| /* QLogic qed NIC Driver |
| * Copyright (c) 2015-2017 QLogic Corporation |
| * |
| * This software is available to you under a choice of one of two |
| * licenses. You may choose to be licensed under the terms of the GNU |
| * General Public License (GPL) Version 2, available from the file |
| * COPYING in the main directory of this source tree, or the |
| * OpenIB.org BSD license below: |
| * |
| * Redistribution and use in source and binary forms, with or |
| * without modification, are permitted provided that the following |
| * conditions are met: |
| * |
| * - Redistributions of source code must retain the above |
| * copyright notice, this list of conditions and the following |
| * disclaimer. |
| * |
| * - Redistributions in binary form must reproduce the above |
| * copyright notice, this list of conditions and the following |
| * disclaimer in the documentation and /or other materials |
| * provided with the distribution. |
| * |
| * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, |
| * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF |
| * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND |
| * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS |
| * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN |
| * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN |
| * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE |
| * SOFTWARE. |
| */ |
| |
| #include <linux/types.h> |
| #include <linux/io.h> |
| #include <linux/delay.h> |
| #include <linux/dma-mapping.h> |
| #include <linux/errno.h> |
| #include <linux/kernel.h> |
| #include <linux/list.h> |
| #include <linux/mutex.h> |
| #include <linux/pci.h> |
| #include <linux/slab.h> |
| #include <linux/spinlock.h> |
| #include <linux/string.h> |
| #include <linux/qed/qed_chain.h> |
| #include "qed.h" |
| #include "qed_hsi.h" |
| #include "qed_hw.h" |
| #include "qed_reg_addr.h" |
| #include "qed_sriov.h" |
| |
| #define QED_BAR_ACQUIRE_TIMEOUT 1000 |
| |
| /* Invalid values */ |
| #define QED_BAR_INVALID_OFFSET (cpu_to_le32(-1)) |
| |
| struct qed_ptt { |
| struct list_head list_entry; |
| unsigned int idx; |
| struct pxp_ptt_entry pxp; |
| }; |
| |
| struct qed_ptt_pool { |
| struct list_head free_list; |
| spinlock_t lock; /* ptt synchronized access */ |
| struct qed_ptt ptts[PXP_EXTERNAL_BAR_PF_WINDOW_NUM]; |
| }; |
| |
| int qed_ptt_pool_alloc(struct qed_hwfn *p_hwfn) |
| { |
| struct qed_ptt_pool *p_pool = kmalloc(sizeof(*p_pool), GFP_KERNEL); |
| int i; |
| |
| if (!p_pool) |
| return -ENOMEM; |
| |
| INIT_LIST_HEAD(&p_pool->free_list); |
| for (i = 0; i < PXP_EXTERNAL_BAR_PF_WINDOW_NUM; i++) { |
| p_pool->ptts[i].idx = i; |
| p_pool->ptts[i].pxp.offset = QED_BAR_INVALID_OFFSET; |
| p_pool->ptts[i].pxp.pretend.control = 0; |
| if (i >= RESERVED_PTT_MAX) |
| list_add(&p_pool->ptts[i].list_entry, |
| &p_pool->free_list); |
| } |
| |
| p_hwfn->p_ptt_pool = p_pool; |
| spin_lock_init(&p_pool->lock); |
| |
| return 0; |
| } |
| |
| void qed_ptt_invalidate(struct qed_hwfn *p_hwfn) |
| { |
| struct qed_ptt *p_ptt; |
| int i; |
| |
| for (i = 0; i < PXP_EXTERNAL_BAR_PF_WINDOW_NUM; i++) { |
| p_ptt = &p_hwfn->p_ptt_pool->ptts[i]; |
