blob: a5fc0209d628eb921e6cbe0504309529c50d58a3 [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0+
// Copyright (c) 2016-2017 Hisilicon Limited.
#include <linux/dma-mapping.h>
#include <linux/etherdevice.h>
#include <linux/interrupt.h>
#ifdef CONFIG_RFS_ACCEL
#include <linux/cpu_rmap.h>
#endif
#include <linux/if_vlan.h>
#include <linux/irq.h>
#include <linux/ip.h>
#include <linux/ipv6.h>
#include <linux/module.h>
#include <linux/pci.h>
#include <linux/skbuff.h>
#include <linux/sctp.h>
#include <net/gre.h>
#include <net/gro.h>
#include <net/ip6_checksum.h>
#include <net/page_pool/helpers.h>
#include <net/pkt_cls.h>
#include <net/pkt_sched.h>
#include <net/tcp.h>
#include <net/vxlan.h>
#include <net/geneve.h>
#include "hnae3.h"
#include "hns3_enet.h"
/* All hns3 tracepoints are defined by the include below, which
* must be included exactly once across the whole kernel with
* CREATE_TRACE_POINTS defined
*/
#define CREATE_TRACE_POINTS
#include "hns3_trace.h"
#define hns3_set_field(origin, shift, val) ((origin) |= (val) << (shift))
#define hns3_tx_bd_count(S) DIV_ROUND_UP(S, HNS3_MAX_BD_SIZE)
#define hns3_rl_err(fmt, ...) \
do { \
if (net_ratelimit()) \
netdev_err(fmt, ##__VA_ARGS__); \
} while (0)
static void hns3_clear_all_ring(struct hnae3_handle *h, bool force);
static const char hns3_driver_name[] = "hns3";
static const char hns3_driver_string[] =
"Hisilicon Ethernet Network Driver for Hip08 Family";
static const char hns3_copyright[] = "Copyright (c) 2017 Huawei Corporation.";
static struct hnae3_client client;
static int debug = -1;
module_param(debug, int, 0);
MODULE_PARM_DESC(debug, " Network interface message level setting");
static unsigned int tx_sgl = 1;
module_param(tx_sgl, uint, 0600);
MODULE_PARM_DESC(tx_sgl, "Minimum number of frags when using dma_map_sg() to optimize the IOMMU mapping");
static bool page_pool_enabled = true;
module_param(page_pool_enabled, bool, 0400);
#define HNS3_SGL_SIZE(nfrag) (sizeof(struct scatterlist) * (nfrag) + \
sizeof(struct sg_table))
#define HNS3_MAX_SGL_SIZE ALIGN(HNS3_SGL_SIZE(HNS3_MAX_TSO_BD_NUM), \
dma_get_cache_alignment())
#define DEFAULT_MSG_LEVEL (NETIF_MSG_PROBE | NETIF_MSG_LINK | \
NETIF_MSG_IFDOWN | NETIF_MSG_IFUP)
#define HNS3_INNER_VLAN_TAG 1
#define HNS3_OUTER_VLAN_TAG 2
#define HNS3_MIN_TX_LEN 33U
#define HNS3_MIN_TUN_PKT_LEN 65U
/* hns3_pci_tbl - PCI Device ID Table
*
* Last entry must be all 0s
*
* { Vendor ID, Device ID, SubVendor ID, SubDevice ID,
* Class, Class Mask, private data (not used) }
*/
static const struct pci_device_id hns3_pci_tbl[] = {
{PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_GE), 0},
{PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_25GE), 0},
{PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_25GE_RDMA),
HNAE3_DEV_SUPPORT_ROCE_DCB_BITS},
{PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_25GE_RDMA_MACSEC),
HNAE3_DEV_SUPPORT_ROCE_DCB_BITS},
{PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_50GE_RDMA),
HNAE3_DEV_SUPPORT_ROCE_DCB_BITS},
{PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_50GE_RDMA_MACSEC),
HNAE3_DEV_SUPPORT_ROCE_DCB_BITS},
{PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_100G_RDMA_MACSEC),
HNAE3_DEV_SUPPORT_ROCE_DCB_BITS},
{PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_200G_RDMA),
HNAE3_DEV_SUPPORT_ROCE_DCB_BITS},
{PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_VF), 0},
{PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_RDMA_DCB_PFC_VF),
HNAE3_DEV_SUPPORT_ROCE_DCB_BITS},
/* required last entry */
{0,}
};
MODULE_DEVICE_TABLE(pci, hns3_pci_tbl);
#define HNS3_RX_PTYPE_ENTRY(ptype, l, s, t, h) \
{ ptype, \
l, \
CHECKSUM_##s, \
HNS3_L3_TYPE_##t, \
1, \
h}
#define HNS3_RX_PTYPE_UNUSED_ENTRY(ptype) \
{ ptype, 0, CHECKSUM_NONE, HNS3_L3_TYPE_PARSE_FAIL, 0, \
PKT_HASH_TYPE_NONE }
static const struct hns3_rx_ptype hns3_rx_ptype_tbl[] = {
HNS3_RX_PTYPE_UNUSED_ENTRY(0),
HNS3_RX_PTYPE_ENTRY(1, 0, COMPLETE, ARP, PKT_HASH_TYPE_NONE),
HNS3_RX_PTYPE_ENTRY(2, 0, COMPLETE, RARP, PKT_HASH_TYPE_NONE),
HNS3_RX_PTYPE_ENTRY(3, 0, COMPLETE, LLDP, PKT_HASH_TYPE_NONE),
HNS3_RX_PTYPE_ENTRY(4, 0, COMPLETE, PARSE_FAIL, PKT_HASH_TYPE_NONE),
HNS3_RX_PTYPE_ENTRY(5, 0, COMPLETE, PARSE_FAIL, PKT_HASH_TYPE_NONE),
HNS3_RX_PTYPE_ENTRY(6, 0, COMPLETE, PARSE_FAIL, PKT_HASH_TYPE_NONE),
HNS3_RX_PTYPE_ENTRY(7, 0, COMPLETE, CNM, PKT_HASH_TYPE_NONE),
HNS3_RX_PTYPE_ENTRY(8, 0, NONE, PARSE_FAIL, PKT_HASH_TYPE_NONE),
HNS3_RX_PTYPE_UNUSED_ENTRY(9),
HNS3_RX_PTYPE_UNUSED_ENTRY(10),
HNS3_RX_PTYPE_UNUSED_ENTRY(11),
HNS3_RX_PTYPE_UNUSED_ENTRY(12),
HNS3_RX_PTYPE_UNUSED_ENTRY(13),
HNS3_RX_PTYPE_UNUSED_ENTRY(14),
HNS3_RX_PTYPE_UNUSED_ENTRY(15),
HNS3_RX_PTYPE_ENTRY(16, 0, COMPLETE, PARSE_FAIL, PKT_HASH_TYPE_NONE),
HNS3_RX_PTYPE_ENTRY(17, 0, COMPLETE, IPV4, PKT_HASH_TYPE_NONE),
HNS3_RX_PTYPE_ENTRY(18, 0, COMPLETE, IPV4, PKT_HASH_TYPE_NONE),
HNS3_RX_PTYPE_ENTRY(19, 0, UNNECESSARY, IPV4, PKT_HASH_TYPE_L4),
HNS3_RX_PTYPE_ENTRY(20, 0, UNNECESSARY, IPV4, PKT_HASH_TYPE_L4),
HNS3_RX_PTYPE_ENTRY(21, 0, NONE, IPV4, PKT_HASH_TYPE_NONE),
HNS3_RX_PTYPE_ENTRY(22, 0, UNNECESSARY, IPV4, PKT_HASH_TYPE_L4),
HNS3_RX_PTYPE_ENTRY(23, 0, NONE, IPV4, PKT_HASH_TYPE_L3),
HNS3_RX_PTYPE_ENTRY(24, 0, NONE, IPV4, PKT_HASH_TYPE_L3),
HNS3_RX_PTYPE_ENTRY(25, 0, UNNECESSARY, IPV4, PKT_HASH_TYPE_L4),
HNS3_RX_PTYPE_UNUSED_ENTRY(26),
HNS3_RX_PTYPE_UNUSED_ENTRY(27),
HNS3_RX_PTYPE_UNUSED_ENTRY(28),
HNS3_RX_PTYPE_ENTRY(29, 0, COMPLETE, PARSE_FAIL, PKT_HASH_TYPE_NONE),
HNS3_RX_PTYPE_ENTRY(30, 0, COMPLETE, PARSE_FAIL, PKT_HASH_TYPE_NONE),
HNS3_RX_PTYPE_ENTRY(31, 0, COMPLETE, IPV4, PKT_HASH_TYPE_L3),
HNS3_RX_PTYPE_ENTRY(32, 0, COMPLETE, IPV4, PKT_HASH_TYPE_L3),
HNS3_RX_PTYPE_ENTRY(33, 1, UNNECESSARY, IPV4, PKT_HASH_TYPE_L4),
HNS3_RX_PTYPE_ENTRY(34, 1, UNNECESSARY, IPV4, PKT_HASH_TYPE_L4),
HNS3_RX_PTYPE_ENTRY(35, 1, UNNECESSARY, IPV4, PKT_HASH_TYPE_L4),
HNS3_RX_PTYPE_ENTRY(36, 0, COMPLETE, IPV4, PKT_HASH_TYPE_L3),
HNS3_RX_PTYPE_ENTRY(37, 0, COMPLETE, IPV4, PKT_HASH_TYPE_L3),
HNS3_RX_PTYPE_UNUSED_ENTRY(38),
HNS3_RX_PTYPE_ENTRY(39, 0, COMPLETE, IPV6, PKT_HASH_TYPE_L3),
HNS3_RX_PTYPE_ENTRY(40, 0, COMPLETE, IPV6, PKT_HASH_TYPE_L3),
HNS3_RX_PTYPE_ENTRY(41, 1, UNNECESSARY, IPV6, PKT_HASH_TYPE_L4),
HNS3_RX_PTYPE_ENTRY(42, 1, UNNECESSARY, IPV6, PKT_HASH_TYPE_L4),
HNS3_RX_PTYPE_ENTRY(43, 1, UNNECESSARY, IPV6, PKT_HASH_TYPE_L4),
HNS3_RX_PTYPE_ENTRY(44, 0, COMPLETE, IPV6, PKT_HASH_TYPE_L3),
HNS3_RX_PTYPE_ENTRY(45, 0, COMPLETE, IPV6, PKT_HASH_TYPE_L3),
HNS3_RX_PTYPE_UNUSED_ENTRY(46),
HNS3_RX_PTYPE_UNUSED_ENTRY(47),
HNS3_RX_PTYPE_UNUSED_ENTRY(48),
HNS3_RX_PTYPE_UNUSED_ENTRY(49),
HNS3_RX_PTYPE_UNUSED_ENTRY(50),
HNS3_RX_PTYPE_UNUSED_ENTRY(51),
HNS3_RX_PTYPE_UNUSED_ENTRY(52),
HNS3_RX_PTYPE_UNUSED_ENTRY(53),
HNS3_RX_PTYPE_UNUSED_ENTRY(54),
HNS3_RX_PTYPE_UNUSED_ENTRY(55),
HNS3_RX_PTYPE_UNUSED_ENTRY(56),
HNS3_RX_PTYPE_UNUSED_ENTRY(57),
HNS3_RX_PTYPE_UNUSED_ENTRY(58),
HNS3_RX_PTYPE_UNUSED_ENTRY(59),
HNS3_RX_PTYPE_UNUSED_ENTRY(60),
HNS3_RX_PTYPE_UNUSED_ENTRY(61),
HNS3_RX_PTYPE_UNUSED_ENTRY(62),
HNS3_RX_PTYPE_UNUSED_ENTRY(63),
HNS3_RX_PTYPE_UNUSED_ENTRY(64),
HNS3_RX_PTYPE_UNUSED_ENTRY(65),
HNS3_RX_PTYPE_UNUSED_ENTRY(66),
HNS3_RX_PTYPE_UNUSED_ENTRY(67),
HNS3_RX_PTYPE_UNUSED_ENTRY(68),
HNS3_RX_PTYPE_UNUSED_ENTRY(69),
HNS3_RX_PTYPE_UNUSED_ENTRY(70),
HNS3_RX_PTYPE_UNUSED_ENTRY(71),
HNS3_RX_PTYPE_UNUSED_ENTRY(72),
HNS3_RX_PTYPE_UNUSED_ENTRY(73),
HNS3_RX_PTYPE_UNUSED_ENTRY(74),
HNS3_RX_PTYPE_UNUSED_ENTRY(75),
HNS3_RX_PTYPE_UNUSED_ENTRY(76),
HNS3_RX_PTYPE_UNUSED_ENTRY(77),
HNS3_RX_PTYPE_UNUSED_ENTRY(78),
HNS3_RX_PTYPE_UNUSED_ENTRY(79),
HNS3_RX_PTYPE_UNUSED_ENTRY(80),
HNS3_RX_PTYPE_UNUSED_ENTRY(81),
HNS3_RX_PTYPE_UNUSED_ENTRY(82),
HNS3_RX_PTYPE_UNUSED_ENTRY(83),
HNS3_RX_PTYPE_UNUSED_ENTRY(84),
HNS3_RX_PTYPE_UNUSED_ENTRY(85),
HNS3_RX_PTYPE_UNUSED_ENTRY(86),
HNS3_RX_PTYPE_UNUSED_ENTRY(87),
HNS3_RX_PTYPE_UNUSED_ENTRY(88),
HNS3_RX_PTYPE_UNUSED_ENTRY(89),
HNS3_RX_PTYPE_UNUSED_ENTRY(90),
HNS3_RX_PTYPE_UNUSED_ENTRY(91),
HNS3_RX_PTYPE_UNUSED_ENTRY(92),
HNS3_RX_PTYPE_UNUSED_ENTRY(93),
HNS3_RX_PTYPE_UNUSED_ENTRY(94),
HNS3_RX_PTYPE_UNUSED_ENTRY(95),
HNS3_RX_PTYPE_UNUSED_ENTRY(96),
HNS3_RX_PTYPE_UNUSED_ENTRY(97),
HNS3_RX_PTYPE_UNUSED_ENTRY(98),
HNS3_RX_PTYPE_UNUSED_ENTRY(99),
HNS3_RX_PTYPE_UNUSED_ENTRY(100),
HNS3_RX_PTYPE_UNUSED_ENTRY(101),
HNS3_RX_PTYPE_UNUSED_ENTRY(102),
HNS3_RX_PTYPE_UNUSED_ENTRY(103),
HNS3_RX_PTYPE_UNUSED_ENTRY(104),
HNS3_RX_PTYPE_UNUSED_ENTRY(105),
HNS3_RX_PTYPE_UNUSED_ENTRY(106),
HNS3_RX_PTYPE_UNUSED_ENTRY(107),
HNS3_RX_PTYPE_UNUSED_ENTRY(108),
HNS3_RX_PTYPE_UNUSED_ENTRY(109),
HNS3_RX_PTYPE_UNUSED_ENTRY(110),
HNS3_RX_PTYPE_ENTRY(111, 0, COMPLETE, IPV6, PKT_HASH_TYPE_L3),
HNS3_RX_PTYPE_ENTRY(112, 0, COMPLETE, IPV6, PKT_HASH_TYPE_L3),
HNS3_RX_PTYPE_ENTRY(113, 0, UNNECESSARY, IPV6, PKT_HASH_TYPE_L4),
HNS3_RX_PTYPE_ENTRY(114, 0, UNNECESSARY, IPV6, PKT_HASH_TYPE_L4),
HNS3_RX_PTYPE_ENTRY(115, 0, NONE, IPV6, PKT_HASH_TYPE_L3),
HNS3_RX_PTYPE_ENTRY(116, 0, UNNECESSARY, IPV6, PKT_HASH_TYPE_L4),
HNS3_RX_PTYPE_ENTRY(117, 0, NONE, IPV6, PKT_HASH_TYPE_L3),
HNS3_RX_PTYPE_ENTRY(118, 0, NONE, IPV6, PKT_HASH_TYPE_L3),
HNS3_RX_PTYPE_ENTRY(119, 0, UNNECESSARY, IPV6, PKT_HASH_TYPE_L4),
HNS3_RX_PTYPE_UNUSED_ENTRY(120),
HNS3_RX_PTYPE_UNUSED_ENTRY(121),
HNS3_RX_PTYPE_UNUSED_ENTRY(122),
HNS3_RX_PTYPE_ENTRY(123, 0, COMPLETE, PARSE_FAIL, PKT_HASH_TYPE_NONE),
HNS3_RX_PTYPE_ENTRY(124, 0, COMPLETE, PARSE_FAIL, PKT_HASH_TYPE_NONE),
HNS3_RX_PTYPE_ENTRY(125, 0, COMPLETE, IPV4, PKT_HASH_TYPE_L3),
HNS3_RX_PTYPE_ENTRY(126, 0, COMPLETE, IPV4, PKT_HASH_TYPE_L3),
HNS3_RX_PTYPE_ENTRY(127, 1, UNNECESSARY, IPV4, PKT_HASH_TYPE_L4),
HNS3_RX_PTYPE_ENTRY(128, 1, UNNECESSARY, IPV4, PKT_HASH_TYPE_L4),
