| // SPDX-License-Identifier: GPL-2.0 |
| /* |
| * Copyright (c) 2000-2005 Silicon Graphics, Inc. |
| * All Rights Reserved. |
| */ |
| #include "xfs.h" |
| #include "xfs_fs.h" |
| #include "xfs_shared.h" |
| #include "xfs_format.h" |
| #include "xfs_log_format.h" |
| #include "xfs_trans_resv.h" |
| #include "xfs_sb.h" |
| #include "xfs_mount.h" |
| #include "xfs_inode.h" |
| #include "xfs_trans.h" |
| #include "xfs_trans_priv.h" |
| #include "xfs_inode_item.h" |
| #include "xfs_quota.h" |
| #include "xfs_trace.h" |
| #include "xfs_icache.h" |
| #include "xfs_bmap_util.h" |
| #include "xfs_dquot_item.h" |
| #include "xfs_dquot.h" |
| #include "xfs_reflink.h" |
| #include "xfs_ialloc.h" |
| |
| #include <linux/iversion.h> |
| |
| /* |
| * Allocate and initialise an xfs_inode. |
| */ |
| struct xfs_inode * |
| xfs_inode_alloc( |
| struct xfs_mount *mp, |
| xfs_ino_t ino) |
| { |
| struct xfs_inode *ip; |
| |
| /* |
| * if this didn't occur in transactions, we could use |
| * KM_MAYFAIL and return NULL here on ENOMEM. Set the |
| * code up to do this anyway. |
| */ |
| ip = kmem_zone_alloc(xfs_inode_zone, 0); |
| if (!ip) |
| return NULL; |
| if (inode_init_always(mp->m_super, VFS_I(ip))) { |
| kmem_cache_free(xfs_inode_zone, ip); |
| return NULL; |
| } |
| |
| /* VFS doesn't initialise i_mode! */ |
| VFS_I(ip)->i_mode = 0; |
| |
| XFS_STATS_INC(mp, vn_active); |
| ASSERT(atomic_read(&ip->i_pincount) == 0); |
| ASSERT(!xfs_isiflocked(ip)); |
| ASSERT(ip->i_ino == 0); |
| |
| /* initialise the xfs inode */ |
| ip->i_ino = ino; |
| ip->i_mount = mp; |
| memset(&ip->i_imap, 0, sizeof(struct xfs_imap)); |
| ip->i_afp = NULL; |
| ip->i_cowfp = NULL; |
| memset(&ip->i_df, 0, sizeof(ip->i_df)); |
| ip->i_flags = 0; |
| ip->i_delayed_blks = 0; |
| memset(&ip->i_d, 0, sizeof(ip->i_d)); |
| ip->i_sick = 0; |
| ip->i_checked = 0; |
| INIT_WORK(&ip->i_ioend_work, xfs_end_io); |
| INIT_LIST_HEAD(&ip->i_ioend_list); |
| spin_lock_init(&ip->i_ioend_lock); |
| |
| return ip; |
| } |
| |
| STATIC void |
| xfs_inode_free_callback( |
| struct rcu_head *head) |
| { |
| struct inode *inode = container_of(head, struct inode, i_rcu); |
| struct xfs_inode *ip = XFS_I(inode); |
| |
| switch (VFS_I(ip)->i_mode & S_IFMT) { |
| case S_IFREG: |
| case S_IFDIR: |
| case S_IFLNK: |
| xfs_idestroy_fork(&ip->i_df); |
| break; |
| } |
| |
| if (ip->i_afp) { |
| xfs_idestroy_fork(ip->i_afp); |
| kmem_cache_free(xfs_ifork_zone, ip->i_afp); |
| } |
| if (ip->i_cowfp) { |
| xfs_idestroy_fork(ip->i_cowfp); |
| kmem_cache_free(xfs_ifork_zone, ip->i_cowfp); |
| } |
| if (ip->i_itemp) { |
| ASSERT(!test_bit(XFS_LI_IN_AIL, |
| &ip->i_itemp->ili_item.li_flags)); |
| xfs_inode_item_destroy(ip); |
| ip->i_itemp = NULL; |
| } |
| |
| kmem_cache_free(xfs_inode_zone, ip); |
| } |
| |
| static void |
| __xfs_inode_free( |
| struct xfs_inode *ip) |
| { |
| /* asserts to verify all state is correct here */ |
| ASSERT(atomic_read(&ip->i_pincount) == 0); |
| XFS_STATS_DEC(ip->i_mount, vn_active); |
| |
| call_rcu(&VFS_I(ip)->i_rcu, xfs_inode_free_callback); |
| } |
| |
| void |
| xfs_inode_free( |
| struct xfs_inode *ip) |
| { |
| ASSERT(!xfs_isiflocked(ip)); |
| |
| /* |
| * Because we use RCU freeing we need to ensure the inode always |
| * appears to be reclaimed with an invalid inode number when in the |
| * free state. The ip->i_flags_lock provides the barrier against lookup |
| * races. |
| */ |
| spin_lock(&ip->i_flags_lock); |
| ip->i_flags = XFS_IRECLAIM; |
| ip->i_ino = 0; |
| spin_unlock(&ip->i_flags_lock); |
| |
| __xfs_inode_free(ip); |
| } |
| |
| /* |
| * Queue a new inode reclaim pass if there are reclaimable inodes and there |
| * isn't a reclaim pass already in progress. By default it runs every 5s based |
| * on the xfs periodic sync default of 30s. Perhaps this should have it's own |
| * tunable, but that can be done if this method proves to be ineffective or too |
| * aggressive. |
| */ |
| static void |
| xfs_reclaim_work_queue( |
| struct xfs_mount *mp) |
| { |
| |
| rcu_read_lock(); |
| if (radix_tree_tagged(&mp->m_perag_tree, XFS_ICI_RECLAIM_TAG)) { |
| queue_delayed_work(mp->m_reclaim_workqueue, &mp->m_reclaim_work, |
| msecs_to_jiffies(xfs_syncd_centisecs / 6 * 10)); |
| } |
| rcu_read_unlock(); |
| } |
| |
| /* |
| * This is a fast pass over the inode cache to try to get reclaim moving on as |
| * many inodes as possible in a short period of time. It kicks itself every few |
| * seconds, as well as being kicked by the inode cache shrinker when memory |
| * goes low. It scans as quickly as possible avoiding locked inodes or those |
| * already being flushed, and once done schedules a future pass. |
| */ |
| void |
| xfs_reclaim_worker( |
| struct work_struct *work) |
| { |
| struct xfs_mount *mp = container_of(to_delayed_work(work), |
| struct xfs_mount, m_reclaim_work); |
| |
| xfs_reclaim_inodes(mp, SYNC_TRYLOCK); |
| xfs_reclaim_work_queue(mp); |
| } |
| |
| static void |
| xfs_perag_set_reclaim_tag( |
| struct xfs_perag *pag) |
| { |
| struct xfs_mount *mp = pag->pag_mount; |
| |
| lockdep_assert_held(&pag->pag_ici_lock); |
| if (pag->pag_ici_reclaimable++) |
| return; |
| |
| /* propagate the reclaim tag up into the perag radix tree */ |
| spin_lock(&mp->m_perag_lock); |
| radix_tree_tag_set(&mp->m_perag_tree, pag->pag_agno, |
| XFS_ICI_RECLAIM_TAG); |
| spin_unlock(&mp->m_perag_lock); |
| |
| /* schedule periodic background inode reclaim */ |
| xfs_reclaim_work_queue(mp); |
| |
| trace_xfs_perag_set_reclaim(mp, pag->pag_agno, -1, _RET_IP_); |
| } |
| |
| static void |
| xfs_perag_clear_reclaim_tag( |
| struct xfs_perag *pag) |
| { |
| struct xfs_mount *mp = pag->pag_mount; |
| |
| lockdep_assert_held(&pag->pag_ici_lock); |
| if (--pag->pag_ici_reclaimable) |
| return; |
| |
| /* clear the reclaim tag from the perag radix tree */ |
| spin_lock(&mp->m_perag_lock); |
| radix_tree_tag_clear(&mp->m_perag_tree, pag->pag_agno, |
| XFS_ICI_RECLAIM_TAG); |
| spin_unlock(&mp->m_perag_lock); |
| trace_xfs_perag_clear_reclaim(mp, pag->pag_agno, -1, _RET_IP_); |
| } |
| |
| |
| /* |
| * We set the inode flag atomically with the radix tree tag. |
| * Once we get tag lookups on the radix tree, this inode flag |
| * can go away. |
| */ |
| void |
| xfs_inode_set_reclaim_tag( |
| struct xfs_inode *ip) |
| { |
| struct xfs_mount *mp = ip->i_mount; |
| struct xfs_perag *pag; |
| |
| pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino)); |
| spin_lock(&pag->pag_ici_lock); |
| spin_lock(&ip->i_flags_lock); |
| |
| radix_tree_tag_set(&pag->pag_ici_root, XFS_INO_TO_AGINO(mp, ip->i_ino), |
| XFS_ICI_RECLAIM_TAG); |
| xfs_perag_set_reclaim_tag(pag); |