| p_ptt->pxp.offset = QED_BAR_INVALID_OFFSET; |
| } |
| } |
| |
| void qed_ptt_pool_free(struct qed_hwfn *p_hwfn) |
| { |
| kfree(p_hwfn->p_ptt_pool); |
| p_hwfn->p_ptt_pool = NULL; |
| } |
| |
| struct qed_ptt *qed_ptt_acquire(struct qed_hwfn *p_hwfn) |
| { |
| struct qed_ptt *p_ptt; |
| unsigned int i; |
| |
| /* Take the free PTT from the list */ |
| for (i = 0; i < QED_BAR_ACQUIRE_TIMEOUT; i++) { |
| spin_lock_bh(&p_hwfn->p_ptt_pool->lock); |
| |
| if (!list_empty(&p_hwfn->p_ptt_pool->free_list)) { |
| p_ptt = list_first_entry(&p_hwfn->p_ptt_pool->free_list, |
| struct qed_ptt, list_entry); |
| list_del(&p_ptt->list_entry); |
| |
| spin_unlock_bh(&p_hwfn->p_ptt_pool->lock); |
| |
| DP_VERBOSE(p_hwfn, NETIF_MSG_HW, |
| "allocated ptt %d\n", p_ptt->idx); |
| return p_ptt; |
| } |
| |
| spin_unlock_bh(&p_hwfn->p_ptt_pool->lock); |
| usleep_range(1000, 2000); |
| } |
| |
| DP_NOTICE(p_hwfn, "PTT acquire timeout - failed to allocate PTT\n"); |
| return NULL; |
| } |
| |
| void qed_ptt_release(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt) |
| { |
| spin_lock_bh(&p_hwfn->p_ptt_pool->lock); |
| list_add(&p_ptt->list_entry, &p_hwfn->p_ptt_pool->free_list); |
| spin_unlock_bh(&p_hwfn->p_ptt_pool->lock); |
| } |
| |
| u32 qed_ptt_get_hw_addr(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt) |
| { |
| /* The HW is using DWORDS and we need to translate it to Bytes */ |
| return le32_to_cpu(p_ptt->pxp.offset) << 2; |
| } |
| |
| static u32 qed_ptt_config_addr(struct qed_ptt *p_ptt) |
| { |
| return PXP_PF_WINDOW_ADMIN_PER_PF_START + |
| p_ptt->idx * sizeof(struct pxp_ptt_entry); |
| } |
| |
| u32 qed_ptt_get_bar_addr(struct qed_ptt *p_ptt) |
| { |
| return PXP_EXTERNAL_BAR_PF_WINDOW_START + |
| p_ptt->idx * PXP_EXTERNAL_BAR_PF_WINDOW_SINGLE_SIZE; |
| } |
| |
| void qed_ptt_set_win(struct qed_hwfn *p_hwfn, |
| struct qed_ptt *p_ptt, u32 new_hw_addr) |
| { |
| u32 prev_hw_addr; |
| |
| prev_hw_addr = qed_ptt_get_hw_addr(p_hwfn, p_ptt); |
| |
| if (new_hw_addr == prev_hw_addr) |
| return; |
| |
| /* Update PTT entery in admin window */ |
| DP_VERBOSE(p_hwfn, NETIF_MSG_HW, |
| "Updating PTT entry %d to offset 0x%x\n", |
| p_ptt->idx, new_hw_addr); |
| |
| /* The HW is using DWORDS and the address is in Bytes */ |
| p_ptt->pxp.offset = cpu_to_le32(new_hw_addr >> 2); |
| |
| REG_WR(p_hwfn, |
| qed_ptt_config_addr(p_ptt) + |
| offsetof(struct pxp_ptt_entry, offset), |
| le32_to_cpu(p_ptt->pxp.offset)); |
| } |
| |
| static u32 qed_set_ptt(struct qed_hwfn *p_hwfn, |
| struct qed_ptt *p_ptt, u32 hw_addr) |
| { |
| u32 win_hw_addr = qed_ptt_get_hw_addr(p_hwfn, p_ptt); |
| u32 offset; |
| |
| offset = hw_addr - win_hw_addr; |
| |
| /* Verify the address is within the window */ |
| if (hw_addr < win_hw_addr || |
| offset >= PXP_EXTERNAL_BAR_PF_WINDOW_SINGLE_SIZE) { |
| qed_ptt_set_win(p_hwfn, p_ptt, hw_addr); |
| offset = 0; |
| } |
| |
| return qed_ptt_get_bar_addr(p_ptt) + offset; |
| } |
| |
| struct qed_ptt *qed_get_reserved_ptt(struct qed_hwfn *p_hwfn, |
| enum reserved_ptts ptt_idx) |
| { |
| if (ptt_idx >= RESERVED_PTT_MAX) { |
| DP_NOTICE(p_hwfn, |
| "Requested PTT %d is out of range\n", ptt_idx); |
| return NULL; |
