bit DMA configuration. Since TILEGx has I/O TLB/MMU, allowing the | 
|  | * DMAs to use the full 64-bit PCI address space and not limited by | 
|  | * the physical memory space, we always let the PCI devices use | 
|  | * 64-bit DMA if they have that capability, by returning the 64-bit | 
|  | * DMA mask here. The device driver has the option to use 32-bit DMA if | 
|  | * the device is not capable of 64-bit DMA. | 
|  | */ | 
|  | u64 dma_get_required_mask(struct device *dev) | 
|  | { | 
|  | return DMA_BIT_MASK(64); | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(dma_get_required_mask); | 
|  | #endif |