| __xfs_iflags_set(ip, XFS_IRECLAIMABLE); |
| |
| spin_unlock(&ip->i_flags_lock); |
| spin_unlock(&pag->pag_ici_lock); |
| xfs_perag_put(pag); |
| } |
| |
| STATIC void |
| xfs_inode_clear_reclaim_tag( |
| struct xfs_perag *pag, |
| xfs_ino_t ino) |
| { |
| radix_tree_tag_clear(&pag->pag_ici_root, |
| XFS_INO_TO_AGINO(pag->pag_mount, ino), |
| XFS_ICI_RECLAIM_TAG); |
| xfs_perag_clear_reclaim_tag(pag); |
| } |
| |
| static void |
| xfs_inew_wait( |
| struct xfs_inode *ip) |
| { |
| wait_queue_head_t *wq = bit_waitqueue(&ip->i_flags, __XFS_INEW_BIT); |
| DEFINE_WAIT_BIT(wait, &ip->i_flags, __XFS_INEW_BIT); |
| |
| do { |
| prepare_to_wait(wq, &wait.wq_entry, TASK_UNINTERRUPTIBLE); |
| if (!xfs_iflags_test(ip, XFS_INEW)) |
| break; |
| schedule(); |
| } while (true); |
| finish_wait(wq, &wait.wq_entry); |
| } |
| |
| /* |
| * When we recycle a reclaimable inode, we need to re-initialise the VFS inode |
| * part of the structure. This is made more complex by the fact we store |
| * information about the on-disk values in the VFS inode and so we can't just |
| * overwrite the values unconditionally. Hence we save the parameters we |
| * need to retain across reinitialisation, and rewrite them into the VFS inode |
| * after reinitialisation even if it fails. |
| */ |
| static int |
| xfs_reinit_inode( |
| struct xfs_mount *mp, |
| struct inode *inode) |
| { |
| int error; |
| uint32_t nlink = inode->i_nlink; |
| uint32_t generation = inode->i_generation; |
| uint64_t version = inode_peek_iversion(inode); |
| umode_t mode = inode->i_mode; |
| dev_t dev = inode->i_rdev; |
| kuid_t uid = inode->i_uid; |
| kgid_t gid = inode->i_gid; |
| |
| error = inode_init_always(mp->m_super, inode); |
| |
| set_nlink(inode, nlink); |
| inode->i_generation = generation; |
| inode_set_iversion_queried(inode, version); |
| inode->i_mode = mode; |
| inode->i_rdev = dev; |
| inode->i_uid = uid; |
| inode->i_gid = gid; |
| return error; |
| } |
| |
| /* |
| * If we are allocating a new inode, then check what was returned is |
| * actually a free, empty inode. If we are not allocating an inode, |
| * then check we didn't find a free inode. |
| * |
| * Returns: |
| * 0 if the inode free state matches the lookup context |
| * -ENOENT if the inode is free and we are not allocating |
| * -EFSCORRUPTED if there is any state mismatch at all |
| */ |
| static int |
| xfs_iget_check_free_state( |
| struct xfs_inode *ip, |
| int flags) |
| { |
| if (flags & XFS_IGET_CREATE) { |
| /* should be a free inode */ |
| if (VFS_I(ip)->i_mode != 0) { |
| xfs_warn(ip->i_mount, |
| "Corruption detected! Free inode 0x%llx not marked free! (mode 0x%x)", |
| ip->i_ino, VFS_I(ip)->i_mode); |
| return -EFSCORRUPTED; |
| } |
| |
| if (ip->i_d.di_nblocks != 0) { |
| xfs_warn(ip->i_mount, |
| "Corruption detected! Free inode 0x%llx has blocks allocated!", |
| ip->i_ino); |
| return -EFSCORRUPTED; |
| } |
| return 0; |
| } |
| |
| /* should be an allocated inode */ |
| if (VFS_I(ip)->i_mode == 0) |
| return -ENOENT; |
| |
| return 0; |
| } |
| |
| /* |
| * Check the validity of the inode we just found it the cache |
| */ |
| static int |
| xfs_iget_cache_hit( |
| struct xfs_perag *pag, |
| struct xfs_inode *ip, |
| xfs_ino_t ino, |
| int flags, |
| int lock_flags) __releases(RCU) |
| { |
| struct inode *inode = VFS_I(ip); |
| struct xfs_mount *mp = ip->i_mount; |
| int error; |
| |
| /* |
| * check for re-use of an inode within an RCU grace period due to the |
| * radix tree nodes not being updated yet. We monitor for this by |
| * setting the inode number to zero before freeing the inode structure. |
| * If the inode has been reallocated and set up, then the inode number |
| * will not match, so check for that, too. |
| */ |
| spin_lock(&ip->i_flags_lock); |
| if (ip->i_ino != ino) { |
| trace_xfs_iget_skip(ip); |
| XFS_STATS_INC(mp, xs_ig_frecycle); |
| error = -EAGAIN; |
| goto out_error; |
| } |
| |
| |
| /* |
| * If we are racing with another cache hit that is currently |
| * instantiating this inode or currently recycling it out of |
| * reclaimabe state, wait for the initialisation to complete |
| * before continuing. |
| * |
| * XXX(hch): eventually we should do something equivalent to |
| * wait_on_inode to wait for these flags to be cleared |
| * instead of polling for it. |
| */ |
| if (ip->i_flags & (XFS_INEW|XFS_IRECLAIM)) { |
| trace_xfs_iget_skip(ip); |
| XFS_STATS_INC(mp, xs_ig_frecycle); |
| error = -EAGAIN; |
| goto out_error; |
| } |
| |
| /* |
| * Check the inode free state is valid. This also detects lookup |
| * racing with unlinks. |
| */ |
| error = xfs_iget_check_free_state(ip, flags); |
| if (error) |
| goto out_error; |
| |
| /* |
| * If IRECLAIMABLE is set, we've torn down the VFS inode already. |
| * Need to carefully get it back into useable state. |
| */ |
| if (ip->i_flags & XFS_IRECLAIMABLE) { |
| trace_xfs_iget_reclaim(ip); |
| |
| if (flags & XFS_IGET_INCORE) { |
| error = -EAGAIN; |
| goto out_error; |
| } |
| |
| /* |
| * We need to set XFS_IRECLAIM to prevent xfs_reclaim_inode |
| * from stomping over us while we recycle the inode. We can't |
| * clear the radix tree reclaimable tag yet as it requires |
| * pag_ici_lock to be held exclusive. |
| */ |
| ip->i_flags |= XFS_IRECLAIM; |
| |
| spin_unlock(&ip->i_flags_lock); |
| rcu_read_unlock(); |
| |
| ASSERT(!rwsem_is_locked(&inode->i_rwsem)); |
| error = xfs_reinit_inode(mp, inode); |
| if (error) { |
| bool wake; |
| /* |
| * Re-initializing the inode failed, and we are in deep |
| * trouble. Try to re-add it to the reclaim list. |
| */ |
| rcu_read_lock(); |
| spin_lock(&ip->i_flags_lock); |
| wake = !!__xfs_iflags_test(ip, XFS_INEW); |
| ip->i_flags &= ~(XFS_INEW | XFS_IRECLAIM); |
| if (wake) |
| wake_up_bit(&ip->i_flags, __XFS_INEW_BIT); |
| ASSERT(ip->i_flags & XFS_IRECLAIMABLE); |
| trace_xfs_iget_reclaim_fail(ip); |
| goto out_error; |
| } |
| |
| spin_lock(&pag->pag_ici_lock); |
| spin_lock(&ip->i_flags_lock); |
| |
| /* |
| * Clear the per-lifetime state in the inode as we are now |
| * effectively a new inode and need to return to the initial |
| * state before reuse occurs. |
| */ |
| ip->i_flags &= ~XFS_IRECLAIM_RESET_FLAGS; |
| ip->i_flags |= XFS_INEW; |
| xfs_inode_clear_reclaim_tag(pag, ip->i_ino); |
| inode->i_state = I_NEW; |
| ip->i_sick = 0; |
| ip->i_checked = 0; |
| |
| spin_unlock(&ip->i_flags_lock); |
| spin_unlock(&pag->pag_ici_lock); |
| } else { |
| /* If the VFS inode is being torn down, pause and try again. */ |
| if (!igrab(inode)) { |
| trace_xfs_iget_skip(ip); |
| error = -EAGAIN; |
| goto out_error; |
| } |
| |