HNS3_RX_PTYPE_ENTRY(129, 1, UNNECESSARY, IPV4, PKT_HASH_TYPE_L4),
HNS3_RX_PTYPE_ENTRY(130, 0, COMPLETE, IPV4, PKT_HASH_TYPE_L3),
HNS3_RX_PTYPE_ENTRY(131, 0, COMPLETE, IPV4, PKT_HASH_TYPE_L3),
HNS3_RX_PTYPE_UNUSED_ENTRY(132),
HNS3_RX_PTYPE_ENTRY(133, 0, COMPLETE, IPV6, PKT_HASH_TYPE_L3),
HNS3_RX_PTYPE_ENTRY(134, 0, COMPLETE, IPV6, PKT_HASH_TYPE_L3),
HNS3_RX_PTYPE_ENTRY(135, 1, UNNECESSARY, IPV6, PKT_HASH_TYPE_L4),
HNS3_RX_PTYPE_ENTRY(136, 1, UNNECESSARY, IPV6, PKT_HASH_TYPE_L4),
HNS3_RX_PTYPE_ENTRY(137, 1, UNNECESSARY, IPV6, PKT_HASH_TYPE_L4),
HNS3_RX_PTYPE_ENTRY(138, 0, COMPLETE, IPV6, PKT_HASH_TYPE_L3),
HNS3_RX_PTYPE_ENTRY(139, 0, COMPLETE, IPV6, PKT_HASH_TYPE_L3),
HNS3_RX_PTYPE_UNUSED_ENTRY(140),
HNS3_RX_PTYPE_UNUSED_ENTRY(141),
HNS3_RX_PTYPE_UNUSED_ENTRY(142),
HNS3_RX_PTYPE_UNUSED_ENTRY(143),
HNS3_RX_PTYPE_UNUSED_ENTRY(144),
HNS3_RX_PTYPE_UNUSED_ENTRY(145),
HNS3_RX_PTYPE_UNUSED_ENTRY(146),
HNS3_RX_PTYPE_UNUSED_ENTRY(147),
HNS3_RX_PTYPE_UNUSED_ENTRY(148),
HNS3_RX_PTYPE_UNUSED_ENTRY(149),
HNS3_RX_PTYPE_UNUSED_ENTRY(150),
HNS3_RX_PTYPE_UNUSED_ENTRY(151),
HNS3_RX_PTYPE_UNUSED_ENTRY(152),
HNS3_RX_PTYPE_UNUSED_ENTRY(153),
HNS3_RX_PTYPE_UNUSED_ENTRY(154),
HNS3_RX_PTYPE_UNUSED_ENTRY(155),
HNS3_RX_PTYPE_UNUSED_ENTRY(156),
HNS3_RX_PTYPE_UNUSED_ENTRY(157),
HNS3_RX_PTYPE_UNUSED_ENTRY(158),
HNS3_RX_PTYPE_UNUSED_ENTRY(159),
HNS3_RX_PTYPE_UNUSED_ENTRY(160),
HNS3_RX_PTYPE_UNUSED_ENTRY(161),
HNS3_RX_PTYPE_UNUSED_ENTRY(162),
HNS3_RX_PTYPE_UNUSED_ENTRY(163),
HNS3_RX_PTYPE_UNUSED_ENTRY(164),
HNS3_RX_PTYPE_UNUSED_ENTRY(165),
HNS3_RX_PTYPE_UNUSED_ENTRY(166),
HNS3_RX_PTYPE_UNUSED_ENTRY(167),
HNS3_RX_PTYPE_UNUSED_ENTRY(168),
HNS3_RX_PTYPE_UNUSED_ENTRY(169),
HNS3_RX_PTYPE_UNUSED_ENTRY(170),
HNS3_RX_PTYPE_UNUSED_ENTRY(171),
HNS3_RX_PTYPE_UNUSED_ENTRY(172),
HNS3_RX_PTYPE_UNUSED_ENTRY(173),
HNS3_RX_PTYPE_UNUSED_ENTRY(174),
HNS3_RX_PTYPE_UNUSED_ENTRY(175),
HNS3_RX_PTYPE_UNUSED_ENTRY(176),
HNS3_RX_PTYPE_UNUSED_ENTRY(177),
HNS3_RX_PTYPE_UNUSED_ENTRY(178),
HNS3_RX_PTYPE_UNUSED_ENTRY(179),
HNS3_RX_PTYPE_UNUSED_ENTRY(180),
HNS3_RX_PTYPE_UNUSED_ENTRY(181),
HNS3_RX_PTYPE_UNUSED_ENTRY(182),
HNS3_RX_PTYPE_UNUSED_ENTRY(183),
HNS3_RX_PTYPE_UNUSED_ENTRY(184),
HNS3_RX_PTYPE_UNUSED_ENTRY(185),
HNS3_RX_PTYPE_UNUSED_ENTRY(186),
HNS3_RX_PTYPE_UNUSED_ENTRY(187),
HNS3_RX_PTYPE_UNUSED_ENTRY(188),
HNS3_RX_PTYPE_UNUSED_ENTRY(189),
HNS3_RX_PTYPE_UNUSED_ENTRY(190),
HNS3_RX_PTYPE_UNUSED_ENTRY(191),
HNS3_RX_PTYPE_UNUSED_ENTRY(192),
HNS3_RX_PTYPE_UNUSED_ENTRY(193),
HNS3_RX_PTYPE_UNUSED_ENTRY(194),
HNS3_RX_PTYPE_UNUSED_ENTRY(195),
HNS3_RX_PTYPE_UNUSED_ENTRY(196),
HNS3_RX_PTYPE_UNUSED_ENTRY(197),
HNS3_RX_PTYPE_UNUSED_ENTRY(198),
HNS3_RX_PTYPE_UNUSED_ENTRY(199),
HNS3_RX_PTYPE_UNUSED_ENTRY(200),
HNS3_RX_PTYPE_UNUSED_ENTRY(201),
HNS3_RX_PTYPE_UNUSED_ENTRY(202),
HNS3_RX_PTYPE_UNUSED_ENTRY(203),
HNS3_RX_PTYPE_UNUSED_ENTRY(204),
HNS3_RX_PTYPE_UNUSED_ENTRY(205),
HNS3_RX_PTYPE_UNUSED_ENTRY(206),
HNS3_RX_PTYPE_UNUSED_ENTRY(207),
HNS3_RX_PTYPE_UNUSED_ENTRY(208),
HNS3_RX_PTYPE_UNUSED_ENTRY(209),
HNS3_RX_PTYPE_UNUSED_ENTRY(210),
HNS3_RX_PTYPE_UNUSED_ENTRY(211),
HNS3_RX_PTYPE_UNUSED_ENTRY(212),
HNS3_RX_PTYPE_UNUSED_ENTRY(213),
HNS3_RX_PTYPE_UNUSED_ENTRY(214),
HNS3_RX_PTYPE_UNUSED_ENTRY(215),
HNS3_RX_PTYPE_UNUSED_ENTRY(216),
HNS3_RX_PTYPE_UNUSED_ENTRY(217),
HNS3_RX_PTYPE_UNUSED_ENTRY(218),
HNS3_RX_PTYPE_UNUSED_ENTRY(219),
HNS3_RX_PTYPE_UNUSED_ENTRY(220),
HNS3_RX_PTYPE_UNUSED_ENTRY(221),
HNS3_RX_PTYPE_UNUSED_ENTRY(222),
HNS3_RX_PTYPE_UNUSED_ENTRY(223),
HNS3_RX_PTYPE_UNUSED_ENTRY(224),
HNS3_RX_PTYPE_UNUSED_ENTRY(225),
HNS3_RX_PTYPE_UNUSED_ENTRY(226),
HNS3_RX_PTYPE_UNUSED_ENTRY(227),
HNS3_RX_PTYPE_UNUSED_ENTRY(228),
HNS3_RX_PTYPE_UNUSED_ENTRY(229),
HNS3_RX_PTYPE_UNUSED_ENTRY(230),
HNS3_RX_PTYPE_UNUSED_ENTRY(231),
HNS3_RX_PTYPE_UNUSED_ENTRY(232),
HNS3_RX_PTYPE_UNUSED_ENTRY(233),
HNS3_RX_PTYPE_UNUSED_ENTRY(234),
HNS3_RX_PTYPE_UNUSED_ENTRY(235),
HNS3_RX_PTYPE_UNUSED_ENTRY(236),
HNS3_RX_PTYPE_UNUSED_ENTRY(237),
HNS3_RX_PTYPE_UNUSED_ENTRY(238),
HNS3_RX_PTYPE_UNUSED_ENTRY(239),
HNS3_RX_PTYPE_UNUSED_ENTRY(240),
HNS3_RX_PTYPE_UNUSED_ENTRY(241),
HNS3_RX_PTYPE_UNUSED_ENTRY(242),
HNS3_RX_PTYPE_UNUSED_ENTRY(243),
HNS3_RX_PTYPE_UNUSED_ENTRY(244),
HNS3_RX_PTYPE_UNUSED_ENTRY(245),
HNS3_RX_PTYPE_UNUSED_ENTRY(246),
HNS3_RX_PTYPE_UNUSED_ENTRY(247),
HNS3_RX_PTYPE_UNUSED_ENTRY(248),
HNS3_RX_PTYPE_UNUSED_ENTRY(249),
HNS3_RX_PTYPE_UNUSED_ENTRY(250),
HNS3_RX_PTYPE_UNUSED_ENTRY(251),
HNS3_RX_PTYPE_UNUSED_ENTRY(252),
HNS3_RX_PTYPE_UNUSED_ENTRY(253),
HNS3_RX_PTYPE_UNUSED_ENTRY(254),
HNS3_RX_PTYPE_UNUSED_ENTRY(255),
};
#define HNS3_INVALID_PTYPE \
ARRAY_SIZE(hns3_rx_ptype_tbl)
static irqreturn_t hns3_irq_handle(int irq, void *vector)
{
struct hns3_enet_tqp_vector *tqp_vector = vector;
napi_schedule_irqoff(&tqp_vector->napi);
tqp_vector->event_cnt++;
return IRQ_HANDLED;
}
static void hns3_nic_uninit_irq(struct hns3_nic_priv *priv)
{
struct hns3_enet_tqp_vector *tqp_vectors;
unsigned int i;
for (i = 0; i < priv->vector_num; i++) {
tqp_vectors = &priv->tqp_vector[i];
if (tqp_vectors->irq_init_flag != HNS3_VECTOR_INITED)
continue;
/* clear the affinity mask */
irq_set_affinity_hint(tqp_vectors->vector_irq, NULL);
/* release the irq resource */
free_irq(tqp_vectors->vector_irq, tqp_vectors);
tqp_vectors->irq_init_flag = HNS3_VECTOR_NOT_INITED;
}
}
static int hns3_nic_init_irq(struct hns3_nic_priv *priv)
{
struct hns3_enet_tqp_vector *tqp_vectors;
int txrx_int_idx = 0;
int rx_int_idx = 0;
int tx_int_idx = 0;
unsigned int i;
int ret;
for (i = 0; i < priv->vector_num; i++) {
tqp_vectors = &priv->tqp_vector[i];
if (tqp_vectors->irq_init_flag == HNS3_VECTOR_INITED)
continue;
if (tqp_vectors->tx_group.ring && tqp_vectors->rx_group.ring) {
snprintf(tqp_vectors->name, HNAE3_INT_NAME_LEN,
"%s-%s-%s-%d", hns3_driver_name,
pci_name(priv->ae_handle->pdev),
"TxRx", txrx_int_idx++);
txrx_int_idx++;
} else if (tqp_vectors->rx_group.ring) {
snprintf(tqp_vectors->name, HNAE3_INT_NAME_LEN,
"%s-%s-%s-%d", hns3_driver_name,
pci_name(priv->ae_handle->pdev),
"Rx", rx_int_idx++);
} else if (tqp_vectors->tx_group.ring) {
snprintf(tqp_vectors->name, HNAE3_INT_NAME_LEN,
"%s-%s-%s-%d", hns3_driver_name,
pci_name(priv->ae_handle->pdev),
"Tx", tx_int_idx++);
} else {
/* Skip this unused q_vector */
continue;
}
tqp_vectors->name[HNAE3_INT_NAME_LEN - 1] = '\0';
irq_set_status_flags(tqp_vectors->vector_irq, IRQ_NOAUTOEN);
ret = request_irq(tqp_vectors->vector_irq, hns3_irq_handle, 0,
tqp_vectors->name, tqp_vectors);
if (ret) {
netdev_err(priv->netdev, "request irq(%d) fail\n",
tqp_vectors->vector_irq);
hns3_nic_uninit_irq(priv);
return ret;
}
irq_set_affinity_hint(tqp_vectors->vector_irq,
&tqp_vectors->affinity_mask);
tqp_vectors->irq_init_flag = HNS3_VECTOR_INITED;
}
return 0;
}
static void hns3_mask_vector_irq(struct hns3_enet_tqp_vector *tqp_vector,
u32 mask_en)
{
writel(mask_en, tqp_vector->mask_addr);
}
static void hns3_vector_enable(struct hns3_enet_tqp_vector *tqp_vector)
{
napi_enable(&tqp_vector->napi);
enable_irq(tqp_vector->vector_irq);
/* enable vector */
hns3_mask_vector_irq(tqp_vector, 1);
}
static void hns3_vector_disable(struct hns3_enet_tqp_vector *tqp_vector)
{
/* disable vector */
hns3_mask_vector_irq(tqp_vector, 0);
disable_irq(tqp_vector->vector_irq);
napi_disable(&tqp_vector->napi);
cancel_work_sync(&tqp_vector->rx_group.dim.work);
cancel_work_sync(&tqp_vector->tx_group.dim.work);
}
void hns3_set_vector_coalesce_rl(struct hns3_enet_tqp_vector *tqp_vector,
u32 rl_value)
{
u32 rl_reg = hns3_rl_usec_to_reg(rl_value);
/* this defines the configuration for RL (Interrupt Rate Limiter).
* Rl defines rate of interrupts i.e. number of interrupts-per-second
* GL and RL(Rate Limiter) are 2 ways to acheive interrupt coalescing
*/
if (rl_reg > 0 && !tqp_vector->tx_group.coal.adapt_enable &&
!tqp_vector->rx_group.coal.adapt_enable)
/* According to the hardware, the range of rl_reg is
* 0-59 and the unit is 4.
*/
rl_reg |= HNS3_INT_RL_ENABLE_MASK;
writel(rl_reg, tqp_vector->mask_addr + HNS3_VECTOR_RL_OFFSET);
}
void hns3_set_vector_coalesce_rx_gl(struct hns3_enet_tqp_vector *tqp_vector,
u32 gl_value)
{
u32 new_val;
if (tqp_vector->rx_group.coal.unit_1us)
new_val = gl_value | HNS3_INT_GL_1US;
else
new_val = hns3_gl_usec_to_reg(gl_value);
writel(new_val, tqp_vector->mask_addr + HNS3_VECTOR_GL0_OFFSET);
}
void hns3_set_vector_coalesce_tx_gl(struct hns3_enet_tqp_vector *tqp_vector,
u32 gl_value)
{
u32 new_val;
if (tqp_vector->tx_group.coal.unit_1us)
new_val = gl_value | HNS3_INT_GL_1US;
else
new_val = hns3_gl_usec_to_reg(gl_value);
writel(new_val, tqp_vector->mask_addr + HNS3_VECTOR_GL1_OFFSET);
}
void hns3_set_vector_coalesce_tx_ql(struct hns3_enet_tqp_vector *tqp_vector,
u32 ql_value)
{
writel(ql_value, tqp_vector->mask_addr + HNS3_VECTOR_TX_QL_OFFSET);
}
void hns3_set_vector_coalesce_rx_ql(struct hns3_enet_tqp_vector *tqp_vector,
u32 ql_value)
{
writel(ql_value, tqp_vector->mask_addr + HNS3_VECTOR_RX_QL_OFFSET);
}
static void hns3_vector_coalesce_init(struct hns3_enet_tqp_vector *tqp_vector,
struct hns3_nic_priv *priv)
{
struct hnae3_ae_dev *ae_dev = pci_get_drvdata(priv->ae_handle->pdev);
struct hns3_enet_coalesce *tx_coal = &tqp_vector->tx_group.coal;
struct hns3_enet_coalesce *rx_coal = &tqp_vector->rx_group.coal;
struct hns3_enet_coalesce *ptx_coal = &priv->tx_coal;
struct hns3_enet_coalesce *prx_coal = &priv->rx_coal;
tx_coal->adapt_enable = ptx_coal->adapt_enable;
rx_coal->adapt_enable = prx_coal->adapt_enable;
tx_coal->int_gl = ptx_coal->int_gl;
rx_coal->int_gl = prx_coal->int_gl;
rx_coal->flow_level = prx_coal->flow_level;
tx_coal->flow_level = ptx_coal->flow_level;
/* device version above V3(include V3), GL can configure 1us
* unit, so uses 1us unit.