| } |
| |
| return &p_hwfn->p_ptt_pool->ptts[ptt_idx]; |
| } |
| |
| void qed_wr(struct qed_hwfn *p_hwfn, |
| struct qed_ptt *p_ptt, |
| u32 hw_addr, u32 val) |
| { |
| u32 bar_addr = qed_set_ptt(p_hwfn, p_ptt, hw_addr); |
| |
| REG_WR(p_hwfn, bar_addr, val); |
| DP_VERBOSE(p_hwfn, NETIF_MSG_HW, |
| "bar_addr 0x%x, hw_addr 0x%x, val 0x%x\n", |
| bar_addr, hw_addr, val); |
| } |
| |
| u32 qed_rd(struct qed_hwfn *p_hwfn, |
| struct qed_ptt *p_ptt, |
| u32 hw_addr) |
| { |
| u32 bar_addr = qed_set_ptt(p_hwfn, p_ptt, hw_addr); |
| u32 val = REG_RD(p_hwfn, bar_addr); |
| |
| DP_VERBOSE(p_hwfn, NETIF_MSG_HW, |
| "bar_addr 0x%x, hw_addr 0x%x, val 0x%x\n", |
| bar_addr, hw_addr, val); |
| |
| return val; |
| } |
| |
| static void qed_memcpy_hw(struct qed_hwfn *p_hwfn, |
| struct qed_ptt *p_ptt, |
| void *addr, u32 hw_addr, size_t n, bool to_device) |
| { |
| u32 dw_count, *host_addr, hw_offset; |
| size_t quota, done = 0; |
| u32 __iomem *reg_addr; |
| |
| while (done < n) { |
| quota = min_t(size_t, n - done, |
| PXP_EXTERNAL_BAR_PF_WINDOW_SINGLE_SIZE); |
| |
| if (IS_PF(p_hwfn->cdev)) { |
| qed_ptt_set_win(p_hwfn, p_ptt, hw_addr + done); |
| hw_offset = qed_ptt_get_bar_addr(p_ptt); |
| } else { |
| hw_offset = hw_addr + done; |
| } |
| |
| dw_count = quota / 4; |
| host_addr = (u32 *)((u8 *)addr + done); |
| reg_addr = (u32 __iomem *)REG_ADDR(p_hwfn, hw_offset); |
| if (to_device) |
| while (dw_count--) |
| DIRECT_REG_WR(reg_addr++, *host_addr++); |
| else |
| while (dw_count--) |
| *host_addr++ = DIRECT_REG_RD(reg_addr++); |
| |
| done += quota; |
| } |
| } |
| |
| void qed_memcpy_from(struct qed_hwfn *p_hwfn, |
| struct qed_ptt *p_ptt, void *dest, u32 hw_addr, size_t n) |
| { |
| DP_VERBOSE(p_hwfn, NETIF_MSG_HW, |
| "hw_addr 0x%x, dest %p hw_addr 0x%x, size %lu\n", |
| hw_addr, dest, hw_addr, (unsigned long)n); |
| |
| qed_memcpy_hw(p_hwfn, p_ptt, dest, hw_addr, n, false); |
| } |
| |
| void qed_memcpy_to(struct qed_hwfn *p_hwfn, |
| struct qed_ptt *p_ptt, u32 hw_addr, void *src, size_t n) |
| { |
| DP_VERBOSE(p_hwfn, NETIF_MSG_HW, |
| "hw_addr 0x%x, hw_addr 0x%x, src %p size %lu\n", |
| hw_addr, hw_addr, src, (unsigned long)n); |
| |
| qed_memcpy_hw(p_hwfn, p_ptt, src, hw_addr, n, true); |
| } |
| |
| void qed_fid_pretend(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt, u16 fid) |
| { |
| u16 control = 0; |
| |
| SET_FIELD(control, PXP_PRETEND_CMD_IS_CONCRETE, 1); |
| SET_FIELD(control, PXP_PRETEND_CMD_PRETEND_FUNCTION, 1); |
| |
| /* Every pretend undos previous pretends, including |
| * previous port pretend. |
| */ |
| SET_FIELD(control, PXP_PRETEND_CMD_PORT, 0); |
| SET_FIELD(control, PXP_PRETEND_CMD_USE_PORT, 0); |
| SET_FIELD(control, PXP_PRETEND_CMD_PRETEND_PORT, 1); |
| |
| if (!GET_FIELD(fid, PXP_CONCRETE_FID_VFVALID)) |
| fid = GET_FIELD(fid, PXP_CONCRETE_FID_PFID); |
| |
| p_ptt->pxp.pretend.control = cpu_to_le16(control); |
| p_ptt->pxp.pretend.fid.concrete_fid.fid = cpu_to_le16(fid); |
| |
| REG_WR(p_hwfn, |
| qed_ptt_config_addr(p_ptt) + |
| offsetof(struct pxp_ptt_entry, pretend), |
| *(u32 *)&p_ptt->pxp.pretend); |
| } |
| |
| void qed_port_pretend(struct qed_hwfn *p_hwfn, |