| /* We've got a live one. */ |
| spin_unlock(&ip->i_flags_lock); |
| rcu_read_unlock(); |
| trace_xfs_iget_hit(ip); |
| } |
| |
| if (lock_flags != 0) |
| xfs_ilock(ip, lock_flags); |
| |
| if (!(flags & XFS_IGET_INCORE)) |
| xfs_iflags_clear(ip, XFS_ISTALE | XFS_IDONTCACHE); |
| XFS_STATS_INC(mp, xs_ig_found); |
| |
| return 0; |
| |
| out_error: |
| spin_unlock(&ip->i_flags_lock); |
| rcu_read_unlock(); |
| return error; |
| } |
| |
| |
| static int |
| xfs_iget_cache_miss( |
| struct xfs_mount *mp, |
| struct xfs_perag *pag, |
| xfs_trans_t *tp, |
| xfs_ino_t ino, |
| struct xfs_inode **ipp, |
| int flags, |
| int lock_flags) |
| { |
| struct xfs_inode *ip; |
| int error; |
| xfs_agino_t agino = XFS_INO_TO_AGINO(mp, ino); |
| int iflags; |
| |
| ip = xfs_inode_alloc(mp, ino); |
| if (!ip) |
| return -ENOMEM; |
| |
| error = xfs_imap(mp, tp, ip->i_ino, &ip->i_imap, flags); |
| if (error) |
| goto out_destroy; |
| |
| /* |
| * For version 5 superblocks, if we are initialising a new inode and we |
| * are not utilising the XFS_MOUNT_IKEEP inode cluster mode, we can |
| * simply build the new inode core with a random generation number. |
| * |
| * For version 4 (and older) superblocks, log recovery is dependent on |
| * the di_flushiter field being initialised from the current on-disk |
| * value and hence we must also read the inode off disk even when |
| * initializing new inodes. |
| */ |
| if (xfs_sb_version_has_v3inode(&mp->m_sb) && |
| (flags & XFS_IGET_CREATE) && !(mp->m_flags & XFS_MOUNT_IKEEP)) { |
| VFS_I(ip)->i_generation = prandom_u32(); |
| } else { |
| struct xfs_dinode *dip; |
| struct xfs_buf *bp; |
| |
| error = xfs_imap_to_bp(mp, tp, &ip->i_imap, &dip, &bp, 0); |
| if (error) |
| goto out_destroy; |
| |
| error = xfs_inode_from_disk(ip, dip); |
| if (!error) |
| xfs_buf_set_ref(bp, XFS_INO_REF); |
| xfs_trans_brelse(tp, bp); |
| |
| if (error) |
| goto out_destroy; |
| } |
| |
| trace_xfs_iget_miss(ip); |
| |
| /* |
| * Check the inode free state is valid. This also detects lookup |
| * racing with unlinks. |
| */ |
| error = xfs_iget_check_free_state(ip, flags); |
| if (error) |
| goto out_destroy; |
| |
| /* |
| * Preload the radix tree so we can insert safely under the |
| * write spinlock. Note that we cannot sleep inside the preload |
| * region. Since we can be called from transaction context, don't |
| * recurse into the file system. |
| */ |
| if (radix_tree_preload(GFP_NOFS)) { |
| error = -EAGAIN; |
| goto out_destroy; |
| } |
| |
| /* |
| * Because the inode hasn't been added to the radix-tree yet it can't |
| * be found by another thread, so we can do the non-sleeping lock here. |
| */ |
| if (lock_flags) { |
| if (!xfs_ilock_nowait(ip, lock_flags)) |
| BUG(); |
| } |
| |
| /* |
| * These values must be set before inserting the inode into the radix |
| * tree as the moment it is inserted a concurrent lookup (allowed by the |
| * RCU locking mechanism) can find it and that lookup must see that this |
| * is an inode currently under construction (i.e. that XFS_INEW is set). |
| * The ip->i_flags_lock that protects the XFS_INEW flag forms the |
| * memory barrier that ensures this detection works correctly at lookup |
| * time. |
| */ |
| iflags = XFS_INEW; |
| if (flags & XFS_IGET_DONTCACHE) |
| iflags |= XFS_IDONTCACHE; |
| ip->i_udquot = NULL; |
| ip->i_gdquot = NULL; |
| ip->i_pdquot = NULL; |
| xfs_iflags_set(ip, iflags); |
| |
| /* insert the new inode */ |
| spin_lock(&pag->pag_ici_lock); |
| error = radix_tree_insert(&pag->pag_ici_root, agino, ip); |
| if (unlikely(error)) { |
| WARN_ON(error != -EEXIST); |
| XFS_STATS_INC(mp, xs_ig_dup); |
| error = -EAGAIN; |
| goto out_preload_end; |
| } |
| spin_unlock(&pag->pag_ici_lock); |
| radix_tree_preload_end(); |
| |
| *ipp = ip; |
| return 0; |
| |
| out_preload_end: |
| spin_unlock(&pag->pag_ici_lock); |
| radix_tree_preload_end(); |
| if (lock_flags) |
| xfs_iunlock(ip, lock_flags); |
| out_destroy: |
| __destroy_inode(VFS_I(ip)); |
| xfs_inode_free(ip); |
| return error; |
| } |
| |
| /* |
| * Look up an inode by number in the given file system. |
| * The inode is looked up in the cache held in each AG. |
| * If the inode is found in the cache, initialise the vfs inode |
| * if necessary. |
| * |
| * If it is not in core, read it in from the file system's device, |
| * add it to the cache and initialise the vfs inode. |
| * |
| * The inode is locked according to the value of the lock_flags parameter. |
| * This flag parameter indicates how and if the inode's IO lock and inode lock |
| * should be taken. |
| * |
| * mp -- the mount point structure for the current file system. It points |
| * to the inode hash table. |
| * tp -- a pointer to the current transaction if there is one. This is |
| * simply passed through to the xfs_iread() call. |
| * ino -- the number of the inode desired. This is the unique identifier |
| * within the file system for the inode being requested. |
| * lock_flags -- flags indicating how to lock the inode. See the comment |
| * for xfs_ilock() for a list of valid values. |
| */ |
| int |
| xfs_iget( |
| xfs_mount_t *mp, |
| xfs_trans_t *tp, |
| xfs_ino_t ino, |
| uint flags, |
| uint lock_flags, |
| xfs_inode_t **ipp) |
| { |
| xfs_inode_t *ip; |
| int error; |
| xfs_perag_t *pag; |
| xfs_agino_t agino; |
| |
| /* |
| * xfs_reclaim_inode() uses the ILOCK to ensure an inode |
| * doesn't get freed while it's being referenced during a |
| * radix tree traversal here. It assumes this function |
| * aqcuires only the ILOCK (and therefore it has no need to |
| * involve the IOLOCK in this synchronization). |
| */ |
| ASSERT((lock_flags & (XFS_IOLOCK_EXCL | XFS_IOLOCK_SHARED)) == 0); |
| |
| /* reject inode numbers outside existing AGs */ |
| if (!ino || XFS_INO_TO_AGNO(mp, ino) >= mp->m_sb.sb_agcount) |
| return -EINVAL; |
| |
| XFS_STATS_INC(mp, xs_ig_attempts); |
| |
| /* get the perag structure and ensure that it's inode capable */ |
| pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ino)); |
| agino = XFS_INO_TO_AGINO(mp, ino); |
| |
| again: |
| error = 0; |
| rcu_read_lock(); |
| ip = radix_tree_lookup(&pag->pag_ici_root, agino); |
| |
| if (ip) { |
| error = xfs_iget_cache_hit(pag, ip, ino, flags, lock_flags); |
| if (error) |
| goto out_error_or_again; |
| } else { |
| rcu_read_unlock(); |
| if (flags & XFS_IGET_INCORE) { |
| error = -ENODATA; |
| goto out_error_or_again; |
| } |
| XFS_STATS_INC(mp, xs_ig_missed); |
| |
| error = xfs_iget_cache_miss(mp, pag, tp, ino, &ip, |
| flags, lock_flags); |
| if (error) |
| goto out_error_or_again; |
| } |
| xfs_perag_put(pag); |
| |
| *ipp = ip; |
| |