*/
if (ae_dev->dev_version >= HNAE3_DEVICE_VERSION_V3) {
tx_coal->unit_1us = 1;
rx_coal->unit_1us = 1;
}
if (ae_dev->dev_specs.int_ql_max) {
tx_coal->ql_enable = 1;
rx_coal->ql_enable = 1;
tx_coal->int_ql_max = ae_dev->dev_specs.int_ql_max;
rx_coal->int_ql_max = ae_dev->dev_specs.int_ql_max;
tx_coal->int_ql = ptx_coal->int_ql;
rx_coal->int_ql = prx_coal->int_ql;
}
}
static void
hns3_vector_coalesce_init_hw(struct hns3_enet_tqp_vector *tqp_vector,
struct hns3_nic_priv *priv)
{
struct hns3_enet_coalesce *tx_coal = &tqp_vector->tx_group.coal;
struct hns3_enet_coalesce *rx_coal = &tqp_vector->rx_group.coal;
struct hnae3_handle *h = priv->ae_handle;
hns3_set_vector_coalesce_tx_gl(tqp_vector, tx_coal->int_gl);
hns3_set_vector_coalesce_rx_gl(tqp_vector, rx_coal->int_gl);
hns3_set_vector_coalesce_rl(tqp_vector, h->kinfo.int_rl_setting);
if (tx_coal->ql_enable)
hns3_set_vector_coalesce_tx_ql(tqp_vector, tx_coal->int_ql);
if (rx_coal->ql_enable)
hns3_set_vector_coalesce_rx_ql(tqp_vector, rx_coal->int_ql);
}
static int hns3_nic_set_real_num_queue(struct net_device *netdev)
{
struct hnae3_handle *h = hns3_get_handle(netdev);
struct hnae3_knic_private_info *kinfo = &h->kinfo;
struct hnae3_tc_info *tc_info = &kinfo->tc_info;
unsigned int queue_size = kinfo->num_tqps;
int i, ret;
if (tc_info->num_tc <= 1 && !tc_info->mqprio_active) {
netdev_reset_tc(netdev);
} else {
ret = netdev_set_num_tc(netdev, tc_info->num_tc);
if (ret) {
netdev_err(netdev,
"netdev_set_num_tc fail, ret=%d!\n", ret);
return ret;
}
for (i = 0; i < tc_info->num_tc; i++)
netdev_set_tc_queue(netdev, i, tc_info->tqp_count[i],
tc_info->tqp_offset[i]);
}
ret = netif_set_real_num_tx_queues(netdev, queue_size);
if (ret) {
netdev_err(netdev,
"netif_set_real_num_tx_queues fail, ret=%d!\n", ret);
return ret;
}
ret = netif_set_real_num_rx_queues(netdev, queue_size);
if (ret) {
netdev_err(netdev,
"netif_set_real_num_rx_queues fail, ret=%d!\n", ret);
return ret;
}
return 0;
}
u16 hns3_get_max_available_channels(struct hnae3_handle *h)
{
u16 alloc_tqps, max_rss_size, rss_size;
h->ae_algo->ops->get_tqps_and_rss_info(h, &alloc_tqps, &max_rss_size);
rss_size = alloc_tqps / h->kinfo.tc_info.num_tc;
return min_t(u16, rss_size, max_rss_size);
}
static void hns3_tqp_enable(struct hnae3_queue *tqp)
{
u32 rcb_reg;
rcb_reg = hns3_read_dev(tqp, HNS3_RING_EN_REG);
rcb_reg |= BIT(HNS3_RING_EN_B);
hns3_write_dev(tqp, HNS3_RING_EN_REG, rcb_reg);
}
static void hns3_tqp_disable(struct hnae3_queue *tqp)
{
u32 rcb_reg;
rcb_reg = hns3_read_dev(tqp, HNS3_RING_EN_REG);
rcb_reg &= ~BIT(HNS3_RING_EN_B);
hns3_write_dev(tqp, HNS3_RING_EN_REG, rcb_reg);
}
static void hns3_free_rx_cpu_rmap(struct net_device *netdev)
{
#ifdef CONFIG_RFS_ACCEL
free_irq_cpu_rmap(netdev->rx_cpu_rmap);
netdev->rx_cpu_rmap = NULL;
#endif
}
static int hns3_set_rx_cpu_rmap(struct net_device *netdev)
{
#ifdef CONFIG_RFS_ACCEL
struct hns3_nic_priv *priv = netdev_priv(netdev);
struct hns3_enet_tqp_vector *tqp_vector;
int i, ret;
if (!netdev->rx_cpu_rmap) {
netdev->rx_cpu_rmap = alloc_irq_cpu_rmap(priv->vector_num);
if (!netdev->rx_cpu_rmap)
return -ENOMEM;
}
for (i = 0; i < priv->vector_num; i++) {
tqp_vector = &priv->tqp_vector[i];
ret = irq_cpu_rmap_add(netdev->rx_cpu_rmap,
tqp_vector->vector_irq);
if (ret) {
hns3_free_rx_cpu_rmap(netdev);
return ret;
}
}
#endif
return 0;
}
static int hns3_nic_net_up(struct net_device *netdev)
{
struct hns3_nic_priv *priv = netdev_priv(netdev);
struct hnae3_handle *h = priv->ae_handle;
int i, j;
int ret;
ret = hns3_nic_reset_all_ring(h);
if (ret)
return ret;
clear_bit(HNS3_NIC_STATE_DOWN, &priv->state);
/* enable the vectors */
for (i = 0; i < priv->vector_num; i++)
hns3_vector_enable(&priv->tqp_vector[i]);
/* enable rcb */
for (j = 0; j < h->kinfo.num_tqps; j++)
hns3_tqp_enable(h->kinfo.tqp[j]);
/* start the ae_dev */
ret = h->ae_algo->ops->start ? h->ae_algo->ops->start(h) : 0;
if (ret) {
set_bit(HNS3_NIC_STATE_DOWN, &priv->state);
while (j--)
hns3_tqp_disable(h->kinfo.tqp[j]);
for (j = i - 1; j >= 0; j--)
hns3_vector_disable(&priv->tqp_vector[j]);
}
return ret;
}
static void hns3_config_xps(struct hns3_nic_priv *priv)
{
int i;
for (i = 0; i < priv->vector_num; i++) {
struct hns3_enet_tqp_vector *tqp_vector = &priv->tqp_vector[i];
struct hns3_enet_ring *ring = tqp_vector->tx_group.ring;
while (ring) {
int ret;
ret = netif_set_xps_queue(priv->netdev,
&tqp_vector->affinity_mask,
ring->tqp->tqp_index);
if (ret)
netdev_warn(priv->netdev,
"set xps queue failed: %d", ret);
ring = ring->next;
}
}
}
static int hns3_nic_net_open(struct net_device *netdev)
{
struct hns3_nic_priv *priv = netdev_priv(netdev);
struct hnae3_handle *h = hns3_get_handle(netdev);
struct hnae3_knic_private_info *kinfo;
int i, ret;
if (hns3_nic_resetting(netdev))
return -EBUSY;
if (!test_bit(HNS3_NIC_STATE_DOWN, &priv->state)) {
netdev_warn(netdev, "net open repeatedly!\n");
return 0;
}
netif_carrier_off(netdev);
ret = hns3_nic_set_real_num_queue(netdev);
if (ret)
return ret;
ret = hns3_nic_net_up(netdev);
if (ret) {
netdev_err(netdev, "net up fail, ret=%d!\n", ret);
return ret;
}
kinfo = &h->kinfo;
for (i = 0; i < HNAE3_MAX_USER_PRIO; i++)
netdev_set_prio_tc_map(netdev, i, kinfo->tc_info.prio_tc[i]);
if (h->ae_algo->ops->set_timer_task)
h->ae_algo->ops->set_timer_task(priv->ae_handle, true);
hns3_config_xps(priv);
netif_dbg(h, drv, netdev, "net open\n");
return 0;
}
static void hns3_reset_tx_queue(struct hnae3_handle *h)
{
struct net_device *ndev = h->kinfo.netdev;
struct hns3_nic_priv *priv = netdev_priv(ndev);
struct netdev_queue *dev_queue;
u32 i;
for (i = 0; i < h->kinfo.num_tqps; i++) {
dev_queue = netdev_get_tx_queue(ndev,
priv->ring[i].queue_index);
netdev_tx_reset_queue(dev_queue);
}
}
static void hns3_nic_net_down(struct net_device *netdev)
{
struct hns3_nic_priv *priv = netdev_priv(netdev);
struct hnae3_handle *h = hns3_get_handle(netdev);
const struct hnae3_ae_ops *ops;
int i;
/* disable vectors */
for (i = 0; i < priv->vector_num; i++)
hns3_vector_disable(&priv->tqp_vector[i]);
/* disable rcb */
for (i = 0; i < h->kinfo.num_tqps; i++)
hns3_tqp_disable(h->kinfo.tqp[i]);
/* stop ae_dev */
ops = priv->ae_handle->ae_algo->ops;
if (ops->stop)
ops->stop(priv->ae_handle);
/* delay ring buffer clearing to hns3_reset_notify_uninit_enet
* during reset process, because driver may not be able
* to disable the ring through firmware when downing the netdev.
*/
if (!hns3_nic_resetting(netdev))
hns3_clear_all_ring(priv->ae_handle, false);
hns3_reset_tx_queue(priv->ae_handle);
}
static int hns3_nic_net_stop(struct net_device *netdev)
{
struct hns3_nic_priv *priv = netdev_priv(netdev);
struct hnae3_handle *h = hns3_get_handle(netdev);
if (test_and_set_bit(HNS3_NIC_STATE_DOWN, &priv->state))
return 0;
netif_dbg(h, drv, netdev, "net stop\n");
if (h->ae_algo->ops->set_timer_task)
h->ae_algo->ops->set_timer_task(priv->ae_handle, false);
netif_carrier_off(netdev);
netif_tx_disable(netdev);
hns3_nic_net_down(netdev);
return 0;
}
static int hns3_nic_uc_sync(struct net_device *netdev,
const unsigned char *addr)
{
struct hnae3_handle *h = hns3_get_handle(netdev);
if (h->ae_algo->ops->add_uc_addr)
return h->ae_algo->ops->add_uc_addr(h, addr);
return 0;
}
static int hns3_nic_uc_unsync(struct net_device *netdev,
const unsigned char *addr)
{
struct hnae3_handle *h = hns3_get_handle(netdev);
/* need ignore the request of removing device address, because
* we store the device address and other addresses of uc list
* in the function's mac filter list.
*/
if (ether_addr_equal(addr, netdev->dev_addr))
return 0;
if (h->ae_algo->ops->rm_uc_addr)
return h->ae_algo->ops->rm_uc_addr(h, addr);
return 0;
}
static int hns3_nic_mc_sync(struct net_device *netdev,
const unsigned char *addr)
{
struct hnae3_handle *h = hns3_get_handle(netdev);
if (h->ae_algo->ops->add_mc_addr)
return h->ae_algo->ops->add_mc_addr(h, addr);
return 0;
}
static int hns3_nic_mc_unsync(struct net_device *netdev,
const unsigned char *addr)
{
struct hnae3_handle *h = hns3_get_handle(netdev);
if (h->ae_algo->ops->rm_mc_addr)
return h->ae_algo->ops->rm_mc_addr(h, addr);
return 0;
}
static u8 hns3_get_netdev_flags(struct net_device *netdev)
{
u8 flags = 0;
if (netdev->flags & IFF_PROMISC)
flags = HNAE3_USER_UPE | HNAE3_USER_MPE | HNAE3_BPE;
else if (netdev->flags & IFF_ALLMULTI)
flags = HNAE3_USER_MPE;
return flags;
}
static void hns3_nic_set_rx_mode(struct net_device *netdev)
{
struct hnae3_handle *h = hns3_get_handle(netdev);
u8 new_flags;
new_flags = hns3_get_netdev_flags(netdev);
__dev_uc_sync(netdev, hns3_nic_uc_sync, hns3_nic_uc_unsync);
__dev_mc_sync(netdev, hns3_nic_mc_sync, hns3_nic_mc_unsync);
/* User mode Promisc mode enable and vlan filtering is disabled to
* let all packets in.
*/
h->netdev_flags = new_flags;
hns3_request_update_promisc_mode(h);
}
void hns3_request_update_promisc_mode(struct hnae3_handle *handle)
{
const struct hnae3_ae_ops *ops = handle->ae_algo->ops;
if (ops->request_update_promisc_mode)
ops->request_update_promisc_mode(handle);
}
static u32 hns3_tx_spare_space(struct hns3_enet_ring *ring)
{
struct hns3_tx_spare *tx_spare = ring->tx_spare;
u32 ntc, ntu;
/* This smp_load_acquire() pairs with smp_store_release() in
* hns3_tx_spare_update() called in tx desc cleaning process.
*/
ntc = smp_load_acquire(&tx_spare->last_to_clean);
ntu = tx_spare->next_to_use;
if (ntc > ntu)
return ntc - ntu - 1;
/* The free tx buffer is divided into two part, so pick the
* larger one.
*/
return max(ntc, tx_spare->len - ntu) - 1;
}
static void hns3_tx_spare_update(struct hns3_enet_ring *ring)
{
struct hns3_tx_spare *tx_spare = ring->tx_spare;
if (!tx_spare ||
tx_spare->last_to_clean == tx_spare->next_to_clean)
return;
/* This smp_store_release() pairs with smp_load_acquire() in
* hns3_tx_spare_space() called in xmit process.
*/
smp_store_release(&tx_spare->last_to_clean,
tx_spare->next_to_clean);
}
static bool hns3_can_use_tx_bounce(struct hns3_enet_ring *ring,
struct sk_buff *skb,
u32 space)
{
u32 len = skb->len <= ring->tx_copybreak ? skb->len :
skb_headlen(skb);
if (len > ring->tx_copybreak)
return false;
if (ALIGN(len, dma_get_cache_alignment()) > space) {
hns3_ring_stats_update(ring, tx_spare_full);
return false;
}
return true;
}
static bool hns3_can_use_tx_sgl(struct hns3_enet_ring *ring,
struct sk_buff *skb,
u32 space)
{
if (skb->len <= ring->tx_copybreak || !tx_sgl ||
(!skb_has_frag_list(skb) &&
skb_shinfo(skb)->nr_frags < tx_sgl))
return false;
if (space < HNS3_MAX_SGL_SIZE) {
hns3_ring_stats_update(ring, tx_spare_full);
return false;
}
return true;
}
static void hns3_init_tx_spare_buffer(struct hns3_enet_ring *ring)
{
u32 alloc_size = ring->tqp->handle->kinfo.tx_spare_buf_size;
struct hns3_tx_spare *tx_spare;
struct page *page;
dma_addr_t dma;
int order;
if (!alloc_size)
return;
order = get_order(alloc_size);
if (order > MAX_PAGE_ORDER) {
if (net_ratelimit())
dev_warn(ring_to_dev(ring), "failed to allocate tx spare buffer, exceed to max order\n");
return;
}
tx_spare = devm_kzalloc(ring_to_dev(ring), sizeof(*tx_spare),
GFP_KERNEL);
if (!tx_spare) {
/* The driver still work without the tx spare buffer */
dev_warn(ring_to_dev(ring), "failed to allocate hns3_tx_spare\n");
goto devm_kzalloc_error;
}
page = alloc_pages_node(dev_to_node(ring_to_dev(ring)),
GFP_KERNEL, order);
if (!page) {
dev_warn(ring_to_dev(ring), "failed to allocate tx spare pages\n");
goto alloc_pages_error;
}
dma = dma_map_page(ring_to_dev(ring), page, 0,
PAGE_SIZE << order, DMA_TO_DEVICE);
if (dma_mapping_error(ring_to_dev(ring), dma)) {
dev_warn(ring_to_dev(ring), "failed to map pages for tx spare\n");
goto dma_mapping_error;
}
tx_spare->dma = dma;
tx_spare->buf = page_address(page);
tx_spare->len = PAGE_SIZE << order;
ring->tx_spare = tx_spare;
return;
dma_mapping_error:
put_page(page);
alloc_pages_error:
devm_kfree(ring_to_dev(ring), tx_spare);
devm_kzalloc_error:
ring->tqp->handle->kinfo.tx_spare_buf_size = 0;
}
/* Use hns3_tx_spare_space() to make sure there is enough buffer
* before calling below function to allocate tx buffer.
*/
static void *hns3_tx_spare_alloc(struct hns3_enet_ring *ring,
unsigned int size, dma_addr_t *dma,
u32 *cb_len)
{
struct hns3_tx_spare *tx_spare = ring->tx_spare;
u32 ntu = tx_spare->next_to_use;
size = ALIGN(size, dma_get_cache_alignment());
*cb_len = size;
/* Tx spare buffer wraps back here because the end of
* freed tx buffer is not enough.
*/
if (ntu + size > tx_spare->len) {
*cb_len += (tx_spare->len - ntu);
ntu = 0;
}
tx_spare->next_to_use = ntu + size;
if (tx_spare->next_to_use == tx_spare->len)
tx_spare->next_to_use = 0;
*dma = tx_spare->dma + ntu;
return tx_spare->buf + ntu;
}
static void hns3_tx_spare_rollback(struct hns3_enet_ring *ring, u32 len)
{
struct hns3_tx_spare *tx_spare = ring->tx_spare;
if (len > tx_spare->next_to_use) {
len -= tx_spare->next_to_use;
tx_spare->next_to_use = tx_spare->len - len;
} else {
tx_spare->next_to_use -= len;
}
}
static void hns3_tx_spare_reclaim_cb(struct hns3_enet_ring *ring,
struct hns3_desc_cb *cb)
{
struct hns3_tx_spare *tx_spare = ring->tx_spare;
u32 ntc = tx_spare->next_to_clean;
u32 len = cb->length;
tx_spare->next_to_clean += len;
if (tx_spare->next_to_clean >= tx_spare->len) {
tx_spare->next_to_clean -= tx_spare->len;
if (tx_spare->next_to_clean) {
ntc = 0;
len = tx_spare->next_to_clean;
}
}
/* This tx spare buffer is only really reclaimed after calling
* hns3_tx_spare_update(), so it is still safe to use the info in
* the tx buffer to do the dma sync or sg unmapping after
* tx_spare->next_to_clean is moved forword.
*/
if (cb->type & (DESC_TYPE_BOUNCE_HEAD | DESC_TYPE_BOUNCE_ALL)) {
dma_addr_t dma = tx_spare->dma + ntc;
dma_sync_single_for_cpu(ring_to_dev(ring), dma, len,
DMA_TO_DEVICE);
} else {
struct sg_table *sgt = tx_spare->buf + ntc;
dma_unmap_sg(ring_to_dev(ring), sgt->sgl, sgt->orig_nents,
DMA_TO_DEVICE);
}
}
static int hns3_set_tso(struct sk_buff *skb, u32 *paylen_fdop_ol4cs,
u16 *mss, u32 *type_cs_vlan_tso, u32 *send_bytes)
{
u32 l4_offset, hdr_len;
union l3_hdr_info l3;
union l4_hdr_info l4;
u32 l4_paylen;
int ret;
if (!skb_is_gso(skb))
return 0;
ret = skb_cow_head(skb, 0);
if (unlikely(ret < 0))
return ret;
l3.hdr = skb_network_header(skb);
l4.hdr = skb_transport_header(skb);
/* Software should clear the IPv4's checksum field when tso is
* needed.
*/
if (l3.v4->version == 4)
l3.v4->check = 0;
/* tunnel packet */
if (skb_shinfo(skb)->gso_type & (SKB_GSO_GRE |
SKB_GSO_GRE_CSUM |
SKB_GSO_UDP_TUNNEL |
SKB_GSO_UDP_TUNNEL_CSUM)) {
/* reset l3&l4 pointers from outer to inner headers */
l3.hdr = skb_inner_network_header(skb);
l4.hdr = skb_inner_transport_header(skb);
/* Software should clear the IPv4's checksum field when
* tso is needed.
*/
if (l3.v4->version == 4)
l3.v4->check = 0;
}
/* normal or tunnel packet */
l4_offset = l4.hdr - skb->data;
/* remove payload length from inner pseudo checksum when tso */
l4_paylen = skb->len - l4_offset;
if (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_L4) {
hdr_len = sizeof(*l4.udp) + l4_offset;
csum_replace_by_diff(&l4.udp->check,
(__force __wsum)htonl(l4_paylen));
} else {
hdr_len = (l4.tcp->doff << 2) + l4_offset;
csum_replace_by_diff(&l4.tcp->check,
(__force __wsum)htonl(l4_paylen));
}
*send_bytes = (skb_shinfo(skb)->gso_segs - 1) * hdr_len + skb->len;
/* find the txbd field values */
*paylen_fdop_ol4cs = skb->len - hdr_len;
hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_TSO_B, 1);
/* offload outer UDP header checksum */
if (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_TUNNEL_CSUM)
hns3_set_field(*paylen_fdop_ol4cs, HNS3_TXD_OL4CS_B, 1);
/* get MSS for TSO */
*mss = skb_shinfo(skb)->gso_size;
trace_hns3_tso(skb);
return 0;
}
static int hns3_get_l4_protocol(struct sk_buff *skb, u8 *ol4_proto,
u8 *il4_proto)
{
union l3_hdr_info l3;
unsigned char *l4_hdr;
unsigned char *exthdr;
u8 l4_proto_tmp;
__be16 frag_off;
/* find outer header point */
l3.hdr = skb_network_header(skb);
l4_hdr = skb_transport_header(skb);
if (skb->protocol == htons(ETH_P_IPV6)) {
exthdr = l3.hdr + sizeof(*l3.v6);
l4_proto_tmp = l3.v6->nexthdr;
if (l4_hdr != exthdr)
ipv6_skip_exthdr(skb, exthdr - skb->data,
&l4_proto_tmp, &frag_off);
} else if (skb->protocol == htons(ETH_P_IP)) {
l4_proto_tmp = l3.v4->protocol;
} else {
return -EINVAL;
}
*ol4_proto = l4_proto_tmp;
/* tunnel packet */
if (!skb->encapsulation) {
*il4_proto = 0;
return 0;
}
/* find inner header point */
l3.hdr = skb_inner_network_header(skb);
l4_hdr = skb_inner_transport_header(skb);
if (l3.v6->version == 6) {
exthdr = l3.hdr + sizeof(*l3.v6);
l4_proto_tmp = l3.v6->nexthdr;
if (l4_hdr != exthdr)
ipv6_skip_exthdr(skb, exthdr - skb->data,
&l4_proto_tmp, &frag_off);
} else if (l3.v4->version == 4) {
l4_proto_tmp = l3.v4->protocol;
}
*il4_proto = l4_proto_tmp;
return 0;
}
/* when skb->encapsulation is 0, skb->ip_summed is CHECKSUM_PARTIAL
* and it is udp packet, which has a dest port as the IANA assigned.
* the hardware is expected to do the checksum offload, but the
* hardware will not do the checksum offload when udp dest port is
* 4789, 4790 or 6081.
*/
static bool hns3_tunnel_csum_bug(struct sk_buff *skb)
{
struct hns3_nic_priv *priv = netdev_priv(skb->dev);
struct hnae3_ae_dev *ae_dev = pci_get_drvdata(priv->ae_handle->pdev);
union l4_hdr_info l4;
/* device version above V3(include V3), the hardware can
* do this checksum offload.