| struct qed_ptt *p_ptt, u8 port_id) |
| { |
| u16 control = 0; |
| |
| SET_FIELD(control, PXP_PRETEND_CMD_PORT, port_id); |
| SET_FIELD(control, PXP_PRETEND_CMD_USE_PORT, 1); |
| SET_FIELD(control, PXP_PRETEND_CMD_PRETEND_PORT, 1); |
| |
| p_ptt->pxp.pretend.control = cpu_to_le16(control); |
| |
| REG_WR(p_hwfn, |
| qed_ptt_config_addr(p_ptt) + |
| offsetof(struct pxp_ptt_entry, pretend), |
| *(u32 *)&p_ptt->pxp.pretend); |
| } |
| |
| void qed_port_unpretend(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt) |
| { |
| u16 control = 0; |
| |
| SET_FIELD(control, PXP_PRETEND_CMD_PORT, 0); |
| SET_FIELD(control, PXP_PRETEND_CMD_USE_PORT, 0); |
| SET_FIELD(control, PXP_PRETEND_CMD_PRETEND_PORT, 1); |
| |
| p_ptt->pxp.pretend.control = cpu_to_le16(control); |
| |
| REG_WR(p_hwfn, |
| qed_ptt_config_addr(p_ptt) + |
| offsetof(struct pxp_ptt_entry, pretend), |
| *(u32 *)&p_ptt->pxp.pretend); |
| } |
| |
| u32 qed_vfid_to_concrete(struct qed_hwfn *p_hwfn, u8 vfid) |
| { |
| u32 concrete_fid = 0; |
| |
| SET_FIELD(concrete_fid, PXP_CONCRETE_FID_PFID, p_hwfn->rel_pf_id); |
| SET_FIELD(concrete_fid, PXP_CONCRETE_FID_VFID, vfid); |
| SET_FIELD(concrete_fid, PXP_CONCRETE_FID_VFVALID, 1); |
| |
| return concrete_fid; |
| } |
| |
| /* DMAE */ |
| static void qed_dmae_opcode(struct qed_hwfn *p_hwfn, |
| const u8 is_src_type_grc, |
| const u8 is_dst_type_grc, |
| struct qed_dmae_params *p_params) |
| { |
| u16 opcode_b = 0; |
| u32 opcode = 0; |
| |
| /* Whether the source is the PCIe or the GRC. |
| * 0- The source is the PCIe |
| * 1- The source is the GRC. |
| */ |
| opcode |= (is_src_type_grc ? DMAE_CMD_SRC_MASK_GRC |
| : DMAE_CMD_SRC_MASK_PCIE) << |
| DMAE_CMD_SRC_SHIFT; |
| opcode |= ((p_hwfn->rel_pf_id & DMAE_CMD_SRC_PF_ID_MASK) << |
| DMAE_CMD_SRC_PF_ID_SHIFT); |
| |
| /* The destination of the DMA can be: 0-None 1-PCIe 2-GRC 3-None */ |
| opcode |= (is_dst_type_grc ? DMAE_CMD_DST_MASK_GRC |
| : DMAE_CMD_DST_MASK_PCIE) << |
| DMAE_CMD_DST_SHIFT; |
| opcode |= ((p_hwfn->rel_pf_id & DMAE_CMD_DST_PF_ID_MASK) << |
| DMAE_CMD_DST_PF_ID_SHIFT); |
| |
| /* Whether to write a completion word to the completion destination: |
| * 0-Do not write a completion word |
| * 1-Write the completion word |
| */ |
| opcode |= (DMAE_CMD_COMP_WORD_EN_MASK << DMAE_CMD_COMP_WORD_EN_SHIFT); |
| opcode |= (DMAE_CMD_SRC_ADDR_RESET_MASK << |
| DMAE_CMD_SRC_ADDR_RESET_SHIFT); |
| |
| if (p_params->flags & QED_DMAE_FLAG_COMPLETION_DST) |
| opcode |= (1 << DMAE_CMD_COMP_FUNC_SHIFT); |
| |
| opcode |= (DMAE_CMD_ENDIANITY << DMAE_CMD_ENDIANITY_MODE_SHIFT); |
| |
| opcode |= ((p_hwfn->port_id) << DMAE_CMD_PORT_ID_SHIFT); |
| |
| /* reset source address in next go */ |
| opcode |= (DMAE_CMD_SRC_ADDR_RESET_MASK << |
| DMAE_CMD_SRC_ADDR_RESET_SHIFT); |
| |
| /* reset dest address in next go */ |
| opcode |= (DMAE_CMD_DST_ADDR_RESET_MASK << |
| DMAE_CMD_DST_ADDR_RESET_SHIFT); |
| |
| /* SRC/DST VFID: all 1's - pf, otherwise VF id */ |
| if (p_params->flags & QED_DMAE_FLAG_VF_SRC) { |
| opcode |= 1 << DMAE_CMD_SRC_VF_ID_VALID_SHIFT; |
| opcode_b |= p_params->src_vfid << DMAE_CMD_SRC_VF_ID_SHIFT; |
| } else { |
| opcode_b |= DMAE_CMD_SRC_VF_ID_MASK << |