| /* |
| * If we have a real type for an on-disk inode, we can setup the inode |
| * now. If it's a new inode being created, xfs_ialloc will handle it. |
| */ |
| if (xfs_iflags_test(ip, XFS_INEW) && VFS_I(ip)->i_mode != 0) |
| xfs_setup_existing_inode(ip); |
| return 0; |
| |
| out_error_or_again: |
| if (!(flags & XFS_IGET_INCORE) && error == -EAGAIN) { |
| delay(1); |
| goto again; |
| } |
| xfs_perag_put(pag); |
| return error; |
| } |
| |
| /* |
| * "Is this a cached inode that's also allocated?" |
| * |
| * Look up an inode by number in the given file system. If the inode is |
| * in cache and isn't in purgatory, return 1 if the inode is allocated |
| * and 0 if it is not. For all other cases (not in cache, being torn |
| * down, etc.), return a negative error code. |
| * |
| * The caller has to prevent inode allocation and freeing activity, |
| * presumably by locking the AGI buffer. This is to ensure that an |
| * inode cannot transition from allocated to freed until the caller is |
| * ready to allow that. If the inode is in an intermediate state (new, |
| * reclaimable, or being reclaimed), -EAGAIN will be returned; if the |
| * inode is not in the cache, -ENOENT will be returned. The caller must |
| * deal with these scenarios appropriately. |
| * |
| * This is a specialized use case for the online scrubber; if you're |
| * reading this, you probably want xfs_iget. |
| */ |
| int |
| xfs_icache_inode_is_allocated( |
| struct xfs_mount *mp, |
| struct xfs_trans *tp, |
| xfs_ino_t ino, |
| bool *inuse) |
| { |
| struct xfs_inode *ip; |
| int error; |
| |
| error = xfs_iget(mp, tp, ino, XFS_IGET_INCORE, 0, &ip); |
| if (error) |
| return error; |
| |
| *inuse = !!(VFS_I(ip)->i_mode); |
| xfs_irele(ip); |
| return 0; |
| } |
| |
| /* |
| * The inode lookup is done in batches to keep the amount of lock traffic and |
| * radix tree lookups to a minimum. The batch size is a trade off between |
| * lookup reduction and stack usage. This is in the reclaim path, so we can't |
| * be too greedy. |
| */ |
| #define XFS_LOOKUP_BATCH 32 |
| |
| STATIC int |
| xfs_inode_ag_walk_grab( |
| struct xfs_inode *ip, |
| int flags) |
| { |
| struct inode *inode = VFS_I(ip); |
| bool newinos = !!(flags & XFS_AGITER_INEW_WAIT); |
| |
| ASSERT(rcu_read_lock_held()); |
| |
| /* |
| * check for stale RCU freed inode |
| * |
| * If the inode has been reallocated, it doesn't matter if it's not in |
| * the AG we are walking - we are walking for writeback, so if it |
| * passes all the "valid inode" checks and is dirty, then we'll write |
| * it back anyway. If it has been reallocated and still being |
| * initialised, the XFS_INEW check below will catch it. |
| */ |
| spin_lock(&ip->i_flags_lock); |
| if (!ip->i_ino) |
| goto out_unlock_noent; |
| |
| /* avoid new or reclaimable inodes. Leave for reclaim code to flush */ |
| if ((!newinos && __xfs_iflags_test(ip, XFS_INEW)) || |
| __xfs_iflags_test(ip, XFS_IRECLAIMABLE | XFS_IRECLAIM)) |
| goto out_unlock_noent; |
| spin_unlock(&ip->i_flags_lock); |
| |
| /* nothing to sync during shutdown */ |
| if (XFS_FORCED_SHUTDOWN(ip->i_mount)) |
| return -EFSCORRUPTED; |
| |
| /* If we can't grab the inode, it must on it's way to reclaim. */ |
| if (!igrab(inode)) |
| return -ENOENT; |
| |
| /* inode is valid */ |
| return 0; |
| |
| out_unlock_noent: |
| spin_unlock(&ip->i_flags_lock); |
| return -ENOENT; |
| } |
| |
| STATIC int |
| xfs_inode_ag_walk( |
| struct xfs_mount *mp, |
| struct xfs_perag *pag, |
| int (*execute)(struct xfs_inode *ip, int flags, |
| void *args), |
| int flags, |
| void *args, |
| int tag, |
| int iter_flags) |
| { |
| uint32_t first_index; |
| int last_error = 0; |
| int skipped; |
| int done; |
| int nr_found; |
| |
| restart: |
| done = 0; |
| skipped = 0; |
| first_index = 0; |
| nr_found = 0; |
| do { |
| struct xfs_inode *batch[XFS_LOOKUP_BATCH]; |
| int error = 0; |
| int i; |
| |
| rcu_read_lock(); |
| |
| if (tag == -1) |
| nr_found = radix_tree_gang_lookup(&pag->pag_ici_root, |
| (void **)batch, first_index, |
| XFS_LOOKUP_BATCH); |
| else |
| nr_found = radix_tree_gang_lookup_tag( |
| &pag->pag_ici_root, |
| (void **) batch, first_index, |
| XFS_LOOKUP_BATCH, tag); |
| |
| if (!nr_found) { |
| rcu_read_unlock(); |
| break; |
| } |
| |
| /* |
| * Grab the inodes before we drop the lock. if we found |
| * nothing, nr == 0 and the loop will be skipped. |
| */ |
| for (i = 0; i < nr_found; i++) { |
| struct xfs_inode *ip = batch[i]; |
| |
| if (done || xfs_inode_ag_walk_grab(ip, iter_flags)) |
| batch[i] = NULL; |
| |
| /* |
| * Update the index for the next lookup. Catch |
| * overflows into the next AG range which can occur if |
| * we have inodes in the last block of the AG and we |
| * are currently pointing to the last inode. |
| * |
| * Because we may see inodes that are from the wrong AG |
| * due to RCU freeing and reallocation, only update the |
| * index if it lies in this AG. It was a race that lead |
| * us to see this inode, so another lookup from the |
| * same index will not find it again. |
| */ |
| if (XFS_INO_TO_AGNO(mp, ip->i_ino) != pag->pag_agno) |
| continue; |
| first_index = XFS_INO_TO_AGINO(mp, ip->i_ino + 1); |
| if (first_index < XFS_INO_TO_AGINO(mp, ip->i_ino)) |
| done = 1; |
| } |
| |
| /* unlock now we've grabbed the inodes. */ |
| rcu_read_unlock(); |
| |
| for (i = 0; i < nr_found; i++) { |
| if (!batch[i]) |
| continue; |
| if ((iter_flags & XFS_AGITER_INEW_WAIT) && |
| xfs_iflags_test(batch[i], XFS_INEW)) |
| xfs_inew_wait(batch[i]); |
| error = execute(batch[i], flags, args); |
| xfs_irele(batch[i]); |
| if (error == -EAGAIN) { |
| skipped++; |
| continue; |
| } |
| if (error && last_error != -EFSCORRUPTED) |
| last_error = error; |
| } |
| |
| /* bail out if the filesystem is corrupted. */ |
| if (error == -EFSCORRUPTED) |
| break; |
| |
| cond_resched(); |
| |
| } while (nr_found && !done); |
| |
| if (skipped) { |
| delay(1); |
| goto restart; |
| } |
| return last_error; |
| } |
| |
| /* |
| * Background scanning to trim post-EOF preallocated space. This is queued |
| * based on the 'speculative_prealloc_lifetime' tunable (5m by default). |
| */ |
| void |
| xfs_queue_eofblocks( |
| struct xfs_mount *mp) |
| { |
| rcu_read_lock(); |
| if (radix_tree_tagged(&mp->m_perag_tree, XFS_ICI_EOFBLOCKS_TAG)) |
| queue_delayed_work(mp->m_eofblocks_workqueue, |
| &mp->m_eofblocks_work, |
| msecs_to_jiffies(xfs_eofb_secs * 1000)); |
| rcu_read_unlock(); |
| } |
| |
| void |
| xfs_eofblocks_worker( |
| struct work_struct *work) |
| { |
| struct xfs_mount *mp = container_of(to_delayed_work(work), |
| struct xfs_mount, m_eofblocks_work); |