*/
if (ae_dev->dev_version >= HNAE3_DEVICE_VERSION_V3)
return false;
l4.hdr = skb_transport_header(skb);
if (!(!skb->encapsulation &&
(l4.udp->dest == htons(IANA_VXLAN_UDP_PORT) ||
l4.udp->dest == htons(GENEVE_UDP_PORT) ||
l4.udp->dest == htons(IANA_VXLAN_GPE_UDP_PORT))))
return false;
return true;
}
static void hns3_set_outer_l2l3l4(struct sk_buff *skb, u8 ol4_proto,
u32 *ol_type_vlan_len_msec)
{
u32 l2_len, l3_len, l4_len;
unsigned char *il2_hdr;
union l3_hdr_info l3;
union l4_hdr_info l4;
l3.hdr = skb_network_header(skb);
l4.hdr = skb_transport_header(skb);
/* compute OL2 header size, defined in 2 Bytes */
l2_len = l3.hdr - skb->data;
hns3_set_field(*ol_type_vlan_len_msec, HNS3_TXD_L2LEN_S, l2_len >> 1);
/* compute OL3 header size, defined in 4 Bytes */
l3_len = l4.hdr - l3.hdr;
hns3_set_field(*ol_type_vlan_len_msec, HNS3_TXD_L3LEN_S, l3_len >> 2);
il2_hdr = skb_inner_mac_header(skb);
/* compute OL4 header size, defined in 4 Bytes */
l4_len = il2_hdr - l4.hdr;
hns3_set_field(*ol_type_vlan_len_msec, HNS3_TXD_L4LEN_S, l4_len >> 2);
/* define outer network header type */
if (skb->protocol == htons(ETH_P_IP)) {
if (skb_is_gso(skb))
hns3_set_field(*ol_type_vlan_len_msec,
HNS3_TXD_OL3T_S,
HNS3_OL3T_IPV4_CSUM);
else
hns3_set_field(*ol_type_vlan_len_msec,
HNS3_TXD_OL3T_S,
HNS3_OL3T_IPV4_NO_CSUM);
} else if (skb->protocol == htons(ETH_P_IPV6)) {
hns3_set_field(*ol_type_vlan_len_msec, HNS3_TXD_OL3T_S,
HNS3_OL3T_IPV6);
}
if (ol4_proto == IPPROTO_UDP)
hns3_set_field(*ol_type_vlan_len_msec, HNS3_TXD_TUNTYPE_S,
HNS3_TUN_MAC_IN_UDP);
else if (ol4_proto == IPPROTO_GRE)
hns3_set_field(*ol_type_vlan_len_msec, HNS3_TXD_TUNTYPE_S,
HNS3_TUN_NVGRE);
}
static void hns3_set_l3_type(struct sk_buff *skb, union l3_hdr_info l3,
u32 *type_cs_vlan_tso)
{
if (l3.v4->version == 4) {
hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_L3T_S,
HNS3_L3T_IPV4);
/* the stack computes the IP header already, the only time we
* need the hardware to recompute it is in the case of TSO.
*/
if (skb_is_gso(skb))
hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_L3CS_B, 1);
} else if (l3.v6->version == 6) {
hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_L3T_S,
HNS3_L3T_IPV6);
}
}
static int hns3_set_l4_csum_length(struct sk_buff *skb, union l4_hdr_info l4,
u32 l4_proto, u32 *type_cs_vlan_tso)
{
/* compute inner(/normal) L4 header size, defined in 4 Bytes */
switch (l4_proto) {
case IPPROTO_TCP:
hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_L4CS_B, 1);
hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_L4T_S,
HNS3_L4T_TCP);
hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_L4LEN_S,
l4.tcp->doff);
break;
case IPPROTO_UDP:
if (hns3_tunnel_csum_bug(skb)) {
int ret = skb_put_padto(skb, HNS3_MIN_TUN_PKT_LEN);
return ret ? ret : skb_checksum_help(skb);
}
hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_L4CS_B, 1);
hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_L4T_S,
HNS3_L4T_UDP);
hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_L4LEN_S,
(sizeof(struct udphdr) >> 2));
break;
case IPPROTO_SCTP:
hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_L4CS_B, 1);
hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_L4T_S,
HNS3_L4T_SCTP);
hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_L4LEN_S,
(sizeof(struct sctphdr) >> 2));
break;
default:
/* drop the skb tunnel packet if hardware don't support,
* because hardware can't calculate csum when TSO.
*/
if (skb_is_gso(skb))
return -EDOM;
/* the stack computes the IP header already,
* driver calculate l4 checksum when not TSO.
*/
return skb_checksum_help(skb);
}
return 0;
}
static int hns3_set_l2l3l4(struct sk_buff *skb, u8 ol4_proto,
u8 il4_proto, u32 *type_cs_vlan_tso,
u32 *ol_type_vlan_len_msec)
{
unsigned char *l2_hdr = skb->data;
u32 l4_proto = ol4_proto;
union l4_hdr_info l4;
union l3_hdr_info l3;
u32 l2_len, l3_len;
l4.hdr = skb_transport_header(skb);
l3.hdr = skb_network_header(skb);
/* handle encapsulation skb */
if (skb->encapsulation) {
/* If this is a not UDP/GRE encapsulation skb */
if (!(ol4_proto == IPPROTO_UDP || ol4_proto == IPPROTO_GRE)) {
/* drop the skb tunnel packet if hardware don't support,
* because hardware can't calculate csum when TSO.
*/
if (skb_is_gso(skb))
return -EDOM;
/* the stack computes the IP header already,
* driver calculate l4 checksum when not TSO.
*/
return skb_checksum_help(skb);
}
hns3_set_outer_l2l3l4(skb, ol4_proto, ol_type_vlan_len_msec);
/* switch to inner header */
l2_hdr = skb_inner_mac_header(skb);
l3.hdr = skb_inner_network_header(skb);
l4.hdr = skb_inner_transport_header(skb);
l4_proto = il4_proto;
}
hns3_set_l3_type(skb, l3, type_cs_vlan_tso);
/* compute inner(/normal) L2 header size, defined in 2 Bytes */
l2_len = l3.hdr - l2_hdr;
hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_L2LEN_S, l2_len >> 1);
/* compute inner(/normal) L3 header size, defined in 4 Bytes */
l3_len = l4.hdr - l3.hdr;
hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_L3LEN_S, l3_len >> 2);
return hns3_set_l4_csum_length(skb, l4, l4_proto, type_cs_vlan_tso);
}
static int hns3_handle_vtags(struct hns3_enet_ring *tx_ring,
struct sk_buff *skb)
{
struct hnae3_handle *handle = tx_ring->tqp->handle;
struct hnae3_ae_dev *ae_dev;
struct vlan_ethhdr *vhdr;
int rc;
if (!(skb->protocol == htons(ETH_P_8021Q) ||
skb_vlan_tag_present(skb)))
return 0;
/* For HW limitation on HNAE3_DEVICE_VERSION_V2, if port based insert
* VLAN enabled, only one VLAN header is allowed in skb, otherwise it
* will cause RAS error.
*/
ae_dev = pci_get_drvdata(handle->pdev);
if (unlikely(skb_vlan_tagged_multi(skb) &&
ae_dev->dev_version <= HNAE3_DEVICE_VERSION_V2 &&
handle->port_base_vlan_state ==
HNAE3_PORT_BASE_VLAN_ENABLE))
return -EINVAL;
if (skb->protocol == htons(ETH_P_8021Q) &&
!(handle->kinfo.netdev->features & NETIF_F_HW_VLAN_CTAG_TX)) {
/* When HW VLAN acceleration is turned off, and the stack
* sets the protocol to 802.1q, the driver just need to
* set the protocol to the encapsulated ethertype.
*/
skb->protocol = vlan_get_protocol(skb);
return 0;
}
if (skb_vlan_tag_present(skb)) {
/* Based on hw strategy, use out_vtag in two layer tag case,
* and use inner_vtag in one tag case.
*/
if (skb->protocol == htons(ETH_P_8021Q) &&
handle->port_base_vlan_state ==
HNAE3_PORT_BASE_VLAN_DISABLE)
rc = HNS3_OUTER_VLAN_TAG;
else
rc = HNS3_INNER_VLAN_TAG;
skb->protocol = vlan_get_protocol(skb);
return rc;
}
rc = skb_cow_head(skb, 0);
if (unlikely(rc < 0))
return rc;
vhdr = skb_vlan_eth_hdr(skb);
vhdr->h_vlan_TCI |= cpu_to_be16((skb->priority << VLAN_PRIO_SHIFT)
& VLAN_PRIO_MASK);
skb->protocol = vlan_get_protocol(skb);
return 0;
}
/* check if the hardware is capable of checksum offloading */
static bool hns3_check_hw_tx_csum(struct sk_buff *skb)
{
struct hns3_nic_priv *priv = netdev_priv(skb->dev);
/* Kindly note, due to backward compatibility of the TX descriptor,
* HW checksum of the non-IP packets and GSO packets is handled at
* different place in the following code
*/
if (skb_csum_is_sctp(skb) || skb_is_gso(skb) ||
!test_bit(HNS3_NIC_STATE_HW_TX_CSUM_ENABLE, &priv->state))
return false;
return true;
}
struct hns3_desc_param {
u32 paylen_ol4cs;
u32 ol_type_vlan_len_msec;
u32 type_cs_vlan_tso;
u16 mss_hw_csum;
u16 inner_vtag;
u16 out_vtag;
};
static void hns3_init_desc_data(struct sk_buff *skb, struct hns3_desc_param *pa)
{
pa->paylen_ol4cs = skb->len;
pa->ol_type_vlan_len_msec = 0;
pa->type_cs_vlan_tso = 0;
pa->mss_hw_csum = 0;
pa->inner_vtag = 0;
pa->out_vtag = 0;
}
static int hns3_handle_vlan_info(struct hns3_enet_ring *ring,
struct sk_buff *skb,
struct hns3_desc_param *param)
{
int ret;
ret = hns3_handle_vtags(ring, skb);
if (unlikely(ret < 0)) {
hns3_ring_stats_update(ring, tx_vlan_err);
return ret;
} else if (ret == HNS3_INNER_VLAN_TAG) {
param->inner_vtag = skb_vlan_tag_get(skb);
param->inner_vtag |= (skb->priority << VLAN_PRIO_SHIFT) &
VLAN_PRIO_MASK;
hns3_set_field(param->type_cs_vlan_tso, HNS3_TXD_VLAN_B, 1);
} else if (ret == HNS3_OUTER_VLAN_TAG) {
param->out_vtag = skb_vlan_tag_get(skb);
param->out_vtag |= (skb->priority << VLAN_PRIO_SHIFT) &
VLAN_PRIO_MASK;
hns3_set_field(param->ol_type_vlan_len_msec, HNS3_TXD_OVLAN_B,
1);
}
return 0;
}
static int hns3_handle_csum_partial(struct hns3_enet_ring *ring,
struct sk_buff *skb,
struct hns3_desc_cb *desc_cb,
struct hns3_desc_param *param)
{
u8 ol4_proto, il4_proto;
int ret;
if (hns3_check_hw_tx_csum(skb)) {
/* set checksum start and offset, defined in 2 Bytes */
hns3_set_field(param->type_cs_vlan_tso, HNS3_TXD_CSUM_START_S,
skb_checksum_start_offset(skb) >> 1);
hns3_set_field(param->ol_type_vlan_len_msec,
HNS3_TXD_CSUM_OFFSET_S,
skb->csum_offset >> 1);
param->mss_hw_csum |= BIT(HNS3_TXD_HW_CS_B);
return 0;
}
skb_reset_mac_len(skb);
ret = hns3_get_l4_protocol(skb, &ol4_proto, &il4_proto);
if (unlikely(ret < 0)) {
hns3_ring_stats_update(ring, tx_l4_proto_err);
return ret;
}
ret = hns3_set_l2l3l4(skb, ol4_proto, il4_proto,
&param->type_cs_vlan_tso,
&param->ol_type_vlan_len_msec);
if (unlikely(ret < 0)) {
hns3_ring_stats_update(ring, tx_l2l3l4_err);
return ret;
}
ret = hns3_set_tso(skb, &param->paylen_ol4cs, &param->mss_hw_csum,
&param->type_cs_vlan_tso, &desc_cb->send_bytes);
if (unlikely(ret < 0)) {
hns3_ring_stats_update(ring, tx_tso_err);
return ret;
}
return 0;
}
static int hns3_fill_skb_desc(struct hns3_enet_ring *ring,
struct sk_buff *skb, struct hns3_desc *desc,
struct hns3_desc_cb *desc_cb)
{
struct hns3_desc_param param;
int ret;
hns3_init_desc_data(skb, &param);
ret = hns3_handle_vlan_info(ring, skb, &param);
if (unlikely(ret < 0))
return ret;
desc_cb->send_bytes = skb->len;
if (skb->ip_summed == CHECKSUM_PARTIAL) {
ret = hns3_handle_csum_partial(ring, skb, desc_cb, &param);
if (ret)
return ret;
}
/* Set txbd */
desc->tx.ol_type_vlan_len_msec =
cpu_to_le32(param.ol_type_vlan_len_msec);
desc->tx.type_cs_vlan_tso_len = cpu_to_le32(param.type_cs_vlan_tso);
desc->tx.paylen_ol4cs = cpu_to_le32(param.paylen_ol4cs);
desc->tx.mss_hw_csum = cpu_to_le16(param.mss_hw_csum);
desc->tx.vlan_tag = cpu_to_le16(param.inner_vtag);
desc->tx.outer_vlan_tag = cpu_to_le16(param.out_vtag);
return 0;
}
static int hns3_fill_desc(struct hns3_enet_ring *ring, dma_addr_t dma,
unsigned int size)
{
#define HNS3_LIKELY_BD_NUM 1
struct hns3_desc *desc = &ring->desc[ring->next_to_use];
unsigned int frag_buf_num;
int k, sizeoflast;
if (likely(size <= HNS3_MAX_BD_SIZE)) {
desc->addr = cpu_to_le64(dma);
desc->tx.send_size = cpu_to_le16(size);
desc->tx.bdtp_fe_sc_vld_ra_ri =
cpu_to_le16(BIT(HNS3_TXD_VLD_B));
trace_hns3_tx_desc(ring, ring->next_to_use);
ring_ptr_move_fw(ring, next_to_use);
return HNS3_LIKELY_BD_NUM;
}
frag_buf_num = hns3_tx_bd_count(size);
sizeoflast = size % HNS3_MAX_BD_SIZE;
sizeoflast = sizeoflast ? sizeoflast : HNS3_MAX_BD_SIZE;
/* When frag size is bigger than hardware limit, split this frag */
for (k = 0; k < frag_buf_num; k++) {
/* now, fill the descriptor */
desc->addr = cpu_to_le64(dma + HNS3_MAX_BD_SIZE * k);
desc->tx.send_size = cpu_to_le16((k == frag_buf_num - 1) ?
(u16)sizeoflast : (u16)HNS3_MAX_BD_SIZE);
desc->tx.bdtp_fe_sc_vld_ra_ri =
cpu_to_le16(BIT(HNS3_TXD_VLD_B));
trace_hns3_tx_desc(ring, ring->next_to_use);
/* move ring pointer to next */
ring_ptr_move_fw(ring, next_to_use);
desc = &ring->desc[ring->next_to_use];
}
return frag_buf_num;
}
static int hns3_map_and_fill_desc(struct hns3_enet_ring *ring, void *priv,
unsigned int type)
{
struct hns3_desc_cb *desc_cb = &ring->desc_cb[ring->next_to_use];
struct device *dev = ring_to_dev(ring);
unsigned int size;
dma_addr_t dma;
if (type & (DESC_TYPE_FRAGLIST_SKB | DESC_TYPE_SKB)) {
struct sk_buff *skb = (struct sk_buff *)priv;
size = skb_headlen(skb);
if (!size)
return 0;
dma = dma_map_single(dev, skb->data, size, DMA_TO_DEVICE);
} else if (type & DESC_TYPE_BOUNCE_HEAD) {
/* Head data has been filled in hns3_handle_tx_bounce(),
* just return 0 here.
*/
return 0;
} else {
skb_frag_t *frag = (skb_frag_t *)priv;
size = skb_frag_size(frag);
if (!size)
return 0;
dma = skb_frag_dma_map(dev, frag, 0, size, DMA_TO_DEVICE);
}
if (unlikely(dma_mapping_error(dev, dma))) {
hns3_ring_stats_update(ring, sw_err_cnt);
return -ENOMEM;
}
desc_cb->priv = priv;
desc_cb->length = size;
desc_cb->dma = dma;
desc_cb->type = type;
return hns3_fill_desc(ring, dma, size);
}
static unsigned int hns3_skb_bd_num(struct sk_buff *skb, unsigned int *bd_size,
unsigned int bd_num)
{
unsigned int size;
int i;
size = skb_headlen(skb);
while (size > HNS3_MAX_BD_SIZE) {
bd_size[bd_num++] = HNS3_MAX_BD_SIZE;
size -= HNS3_MAX_BD_SIZE;
if (bd_num > HNS3_MAX_TSO_BD_NUM)
return bd_num;
}
if (size) {
bd_size[bd_num++] = size;
if (bd_num > HNS3_MAX_TSO_BD_NUM)
return bd_num;
}
for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
size = skb_frag_size(frag);
if (!size)
continue;
while (size > HNS3_MAX_BD_SIZE) {
bd_size[bd_num++] = HNS3_MAX_BD_SIZE;
size -= HNS3_MAX_BD_SIZE;
if (bd_num > HNS3_MAX_TSO_BD_NUM)
return bd_num;
}
bd_size[bd_num++] = size;
if (bd_num > HNS3_MAX_TSO_BD_NUM)
return bd_num;
}
return bd_num;
}
static unsigned int hns3_tx_bd_num(struct sk_buff *skb, unsigned int *bd_size,
u8 max_non_tso_bd_num, unsigned int bd_num,
unsigned int recursion_level)
{
#define HNS3_MAX_RECURSION_LEVEL 24
struct sk_buff *frag_skb;
/* If the total len is within the max bd limit */
if (likely(skb->len <= HNS3_MAX_BD_SIZE && !recursion_level &&
!skb_has_frag_list(skb) &&
skb_shinfo(skb)->nr_frags < max_non_tso_bd_num))
return skb_shinfo(skb)->nr_frags + 1U;
if (unlikely(recursion_level >= HNS3_MAX_RECURSION_LEVEL))
return UINT_MAX;
bd_num = hns3_skb_bd_num(skb, bd_size, bd_num);
if (!skb_has_frag_list(skb) || bd_num > HNS3_MAX_TSO_BD_NUM)
return bd_num;
skb_walk_frags(skb, frag_skb) {
bd_num = hns3_tx_bd_num(frag_skb, bd_size, max_non_tso_bd_num,
bd_num, recursion_level + 1);
if (bd_num > HNS3_MAX_TSO_BD_NUM)
return bd_num;
}
return bd_num;
}
static unsigned int hns3_gso_hdr_len(struct sk_buff *skb)
{
if (!skb->encapsulation)
return skb_tcp_all_headers(skb);
return skb_inner_tcp_all_headers(skb);
}
/* HW need every continuous max_non_tso_bd_num buffer data to be larger
* than MSS, we simplify it by ensuring skb_headlen + the first continuous
* max_non_tso_bd_num - 1 frags to be larger than gso header len + mss,
* and the remaining continuous max_non_tso_bd_num - 1 frags to be larger
* than MSS except the last max_non_tso_bd_num - 1 frags.