| DMAE_CMD_SRC_VF_ID_SHIFT; |
| } |
| |
| if (p_params->flags & QED_DMAE_FLAG_VF_DST) { |
| opcode |= 1 << DMAE_CMD_DST_VF_ID_VALID_SHIFT; |
| opcode_b |= p_params->dst_vfid << DMAE_CMD_DST_VF_ID_SHIFT; |
| } else { |
| opcode_b |= DMAE_CMD_DST_VF_ID_MASK << DMAE_CMD_DST_VF_ID_SHIFT; |
| } |
| |
| p_hwfn->dmae_info.p_dmae_cmd->opcode = cpu_to_le32(opcode); |
| p_hwfn->dmae_info.p_dmae_cmd->opcode_b = cpu_to_le16(opcode_b); |
| } |
| |
| u32 qed_dmae_idx_to_go_cmd(u8 idx) |
| { |
| /* All the DMAE 'go' registers form an array in internal memory */ |
| return DMAE_REG_GO_C0 + (idx << 2); |
| } |
| |
| static int qed_dmae_post_command(struct qed_hwfn *p_hwfn, |
| struct qed_ptt *p_ptt) |
| { |
| struct dmae_cmd *p_command = p_hwfn->dmae_info.p_dmae_cmd; |
| u8 idx_cmd = p_hwfn->dmae_info.channel, i; |
| int qed_status = 0; |
| |
| /* verify address is not NULL */ |
| if ((((!p_command->dst_addr_lo) && (!p_command->dst_addr_hi)) || |
| ((!p_command->src_addr_lo) && (!p_command->src_addr_hi)))) { |
| DP_NOTICE(p_hwfn, |
| "source or destination address 0 idx_cmd=%d\n" |
| "opcode = [0x%08x,0x%04x] len=0x%x src=0x%x:%x dst=0x%x:%x\n", |
| idx_cmd, |
| le32_to_cpu(p_command->opcode), |
| le16_to_cpu(p_command->opcode_b), |
| le16_to_cpu(p_command->length_dw), |
| le32_to_cpu(p_command->src_addr_hi), |
| le32_to_cpu(p_command->src_addr_lo), |
| le32_to_cpu(p_command->dst_addr_hi), |
| le32_to_cpu(p_command->dst_addr_lo)); |
| |
| return -EINVAL; |
| } |
| |
| DP_VERBOSE(p_hwfn, |
| NETIF_MSG_HW, |
| "Posting DMAE command [idx %d]: opcode = [0x%08x,0x%04x] len=0x%x src=0x%x:%x dst=0x%x:%x\n", |
| idx_cmd, |
| le32_to_cpu(p_command->opcode), |
| le16_to_cpu(p_command->opcode_b), |
| le16_to_cpu(p_command->length_dw), |
| le32_to_cpu(p_command->src_addr_hi), |
| le32_to_cpu(p_command->src_addr_lo), |
| le32_to_cpu(p_command->dst_addr_hi), |
| le32_to_cpu(p_command->dst_addr_lo)); |
| |
| /* Copy the command to DMAE - need to do it before every call |
| * for source/dest address no reset. |
| * The first 9 DWs are the command registers, the 10 DW is the |
| * GO register, and the rest are result registers |
| * (which are read only by the client). |
| */ |
| for (i = 0; i < DMAE_CMD_SIZE; i++) { |
| u32 data = (i < DMAE_CMD_SIZE_TO_FILL) ? |
| *(((u32 *)p_command) + i) : 0; |
| |
| qed_wr(p_hwfn, p_ptt, |
| DMAE_REG_CMD_MEM + |
| (idx_cmd * DMAE_CMD_SIZE * sizeof(u32)) + |
| (i * sizeof(u32)), data); |
| } |
| |
| qed_wr(p_hwfn, p_ptt, qed_dmae_idx_to_go_cmd(idx_cmd), DMAE_GO_VALUE); |
| |
| return qed_status; |
| } |
| |
| int qed_dmae_info_alloc(struct qed_hwfn *p_hwfn) |
| { |
| dma_addr_t *p_addr = &p_hwfn->dmae_info.completion_word_phys_addr; |
| struct dmae_cmd **p_cmd = &p_hwfn->dmae_info.p_dmae_cmd; |
| u32 **p_buff = &p_hwfn->dmae_info.p_intermediate_buffer; |
| u32 **p_comp = &p_hwfn->dmae_info.p_completion_word; |
| |
| *p_comp = dma_alloc_coherent(&p_hwfn->cdev->pdev->dev, |
| sizeof(u32), p_addr, GFP_KERNEL); |
| if (!*p_comp) |
| goto err; |
| |
| p_addr = &p_hwfn->dmae_info.dmae_cmd_phys_addr; |
| *p_cmd = dma_alloc_coherent(&p_hwfn->cdev->pdev->dev, |
| sizeof(struct dmae_cmd), |
| p_addr, GFP_KERNEL); |
| if (!*p_cmd) |
