| // SPDX-License-Identifier: GPL-2.0 |
| /* |
| * arch/arm64/kvm/fpsimd.c: Guest/host FPSIMD context coordination helpers |
| * |
| * Copyright 2018 Arm Limited |
| * Author: Dave Martin <Dave.Martin@arm.com> |
| */ |
| #include <linux/irqflags.h> |
| #include <linux/sched.h> |
| #include <linux/kvm_host.h> |
| #include <asm/fpsimd.h> |
| #include <asm/kvm_asm.h> |
| #include <asm/kvm_hyp.h> |
| #include <asm/kvm_mmu.h> |
| #include <asm/sysreg.h> |
| |
| void kvm_vcpu_unshare_task_fp(struct kvm_vcpu *vcpu) |
| { |
| struct task_struct *p = vcpu->arch.parent_task; |
| struct user_fpsimd_state *fpsimd; |
| |
| if (!is_protected_kvm_enabled() || !p) |
| return; |
| |
| fpsimd = &p->thread.uw.fpsimd_state; |
| kvm_unshare_hyp(fpsimd, fpsimd + 1); |
| put_task_struct(p); |
| } |
| |
| /* |
| * Called on entry to KVM_RUN unless this vcpu previously ran at least |
| * once and the most recent prior KVM_RUN for this vcpu was called from |
| * the same task as current (highly likely). |
| * |
| * This is guaranteed to execute before kvm_arch_vcpu_load_fp(vcpu), |
| * such that on entering hyp the relevant parts of current are already |
| * mapped. |
| */ |
| int kvm_arch_vcpu_run_map_fp(struct kvm_vcpu *vcpu) |
| { |
| int ret; |
| |
| struct user_fpsimd_state *fpsimd = ¤t->thread.uw.fpsimd_state; |
| |
| kvm_vcpu_unshare_task_fp(vcpu); |
| |
| /* Make sure the host task fpsimd state is visible to hyp: */ |
| ret = kvm_share_hyp(fpsimd, fpsimd + 1); |
| if (ret) |
| return ret; |
| |
| vcpu->arch.host_fpsimd_state = kern_hyp_va(fpsimd); |
| |
| /* |
| * We need to keep current's task_struct pinned until its data has been |
| * unshared with the hypervisor to make sure it is not re-used by the |
| * kernel and donated to someone else while already shared -- see |
| * kvm_vcpu_unshare_task_fp() for the matching put_task_struct(). |
| */ |
| if (is_protected_kvm_enabled()) { |
| get_task_struct(current); |
| vcpu->arch.parent_task = current; |
| } |
| |
| return 0; |
| } |
| |
| /* |
| * Prepare vcpu for saving the host's FPSIMD state and loading the guest's. |
| * The actual loading is done by the FPSIMD access trap taken to hyp. |
| * |
| * Here, we just set the correct metadata to indicate that the FPSIMD |
| * state in the cpu regs (if any) belongs to current on the host. |
| */ |
| void kvm_arch_vcpu_load_fp(struct kvm_vcpu *vcpu) |
| { |
| BUG_ON(!current->mm); |
| BUG_ON(test_thread_flag(TIF_SVE)); |
| |
| vcpu->arch.flags &= ~KVM_ARM64_FP_ENABLED; |
| vcpu->arch.flags |= KVM_ARM64_FP_HOST; |
| |
| if (read_sysreg(cpacr_el1) & CPACR_EL1_ZEN_EL0EN) |
| vcpu->arch.flags |= KVM_ARM64_HOST_SVE_ENABLED; |
| } |
| |
| /* |
| * Called just before entering the guest once we are no longer |
| * preemptable. Syncs the host's TIF_FOREIGN_FPSTATE with the KVM |
| * mirror of the flag used by the hypervisor. |
| */ |
| void kvm_arch_vcpu_ctxflush_fp(struct kvm_vcpu *vcpu) |
| { |
| if (test_thread_flag(TIF_FOREIGN_FPSTATE)) |
| vcpu->arch.flags |= KVM_ARM64_FP_FOREIGN_FPSTATE; |
| else |
| vcpu->arch.flags &= ~KVM_ARM64_FP_FOREIGN_FPSTATE; |
| } |
| |
| /* |
| * Called just after exiting the guest. If the guest FPSIMD state |
| * was loaded, update the host's context tracking data mark the CPU |
| * FPSIMD regs as dirty and belonging to vcpu so that they will be |
| * written back if the kernel clobbers them due to kernel-mode NEON |
| * before re-entry into the guest. |
| */ |
| void kvm_arch_vcpu_ctxsync_fp(struct kvm_vcpu *vcpu) |
| { |
| WARN_ON_ONCE(!irqs_disabled()); |
| |
| if (vcpu->arch.flags & KVM_ARM64_FP_ENABLED) { |
| fpsimd_bind_state_to_cpu(&vcpu->arch.ctxt.fp_regs, |
| vcpu->arch.sve_state, |
| vcpu->arch.sve_max_vl); |
| |
| clear_thread_flag(TIF_FOREIGN_FPSTATE); |
| update_thread_flag(TIF_SVE, vcpu_has_sve(vcpu)); |
| } |
| } |
| |
| /* |
| * Write back the vcpu FPSIMD regs if they are dirty, and invalidate the |
| * cpu FPSIMD regs so that they can't be spuriously reused if this vcpu |
| * disappears and another task or vcpu appears that recycles the same |
| * struct fpsimd_state. |
| */ |
| void kvm_arch_vcpu_put_fp(struct kvm_vcpu *vcpu) |
| { |
| unsigned long flags; |
| |
| local_irq_save(flags); |
| |
| if (vcpu->arch.flags & KVM_ARM64_FP_ENABLED) { |
| if (vcpu_has_sve(vcpu)) { |
| __vcpu_sys_reg(vcpu, ZCR_EL1) = read_sysreg_el1(SYS_ZCR); |
| |
| /* Restore the VL that was saved when bound to the CPU */ |
| if (!has_vhe()) |
| sve_cond_update_zcr_vq(vcpu_sve_max_vq(vcpu) - 1, |
| SYS_ZCR_EL1); |
| } |
| |
| fpsimd_save_and_flush_cpu_state(); |
| } else if (has_vhe() && system_supports_sve()) { |
| /* |
| * The FPSIMD/SVE state in the CPU has not been touched, and we |
| * have SVE (and VHE): CPACR_EL1 (alias CPTR_EL2) has been |
| * reset to CPACR_EL1_DEFAULT by the Hyp code, disabling SVE |
| * for EL0. To avoid spurious traps, restore the trap state |
| * seen by kvm_arch_vcpu_load_fp(): |
| */ |
| if (vcpu->arch.flags & KVM_ARM64_HOST_SVE_ENABLED) |
| sysreg_clear_set(CPACR_EL1, 0, CPACR_EL1_ZEN_EL0EN); |
| else |
| sysreg_clear_set(CPACR_EL1, CPACR_EL1_ZEN_EL0EN, 0); |
| } |
| |
| update_thread_flag(TIF_SVE, 0); |
| |
| local_irq_restore(flags); |
| } |