*/
static bool hns3_skb_need_linearized(struct sk_buff *skb, unsigned int *bd_size,
unsigned int bd_num, u8 max_non_tso_bd_num)
{
unsigned int tot_len = 0;
int i;
for (i = 0; i < max_non_tso_bd_num - 1U; i++)
tot_len += bd_size[i];
/* ensure the first max_non_tso_bd_num frags is greater than
* mss + header
*/
if (tot_len + bd_size[max_non_tso_bd_num - 1U] <
skb_shinfo(skb)->gso_size + hns3_gso_hdr_len(skb))
return true;
/* ensure every continuous max_non_tso_bd_num - 1 buffer is greater
* than mss except the last one.
*/
for (i = 0; i < bd_num - max_non_tso_bd_num; i++) {
tot_len -= bd_size[i];
tot_len += bd_size[i + max_non_tso_bd_num - 1U];
if (tot_len < skb_shinfo(skb)->gso_size)
return true;
}
return false;
}
void hns3_shinfo_pack(struct skb_shared_info *shinfo, __u32 *size)
{
int i;
for (i = 0; i < MAX_SKB_FRAGS; i++)
size[i] = skb_frag_size(&shinfo->frags[i]);
}
static int hns3_skb_linearize(struct hns3_enet_ring *ring,
struct sk_buff *skb,
unsigned int bd_num)
{
/* 'bd_num == UINT_MAX' means the skb' fraglist has a
* recursion level of over HNS3_MAX_RECURSION_LEVEL.
*/
if (bd_num == UINT_MAX) {
hns3_ring_stats_update(ring, over_max_recursion);
return -ENOMEM;
}
/* The skb->len has exceeded the hw limitation, linearization
* will not help.
*/
if (skb->len > HNS3_MAX_TSO_SIZE ||
(!skb_is_gso(skb) && skb->len > HNS3_MAX_NON_TSO_SIZE)) {
hns3_ring_stats_update(ring, hw_limitation);
return -ENOMEM;
}
if (__skb_linearize(skb)) {
hns3_ring_stats_update(ring, sw_err_cnt);
return -ENOMEM;
}
return 0;
}
static int hns3_nic_maybe_stop_tx(struct hns3_enet_ring *ring,
struct net_device *netdev,
struct sk_buff *skb)
{
struct hns3_nic_priv *priv = netdev_priv(netdev);
u8 max_non_tso_bd_num = priv->max_non_tso_bd_num;
unsigned int bd_size[HNS3_MAX_TSO_BD_NUM + 1U];
unsigned int bd_num;
bd_num = hns3_tx_bd_num(skb, bd_size, max_non_tso_bd_num, 0, 0);
if (unlikely(bd_num > max_non_tso_bd_num)) {
if (bd_num <= HNS3_MAX_TSO_BD_NUM && skb_is_gso(skb) &&
!hns3_skb_need_linearized(skb, bd_size, bd_num,
max_non_tso_bd_num)) {
trace_hns3_over_max_bd(skb);
goto out;
}
if (hns3_skb_linearize(ring, skb, bd_num))
return -ENOMEM;
bd_num = hns3_tx_bd_count(skb->len);
hns3_ring_stats_update(ring, tx_copy);
}
out:
if (likely(ring_space(ring) >= bd_num))
return bd_num;
netif_stop_subqueue(netdev, ring->queue_index);
smp_mb(); /* Memory barrier before checking ring_space */
/* Start queue in case hns3_clean_tx_ring has just made room
* available and has not seen the queue stopped state performed
* by netif_stop_subqueue above.
*/
if (ring_space(ring) >= bd_num && netif_carrier_ok(netdev) &&
!test_bit(HNS3_NIC_STATE_DOWN, &priv->state)) {
netif_start_subqueue(netdev, ring->queue_index);
return bd_num;
}
hns3_ring_stats_update(ring, tx_busy);
return -EBUSY;
}
static void hns3_clear_desc(struct hns3_enet_ring *ring, int next_to_use_orig)
{
struct device *dev = ring_to_dev(ring);
unsigned int i;
for (i = 0; i < ring->desc_num; i++) {
struct hns3_desc *desc = &ring->desc[ring->next_to_use];
struct hns3_desc_cb *desc_cb;
memset(desc, 0, sizeof(*desc));
/* check if this is where we started */
if (ring->next_to_use == next_to_use_orig)
break;
/* rollback one */
ring_ptr_move_bw(ring, next_to_use);
desc_cb = &ring->desc_cb[ring->next_to_use];
if (!desc_cb->dma)
continue;
/* unmap the descriptor dma address */
if (desc_cb->type & (DESC_TYPE_SKB | DESC_TYPE_FRAGLIST_SKB))
dma_unmap_single(dev, desc_cb->dma, desc_cb->length,
DMA_TO_DEVICE);
else if (desc_cb->type &
(DESC_TYPE_BOUNCE_HEAD | DESC_TYPE_BOUNCE_ALL))
hns3_tx_spare_rollback(ring, desc_cb->length);
else if (desc_cb->length)
dma_unmap_page(dev, desc_cb->dma, desc_cb->length,
DMA_TO_DEVICE);
desc_cb->length = 0;
desc_cb->dma = 0;
desc_cb->type = DESC_TYPE_UNKNOWN;
}
}
static int hns3_fill_skb_to_desc(struct hns3_enet_ring *ring,
struct sk_buff *skb, unsigned int type)
{
struct sk_buff *frag_skb;
int i, ret, bd_num = 0;
ret = hns3_map_and_fill_desc(ring, skb, type);
if (unlikely(ret < 0))
return ret;
bd_num += ret;
for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
ret = hns3_map_and_fill_desc(ring, frag, DESC_TYPE_PAGE);
if (unlikely(ret < 0))
return ret;
bd_num += ret;
}
skb_walk_frags(skb, frag_skb) {
ret = hns3_fill_skb_to_desc(ring, frag_skb,
DESC_TYPE_FRAGLIST_SKB);
if (unlikely(ret < 0))
return ret;
bd_num += ret;
}
return bd_num;
}
static void hns3_tx_push_bd(struct hns3_enet_ring *ring, int num)
{
#define HNS3_BYTES_PER_64BIT 8
struct hns3_desc desc[HNS3_MAX_PUSH_BD_NUM] = {};
int offset = 0;
/* make sure everything is visible to device before
* excuting tx push or updating doorbell
*/
dma_wmb();
do {
int idx = (ring->next_to_use - num + ring->desc_num) %
ring->desc_num;
u64_stats_update_begin(&ring->syncp);
ring->stats.tx_push++;
u64_stats_update_end(&ring->syncp);
memcpy(&desc[offset], &ring->desc[idx],
sizeof(struct hns3_desc));
offset++;
} while (--num);
__iowrite64_copy(ring->tqp->mem_base, desc,
(sizeof(struct hns3_desc) * HNS3_MAX_PUSH_BD_NUM) /
HNS3_BYTES_PER_64BIT);
}
static void hns3_tx_mem_doorbell(struct hns3_enet_ring *ring)
{
#define HNS3_MEM_DOORBELL_OFFSET 64
__le64 bd_num = cpu_to_le64((u64)ring->pending_buf);
/* make sure everything is visible to device before
* excuting tx push or updating doorbell
*/
dma_wmb();
__iowrite64_copy(ring->tqp->mem_base + HNS3_MEM_DOORBELL_OFFSET,
&bd_num, 1);
u64_stats_update_begin(&ring->syncp);
ring->stats.tx_mem_doorbell += ring->pending_buf;
u64_stats_update_end(&ring->syncp);
}
static void hns3_tx_doorbell(struct hns3_enet_ring *ring, int num,
bool doorbell)
{
struct net_device *netdev = ring_to_netdev(ring);
struct hns3_nic_priv *priv = netdev_priv(netdev);
/* when tx push is enabled, the packet whose number of BD below
* HNS3_MAX_PUSH_BD_NUM can be pushed directly.
*/
if (test_bit(HNS3_NIC_STATE_TX_PUSH_ENABLE, &priv->state) && num &&
!ring->pending_buf && num <= HNS3_MAX_PUSH_BD_NUM && doorbell) {
/* This smp_store_release() pairs with smp_load_aquire() in
* hns3_nic_reclaim_desc(). Ensure that the BD valid bit
* is updated.
*/
smp_store_release(&ring->last_to_use, ring->next_to_use);
hns3_tx_push_bd(ring, num);
return;
}
ring->pending_buf += num;
if (!doorbell) {
hns3_ring_stats_update(ring, tx_more);
return;
}
/* This smp_store_release() pairs with smp_load_aquire() in
* hns3_nic_reclaim_desc(). Ensure that the BD valid bit is updated.
*/
smp_store_release(&ring->last_to_use, ring->next_to_use);
if (ring->tqp->mem_base)
hns3_tx_mem_doorbell(ring);
else
writel(ring->pending_buf,
ring->tqp->io_base + HNS3_RING_TX_RING_TAIL_REG);
ring->pending_buf = 0;
}
static void hns3_tsyn(struct net_device *netdev, struct sk_buff *skb,
struct hns3_desc *desc)
{
struct hnae3_handle *h = hns3_get_handle(netdev);
if (!(h->ae_algo->ops->set_tx_hwts_info &&
h->ae_algo->ops->set_tx_hwts_info(h, skb)))
return;
desc->tx.bdtp_fe_sc_vld_ra_ri |= cpu_to_le16(BIT(HNS3_TXD_TSYN_B));
}
static int hns3_handle_tx_bounce(struct hns3_enet_ring *ring,
struct sk_buff *skb)
{
struct hns3_desc_cb *desc_cb = &ring->desc_cb[ring->next_to_use];
unsigned int type = DESC_TYPE_BOUNCE_HEAD;
unsigned int size = skb_headlen(skb);
dma_addr_t dma;
int bd_num = 0;
u32 cb_len;
void *buf;
int ret;
if (skb->len <= ring->tx_copybreak) {
size = skb->len;
type = DESC_TYPE_BOUNCE_ALL;
}
/* hns3_can_use_tx_bounce() is called to ensure the below
* function can always return the tx buffer.
*/
buf = hns3_tx_spare_alloc(ring, size, &dma, &cb_len);
ret = skb_copy_bits(skb, 0, buf, size);
if (unlikely(ret < 0)) {
hns3_tx_spare_rollback(ring, cb_len);
hns3_ring_stats_update(ring, copy_bits_err);
return ret;
}
desc_cb->priv = skb;
desc_cb->length = cb_len;
desc_cb->dma = dma;
desc_cb->type = type;
bd_num += hns3_fill_desc(ring, dma, size);
if (type == DESC_TYPE_BOUNCE_HEAD) {
ret = hns3_fill_skb_to_desc(ring, skb,
DESC_TYPE_BOUNCE_HEAD);
if (unlikely(ret < 0))
return ret;
bd_num += ret;
}
dma_sync_single_for_device(ring_to_dev(ring), dma, size,
DMA_TO_DEVICE);
hns3_ring_stats_update(ring, tx_bounce);
return bd_num;
}
static int hns3_handle_tx_sgl(struct hns3_enet_ring *ring,
struct sk_buff *skb)
{
struct hns3_desc_cb *desc_cb = &ring->desc_cb[ring->next_to_use];
u32 nfrag = skb_shinfo(skb)->nr_frags + 1;
struct sg_table *sgt;
int i, bd_num = 0;
dma_addr_t dma;
u32 cb_len;
int nents;
if (skb_has_frag_list(skb))
nfrag = HNS3_MAX_TSO_BD_NUM;
/* hns3_can_use_tx_sgl() is called to ensure the below
* function can always return the tx buffer.
*/
sgt = hns3_tx_spare_alloc(ring, HNS3_SGL_SIZE(nfrag),
&dma, &cb_len);
/* scatterlist follows by the sg table */
sgt->sgl = (struct scatterlist *)(sgt + 1);
sg_init_table(sgt->sgl, nfrag);
nents = skb_to_sgvec(skb, sgt->sgl, 0, skb->len);
if (unlikely(nents < 0)) {
hns3_tx_spare_rollback(ring, cb_len);
hns3_ring_stats_update(ring, skb2sgl_err);
return -ENOMEM;
}
sgt->orig_nents = nents;
sgt->nents = dma_map_sg(ring_to_dev(ring), sgt->sgl, sgt->orig_nents,
DMA_TO_DEVICE);
if (unlikely(!sgt->nents)) {
hns3_tx_spare_rollback(ring, cb_len);
hns3_ring_stats_update(ring, map_sg_err);
return -ENOMEM;
}
desc_cb->priv = skb;
desc_cb->length = cb_len;
desc_cb->dma = dma;
desc_cb->type = DESC_TYPE_SGL_SKB;
for (i = 0; i < sgt->nents; i++)
bd_num += hns3_fill_desc(ring, sg_dma_address(sgt->sgl + i),
sg_dma_len(sgt->sgl + i));
hns3_ring_stats_update(ring, tx_sgl);
return bd_num;
}
static int hns3_handle_desc_filling(struct hns3_enet_ring *ring,
struct sk_buff *skb)
{
u32 space;
if (!ring->tx_spare)
goto out;
space = hns3_tx_spare_space(ring);
if (hns3_can_use_tx_sgl(ring, skb, space))
return hns3_handle_tx_sgl(ring, skb);
if (hns3_can_use_tx_bounce(ring, skb, space))
return hns3_handle_tx_bounce(ring, skb);
out:
return hns3_fill_skb_to_desc(ring, skb, DESC_TYPE_SKB);
}
static int hns3_handle_skb_desc(struct hns3_enet_ring *ring,
struct sk_buff *skb,
struct hns3_desc_cb *desc_cb,
int next_to_use_head)
{
int ret;
ret = hns3_fill_skb_desc(ring, skb, &ring->desc[ring->next_to_use],
desc_cb);
if (unlikely(ret < 0))
goto fill_err;
/* 'ret < 0' means filling error, 'ret == 0' means skb->len is
* zero, which is unlikely, and 'ret > 0' means how many tx desc
* need to be notified to the hw.
*/
ret = hns3_handle_desc_filling(ring, skb);
if (likely(ret > 0))
return ret;
fill_err:
hns3_clear_desc(ring, next_to_use_head);
return ret;
}
netdev_tx_t hns3_nic_net_xmit(struct sk_buff *skb, struct net_device *netdev)
{
struct hns3_nic_priv *priv = netdev_priv(netdev);
struct hns3_enet_ring *ring = &priv->ring[skb->queue_mapping];
struct hns3_desc_cb *desc_cb = &ring->desc_cb[ring->next_to_use];
struct netdev_queue *dev_queue;
int pre_ntu, ret;
bool doorbell;
/* Hardware can only handle short frames above 32 bytes */
if (skb_put_padto(skb, HNS3_MIN_TX_LEN)) {
hns3_tx_doorbell(ring, 0, !netdev_xmit_more());
hns3_ring_stats_update(ring, sw_err_cnt);
return NETDEV_TX_OK;
}
/* Prefetch the data used later */
prefetch(skb->data);
ret = hns3_nic_maybe_stop_tx(ring, netdev, skb);
if (unlikely(ret <= 0)) {
if (ret == -EBUSY) {
hns3_tx_doorbell(ring, 0, true);
return NETDEV_TX_BUSY;
}
hns3_rl_err(netdev, "xmit error: %d!\n", ret);
goto out_err_tx_ok;
}
ret = hns3_handle_skb_desc(ring, skb, desc_cb, ring->next_to_use);
if (unlikely(ret <= 0))
goto out_err_tx_ok;
pre_ntu = ring->next_to_use ? (ring->next_to_use - 1) :
(ring->desc_num - 1);
if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP))
hns3_tsyn(netdev, skb, &ring->desc[pre_ntu]);
ring->desc[pre_ntu].tx.bdtp_fe_sc_vld_ra_ri |=
cpu_to_le16(BIT(HNS3_TXD_FE_B));
trace_hns3_tx_desc(ring, pre_ntu);
skb_tx_timestamp(skb);
/* Complete translate all packets */
dev_queue = netdev_get_tx_queue(netdev, ring->queue_index);
doorbell = __netdev_tx_sent_queue(dev_queue, desc_cb->send_bytes,
netdev_xmit_more());
hns3_tx_doorbell(ring, ret, doorbell);
return NETDEV_TX_OK;
out_err_tx_ok:
dev_kfree_skb_any(skb);
hns3_tx_doorbell(ring, 0, !netdev_xmit_more());
return NETDEV_TX_OK;
}
static int hns3_nic_net_set_mac_address(struct net_device *netdev, void *p)
{
char format_mac_addr_perm[HNAE3_FORMAT_MAC_ADDR_LEN];
char format_mac_addr_sa[HNAE3_FORMAT_MAC_ADDR_LEN];
struct hnae3_handle *h = hns3_get_handle(netdev);
struct sockaddr *mac_addr = p;
int ret;
if (!mac_addr || !is_valid_ether_addr((const u8 *)mac_addr->sa_data))
return -EADDRNOTAVAIL;
if (ether_addr_equal(netdev->dev_addr, mac_addr->sa_data)) {
hnae3_format_mac_addr(format_mac_addr_sa, mac_addr->sa_data);
netdev_info(netdev, "already using mac address %s\n",
format_mac_addr_sa);
return 0;
}
/* For VF device, if there is a perm_addr, then the user will not
* be allowed to change the address.