| goto err; |
| |
| p_addr = &p_hwfn->dmae_info.intermediate_buffer_phys_addr; |
| *p_buff = dma_alloc_coherent(&p_hwfn->cdev->pdev->dev, |
| sizeof(u32) * DMAE_MAX_RW_SIZE, |
| p_addr, GFP_KERNEL); |
| if (!*p_buff) |
| goto err; |
| |
| p_hwfn->dmae_info.channel = p_hwfn->rel_pf_id; |
| |
| return 0; |
| err: |
| qed_dmae_info_free(p_hwfn); |
| return -ENOMEM; |
| } |
| |
| void qed_dmae_info_free(struct qed_hwfn *p_hwfn) |
| { |
| dma_addr_t p_phys; |
| |
| /* Just make sure no one is in the middle */ |
| mutex_lock(&p_hwfn->dmae_info.mutex); |
| |
| if (p_hwfn->dmae_info.p_completion_word) { |
| p_phys = p_hwfn->dmae_info.completion_word_phys_addr; |
| dma_free_coherent(&p_hwfn->cdev->pdev->dev, |
| sizeof(u32), |
| p_hwfn->dmae_info.p_completion_word, p_phys); |
| p_hwfn->dmae_info.p_completion_word = NULL; |
| } |
| |
| if (p_hwfn->dmae_info.p_dmae_cmd) { |
| p_phys = p_hwfn->dmae_info.dmae_cmd_phys_addr; |
| dma_free_coherent(&p_hwfn->cdev->pdev->dev, |
| sizeof(struct dmae_cmd), |
| p_hwfn->dmae_info.p_dmae_cmd, p_phys); |
| p_hwfn->dmae_info.p_dmae_cmd = NULL; |
| } |
| |
| if (p_hwfn->dmae_info.p_intermediate_buffer) { |
| p_phys = p_hwfn->dmae_info.intermediate_buffer_phys_addr; |
| dma_free_coherent(&p_hwfn->cdev->pdev->dev, |
| sizeof(u32) * DMAE_MAX_RW_SIZE, |
| p_hwfn->dmae_info.p_intermediate_buffer, |
| p_phys); |
| p_hwfn->dmae_info.p_intermediate_buffer = NULL; |
| } |
| |
| mutex_unlock(&p_hwfn->dmae_info.mutex); |
| } |
| |
| static int qed_dmae_operation_wait(struct qed_hwfn *p_hwfn) |
| { |
| u32 wait_cnt_limit = 10000, wait_cnt = 0; |
| int qed_status = 0; |
| |
| barrier(); |
| while (*p_hwfn->dmae_info.p_completion_word != DMAE_COMPLETION_VAL) { |
| udelay(DMAE_MIN_WAIT_TIME); |
| if (++wait_cnt > wait_cnt_limit) { |
| DP_NOTICE(p_hwfn->cdev, |
| "Timed-out waiting for operation to complete. Completion word is 0x%08x expected 0x%08x.\n", |
| *p_hwfn->dmae_info.p_completion_word, |
| DMAE_COMPLETION_VAL); |
| qed_status = -EBUSY; |
| break; |
| } |
| |
| /* to sync the completion_word since we are not |
| * using the volatile keyword for p_completion_word |
| */ |
| barrier(); |
| } |
| |
| if (qed_status == 0) |
| *p_hwfn->dmae_info.p_completion_word = 0; |
| |
| return qed_status; |
| } |
| |
| static int qed_dmae_execute_sub_operation(struct qed_hwfn *p_hwfn, |
| struct qed_ptt *p_ptt, |
| u64 src_addr, |
| u64 dst_addr, |
| u8 src_type, |
| u8 dst_type, |
| u32 length_dw) |
| { |
| dma_addr_t phys = p_hwfn->dmae_info.intermediate_buffer_phys_addr; |
| struct dmae_cmd *cmd = p_hwfn->dmae_info.p_dmae_cmd; |
| int qed_status = 0; |
| |
| switch (src_type) { |
| case QED_DMAE_ADDRESS_GRC: |
| case QED_DMAE_ADDRESS_HOST_PHYS: |
| cmd->src_addr_hi = cpu_to_le32(upper_32_bits(src_addr)); |
| cmd->src_addr_lo = cpu_to_le32(lower_32_bits(src_addr)); |
| break; |
| /* for virtual source addresses we use the intermediate buffer. */ |
| case QED_DMAE_ADDRESS_HOST_VIRT: |
| cmd->src_addr_hi = cpu_to_le32(upper_32_bits(phys)); |
| cmd->src_addr_lo = cpu_to_le32(lower_32_bits(phys)); |
| memcpy(&p_hwfn->dmae_info.p_intermediate_buffer[0], |
| (void *)(uintptr_t)src_addr, |
| length_dw * sizeof(u32)); |