| |
| if (!sb_start_write_trylock(mp->m_super)) |
| return; |
| xfs_icache_free_eofblocks(mp, NULL); |
| sb_end_write(mp->m_super); |
| |
| xfs_queue_eofblocks(mp); |
| } |
| |
| /* |
| * Background scanning to trim preallocated CoW space. This is queued |
| * based on the 'speculative_cow_prealloc_lifetime' tunable (5m by default). |
| * (We'll just piggyback on the post-EOF prealloc space workqueue.) |
| */ |
| void |
| xfs_queue_cowblocks( |
| struct xfs_mount *mp) |
| { |
| rcu_read_lock(); |
| if (radix_tree_tagged(&mp->m_perag_tree, XFS_ICI_COWBLOCKS_TAG)) |
| queue_delayed_work(mp->m_eofblocks_workqueue, |
| &mp->m_cowblocks_work, |
| msecs_to_jiffies(xfs_cowb_secs * 1000)); |
| rcu_read_unlock(); |
| } |
| |
| void |
| xfs_cowblocks_worker( |
| struct work_struct *work) |
| { |
| struct xfs_mount *mp = container_of(to_delayed_work(work), |
| struct xfs_mount, m_cowblocks_work); |
| |
| if (!sb_start_write_trylock(mp->m_super)) |
| return; |
| xfs_icache_free_cowblocks(mp, NULL); |
| sb_end_write(mp->m_super); |
| |
| xfs_queue_cowblocks(mp); |
| } |
| |
| int |
| xfs_inode_ag_iterator_flags( |
| struct xfs_mount *mp, |
| int (*execute)(struct xfs_inode *ip, int flags, |
| void *args), |
| int flags, |
| void *args, |
| int iter_flags) |
| { |
| struct xfs_perag *pag; |
| int error = 0; |
| int last_error = 0; |
| xfs_agnumber_t ag; |
| |
| ag = 0; |
| while ((pag = xfs_perag_get(mp, ag))) { |
| ag = pag->pag_agno + 1; |
| error = xfs_inode_ag_walk(mp, pag, execute, flags, args, -1, |
| iter_flags); |
| xfs_perag_put(pag); |
| if (error) { |
| last_error = error; |
| if (error == -EFSCORRUPTED) |
| break; |
| } |
| } |
| return last_error; |
| } |
| |
| int |
| xfs_inode_ag_iterator( |
| struct xfs_mount *mp, |
| int (*execute)(struct xfs_inode *ip, int flags, |
| void *args), |
| int flags, |
| void *args) |
| { |
| return xfs_inode_ag_iterator_flags(mp, execute, flags, args, 0); |
| } |
| |
| int |
| xfs_inode_ag_iterator_tag( |
| struct xfs_mount *mp, |
| int (*execute)(struct xfs_inode *ip, int flags, |
| void *args), |
| int flags, |
| void *args, |
| int tag) |
| { |
| struct xfs_perag *pag; |
| int error = 0; |
| int last_error = 0; |
| xfs_agnumber_t ag; |
| |
| ag = 0; |
| while ((pag = xfs_perag_get_tag(mp, ag, tag))) { |
| ag = pag->pag_agno + 1; |
| error = xfs_inode_ag_walk(mp, pag, execute, flags, args, tag, |
| 0); |
| xfs_perag_put(pag); |
| if (error) { |
| last_error = error; |
| if (error == -EFSCORRUPTED) |
| break; |
| } |
| } |
| return last_error; |
| } |
| |
| /* |
| * Grab the inode for reclaim exclusively. |
| * Return 0 if we grabbed it, non-zero otherwise. |
| */ |
| STATIC int |
| xfs_reclaim_inode_grab( |
| struct xfs_inode *ip, |
| int flags) |
| { |
| ASSERT(rcu_read_lock_held()); |
| |
| /* quick check for stale RCU freed inode */ |
| if (!ip->i_ino) |
| return 1; |
| |
| /* |
| * If we are asked for non-blocking operation, do unlocked checks to |
| * see if the inode already is being flushed or in reclaim to avoid |
| * lock traffic. |
| */ |
| if ((flags & SYNC_TRYLOCK) && |
| __xfs_iflags_test(ip, XFS_IFLOCK | XFS_IRECLAIM)) |
| return 1; |
| |
| /* |
| * The radix tree lock here protects a thread in xfs_iget from racing |
| * with us starting reclaim on the inode. Once we have the |
| * XFS_IRECLAIM flag set it will not touch us. |
| * |
| * Due to RCU lookup, we may find inodes that have been freed and only |
| * have XFS_IRECLAIM set. Indeed, we may see reallocated inodes that |
| * aren't candidates for reclaim at all, so we must check the |
| * XFS_IRECLAIMABLE is set first before proceeding to reclaim. |
| */ |
| spin_lock(&ip->i_flags_lock); |
| if (!__xfs_iflags_test(ip, XFS_IRECLAIMABLE) || |
| __xfs_iflags_test(ip, XFS_IRECLAIM)) { |
| /* not a reclaim candidate. */ |
| spin_unlock(&ip->i_flags_lock); |
| return 1; |
| } |
| __xfs_iflags_set(ip, XFS_IRECLAIM); |
| spin_unlock(&ip->i_flags_lock); |
| return 0; |
| } |
| |
| /* |
| * Inodes in different states need to be treated differently. The following |
| * table lists the inode states and the reclaim actions necessary: |
| * |
| * inode state iflush ret required action |
| * --------------- ---------- --------------- |
| * bad - reclaim |
| * shutdown EIO unpin and reclaim |
| * clean, unpinned 0 reclaim |
| * stale, unpinned 0 reclaim |
| * clean, pinned(*) 0 requeue |
| * stale, pinned EAGAIN requeue |
| * dirty, async - requeue |
| * dirty, sync 0 reclaim |
| * |
| * (*) dgc: I don't think the clean, pinned state is possible but it gets |
| * handled anyway given the order of checks implemented. |
| * |
| * Also, because we get the flush lock first, we know that any inode that has |
| * been flushed delwri has had the flush completed by the time we check that |
| * the inode is clean. |
| * |
| * Note that because the inode is flushed delayed write by AIL pushing, the |
| * flush lock may already be held here and waiting on it can result in very |
| * long latencies. Hence for sync reclaims, where we wait on the flush lock, |
| * the caller should push the AIL first before trying to reclaim inodes to |
| * minimise the amount of time spent waiting. For background relaim, we only |
| * bother to reclaim clean inodes anyway. |
| * |
| * Hence the order of actions after gaining the locks should be: |
| * bad => reclaim |
| * shutdown => unpin and reclaim |
| * pinned, async => requeue |
| * pinned, sync => unpin |
| * stale => reclaim |
| * clean => reclaim |
| * dirty, async => requeue |
| * dirty, sync => flush, wait and reclaim |
| */ |
| STATIC int |
| xfs_reclaim_inode( |
| struct xfs_inode *ip, |
| struct xfs_perag *pag, |
| int sync_mode) |
| { |
| struct xfs_buf *bp = NULL; |
| xfs_ino_t ino = ip->i_ino; /* for radix_tree_delete */ |
| int error; |
| |
| restart: |
| error = 0; |
| xfs_ilock(ip, XFS_ILOCK_EXCL); |
| if (!xfs_iflock_nowait(ip)) { |
| if (!(sync_mode & SYNC_WAIT)) |
| goto out; |
| xfs_iflock(ip); |
| } |
| |
| if (XFS_FORCED_SHUTDOWN(ip->i_mount)) { |
| xfs_iunpin_wait(ip); |
| /* xfs_iflush_abort() drops the flush lock */ |
| xfs_iflush_abort(ip); |
| goto reclaim; |
| } |
| if (xfs_ipincount(ip)) { |
| if (!(sync_mode & SYNC_WAIT)) |
| goto out_ifunlock; |
| xfs_iunpin_wait(ip); |
| } |
| if (xfs_iflags_test(ip, XFS_ISTALE) || xfs_inode_clean(ip)) { |
| xfs_ifunlock(ip); |
| goto reclaim; |
| } |
| |
| /* |
| * Never flush out dirty data during non-blocking reclaim, as it would |
| * just contend with AIL pushing trying to do the same job. |
| */ |
| if (!(sync_mode & SYNC_WAIT)) |
| goto out_ifunlock; |
| |
| /* |
| * Now we have an inode that needs flushing. |