*/
if (!hns3_is_phys_func(h->pdev) &&
!is_zero_ether_addr(netdev->perm_addr)) {
hnae3_format_mac_addr(format_mac_addr_perm, netdev->perm_addr);
hnae3_format_mac_addr(format_mac_addr_sa, mac_addr->sa_data);
netdev_err(netdev, "has permanent MAC %s, user MAC %s not allow\n",
format_mac_addr_perm, format_mac_addr_sa);
return -EPERM;
}
ret = h->ae_algo->ops->set_mac_addr(h, mac_addr->sa_data, false);
if (ret) {
netdev_err(netdev, "set_mac_address fail, ret=%d!\n", ret);
return ret;
}
eth_hw_addr_set(netdev, mac_addr->sa_data);
return 0;
}
static int hns3_nic_do_ioctl(struct net_device *netdev,
struct ifreq *ifr, int cmd)
{
struct hnae3_handle *h = hns3_get_handle(netdev);
if (!netif_running(netdev))
return -EINVAL;
if (!h->ae_algo->ops->do_ioctl)
return -EOPNOTSUPP;
return h->ae_algo->ops->do_ioctl(h, ifr, cmd);
}
static int hns3_nic_set_features(struct net_device *netdev,
netdev_features_t features)
{
netdev_features_t changed = netdev->features ^ features;
struct hns3_nic_priv *priv = netdev_priv(netdev);
struct hnae3_handle *h = priv->ae_handle;
bool enable;
int ret;
if (changed & (NETIF_F_GRO_HW) && h->ae_algo->ops->set_gro_en) {
enable = !!(features & NETIF_F_GRO_HW);
ret = h->ae_algo->ops->set_gro_en(h, enable);
if (ret)
return ret;
}
if ((changed & NETIF_F_HW_VLAN_CTAG_RX) &&
h->ae_algo->ops->enable_hw_strip_rxvtag) {
enable = !!(features & NETIF_F_HW_VLAN_CTAG_RX);
ret = h->ae_algo->ops->enable_hw_strip_rxvtag(h, enable);
if (ret)
return ret;
}
if ((changed & NETIF_F_NTUPLE) && h->ae_algo->ops->enable_fd) {
enable = !!(features & NETIF_F_NTUPLE);
h->ae_algo->ops->enable_fd(h, enable);
}
if ((netdev->features & NETIF_F_HW_TC) > (features & NETIF_F_HW_TC) &&
h->ae_algo->ops->cls_flower_active(h)) {
netdev_err(netdev,
"there are offloaded TC filters active, cannot disable HW TC offload");
return -EINVAL;
}
if ((changed & NETIF_F_HW_VLAN_CTAG_FILTER) &&
h->ae_algo->ops->enable_vlan_filter) {
enable = !!(features & NETIF_F_HW_VLAN_CTAG_FILTER);
ret = h->ae_algo->ops->enable_vlan_filter(h, enable);
if (ret)
return ret;
}
netdev->features = features;
return 0;
}
static netdev_features_t hns3_features_check(struct sk_buff *skb,
struct net_device *dev,
netdev_features_t features)
{
#define HNS3_MAX_HDR_LEN 480U
#define HNS3_MAX_L4_HDR_LEN 60U
size_t len;
if (skb->ip_summed != CHECKSUM_PARTIAL)
return features;
if (skb->encapsulation)
len = skb_inner_transport_offset(skb);
else
len = skb_transport_offset(skb);
/* Assume L4 is 60 byte as TCP is the only protocol with a
* a flexible value, and it's max len is 60 bytes.
*/
len += HNS3_MAX_L4_HDR_LEN;
/* Hardware only supports checksum on the skb with a max header
* len of 480 bytes.
*/
if (len > HNS3_MAX_HDR_LEN)
features &= ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
return features;
}
static void hns3_fetch_stats(struct rtnl_link_stats64 *stats,
struct hns3_enet_ring *ring, bool is_tx)
{
unsigned int start;
do {
start = u64_stats_fetch_begin(&ring->syncp);
if (is_tx) {
stats->tx_bytes += ring->stats.tx_bytes;
stats->tx_packets += ring->stats.tx_pkts;
stats->tx_dropped += ring->stats.sw_err_cnt;
stats->tx_dropped += ring->stats.tx_vlan_err;
stats->tx_dropped += ring->stats.tx_l4_proto_err;
stats->tx_dropped += ring->stats.tx_l2l3l4_err;
stats->tx_dropped += ring->stats.tx_tso_err;
stats->tx_dropped += ring->stats.over_max_recursion;
stats->tx_dropped += ring->stats.hw_limitation;
stats->tx_dropped += ring->stats.copy_bits_err;
stats->tx_dropped += ring->stats.skb2sgl_err;
stats->tx_dropped += ring->stats.map_sg_err;
stats->tx_errors += ring->stats.sw_err_cnt;
stats->tx_errors += ring->stats.tx_vlan_err;
stats->tx_errors += ring->stats.tx_l4_proto_err;
stats->tx_errors += ring->stats.tx_l2l3l4_err;
stats->tx_errors += ring->stats.tx_tso_err;
stats->tx_errors += ring->stats.over_max_recursion;
stats->tx_errors += ring->stats.hw_limitation;
stats->tx_errors += ring->stats.copy_bits_err;
stats->tx_errors += ring->stats.skb2sgl_err;
stats->tx_errors += ring->stats.map_sg_err;
} else {
stats->rx_bytes += ring->stats.rx_bytes;
stats->rx_packets += ring->stats.rx_pkts;
stats->rx_dropped += ring->stats.l2_err;
stats->rx_errors += ring->stats.l2_err;
stats->rx_errors += ring->stats.l3l4_csum_err;
stats->rx_crc_errors += ring->stats.l2_err;
stats->multicast += ring->stats.rx_multicast;
stats->rx_length_errors += ring->stats.err_pkt_len;
}
} while (u64_stats_fetch_retry(&ring->syncp, start));
}
static void hns3_nic_get_stats64(struct net_device *netdev,
struct rtnl_link_stats64 *stats)
{
struct hns3_nic_priv *priv = netdev_priv(netdev);
int queue_num = priv->ae_handle->kinfo.num_tqps;
struct hnae3_handle *handle = priv->ae_handle;
struct rtnl_link_stats64 ring_total_stats;
struct hns3_enet_ring *ring;
unsigned int idx;
if (test_bit(HNS3_NIC_STATE_DOWN, &priv->state))
return;
handle->ae_algo->ops->update_stats(handle);
memset(&ring_total_stats, 0, sizeof(ring_total_stats));
for (idx = 0; idx < queue_num; idx++) {
/* fetch the tx stats */
ring = &priv->ring[idx];
hns3_fetch_stats(&ring_total_stats, ring, true);
/* fetch the rx stats */
ring = &priv->ring[idx + queue_num];
hns3_fetch_stats(&ring_total_stats, ring, false);
}
stats->tx_bytes = ring_total_stats.tx_bytes;
stats->tx_packets = ring_total_stats.tx_packets;
stats->rx_bytes = ring_total_stats.rx_bytes;
stats->rx_packets = ring_total_stats.rx_packets;
stats->rx_errors = ring_total_stats.rx_errors;
stats->multicast = ring_total_stats.multicast;
stats->rx_length_errors = ring_total_stats.rx_length_errors;
stats->rx_crc_errors = ring_total_stats.rx_crc_errors;
stats->rx_missed_errors = netdev->stats.rx_missed_errors;
stats->tx_errors = ring_total_stats.tx_errors;
stats->rx_dropped = ring_total_stats.rx_dropped;
stats->tx_dropped = ring_total_stats.tx_dropped;
stats->collisions = netdev->stats.collisions;
stats->rx_over_errors = netdev->stats.rx_over_errors;
stats->rx_frame_errors = netdev->stats.rx_frame_errors;
stats->rx_fifo_errors = netdev->stats.rx_fifo_errors;
stats->tx_aborted_errors = netdev->stats.tx_aborted_errors;
stats->tx_carrier_errors = netdev->stats.tx_carrier_errors;
stats->tx_fifo_errors = netdev->stats.tx_fifo_errors;
stats->tx_heartbeat_errors = netdev->stats.tx_heartbeat_errors;
stats->tx_window_errors = netdev->stats.tx_window_errors;
stats->rx_compressed = netdev->stats.rx_compressed;
stats->tx_compressed = netdev->stats.tx_compressed;
}
static int hns3_setup_tc(struct net_device *netdev, void *type_data)
{
struct tc_mqprio_qopt_offload *mqprio_qopt = type_data;
struct hnae3_knic_private_info *kinfo;
u8 tc = mqprio_qopt->qopt.num_tc;
u16 mode = mqprio_qopt->mode;
u8 hw = mqprio_qopt->qopt.hw;
struct hnae3_handle *h;
if (!((hw == TC_MQPRIO_HW_OFFLOAD_TCS &&
mode == TC_MQPRIO_MODE_CHANNEL) || (!hw && tc == 0)))
return -EOPNOTSUPP;
if (tc > HNAE3_MAX_TC)
return -EINVAL;
if (!netdev)
return -EINVAL;
h = hns3_get_handle(netdev);
kinfo = &h->kinfo;
netif_dbg(h, drv, netdev, "setup tc: num_tc=%u\n", tc);
return (kinfo->dcb_ops && kinfo->dcb_ops->setup_tc) ?
kinfo->dcb_ops->setup_tc(h, mqprio_qopt) : -EOPNOTSUPP;
}
static int hns3_setup_tc_cls_flower(struct hns3_nic_priv *priv,
struct flow_cls_offload *flow)
{
int tc = tc_classid_to_hwtc(priv->netdev, flow->classid);
struct hnae3_handle *h = hns3_get_handle(priv->netdev);
switch (flow->command) {
case FLOW_CLS_REPLACE:
if (h->ae_algo->ops->add_cls_flower)
return h->ae_algo->ops->add_cls_flower(h, flow, tc);
break;
case FLOW_CLS_DESTROY:
if (h->ae_algo->ops->del_cls_flower)
return h->ae_algo->ops->del_cls_flower(h, flow);
break;
default:
break;
}
return -EOPNOTSUPP;
}
static int hns3_setup_tc_block_cb(enum tc_setup_type type, void *type_data,
void *cb_priv)
{
struct hns3_nic_priv *priv = cb_priv;
if (!tc_cls_can_offload_and_chain0(priv->netdev, type_data))
return -EOPNOTSUPP;
switch (type) {
case TC_SETUP_CLSFLOWER:
return hns3_setup_tc_cls_flower(priv, type_data);
default:
return -EOPNOTSUPP;
}
}
static LIST_HEAD(hns3_block_cb_list);
static int hns3_nic_setup_tc(struct net_device *dev, enum tc_setup_type type,
void *type_data)
{
struct hns3_nic_priv *priv = netdev_priv(dev);
int ret;
switch (type) {
case TC_SETUP_QDISC_MQPRIO:
ret = hns3_setup_tc(dev, type_data);
break;
case TC_SETUP_BLOCK:
ret = flow_block_cb_setup_simple(type_data,
&hns3_block_cb_list,
hns3_setup_tc_block_cb,
priv, priv, true);
break;
default:
return -EOPNOTSUPP;
}
return ret;
}
static int hns3_vlan_rx_add_vid(struct net_device *netdev,
__be16 proto, u16 vid)
{
struct hnae3_handle *h = hns3_get_handle(netdev);
int ret = -EIO;
if (h->ae_algo->ops->set_vlan_filter)
ret = h->ae_algo->ops->set_vlan_filter(h, proto, vid, false);
return ret;
}
static int hns3_vlan_rx_kill_vid(struct net_device *netdev,
__be16 proto, u16 vid)
{
struct hnae3_handle *h = hns3_get_handle(netdev);
int ret = -EIO;
if (h->ae_algo->ops->set_vlan_filter)
ret = h->ae_algo->ops->set_vlan_filter(h, proto, vid, true);
return ret;
}
static int hns3_ndo_set_vf_vlan(struct net_device *netdev, int vf, u16 vlan,
u8 qos, __be16 vlan_proto)
{
struct hnae3_handle *h = hns3_get_handle(netdev);
int ret = -EIO;
netif_dbg(h, drv, netdev,
"set vf vlan: vf=%d, vlan=%u, qos=%u, vlan_proto=0x%x\n",
vf, vlan, qos, ntohs(vlan_proto));
if (h->ae_algo->ops->set_vf_vlan_filter)
ret = h->ae_algo->ops->set_vf_vlan_filter(h, vf, vlan,
qos, vlan_proto);
return ret;
}
static int hns3_set_vf_spoofchk(struct net_device *netdev, int vf, bool enable)
{
struct hnae3_handle *handle = hns3_get_handle(netdev);
if (hns3_nic_resetting(netdev))
return -EBUSY;
if (!handle->ae_algo->ops->set_vf_spoofchk)
return -EOPNOTSUPP;
return handle->ae_algo->ops->set_vf_spoofchk(handle, vf, enable);
}
static int hns3_set_vf_trust(struct net_device *netdev, int vf, bool enable)
{
struct hnae3_handle *handle = hns3_get_handle(netdev);
if (!handle->ae_algo->ops->set_vf_trust)
return -EOPNOTSUPP;
return handle->ae_algo->ops->set_vf_trust(handle, vf, enable);
}
static int hns3_nic_change_mtu(struct net_device *netdev, int new_mtu)
{
struct hnae3_handle *h = hns3_get_handle(netdev);
int ret;
if (hns3_nic_resetting(netdev))
return -EBUSY;
if (!h->ae_algo->ops->set_mtu)
return -EOPNOTSUPP;
netif_dbg(h, drv, netdev,
"change mtu from %u to %d\n", netdev->mtu, new_mtu);
ret = h->ae_algo->ops->set_mtu(h, new_mtu);
if (ret)
netdev_err(netdev, "failed to change MTU in hardware %d\n",
ret);
else
WRITE_ONCE(netdev->mtu, new_mtu);
return ret;
}
static int hns3_get_timeout_queue(struct net_device *ndev)
{
int i;
/* Find the stopped queue the same way the stack does */
for (i = 0; i < ndev->num_tx_queues; i++) {
struct netdev_queue *q;
unsigned long trans_start;
q = netdev_get_tx_queue(ndev, i);
trans_start = READ_ONCE(q->trans_start);
if (netif_xmit_stopped(q) &&
time_after(jiffies,
(trans_start + ndev->watchdog_timeo))) {
#ifdef CONFIG_BQL
struct dql *dql = &q->dql;
netdev_info(ndev, "DQL info last_cnt: %u, queued: %u, adj_limit: %u, completed: %u\n",
dql->last_obj_cnt, dql->num_queued,
dql->adj_limit, dql->num_completed);
#endif
netdev_info(ndev, "queue state: 0x%lx, delta msecs: %u\n",
q->state,
jiffies_to_msecs(jiffies - trans_start));
break;
}
}
return i;
}
static void hns3_dump_queue_stats(struct net_device *ndev,
struct hns3_enet_ring *tx_ring,
int timeout_queue)
{
struct napi_struct *napi = &tx_ring->tqp_vector->napi;
struct hns3_nic_priv *priv = netdev_priv(ndev);
netdev_info(ndev,
"tx_timeout count: %llu, queue id: %d, SW_NTU: 0x%x, SW_NTC: 0x%x, napi state: %lu\n",
priv->tx_timeout_count, timeout_queue, tx_ring->next_to_use,
tx_ring->next_to_clean, napi->state);
netdev_info(ndev,
"tx_pkts: %llu, tx_bytes: %llu, sw_err_cnt: %llu, tx_pending: %d\n",
tx_ring->stats.tx_pkts, tx_ring->stats.tx_bytes,
tx_ring->stats.sw_err_cnt, tx_ring->pending_buf);
netdev_info(ndev,
"seg_pkt_cnt: %llu, tx_more: %llu, restart_queue: %llu, tx_busy: %llu\n",
tx_ring->stats.seg_pkt_cnt, tx_ring->stats.tx_more,
tx_ring->stats.restart_queue, tx_ring->stats.tx_busy);
netdev_info(ndev, "tx_push: %llu, tx_mem_doorbell: %llu\n",
tx_ring->stats.tx_push, tx_ring->stats.tx_mem_doorbell);
}
static void hns3_dump_queue_reg(struct net_device *ndev,
struct hns3_enet_ring *tx_ring)
{
netdev_info(ndev,
"BD_NUM: 0x%x HW_HEAD: 0x%x, HW_TAIL: 0x%x, BD_ERR: 0x%x, INT: 0x%x\n",
hns3_tqp_read_reg(tx_ring, HNS3_RING_TX_RING_BD_NUM_REG),
hns3_tqp_read_reg(tx_ring, HNS3_RING_TX_RING_HEAD_REG),
hns3_tqp_read_reg(tx_ring, HNS3_RING_TX_RING_TAIL_REG),
hns3_tqp_read_reg(tx_ring, HNS3_RING_TX_RING_BD_ERR_REG),
readl(tx_ring->tqp_vector->mask_addr));
netdev_info(ndev,
"RING_EN: 0x%x, TC: 0x%x, FBD_NUM: 0x%x FBD_OFT: 0x%x, EBD_NUM: 0x%x, EBD_OFT: 0x%x\n",
hns3_tqp_read_reg(tx_ring, HNS3_RING_EN_REG),
hns3_tqp_read_reg(tx_ring, HNS3_RING_TX_RING_TC_REG),
hns3_tqp_read_reg(tx_ring, HNS3_RING_TX_RING_FBDNUM_REG),
hns3_tqp_read_reg(tx_ring, HNS3_RING_TX_RING_OFFSET_REG),
hns3_tqp_read_reg(tx_ring, HNS3_RING_TX_RING_EBDNUM_REG),
hns3_tqp_read_reg(tx_ring,
HNS3_RING_TX_RING_EBD_OFFSET_REG));
}
static bool hns3_get_tx_timeo_queue_info(struct net_device *ndev)
{
struct hns3_nic_priv *priv = netdev_priv(ndev);
struct hnae3_handle *h = hns3_get_handle(ndev);