| break; |
| default: |
| return -EINVAL; |
| } |
| |
| switch (dst_type) { |
| case QED_DMAE_ADDRESS_GRC: |
| case QED_DMAE_ADDRESS_HOST_PHYS: |
| cmd->dst_addr_hi = cpu_to_le32(upper_32_bits(dst_addr)); |
| cmd->dst_addr_lo = cpu_to_le32(lower_32_bits(dst_addr)); |
| break; |
| /* for virtual source addresses we use the intermediate buffer. */ |
| case QED_DMAE_ADDRESS_HOST_VIRT: |
| cmd->dst_addr_hi = cpu_to_le32(upper_32_bits(phys)); |
| cmd->dst_addr_lo = cpu_to_le32(lower_32_bits(phys)); |
| break; |
| default: |
| return -EINVAL; |
| } |
| |
| cmd->length_dw = cpu_to_le16((u16)length_dw); |
| |
| qed_dmae_post_command(p_hwfn, p_ptt); |
| |
| qed_status = qed_dmae_operation_wait(p_hwfn); |
| |
| if (qed_status) { |
| DP_NOTICE(p_hwfn, |
| "qed_dmae_host2grc: Wait Failed. source_addr 0x%llx, grc_addr 0x%llx, size_in_dwords 0x%x\n", |
| src_addr, dst_addr, length_dw); |
| return qed_status; |
| } |
| |
| if (dst_type == QED_DMAE_ADDRESS_HOST_VIRT) |
| memcpy((void *)(uintptr_t)(dst_addr), |
| &p_hwfn->dmae_info.p_intermediate_buffer[0], |
| length_dw * sizeof(u32)); |
| |
| return 0; |
| } |
| |
| static int qed_dmae_execute_command(struct qed_hwfn *p_hwfn, |
| struct qed_ptt *p_ptt, |
| u64 src_addr, u64 dst_addr, |
| u8 src_type, u8 dst_type, |
| u32 size_in_dwords, |
| struct qed_dmae_params *p_params) |
| { |
| dma_addr_t phys = p_hwfn->dmae_info.completion_word_phys_addr; |
| u16 length_cur = 0, i = 0, cnt_split = 0, length_mod = 0; |
| struct dmae_cmd *cmd = p_hwfn->dmae_info.p_dmae_cmd; |
| u64 src_addr_split = 0, dst_addr_split = 0; |
| u16 length_limit = DMAE_MAX_RW_SIZE; |
| int qed_status = 0; |
| u32 offset = 0; |
| |
| qed_dmae_opcode(p_hwfn, |
| (src_type == QED_DMAE_ADDRESS_GRC), |
| (dst_type == QED_DMAE_ADDRESS_GRC), |
| p_params); |
| |
| cmd->comp_addr_lo = cpu_to_le32(lower_32_bits(phys)); |
| cmd->comp_addr_hi = cpu_to_le32(upper_32_bits(phys)); |
| cmd->comp_val = cpu_to_le32(DMAE_COMPLETION_VAL); |
| |
| /* Check if the grc_addr is valid like < MAX_GRC_OFFSET */ |
| cnt_split = size_in_dwords / length_limit; |
| length_mod = size_in_dwords % length_limit; |
| |
| src_addr_split = src_addr; |
| dst_addr_split = dst_addr; |
| |
| for (i = 0; i <= cnt_split; i++) { |
| offset = length_limit * i; |
| |
| if (!(p_params->flags & QED_DMAE_FLAG_RW_REPL_SRC)) { |
| if (src_type == QED_DMAE_ADDRESS_GRC) |
| src_addr_split = src_addr + offset; |
| else |
| src_addr_split = src_addr + (offset * 4); |
| } |
| |
| if (dst_type == QED_DMAE_ADDRESS_GRC) |
| dst_addr_split = dst_addr + offset; |
| else |
| dst_addr_split = dst_addr + (offset * 4); |
| |
| length_cur = (cnt_split == i) ? length_mod : length_limit; |
| |
| /* might be zero on last iteration */ |
| if (!length_cur) |
| continue; |
| |
| qed_status = qed_dmae_execute_sub_operation(p_hwfn, |
| p_ptt, |
| src_addr_split, |
| dst_addr_split, |
| src_type, |
| dst_type, |
| length_cur); |
| if (qed_status) { |
| DP_NOTICE(p_hwfn, |
| "qed_dmae_execute_sub_operation Failed with error 0x%x. source_addr 0x%llx, destination addr 0x%llx, size_in_dwords 0x%x\n", |
| qed_status, src_addr, dst_addr, length_cur); |
| break; |
| } |
| } |