| * |
| * Note that xfs_iflush will never block on the inode buffer lock, as |
| * xfs_ifree_cluster() can lock the inode buffer before it locks the |
| * ip->i_lock, and we are doing the exact opposite here. As a result, |
| * doing a blocking xfs_imap_to_bp() to get the cluster buffer would |
| * result in an ABBA deadlock with xfs_ifree_cluster(). |
| * |
| * As xfs_ifree_cluser() must gather all inodes that are active in the |
| * cache to mark them stale, if we hit this case we don't actually want |
| * to do IO here - we want the inode marked stale so we can simply |
| * reclaim it. Hence if we get an EAGAIN error here, just unlock the |
| * inode, back off and try again. Hopefully the next pass through will |
| * see the stale flag set on the inode. |
| */ |
| error = xfs_iflush(ip, &bp); |
| if (error == -EAGAIN) { |
| xfs_iunlock(ip, XFS_ILOCK_EXCL); |
| /* backoff longer than in xfs_ifree_cluster */ |
| delay(2); |
| goto restart; |
| } |
| |
| if (!error) { |
| error = xfs_bwrite(bp); |
| xfs_buf_relse(bp); |
| } |
| |
| reclaim: |
| ASSERT(!xfs_isiflocked(ip)); |
| |
| /* |
| * Because we use RCU freeing we need to ensure the inode always appears |
| * to be reclaimed with an invalid inode number when in the free state. |
| * We do this as early as possible under the ILOCK so that |
| * xfs_iflush_cluster() and xfs_ifree_cluster() can be guaranteed to |
| * detect races with us here. By doing this, we guarantee that once |
| * xfs_iflush_cluster() or xfs_ifree_cluster() has locked XFS_ILOCK that |
| * it will see either a valid inode that will serialise correctly, or it |
| * will see an invalid inode that it can skip. |
| */ |
| spin_lock(&ip->i_flags_lock); |
| ip->i_flags = XFS_IRECLAIM; |
| ip->i_ino = 0; |
| spin_unlock(&ip->i_flags_lock); |
| |
| xfs_iunlock(ip, XFS_ILOCK_EXCL); |
| |
| XFS_STATS_INC(ip->i_mount, xs_ig_reclaims); |
| /* |
| * Remove the inode from the per-AG radix tree. |
| * |
| * Because radix_tree_delete won't complain even if the item was never |
| * added to the tree assert that it's been there before to catch |
| * problems with the inode life time early on. |
| */ |
| spin_lock(&pag->pag_ici_lock); |
| if (!radix_tree_delete(&pag->pag_ici_root, |
| XFS_INO_TO_AGINO(ip->i_mount, ino))) |
| ASSERT(0); |
| xfs_perag_clear_reclaim_tag(pag); |
| spin_unlock(&pag->pag_ici_lock); |
| |
| /* |
| * Here we do an (almost) spurious inode lock in order to coordinate |
| * with inode cache radix tree lookups. This is because the lookup |
| * can reference the inodes in the cache without taking references. |
| * |
| * We make that OK here by ensuring that we wait until the inode is |
| * unlocked after the lookup before we go ahead and free it. |
| */ |
| xfs_ilock(ip, XFS_ILOCK_EXCL); |
| xfs_qm_dqdetach(ip); |
| xfs_iunlock(ip, XFS_ILOCK_EXCL); |
| |
| __xfs_inode_free(ip); |
| return error; |
| |
| out_ifunlock: |
| xfs_ifunlock(ip); |
| out: |
| xfs_iflags_clear(ip, XFS_IRECLAIM); |
| xfs_iunlock(ip, XFS_ILOCK_EXCL); |
| /* |
| * We could return -EAGAIN here to make reclaim rescan the inode tree in |
| * a short while. However, this just burns CPU time scanning the tree |
| * waiting for IO to complete and the reclaim work never goes back to |
| * the idle state. Instead, return 0 to let the next scheduled |
| * background reclaim attempt to reclaim the inode again. |
| */ |
| return 0; |
| } |
| |
| /* |
| * Walk the AGs and reclaim the inodes in them. Even if the filesystem is |
| * corrupted, we still want to try to reclaim all the inodes. If we don't, |
| * then a shut down during filesystem unmount reclaim walk leak all the |
| * unreclaimed inodes. |
| */ |
| STATIC int |
| xfs_reclaim_inodes_ag( |
| struct xfs_mount *mp, |
| int flags, |
| int *nr_to_scan) |
| { |
| struct xfs_perag *pag; |
| int error = 0; |
| int last_error = 0; |
| xfs_agnumber_t ag; |
| int trylock = flags & SYNC_TRYLOCK; |
| int skipped; |
| |
| restart: |
| ag = 0; |
| skipped = 0; |
| while ((pag = xfs_perag_get_tag(mp, ag, XFS_ICI_RECLAIM_TAG))) { |
| unsigned long first_index = 0; |
| int done = 0; |
| int nr_found = 0; |
| |
| ag = pag->pag_agno + 1; |
| |
| if (trylock) { |
| if (!mutex_trylock(&pag->pag_ici_reclaim_lock)) { |
| skipped++; |
| xfs_perag_put(pag); |
| continue; |
| } |
| first_index = pag->pag_ici_reclaim_cursor; |
| } else |
| mutex_lock(&pag->pag_ici_reclaim_lock); |
| |
| do { |
| struct xfs_inode *batch[XFS_LOOKUP_BATCH]; |
| int i; |
| |
| rcu_read_lock(); |
| nr_found = radix_tree_gang_lookup_tag( |
| &pag->pag_ici_root, |
| (void **)batch, first_index, |
| XFS_LOOKUP_BATCH, |
| XFS_ICI_RECLAIM_TAG); |
| if (!nr_found) { |
| done = 1; |
| rcu_read_unlock(); |
| break; |
| } |
| |
| /* |
| * Grab the inodes before we drop the lock. if we found |
| * nothing, nr == 0 and the loop will be skipped. |
| */ |
| for (i = 0; i < nr_found; i++) { |
| struct xfs_inode *ip = batch[i]; |
| |
| if (done || xfs_reclaim_inode_grab(ip, flags)) |
| batch[i] = NULL; |
| |
| /* |
| * Update the index for the next lookup. Catch |
| * overflows into the next AG range which can |
| * occur if we have inodes in the last block of |
| * the AG and we are currently pointing to the |
| * last inode. |
| * |
| * Because we may see inodes that are from the |
| * wrong AG due to RCU freeing and |
| * reallocation, only update the index if it |
| * lies in this AG. It was a race that lead us |
| * to see this inode, so another lookup from |
| * the same index will not find it again. |
| */ |
| if (XFS_INO_TO_AGNO(mp, ip->i_ino) != |
| pag->pag_agno) |
| continue; |
| first_index = XFS_INO_TO_AGINO(mp, ip->i_ino + 1); |
| if (first_index < XFS_INO_TO_AGINO(mp, ip->i_ino)) |
| done = 1; |
| } |
| |
| /* unlock now we've grabbed the inodes. */ |
| rcu_read_unlock(); |
| |
| for (i = 0; i < nr_found; i++) { |
| if (!batch[i]) |
| continue; |
| error = xfs_reclaim_inode(batch[i], pag, flags); |
| if (error && last_error != -EFSCORRUPTED) |
| last_error = error; |
| } |
| |
| *nr_to_scan -= XFS_LOOKUP_BATCH; |
| |
| cond_resched(); |
| |
| } while (nr_found && !done && *nr_to_scan > 0); |
| |
| if (trylock && !done) |
| pag->pag_ici_reclaim_cursor = first_index; |
| else |
| pag->pag_ici_reclaim_cursor = 0; |
| mutex_unlock(&pag->pag_ici_reclaim_lock); |
| xfs_perag_put(pag); |
| } |
| |
| /* |
| * if we skipped any AG, and we still have scan count remaining, do |
| * another pass this time using blocking reclaim semantics (i.e |
| * waiting on the reclaim locks and ignoring the reclaim cursors). This |
| * ensure that when we get more reclaimers than AGs we block rather |