struct hns3_enet_ring *tx_ring;
int timeout_queue;
timeout_queue = hns3_get_timeout_queue(ndev);
if (timeout_queue >= ndev->num_tx_queues) {
netdev_info(ndev,
"no netdev TX timeout queue found, timeout count: %llu\n",
priv->tx_timeout_count);
return false;
}
priv->tx_timeout_count++;
tx_ring = &priv->ring[timeout_queue];
hns3_dump_queue_stats(ndev, tx_ring, timeout_queue);
/* When mac received many pause frames continuous, it's unable to send
* packets, which may cause tx timeout
*/
if (h->ae_algo->ops->get_mac_stats) {
struct hns3_mac_stats mac_stats;
h->ae_algo->ops->get_mac_stats(h, &mac_stats);
netdev_info(ndev, "tx_pause_cnt: %llu, rx_pause_cnt: %llu\n",
mac_stats.tx_pause_cnt, mac_stats.rx_pause_cnt);
}
hns3_dump_queue_reg(ndev, tx_ring);
return true;
}
static void hns3_nic_net_timeout(struct net_device *ndev, unsigned int txqueue)
{
struct hns3_nic_priv *priv = netdev_priv(ndev);
struct hnae3_handle *h = priv->ae_handle;
if (!hns3_get_tx_timeo_queue_info(ndev))
return;
/* request the reset, and let the hclge to determine
* which reset level should be done
*/
if (h->ae_algo->ops->reset_event)
h->ae_algo->ops->reset_event(h->pdev, h);
}
#ifdef CONFIG_RFS_ACCEL
static int hns3_rx_flow_steer(struct net_device *dev, const struct sk_buff *skb,
u16 rxq_index, u32 flow_id)
{
struct hnae3_handle *h = hns3_get_handle(dev);
struct flow_keys fkeys;
if (!h->ae_algo->ops->add_arfs_entry)
return -EOPNOTSUPP;
if (skb->encapsulation)
return -EPROTONOSUPPORT;
if (!skb_flow_dissect_flow_keys(skb, &fkeys, 0))
return -EPROTONOSUPPORT;
if ((fkeys.basic.n_proto != htons(ETH_P_IP) &&
fkeys.basic.n_proto != htons(ETH_P_IPV6)) ||
(fkeys.basic.ip_proto != IPPROTO_TCP &&
fkeys.basic.ip_proto != IPPROTO_UDP))
return -EPROTONOSUPPORT;
return h->ae_algo->ops->add_arfs_entry(h, rxq_index, flow_id, &fkeys);
}
#endif
static int hns3_nic_get_vf_config(struct net_device *ndev, int vf,
struct ifla_vf_info *ivf)
{
struct hnae3_handle *h = hns3_get_handle(ndev);
if (!h->ae_algo->ops->get_vf_config)
return -EOPNOTSUPP;
return h->ae_algo->ops->get_vf_config(h, vf, ivf);
}
static int hns3_nic_set_vf_link_state(struct net_device *ndev, int vf,
int link_state)
{
struct hnae3_handle *h = hns3_get_handle(ndev);
if (!h->ae_algo->ops->set_vf_link_state)
return -EOPNOTSUPP;
return h->ae_algo->ops->set_vf_link_state(h, vf, link_state);
}
static int hns3_nic_set_vf_rate(struct net_device *ndev, int vf,
int min_tx_rate, int max_tx_rate)
{
struct hnae3_handle *h = hns3_get_handle(ndev);
if (!h->ae_algo->ops->set_vf_rate)
return -EOPNOTSUPP;
return h->ae_algo->ops->set_vf_rate(h, vf, min_tx_rate, max_tx_rate,
false);
}
static int hns3_nic_set_vf_mac(struct net_device *netdev, int vf_id, u8 *mac)
{
struct hnae3_handle *h = hns3_get_handle(netdev);
char format_mac_addr[HNAE3_FORMAT_MAC_ADDR_LEN];
if (!h->ae_algo->ops->set_vf_mac)
return -EOPNOTSUPP;
if (is_multicast_ether_addr(mac)) {
hnae3_format_mac_addr(format_mac_addr, mac);
netdev_err(netdev,
"Invalid MAC:%s specified. Could not set MAC\n",
format_mac_addr);
return -EINVAL;
}
return h->ae_algo->ops->set_vf_mac(h, vf_id, mac);
}
#define HNS3_INVALID_DSCP 0xff
#define HNS3_DSCP_SHIFT 2
static u8 hns3_get_skb_dscp(struct sk_buff *skb)
{
__be16 protocol = skb->protocol;
u8 dscp = HNS3_INVALID_DSCP;
if (protocol == htons(ETH_P_8021Q))
protocol = vlan_get_protocol(skb);
if (protocol == htons(ETH_P_IP))
dscp = ipv4_get_dsfield(ip_hdr(skb)) >> HNS3_DSCP_SHIFT;
else if (protocol == htons(ETH_P_IPV6))
dscp = ipv6_get_dsfield(ipv6_hdr(skb)) >> HNS3_DSCP_SHIFT;
return dscp;
}
static u16 hns3_nic_select_queue(struct net_device *netdev,
struct sk_buff *skb,
struct net_device *sb_dev)
{
struct hnae3_handle *h = hns3_get_handle(netdev);
u8 dscp;
if (h->kinfo.tc_map_mode != HNAE3_TC_MAP_MODE_DSCP ||
!h->ae_algo->ops->get_dscp_prio)
goto out;
dscp = hns3_get_skb_dscp(skb);
if (unlikely(dscp >= HNAE3_MAX_DSCP))
goto out;
skb->priority = h->kinfo.dscp_prio[dscp];
if (skb->priority == HNAE3_PRIO_ID_INVALID)
skb->priority = 0;
out:
return netdev_pick_tx(netdev, skb, sb_dev);
}
static const struct net_device_ops hns3_nic_netdev_ops = {
.ndo_open = hns3_nic_net_open,
.ndo_stop = hns3_nic_net_stop,
.ndo_start_xmit = hns3_nic_net_xmit,
.ndo_tx_timeout = hns3_nic_net_timeout,
.ndo_set_mac_address = hns3_nic_net_set_mac_address,
.ndo_eth_ioctl = hns3_nic_do_ioctl,
.ndo_change_mtu = hns3_nic_change_mtu,
.ndo_set_features = hns3_nic_set_features,
.ndo_features_check = hns3_features_check,
.ndo_get_stats64 = hns3_nic_get_stats64,
.ndo_setup_tc = hns3_nic_setup_tc,
.ndo_set_rx_mode = hns3_nic_set_rx_mode,
.ndo_vlan_rx_add_vid = hns3_vlan_rx_add_vid,
.ndo_vlan_rx_kill_vid = hns3_vlan_rx_kill_vid,
.ndo_set_vf_vlan = hns3_ndo_set_vf_vlan,
.ndo_set_vf_spoofchk = hns3_set_vf_spoofchk,
.ndo_set_vf_trust = hns3_set_vf_trust,
#ifdef CONFIG_RFS_ACCEL
.ndo_rx_flow_steer = hns3_rx_flow_steer,
#endif
.ndo_get_vf_config = hns3_nic_get_vf_config,
.ndo_set_vf_link_state = hns3_nic_set_vf_link_state,
.ndo_set_vf_rate = hns3_nic_set_vf_rate,
.ndo_set_vf_mac = hns3_nic_set_vf_mac,
.ndo_select_queue = hns3_nic_select_queue,
};
bool hns3_is_phys_func(struct pci_dev *pdev)
{
u32 dev_id = pdev->device;
switch (dev_id) {
case HNAE3_DEV_ID_GE:
case HNAE3_DEV_ID_25GE:
case HNAE3_DEV_ID_25GE_RDMA:
case HNAE3_DEV_ID_25GE_RDMA_MACSEC:
case HNAE3_DEV_ID_50GE_RDMA:
case HNAE3_DEV_ID_50GE_RDMA_MACSEC:
case HNAE3_DEV_ID_100G_RDMA_MACSEC:
case HNAE3_DEV_ID_200G_RDMA:
return true;
case HNAE3_DEV_ID_VF:
case HNAE3_DEV_ID_RDMA_DCB_PFC_VF:
return false;
default:
dev_warn(&pdev->dev, "un-recognized pci device-id %u",
dev_id);
}
return false;
}
static void hns3_disable_sriov(struct pci_dev *pdev)
{
/* If our VFs are assigned we cannot shut down SR-IOV
* without causing issues, so just leave the hardware
* available but disabled
*/
if (pci_vfs_assigned(pdev)) {
dev_warn(&pdev->dev,
"disabling driver while VFs are assigned\n");
return;
}
pci_disable_sriov(pdev);
}
/* hns3_probe - Device initialization routine
* @pdev: PCI device information struct
* @ent: entry in hns3_pci_tbl
*
* hns3_probe initializes a PF identified by a pci_dev structure.
* The OS initialization, configuring of the PF private structure,
* and a hardware reset occur.
*
* Returns 0 on success, negative on failure
*/
static int hns3_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
{
struct hnae3_ae_dev *ae_dev;
int ret;
ae_dev = devm_kzalloc(&pdev->dev, sizeof(*ae_dev), GFP_KERNEL);
if (!ae_dev)
return -ENOMEM;
ae_dev->pdev = pdev;
ae_dev->flag = ent->driver_data;
pci_set_drvdata(pdev, ae_dev);
ret = hnae3_register_ae_dev(ae_dev);
if (ret)
pci_set_drvdata(pdev, NULL);
return ret;
}
/**
* hns3_clean_vf_config
* @pdev: pointer to a pci_dev structure
* @num_vfs: number of VFs allocated
*
* Clean residual vf config after disable sriov
**/
static void hns3_clean_vf_config(struct pci_dev *pdev, int num_vfs)
{
struct hnae3_ae_dev *ae_dev = pci_get_drvdata(pdev);
if (ae_dev->ops->clean_vf_config)
ae_dev->ops->clean_vf_config(ae_dev, num_vfs);
}
/* hns3_remove - Device removal routine
* @pdev: PCI device information struct
*/
static void hns3_remove(struct pci_dev *pdev)
{
struct hnae3_ae_dev *ae_dev = pci_get_drvdata(pdev);
if (hns3_is_phys_func(pdev) && IS_ENABLED(CONFIG_PCI_IOV))
hns3_disable_sriov(pdev);
hnae3_unregister_ae_dev(ae_dev);
pci_set_drvdata(pdev, NULL);
}
/**
* hns3_pci_sriov_configure
* @pdev: pointer to a pci_dev structure
* @num_vfs: number of VFs to allocate
*
* Enable or change the number of VFs. Called when the user updates the number
* of VFs in sysfs.
**/
static int hns3_pci_sriov_configure(struct pci_dev *pdev, int num_vfs)
{
int ret;
if (!(hns3_is_phys_func(pdev) && IS_ENABLED(CONFIG_PCI_IOV))) {
dev_warn(&pdev->dev, "Can not config SRIOV\n");
return -EINVAL;
}
if (num_vfs) {
ret = pci_enable_sriov(pdev, num_vfs);
if (ret)
dev_err(&pdev->dev, "SRIOV enable failed %d\n", ret);
else
return num_vfs;
} else if (!pci_vfs_assigned(pdev)) {
int num_vfs_pre = pci_num_vf(pdev);
pci_disable_sriov(pdev);
hns3_clean_vf_config(pdev, num_vfs_pre);
} else {
dev_warn(&pdev->dev,
"Unable to free VFs because some are assigned to VMs.\n");
}
return 0;
}
static void hns3_shutdown(struct pci_dev *pdev)
{
struct hnae3_ae_dev *ae_dev = pci_get_drvdata(pdev);
hnae3_unregister_ae_dev(ae_dev);
pci_set_drvdata(pdev, NULL);
if (system_state == SYSTEM_POWER_OFF)
pci_set_power_state(pdev, PCI_D3hot);
}
static int __maybe_unused hns3_suspend(struct device *dev)
{
struct hnae3_ae_dev *ae_dev = dev_get_drvdata(dev);
if (ae_dev && hns3_is_phys_func(ae_dev->pdev)) {
dev_info(dev, "Begin to suspend.\n");
if (ae_dev->ops && ae_dev->ops->reset_prepare)
ae_dev->ops->reset_prepare(ae_dev, HNAE3_FUNC_RESET);
}
return 0;
}
static int __maybe_unused hns3_resume(struct device *dev)
{
struct hnae3_ae_dev *ae_dev = dev_get_drvdata(dev);
if (ae_dev && hns3_is_phys_func(ae_dev->pdev)) {
dev_info(dev, "Begin to resume.\n");
if (ae_dev->ops && ae_dev->ops->reset_done)
ae_dev->ops->reset_done(ae_dev);
}
return 0;
}
static pci_ers_result_t hns3_error_detected(struct pci_dev *pdev,
pci_channel_state_t state)
{
struct hnae3_ae_dev *ae_dev = pci_get_drvdata(pdev);
pci_ers_result_t ret;
dev_info(&pdev->dev, "PCI error detected, state(=%u)!!\n", state);
if (state == pci_channel_io_perm_failure)
return PCI_ERS_RESULT_DISCONNECT;
if (!ae_dev || !ae_dev->ops) {
dev_err(&pdev->dev,
"Can't recover - error happened before device initialized\n");
return PCI_ERS_RESULT_NONE;
}
if (ae_dev->ops->handle_hw_ras_error)
ret = ae_dev->ops->handle_hw_ras_error(ae_dev);
else
return PCI_ERS_RESULT_NONE;
return ret;
}
static pci_ers_result_t hns3_slot_reset(struct pci_dev *pdev)
{
struct hnae3_ae_dev *ae_dev = pci_get_drvdata(pdev);
const struct hnae3_ae_ops *ops;
enum hnae3_reset_type reset_type;
struct device *dev = &pdev->dev;
if (!ae_dev || !ae_dev->ops)
return PCI_ERS_RESULT_NONE;
ops = ae_dev->ops;
/* request the reset */
if (ops->reset_event && ops->get_reset_level &&
ops->set_default_reset_request) {
if (ae_dev->hw_err_reset_req) {
reset_type = ops->get_reset_level(ae_dev,
&ae_dev->hw_err_reset_req);
ops->set_default_reset_request(ae_dev, reset_type);
dev_info(dev, "requesting reset due to PCI error\n");
ops->reset_event(pdev, NULL);
}
return PCI_ERS_RESULT_RECOVERED;
}
return PCI_ERS_RESULT_DISCONNECT;
}
static void hns3_reset_prepare(struct pci_dev *pdev)
{
struct hnae3_ae_dev *ae_dev = pci_get_drvdata(pdev);
dev_info(&pdev->dev, "FLR prepare\n");
if (ae_dev && ae_dev->ops && ae_dev->ops->reset_prepare)
ae_dev->ops->reset_prepare(ae_dev, HNAE3_FLR_RESET);
}
static void hns3_reset_done(struct pci_dev *pdev)
{
struct hnae3_ae_dev *ae_dev = pci_get_drvdata(pdev);
dev_info(&pdev->dev, "FLR done\n");
if (ae_dev && ae_dev->ops && ae_dev->ops->reset_done)
ae_dev->ops->reset_done(ae_dev);
}
static const struct pci_error_handlers hns3_err_handler = {
.error_detected = hns3_error_detected,
.slot_reset = hns3_slot_reset,
.reset_prepare = hns3_reset_prepare,
.reset_done = hns3_reset_done,
};
static SIMPLE_DEV_PM_OPS(hns3_pm_ops, hns3_suspend, hns3_resume);
static struct pci_driver hns3_driver = {
.name = hns3_driver_name,
.id_table = hns3_pci_tbl,
.probe = hns3_probe,
.remove = hns3_remove,
.shutdown = hns3_shutdown,
.driver.pm = &hns3_pm_ops,
.sriov_configure = hns3_pci_sriov_configure,
.err_handler = &hns3_err_handler,
};
/* set default feature to hns3 */
static void hns3_set_default_feature(struct net_device *netdev)
{
struct hnae3_handle *h = hns3_get_handle(netdev);
struct pci_dev *pdev = h->pdev;
struct hnae3_ae_dev *ae_dev = pci_get_drvdata(pdev);
netdev->priv_flags |= IFF_UNICAST_FLT;
netdev->features |= NETIF_F_HW_VLAN_CTAG_FILTER |
NETIF_F_HW_VLAN_CTAG_TX | NETIF_F_HW_VLAN_CTAG_RX |
NETIF_F_RXCSUM | NETIF_F_SG | NETIF_F_GSO |
NETIF_F_GRO | NETIF_F_TSO | NETIF_F_TSO6 | NETIF_F_GSO_GRE |
NETIF_F_GSO_GRE_CSUM | NETIF_F_GSO_UDP_TUNNEL |
NETIF_F_SCTP_CRC | NETIF_F_FRAGLIST;
if (hnae3_ae_dev_gro_supported(ae_dev))
netdev->features |= NETIF_F_GRO_HW;
if (hnae3_ae_dev_fd_supported(ae_dev))
netdev->features |= NETIF_F_NTUPLE;
if (test_bit(HNAE3_DEV_SUPPORT_UDP_GSO_B, ae_dev->caps))
netdev->features |= NETIF_F_GSO_UDP_L4;
if (test_bit(HNAE3_DEV_SUPPORT_HW_TX_CSUM_B, ae_dev->caps))
netdev->features |= NETIF_F_HW_CSUM;
else
netdev->features |= NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM;
if (test_bit(HNAE3_DEV_SUPPORT_UDP_TUNNEL_CSUM_B, ae_dev->caps))
netdev->features |= NETIF_F_GSO_UDP_TUNNEL_CSUM;
if (test_bit(HNAE3_DEV_SUPPORT_FD_FORWARD_TC_B, ae_dev->caps))
netdev->features |= NETIF_F_HW_TC;
netdev->hw_features |= netdev->features;
if (!test_bit(HNAE3_DEV_SUPPORT_VLAN_FLTR_MDF_B, ae_dev->caps))
netdev->hw_features &= ~NETIF_F_HW_VLAN_CTAG_FILTER;
netdev->vlan_features |= netdev->features &
~(NETIF_F_HW_VLAN_CTAG_FILTER | NETIF_F_HW_VLAN_CTAG_TX |
NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_GRO_HW | NETIF_F_NTUPLE |
NETIF_F_HW_TC);
netdev->hw_enc_features |= netdev->vlan_features | NETIF_F_TSO_MANGLEID;
/* The device_version V3 hardware can't offload the checksum for IP in
* GRE packets, but can do it for NvGRE. So default to disable the
* checksum and GSO offload for GRE.