| |
| return qed_status; |
| } |
| |
| int qed_dmae_host2grc(struct qed_hwfn *p_hwfn, |
| struct qed_ptt *p_ptt, |
| u64 source_addr, u32 grc_addr, u32 size_in_dwords, u32 flags) |
| { |
| u32 grc_addr_in_dw = grc_addr / sizeof(u32); |
| struct qed_dmae_params params; |
| int rc; |
| |
| memset(¶ms, 0, sizeof(struct qed_dmae_params)); |
| params.flags = flags; |
| |
| mutex_lock(&p_hwfn->dmae_info.mutex); |
| |
| rc = qed_dmae_execute_command(p_hwfn, p_ptt, source_addr, |
| grc_addr_in_dw, |
| QED_DMAE_ADDRESS_HOST_VIRT, |
| QED_DMAE_ADDRESS_GRC, |
| size_in_dwords, ¶ms); |
| |
| mutex_unlock(&p_hwfn->dmae_info.mutex); |
| |
| return rc; |
| } |
| |
| int qed_dmae_grc2host(struct qed_hwfn *p_hwfn, |
| struct qed_ptt *p_ptt, |
| u32 grc_addr, |
| dma_addr_t dest_addr, u32 size_in_dwords, u32 flags) |
| { |
| u32 grc_addr_in_dw = grc_addr / sizeof(u32); |
| struct qed_dmae_params params; |
| int rc; |
| |
| memset(¶ms, 0, sizeof(struct qed_dmae_params)); |
| params.flags = flags; |
| |
| mutex_lock(&p_hwfn->dmae_info.mutex); |
| |
| rc = qed_dmae_execute_command(p_hwfn, p_ptt, grc_addr_in_dw, |
| dest_addr, QED_DMAE_ADDRESS_GRC, |
| QED_DMAE_ADDRESS_HOST_VIRT, |
| size_in_dwords, ¶ms); |
| |
| mutex_unlock(&p_hwfn->dmae_info.mutex); |
| |
| return rc; |
| } |
| |
| int qed_dmae_host2host(struct qed_hwfn *p_hwfn, |
| struct qed_ptt *p_ptt, |
| dma_addr_t source_addr, |
| dma_addr_t dest_addr, |
| u32 size_in_dwords, struct qed_dmae_params *p_params) |
| { |
| int rc; |
| |
| mutex_lock(&(p_hwfn->dmae_info.mutex)); |
| |
| rc = qed_dmae_execute_command(p_hwfn, p_ptt, source_addr, |
| dest_addr, |
| QED_DMAE_ADDRESS_HOST_PHYS, |
| QED_DMAE_ADDRESS_HOST_PHYS, |
| size_in_dwords, p_params); |
| |
| mutex_unlock(&(p_hwfn->dmae_info.mutex)); |
| |
| return rc; |
| } |
| |
| u16 qed_get_qm_pq(struct qed_hwfn *p_hwfn, |
| enum protocol_type proto, union qed_qm_pq_params *p_params) |
| { |
| u16 pq_id = 0; |
| |
| if ((proto == PROTOCOLID_CORE || |
| proto == PROTOCOLID_ETH || |
| proto == PROTOCOLID_ISCSI || |
| proto == PROTOCOLID_ROCE) && !p_params) { |
| DP_NOTICE(p_hwfn, |
| "Protocol %d received NULL PQ params\n", proto); |
| return 0; |
| } |
| |
| switch (proto) { |
| case PROTOCOLID_CORE: |
| if (p_params->core.tc == LB_TC) |
| pq_id = p_hwfn->qm_info.pure_lb_pq; |
| else if (p_params->core.tc == OOO_LB_TC) |
| pq_id = p_hwfn->qm_info.ooo_pq; |
| else |
| pq_id = p_hwfn->qm_info.offload_pq; |
| break; |
| case PROTOCOLID_ETH: |
| pq_id = p_params->eth.tc; |
| if (p_params->eth.is_vf) |
| pq_id += p_hwfn->qm_info.vf_queues_offset + |
| p_params->eth.vf_id; |
| break; |
| case PROTOCOLID_ISCSI: |
| if (p_params->iscsi.q_idx == 1) |
| pq_id = p_hwfn->qm_info.pure_ack_pq; |
| break; |
| case PROTOCOLID_ROCE: |
| if (p_params->roce.dcqcn) |
| pq_id = p_params->roce.qpid; |
| else |
| pq_id = p_hwfn->qm_info.offload_pq; |
| if (pq_id > p_hwfn->qm_info.num_pf_rls) |
| pq_id = p_hwfn->qm_info.offload_pq; |
| break; |
| case PROTOCOLID_FCOE: |
| pq_id = p_hwfn->qm_info.offload_pq; |
| break; |
| default: |
| pq_id = 0; |
| } |
| |
| pq_id = CM_TX_PQ_BASE + pq_id + RESC_START(p_hwfn, QED_PQ); |
| |
| return pq_id; |
| } |