| * than spin trying to execute reclaim. |
| */ |
| if (skipped && (flags & SYNC_WAIT) && *nr_to_scan > 0) { |
| trylock = 0; |
| goto restart; |
| } |
| return last_error; |
| } |
| |
| int |
| xfs_reclaim_inodes( |
| xfs_mount_t *mp, |
| int mode) |
| { |
| int nr_to_scan = INT_MAX; |
| |
| return xfs_reclaim_inodes_ag(mp, mode, &nr_to_scan); |
| } |
| |
| /* |
| * Scan a certain number of inodes for reclaim. |
| * |
| * When called we make sure that there is a background (fast) inode reclaim in |
| * progress, while we will throttle the speed of reclaim via doing synchronous |
| * reclaim of inodes. That means if we come across dirty inodes, we wait for |
| * them to be cleaned, which we hope will not be very long due to the |
| * background walker having already kicked the IO off on those dirty inodes. |
| */ |
| long |
| xfs_reclaim_inodes_nr( |
| struct xfs_mount *mp, |
| int nr_to_scan) |
| { |
| /* kick background reclaimer and push the AIL */ |
| xfs_reclaim_work_queue(mp); |
| xfs_ail_push_all(mp->m_ail); |
| |
| return xfs_reclaim_inodes_ag(mp, SYNC_TRYLOCK | SYNC_WAIT, &nr_to_scan); |
| } |
| |
| /* |
| * Return the number of reclaimable inodes in the filesystem for |
| * the shrinker to determine how much to reclaim. |
| */ |
| int |
| xfs_reclaim_inodes_count( |
| struct xfs_mount *mp) |
| { |
| struct xfs_perag *pag; |
| xfs_agnumber_t ag = 0; |
| int reclaimable = 0; |
| |
| while ((pag = xfs_perag_get_tag(mp, ag, XFS_ICI_RECLAIM_TAG))) { |
| ag = pag->pag_agno + 1; |
| reclaimable += pag->pag_ici_reclaimable; |
| xfs_perag_put(pag); |
| } |
| return reclaimable; |
| } |
| |
| STATIC int |
| xfs_inode_match_id( |
| struct xfs_inode *ip, |
| struct xfs_eofblocks *eofb) |
| { |
| if ((eofb->eof_flags & XFS_EOF_FLAGS_UID) && |
| !uid_eq(VFS_I(ip)->i_uid, eofb->eof_uid)) |
| return 0; |
| |
| if ((eofb->eof_flags & XFS_EOF_FLAGS_GID) && |
| !gid_eq(VFS_I(ip)->i_gid, eofb->eof_gid)) |
| return 0; |
| |
| if ((eofb->eof_flags & XFS_EOF_FLAGS_PRID) && |
| ip->i_d.di_projid != eofb->eof_prid) |
| return 0; |
| |
| return 1; |
| } |
| |
| /* |
| * A union-based inode filtering algorithm. Process the inode if any of the |
| * criteria match. This is for global/internal scans only. |
| */ |
| STATIC int |
| xfs_inode_match_id_union( |
| struct xfs_inode *ip, |
| struct xfs_eofblocks *eofb) |
| { |
| if ((eofb->eof_flags & XFS_EOF_FLAGS_UID) && |
| uid_eq(VFS_I(ip)->i_uid, eofb->eof_uid)) |
| return 1; |
| |
| if ((eofb->eof_flags & XFS_EOF_FLAGS_GID) && |
| gid_eq(VFS_I(ip)->i_gid, eofb->eof_gid)) |
| return 1; |
| |
| if ((eofb->eof_flags & XFS_EOF_FLAGS_PRID) && |
| ip->i_d.di_projid == eofb->eof_prid) |
| return 1; |
| |
| return 0; |
| } |
| |
| STATIC int |
| xfs_inode_free_eofblocks( |
| struct xfs_inode *ip, |
| int flags, |
| void *args) |
| { |
| int ret = 0; |
| struct xfs_eofblocks *eofb = args; |
| int match; |
| |
| if (!xfs_can_free_eofblocks(ip, false)) { |
| /* inode could be preallocated or append-only */ |
| trace_xfs_inode_free_eofblocks_invalid(ip); |
| xfs_inode_clear_eofblocks_tag(ip); |
| return 0; |
| } |
| |
| /* |
| * If the mapping is dirty the operation can block and wait for some |
| * time. Unless we are waiting, skip it. |
| */ |
| if (!(flags & SYNC_WAIT) && |
| mapping_tagged(VFS_I(ip)->i_mapping, PAGECACHE_TAG_DIRTY)) |
| return 0; |
| |
| if (eofb) { |
| if (eofb->eof_flags & XFS_EOF_FLAGS_UNION) |
| match = xfs_inode_match_id_union(ip, eofb); |
| else |
| match = xfs_inode_match_id(ip, eofb); |
| if (!match) |
| return 0; |
| |
| /* skip the inode if the file size is too small */ |
| if (eofb->eof_flags & XFS_EOF_FLAGS_MINFILESIZE && |
| XFS_ISIZE(ip) < eofb->eof_min_file_size) |
| return 0; |
| } |
| |
| /* |
| * If the caller is waiting, return -EAGAIN to keep the background |
| * scanner moving and revisit the inode in a subsequent pass. |
| */ |
| if (!xfs_ilock_nowait(ip, XFS_IOLOCK_EXCL)) { |
| if (flags & SYNC_WAIT) |
| ret = -EAGAIN; |
| return ret; |
| } |
| ret = xfs_free_eofblocks(ip); |
| xfs_iunlock(ip, XFS_IOLOCK_EXCL); |
| |
| return ret; |
| } |
| |
| static int |
| __xfs_icache_free_eofblocks( |
| struct xfs_mount *mp, |
| struct xfs_eofblocks *eofb, |
| int (*execute)(struct xfs_inode *ip, int flags, |
| void *args), |
| int tag) |
| { |
| int flags = SYNC_TRYLOCK; |
| |
| if (eofb && (eofb->eof_flags & XFS_EOF_FLAGS_SYNC)) |
| flags = SYNC_WAIT; |
| |
| return xfs_inode_ag_iterator_tag(mp, execute, flags, |
| eofb, tag); |
| } |
| |
| int |
| xfs_icache_free_eofblocks( |
| struct xfs_mount *mp, |
| struct xfs_eofblocks *eofb) |
| { |
| return __xfs_icache_free_eofblocks(mp, eofb, xfs_inode_free_eofblocks, |
| XFS_ICI_EOFBLOCKS_TAG); |
| } |
| |
| /* |
| * Run eofblocks scans on the quotas applicable to the inode. For inodes with |
| * multiple quotas, we don't know exactly which quota caused an allocation |
| * failure. We make a best effort by including each quota under low free space |
| * conditions (less than 1% free space) in the scan. |
| */ |
| static int |
| __xfs_inode_free_quota_eofblocks( |
| struct xfs_inode *ip, |
| int (*execute)(struct xfs_mount *mp, |
| struct xfs_eofblocks *eofb)) |
| { |
| int scan = 0; |
| struct xfs_eofblocks eofb = {0}; |
| struct xfs_dquot *dq; |
| |
| /* |
| * Run a sync scan to increase effectiveness and use the union filter to |
| * cover all applicable quotas in a single scan. |
| */ |
| eofb.eof_flags = XFS_EOF_FLAGS_UNION|XFS_EOF_FLAGS_SYNC; |
| |
| if (XFS_IS_UQUOTA_ENFORCED(ip->i_mount)) { |
| dq = xfs_inode_dquot(ip, XFS_DQ_USER); |
| if (dq && xfs_dquot_lowsp(dq)) { |
| eofb.eof_uid = VFS_I(ip)->i_uid; |
| eofb.eof_flags |= XFS_EOF_FLAGS_UID; |
| scan = 1; |
| } |
| } |
| |
| if (XFS_IS_GQUOTA_ENFORCED(ip->i_mount)) { |
| dq = xfs_inode_dquot(ip, XFS_DQ_GROUP); |
| if (dq && xfs_dquot_lowsp(dq)) { |
| eofb.eof_gid = VFS_I(ip)->i_gid; |
| eofb.eof_flags |= XFS_EOF_FLAGS_GID; |
| scan = 1; |
| } |
| } |
| |
| if (scan) |
| execute(ip->i_mount, &eofb); |
| |
| return scan; |
| } |
| |
| int |
| xfs_inode_free_quota_eofblocks( |
| struct xfs_inode *ip) |
| { |
| return __xfs_inode_free_quota_eofblocks(ip, xfs_icache_free_eofblocks); |
| } |
| |
| static inline unsigned long |
| xfs_iflag_for_tag( |
| int tag) |
| { |
| switch (tag) { |
| case XFS_ICI_EOFBLOCKS_TAG: |
| return XFS_IEOFBLOCKS; |
| case XFS_ICI_COWBLOCKS_TAG: |
| return XFS_ICOWBLOCKS; |
| default: |
| ASSERT(0); |
| return 0; |
| } |
| } |
| |
| static void |
| __xfs_inode_set_blocks_tag( |
| xfs_inode_t *ip, |
| void (*execute)(struct xfs_mount *mp), |
| void (*set_tp)(struct xfs_mount *mp, xfs_agnumber_t agno, |
| int error, unsigned long caller_ip), |
| int tag) |
| { |
| struct xfs_mount *mp = ip->i_mount; |
| struct xfs_perag *pag; |
| int tagged; |
| |
| /* |
| * Don't bother locking the AG and looking up in the radix trees |
| * if we already know that we have the tag set. |
| */ |
| if (ip->i_flags & xfs_iflag_for_tag(tag)) |
| return; |
| spin_lock(&ip->i_flags_lock); |
| ip->i_flags |= xfs_iflag_for_tag(tag); |
| spin_unlock(&ip->i_flags_lock); |
| |
| pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino)); |
| spin_lock(&pag->pag_ici_lock); |
| |
| tagged = radix_tree_tagged(&pag->pag_ici_root, tag); |
| radix_tree_tag_set(&pag->pag_ici_root, |
| XFS_INO_TO_AGINO(ip->i_mount, ip->i_ino), tag); |
| if (!tagged) { |
| /* propagate the eofblocks tag up into the perag radix tree */ |
| spin_lock(&ip->i_mount->m_perag_lock); |
| radix_tree_tag_set(&ip->i_mount->m_perag_tree, |
| XFS_INO_TO_AGNO(ip->i_mount, ip->i_ino), |
| tag); |
| spin_unlock(&ip->i_mount->m_perag_lock); |
| |
| /* kick off background trimming */ |
| execute(ip->i_mount); |
| |
| set_tp(ip->i_mount, pag->pag_agno, -1, _RET_IP_); |
| } |
| |
| spin_unlock(&pag->pag_ici_lock); |
| xfs_perag_put(pag); |
| } |
| |
| void |
| xfs_inode_set_eofblocks_tag( |
| xfs_inode_t *ip) |
| { |
| trace_xfs_inode_set_eofblocks_tag(ip); |
| return __xfs_inode_set_blocks_tag(ip, xfs_queue_eofblocks, |
| trace_xfs_perag_set_eofblocks, |
| XFS_ICI_EOFBLOCKS_TAG); |
| } |
| |
| static void |
| __xfs_inode_clear_blocks_tag( |
| xfs_inode_t *ip, |
| void (*clear_tp)(struct xfs_mount *mp, xfs_agnumber_t agno, |
| int error, unsigned long caller_ip), |
| int tag) |
| { |
| struct xfs_mount *mp = ip->i_mount; |
| struct xfs_perag *pag; |
| |
| spin_lock(&ip->i_flags_lock); |
| ip->i_flags &= ~xfs_iflag_for_tag(tag); |
| spin_unlock(&ip->i_flags_lock); |
| |
| pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino)); |
| spin_lock(&pag->pag_ici_lock); |
| |
| radix_tree_tag_clear(&pag->pag_ici_root, |
| XFS_INO_TO_AGINO(ip->i_mount, ip->i_ino), tag); |
| if (!radix_tree_tagged(&pag->pag_ici_root, tag)) { |
| /* clear the eofblocks tag from the perag radix tree */ |
| spin_lock(&ip->i_mount->m_perag_lock); |
| radix_tree_tag_clear(&ip->i_mount->m_perag_tree, |
| XFS_INO_TO_AGNO(ip->i_mount, ip->i_ino), |
| tag); |
| spin_unlock(&ip->i_mount->m_perag_lock); |
| clear_tp(ip->i_mount, pag->pag_agno, -1, _RET_IP_); |
| } |
| |
| spin_unlock(&pag->pag_ici_lock); |
| xfs_perag_put(pag); |
| } |
| |
| void |
| xfs_inode_clear_eofblocks_tag( |
| xfs_inode_t *ip) |
| { |
| trace_xfs_inode_clear_eofblocks_tag(ip); |
| return __xfs_inode_clear_blocks_tag(ip, |
| trace_xfs_perag_clear_eofblocks, XFS_ICI_EOFBLOCKS_TAG); |
| } |
| |
| /* |
| * Set ourselves up to free CoW blocks from this file. If it's already clean |
| * then we can bail out quickly, but otherwise we must back off if the file |
| * is undergoing some kind of write. |
| */ |
| static bool |
| xfs_prep_free_cowblocks( |
| struct xfs_inode *ip) |
| { |
| /* |
| * Just clear the tag if we have an empty cow fork or none at all. It's |
| * possible the inode was fully unshared since it was originally tagged. |
| */ |
| if (!xfs_inode_has_cow_data(ip)) { |
| trace_xfs_inode_free_cowblocks_invalid(ip); |
| xfs_inode_clear_cowblocks_tag(ip); |
| return false; |
| } |
| |
| /* |
| * If the mapping is dirty or under writeback we cannot touch the |
| * CoW fork. Leave it alone if we're in the midst of a directio. |
| */ |
| if ((VFS_I(ip)->i_state & I_DIRTY_PAGES) || |
| mapping_tagged(VFS_I(ip)->i_mapping, PAGECACHE_TAG_DIRTY) || |
| mapping_tagged(VFS_I(ip)->i_mapping, PAGECACHE_TAG_WRITEBACK) || |
| atomic_read(&VFS_I(ip)->i_dio_count)) |
| return false; |
| |
| return true; |
| } |
| |
| /* |
| * Automatic CoW Reservation Freeing |
| * |
| * These functions automatically garbage collect leftover CoW reservations |
| * that were made on behalf of a cowextsize hint when we start to run out |
| * of quota or when the reservations sit around for too long. If the file |
| * has dirty pages or is undergoing writeback, its CoW reservations will |
| * be retained. |
| * |
| * The actual garbage collection piggybacks off the same code that runs |
| * the speculative EOF preallocation garbage collector. |
| */ |
| STATIC int |
| xfs_inode_free_cowblocks( |
| struct xfs_inode *ip, |
| int flags, |
| void *args) |
| { |
| struct xfs_eofblocks *eofb = args; |
| int match; |
| int ret = 0; |
| |
| if (!xfs_prep_free_cowblocks(ip)) |
| return 0; |
| |
| if (eofb) { |
| if (eofb->eof_flags & XFS_EOF_FLAGS_UNION) |
| match = xfs_inode_match_id_union(ip, eofb); |
| else |
| match = xfs_inode_match_id(ip, eofb); |
| if (!match) |
| return 0; |
| |
| /* skip the inode if the file size is too small */ |
| if (eofb->eof_flags & XFS_EOF_FLAGS_MINFILESIZE && |
| XFS_ISIZE(ip) < eofb->eof_min_file_size) |
| return 0; |
| } |
| |
| /* Free the CoW blocks */ |
| xfs_ilock(ip, XFS_IOLOCK_EXCL); |
| xfs_ilock(ip, XFS_MMAPLOCK_EXCL); |
| |
| /* |
| * Check again, nobody else should be able to dirty blocks or change |
| * the reflink iflag now that we have the first two locks held. |
| */ |
| if (xfs_prep_free_cowblocks(ip)) |
| ret = xfs_reflink_cancel_cow_range(ip, 0, NULLFILEOFF, false); |
| |
| xfs_iunlock(ip, XFS_MMAPLOCK_EXCL); |
| xfs_iunlock(ip, XFS_IOLOCK_EXCL); |
| |
| return ret; |
| } |
| |
| int |
| xfs_icache_free_cowblocks( |
| struct xfs_mount *mp, |
| struct xfs_eofblocks *eofb) |
| { |
| return __xfs_icache_free_eofblocks(mp, eofb, xfs_inode_free_cowblocks, |
| XFS_ICI_COWBLOCKS_TAG); |
| } |
| |
| int |
| xfs_inode_free_quota_cowblocks( |
| struct xfs_inode *ip) |
| { |
| return __xfs_inode_free_quota_eofblocks(ip, xfs_icache_free_cowblocks); |
| } |
| |
| void |
| xfs_inode_set_cowblocks_tag( |
| xfs_inode_t *ip) |
| { |
| trace_xfs_inode_set_cowblocks_tag(ip); |
| return __xfs_inode_set_blocks_tag(ip, xfs_queue_cowblocks, |
| trace_xfs_perag_set_cowblocks, |
| XFS_ICI_COWBLOCKS_TAG); |
| } |
| |
| void |
| xfs_inode_clear_cowblocks_tag( |
| xfs_inode_t *ip) |
| { |
| trace_xfs_inode_clear_cowblocks_tag(ip); |
| return __xfs_inode_clear_blocks_tag(ip, |
| trace_xfs_perag_clear_cowblocks, XFS_ICI_COWBLOCKS_TAG); |
| } |
| |
| /* Disable post-EOF and CoW block auto-reclamation. */ |
| void |
| xfs_stop_block_reaping( |
| struct xfs_mount *mp) |
| { |
| cancel_delayed_work_sync(&mp->m_eofblocks_work); |
| cancel_delayed_work_sync(&mp->m_cowblocks_work); |
| } |
| |
| /* Enable post-EOF and CoW block auto-reclamation. */ |
| void |
| xfs_start_block_reaping( |
| struct xfs_mount *mp) |
| { |
| xfs_queue_eofblocks(mp); |
| xfs_queue_cowblocks(mp); |
| } |