*/
if (ae_dev->dev_version > HNAE3_DEVICE_VERSION_V2) {
netdev->features &= ~NETIF_F_GSO_GRE;
netdev->features &= ~NETIF_F_GSO_GRE_CSUM;
}
}
static int hns3_alloc_buffer(struct hns3_enet_ring *ring,
struct hns3_desc_cb *cb)
{
unsigned int order = hns3_page_order(ring);
struct page *p;
if (ring->page_pool) {
p = page_pool_dev_alloc_frag(ring->page_pool,
&cb->page_offset,
hns3_buf_size(ring));
if (unlikely(!p))
return -ENOMEM;
cb->priv = p;
cb->buf = page_address(p);
cb->dma = page_pool_get_dma_addr(p);
cb->type = DESC_TYPE_PP_FRAG;
cb->reuse_flag = 0;
return 0;
}
p = dev_alloc_pages(order);
if (!p)
return -ENOMEM;
cb->priv = p;
cb->page_offset = 0;
cb->reuse_flag = 0;
cb->buf = page_address(p);
cb->length = hns3_page_size(ring);
cb->type = DESC_TYPE_PAGE;
page_ref_add(p, USHRT_MAX - 1);
cb->pagecnt_bias = USHRT_MAX;
return 0;
}
static void hns3_free_buffer(struct hns3_enet_ring *ring,
struct hns3_desc_cb *cb, int budget)
{
if (cb->type & (DESC_TYPE_SKB | DESC_TYPE_BOUNCE_HEAD |
DESC_TYPE_BOUNCE_ALL | DESC_TYPE_SGL_SKB))
napi_consume_skb(cb->priv, budget);
else if (!HNAE3_IS_TX_RING(ring)) {
if (cb->type & DESC_TYPE_PAGE && cb->pagecnt_bias)
__page_frag_cache_drain(cb->priv, cb->pagecnt_bias);
else if (cb->type & DESC_TYPE_PP_FRAG)
page_pool_put_full_page(ring->page_pool, cb->priv,
false);
}
memset(cb, 0, sizeof(*cb));
}
static int hns3_map_buffer(struct hns3_enet_ring *ring, struct hns3_desc_cb *cb)
{
cb->dma = dma_map_page(ring_to_dev(ring), cb->priv, 0,
cb->length, ring_to_dma_dir(ring));
if (unlikely(dma_mapping_error(ring_to_dev(ring), cb->dma)))
return -EIO;
return 0;
}
static void hns3_unmap_buffer(struct hns3_enet_ring *ring,
struct hns3_desc_cb *cb)
{
if (cb->type & (DESC_TYPE_SKB | DESC_TYPE_FRAGLIST_SKB))
dma_unmap_single(ring_to_dev(ring), cb->dma, cb->length,
ring_to_dma_dir(ring));
else if ((cb->type & DESC_TYPE_PAGE) && cb->length)
dma_unmap_page(ring_to_dev(ring), cb->dma, cb->length,
ring_to_dma_dir(ring));
else if (cb->type & (DESC_TYPE_BOUNCE_ALL | DESC_TYPE_BOUNCE_HEAD |
DESC_TYPE_SGL_SKB))
hns3_tx_spare_reclaim_cb(ring, cb);
}
static void hns3_buffer_detach(struct hns3_enet_ring *ring, int i)
{
hns3_unmap_buffer(ring, &ring->desc_cb[i]);
ring->desc[i].addr = 0;
ring->desc_cb[i].refill = 0;
}
static void hns3_free_buffer_detach(struct hns3_enet_ring *ring, int i,
int budget)
{
struct hns3_desc_cb *cb = &ring->desc_cb[i];
if (!ring->desc_cb[i].dma)
return;
hns3_buffer_detach(ring, i);
hns3_free_buffer(ring, cb, budget);
}
static void hns3_free_buffers(struct hns3_enet_ring *ring)
{
int i;
for (i = 0; i < ring->desc_num; i++)
hns3_free_buffer_detach(ring, i, 0);
}
/* free desc along with its attached buffer */
static void hns3_free_desc(struct hns3_enet_ring *ring)
{
int size = ring->desc_num * sizeof(ring->desc[0]);
hns3_free_buffers(ring);
if (ring->desc) {
dma_free_coherent(ring_to_dev(ring), size,
ring->desc, ring->desc_dma_addr);
ring->desc = NULL;
}
}
static int hns3_alloc_desc(struct hns3_enet_ring *ring)
{
int size = ring->desc_num * sizeof(ring->desc[0]);
ring->desc = dma_alloc_coherent(ring_to_dev(ring), size,
&ring->desc_dma_addr, GFP_KERNEL);
if (!ring->desc)
return -ENOMEM;
return 0;
}
static int hns3_alloc_and_map_buffer(struct hns3_enet_ring *ring,
struct hns3_desc_cb *cb)
{
int ret;
ret = hns3_alloc_buffer(ring, cb);
if (ret || ring->page_pool)
goto out;
ret = hns3_map_buffer(ring, cb);
if (ret)
goto out_with_buf;
return 0;
out_with_buf:
hns3_free_buffer(ring, cb, 0);
out:
return ret;
}
static int hns3_alloc_and_attach_buffer(struct hns3_enet_ring *ring, int i)
{
int ret = hns3_alloc_and_map_buffer(ring, &ring->desc_cb[i]);
if (ret)
return ret;
ring->desc[i].addr = cpu_to_le64(ring->desc_cb[i].dma +
ring->desc_cb[i].page_offset);
ring->desc_cb[i].refill = 1;
return 0;
}
/* Allocate memory for raw pkg, and map with dma */
static int hns3_alloc_ring_buffers(struct hns3_enet_ring *ring)
{
int i, j, ret;
for (i = 0; i < ring->desc_num; i++) {
ret = hns3_alloc_and_attach_buffer(ring, i);
if (ret)
goto out_buffer_fail;
if (!(i % HNS3_RESCHED_BD_NUM))
cond_resched();
}
return 0;
out_buffer_fail:
for (j = i - 1; j >= 0; j--)
hns3_free_buffer_detach(ring, j, 0);
return ret;
}
/* detach a in-used buffer and replace with a reserved one */
static void hns3_replace_buffer(struct hns3_enet_ring *ring, int i,
struct hns3_desc_cb *res_cb)
{
hns3_unmap_buffer(ring, &ring->desc_cb[i]);
ring->desc_cb[i] = *res_cb;
ring->desc_cb[i].refill = 1;
ring->desc[i].addr = cpu_to_le64(ring->desc_cb[i].dma +
ring->desc_cb[i].page_offset);
ring->desc[i].rx.bd_base_info = 0;
}
static void hns3_reuse_buffer(struct hns3_enet_ring *ring, int i)
{
ring->desc_cb[i].reuse_flag = 0;
ring->desc_cb[i].refill = 1;
ring->desc[i].addr = cpu_to_le64(ring->desc_cb[i].dma +
ring->desc_cb[i].page_offset);
ring->desc[i].rx.bd_base_info = 0;
dma_sync_single_for_device(ring_to_dev(ring),
ring->desc_cb[i].dma + ring->desc_cb[i].page_offset,
hns3_buf_size(ring),
DMA_FROM_DEVICE);
}
static bool hns3_nic_reclaim_desc(struct hns3_enet_ring *ring,
int *bytes, int *pkts, int budget)
{
/* This smp_load_acquire() pairs with smp_store_release() in
* hns3_tx_doorbell().
*/
int ltu = smp_load_acquire(&ring->last_to_use);
int ntc = ring->next_to_clean;
struct hns3_desc_cb *desc_cb;
bool reclaimed = false;
struct hns3_desc *desc;
while (ltu != ntc) {
desc = &ring->desc[ntc];
if (le16_to_cpu(desc->tx.bdtp_fe_sc_vld_ra_ri) &
BIT(HNS3_TXD_VLD_B))
break;
desc_cb = &ring->desc_cb[ntc];
if (desc_cb->type & (DESC_TYPE_SKB | DESC_TYPE_BOUNCE_ALL |
DESC_TYPE_BOUNCE_HEAD |
DESC_TYPE_SGL_SKB)) {
(*pkts)++;
(*bytes) += desc_cb->send_bytes;
}
/* desc_cb will be cleaned, after hnae3_free_buffer_detach */
hns3_free_buffer_detach(ring, ntc, budget);
if (++ntc == ring->desc_num)
ntc = 0;
/* Issue prefetch for next Tx descriptor */
prefetch(&ring->desc_cb[ntc]);
reclaimed = true;
}
if (unlikely(!reclaimed))
return false;
/* This smp_store_release() pairs with smp_load_acquire() in
* ring_space called by hns3_nic_net_xmit.
*/
smp_store_release(&ring->next_to_clean, ntc);
hns3_tx_spare_update(ring);
return true;
}
void hns3_clean_tx_ring(struct hns3_enet_ring *ring, int budget)
{
struct net_device *netdev = ring_to_netdev(ring);
struct hns3_nic_priv *priv = netdev_priv(netdev);
struct netdev_queue *dev_queue;
int bytes, pkts;
bytes = 0;
pkts = 0;
if (unlikely(!hns3_nic_reclaim_desc(ring, &bytes, &pkts, budget)))
return;
ring->tqp_vector->tx_group.total_bytes += bytes;
ring->tqp_vector->tx_group.total_packets += pkts;
u64_stats_update_begin(&ring->syncp);
ring->stats.tx_bytes += bytes;
ring->stats.tx_pkts += pkts;
u64_stats_update_end(&ring->syncp);
dev_queue = netdev_get_tx_queue(netdev, ring->tqp->tqp_index);
netdev_tx_completed_queue(dev_queue, pkts, bytes);
if (unlikely(netif_carrier_ok(netdev) &&
ring_space(ring) > HNS3_MAX_TSO_BD_NUM)) {
/* Make sure that anybody stopping the queue after this
* sees the new next_to_clean.
*/
smp_mb();
if (netif_tx_queue_stopped(dev_queue) &&
!test_bit(HNS3_NIC_STATE_DOWN, &priv->state)) {
netif_tx_wake_queue(dev_queue);
ring->stats.restart_queue++;
}
}
}
static int hns3_desc_unused(struct hns3_enet_ring *ring)
{
int ntc = ring->next_to_clean;
int ntu = ring->next_to_use;
if (unlikely(ntc == ntu && !ring->desc_cb[ntc].refill))
return ring->desc_num;
return ((ntc >= ntu) ? 0 : ring->desc_num) + ntc - ntu;
}
/* Return true if there is any allocation failure */
static bool hns3_nic_alloc_rx_buffers(struct hns3_enet_ring *ring,
int cleand_count)
{
struct hns3_desc_cb *desc_cb;
struct hns3_desc_cb res_cbs;
int i, ret;
for (i = 0; i < cleand_count; i++) {
desc_cb = &ring->desc_cb[ring->next_to_use];
if (desc_cb->reuse_flag) {
hns3_ring_stats_update(ring, reuse_pg_cnt);
hns3_reuse_buffer(ring, ring->next_to_use);
} else {
ret = hns3_alloc_and_map_buffer(ring, &res_cbs);
if (ret) {
hns3_ring_stats_update(ring, sw_err_cnt);
hns3_rl_err(ring_to_netdev(ring),
"alloc rx buffer failed: %d\n",
ret);
writel(i, ring->tqp->io_base +
HNS3_RING_RX_RING_HEAD_REG);
return true;
}
hns3_replace_buffer(ring, ring->next_to_use, &res_cbs);
hns3_ring_stats_update(ring, non_reuse_pg);
}
ring_ptr_move_fw(ring, next_to_use);
}
writel(i, ring->tqp->io_base + HNS3_RING_RX_RING_HEAD_REG);
return false;
}
static bool hns3_can_reuse_page(struct hns3_desc_cb *cb)
{
return page_count(cb->priv) == cb->pagecnt_bias;
}
static int hns3_handle_rx_copybreak(struct sk_buff *skb, int i,
struct hns3_enet_ring *ring,
int pull_len,
struct hns3_desc_cb *desc_cb)
{
struct hns3_desc *desc = &ring->desc[ring->next_to_clean];
u32 frag_offset = desc_cb->page_offset + pull_len;
int size = le16_to_cpu(desc->rx.size);
u32 frag_size = size - pull_len;
void *frag = napi_alloc_frag(frag_size);
if (unlikely(!frag)) {
hns3_ring_stats_update(ring, frag_alloc_err);
hns3_rl_err(ring_to_netdev(ring),
"failed to allocate rx frag\n");
return -ENOMEM;
}
desc_cb->reuse_flag = 1;
memcpy(frag, desc_cb->buf + frag_offset, frag_size);
skb_add_rx_frag(skb, i, virt_to_page(frag),
offset_in_page(frag), frag_size, frag_size);
hns3_ring_stats_update(ring, frag_alloc);
return 0;
}
static void hns3_nic_reuse_page(struct sk_buff *skb, int i,
struct hns3_enet_ring *ring, int pull_len,
struct hns3_desc_cb *desc_cb)
{
struct hns3_desc *desc = &ring->desc[ring->next_to_clean];
u32 frag_offset = desc_cb->page_offset + pull_len;
int size = le16_to_cpu(desc->rx.size);
u32 truesize = hns3_buf_size(ring);
u32 frag_size = size - pull_len;
int ret = 0;
bool reused;
if (ring->page_pool) {
skb_add_rx_frag(skb, i, desc_cb->priv, frag_offset,
frag_size, truesize);
return;
}
/* Avoid re-using remote or pfmem page */
if (unlikely(!dev_page_is_reusable(desc_cb->priv)))
goto out;
reused = hns3_can_reuse_page(desc_cb);
/* Rx page can be reused when:
* 1. Rx page is only owned by the driver when page_offset
* is zero, which means 0 @ truesize will be used by
* stack after skb_add_rx_frag() is called, and the rest
* of rx page can be reused by driver.
* Or
* 2. Rx page is only owned by the driver when page_offset
* is non-zero, which means page_offset @ truesize will
* be used by stack after skb_add_rx_frag() is called,
* and 0 @ truesize can be reused by driver.
*/
if ((!desc_cb->page_offset && reused) ||
((desc_cb->page_offset + truesize + truesize) <=
hns3_page_size(ring) && desc_cb->page_offset)) {
desc_cb->page_offset += truesize;
desc_cb->reuse_flag = 1;
} else if (desc_cb->page_offset && reused) {
desc_cb->page_offset = 0;
desc_cb->reuse_flag = 1;
} else if (frag_size <= ring->rx_copybreak) {
ret = hns3_handle_rx_copybreak(skb, i, ring, pull_len, desc_cb);
if (!ret)
return;
}
out:
desc_cb->pagecnt_bias--;
if (unlikely(!desc_cb->pagecnt_bias)) {
page_ref_add(desc_cb->priv, USHRT_MAX);
desc_cb->pagecnt_bias = USHRT_MAX;
}
skb_add_rx_frag(skb, i, desc_cb->priv, frag_offset,
frag_size, truesize);
if (unlikely(!desc_cb->reuse_flag))
__page_frag_cache_drain(desc_cb->priv, desc_cb->pagecnt_bias);
}
static int hns3_gro_complete(struct sk_buff *skb, u32 l234info)
{
__be16 type = skb->protocol;
struct tcphdr *th;
int depth = 0;
while (eth_type_vlan(type)) {
struct vlan_hdr *vh;
if ((depth + VLAN_HLEN) > skb_headlen(skb))
return -EFAULT;
vh = (struct vlan_hdr *)(skb->data + depth);
type = vh->h_vlan_encapsulated_proto;
depth += VLAN_HLEN;
}
skb_set_network_header(skb, depth);
if (type == htons(ETH_P_IP)) {
const struct iphdr *iph = ip_hdr(skb);
depth += sizeof(struct iphdr);
skb_set_transport_header(skb, depth);
th = tcp_hdr(skb);
th->check = ~tcp_v4_check(skb->len - depth, iph->saddr,
iph->daddr, 0);
} else if (type == htons(ETH_P_IPV6)) {
const struct ipv6hdr *iph = ipv6_hdr(skb);
depth += sizeof(struct ipv6hdr);
skb_set_transport_header(skb, depth);
th = tcp_hdr(skb);
th->check = ~tcp_v6_check(skb->len - depth, &iph->saddr,
&iph->daddr, 0);
} else {
hns3_rl_err(skb->dev,
"Error: FW GRO supports only IPv4/IPv6, not 0x%04x, depth: %d\n",
be16_to_cpu(type), depth);
return -EFAULT;
}
skb_shinfo(skb)->gso_segs = NAPI_GRO_CB(skb)->count;
if (th->cwr)
skb_shinfo(skb)->gso_type |= SKB_GSO_TCP_ECN;
if (l234info & BIT(HNS3_RXD_GRO_FIXID_B))
skb_shinfo(skb)->gso_type |= SKB_GSO_TCP_FIXEDID;
skb->csum_start = (unsigned char *)th - skb->head;
skb->csum_offset = offsetof(struct tcphdr, check);
skb->ip_summed = CHECKSUM_PARTIAL;
trace_hns3_gro(skb);
return 0;
}
static void hns3_checksum_complete(struct hns3_enet_ring *ring,
struct sk_buff *skb, u32 ptype, u16 csum)
{
if (ptype == HNS3_INVALID_PTYPE ||
hns3_rx_ptype_tbl[ptype].ip_summed != CHECKSUM_COMPLETE)
return;
hns3_ring_stats_update(ring, csum_complete);
skb->ip_summed = CHECKSUM_COMPLETE;
skb->csum = csum_unfold((__force __sum16)csum);
}
static void hns3_rx_handle_csum(struct sk_buff *skb, u32 l234info,
u32 ol_info, u32 ptype)
{
int l3_type, l4_type;
int ol4_type;
if (ptype != HNS3_INVALID_PTYPE) {
skb->csum_level = hns3_rx_ptype_tbl[ptype].csum_level;
skb->ip_summed = hns3_rx_ptype_tbl[ptype].ip_summed;
return;
}
ol4_type = hnae3_get_field(ol_info, HNS3_RXD_OL4ID_M,
HNS3_RXD_OL4ID_S);
switch (ol4_type) {
case HNS3_OL4_TYPE_MAC_IN_UDP:
case HNS3_OL4_TYPE_NVGRE:
skb->csum_level = 1;
fallthrough;
case HNS3_OL4_TYPE_NO_TUN:
l3_type = hnae3_get_field(l234info, HNS3_RXD_L3ID_M,
HNS3_RXD_L3ID_S);
l4_type = hnae3_get_field(l234info, HNS3_RXD_L4ID_M,
HNS3_RXD_L4ID_S);
/* Can checksum ipv4 or ipv6 + UDP/TCP/SCTP packets */
if ((l3_type == HNS3_L3_TYPE_IPV4 ||
l3_type == HNS3_L3_TYPE_IPV6) &&
(l4_type == HNS3_L4_TYPE_UDP ||
l4_type == HNS3_L4_TYPE_TCP ||
l4_type == HNS3_L4_TYPE_SCTP))
skb->ip_summed = CHECKSUM_UNNECESSARY;
break;
default:
break;
}
}
static void hns3_rx_checksum(struct hns3_enet_ring *ring, struct sk_buff *skb,
u32 l234info, u32 bd_base_info, u32 ol_info,
u16 csum)
{
struct net_device *netdev = ring_to_netdev(ring);
struct hns3_nic_priv *priv = netdev_priv(netdev);
u32 ptype = HNS3_INVALID_PTYPE;
skb->ip_summed = CHECKSUM_NONE;
skb_checksum_none_assert(skb);
if (!(netdev->features & NETIF_F_RXCSUM))
return;
if (test_bit(HNS3_NIC_STATE_RXD_ADV_LAYOUT_ENABLE, &priv->state))
ptype = hnae3_get_field(ol_info, HNS3_RXD_PTYPE_M,
HNS3_RXD_PTYPE_S);
hns3_checksum_complete(ring, skb, ptype, csum);
/* check if hardware has done checksum */
if (!(bd_base_info & BIT(HNS3_RXD_L3L4P_B)))
return;
if (unlikely(l234info & (BIT(HNS3_RXD_L3E_B) | BIT(HNS3_RXD_L4E_B) |
BIT(HNS3_RXD_OL3E_B) |
BIT(HNS3_RXD_OL4E_B)))) {
skb->ip_summed = CHECKSUM_NONE;
hns3_ring_stats_update(ring, l3l4_csum_err);
return;
}
hns3_rx_handle_csum(skb, l234info, ol_info, ptype);
}
static void hns3_rx_skb(struct hns3_enet_ring *ring, struct sk_buff *skb)
{
if (skb_has_frag_list(skb))
napi_gro_flush(&ring->tqp_vector->napi, false);
napi_gro_receive(&ring->tqp_vector->napi, skb);
}
static bool hns3_parse_vlan_tag(struct hns3_enet_ring *ring,
struct hns3_desc *desc, u32 l234info,
u16 *vlan_tag)
{
struct hnae3_handle *handle = ring->tqp->handle;
struct pci_dev *pdev = ring->tqp->handle->pdev;
struct hnae3_ae_dev *ae_dev = pci_get_drvdata(pdev);
if (unlikely(ae_dev->dev_version < HNAE3_DEVICE_VERSION_V2)) {
*vlan_tag = le16_to_cpu(desc->rx.ot_vlan_tag);
if (!(*vlan_tag & VLAN_VID_MASK))
*vlan_tag = le16_to_cpu(desc->rx.vlan_tag);
return (*vlan_tag != 0);
}
#define HNS3_STRP_OUTER_VLAN 0x1
#define HNS3_STRP_INNER_VLAN 0x2
#define HNS3_STRP_BOTH 0x3
/* Hardware always insert VLAN tag into RX descriptor when
* remove the tag from packet, driver needs to determine
* reporting which tag to stack.
*/
switch (hnae3_get_field(l234info, HNS3_RXD_STRP_TAGP_M,
HNS3_RXD_STRP_TAGP_S)) {
case HNS3_STRP_OUTER_VLAN:
if (handle->port_base_vlan_state !=
HNAE3_PORT_BASE_VLAN_DISABLE)
return false;
*vlan_tag = le16_to_cpu(desc->rx.ot_vlan_tag);
return true;
case HNS3_STRP_INNER_VLAN:
if (handle->port_base_vlan_state !=
HNAE3_PORT_BASE_VLAN_DISABLE)
return false;
*vlan_tag = le16_to_cpu(desc->rx.vlan_tag);
return true;
case HNS3_STRP_BOTH:
if (handle->port_base_vlan_state ==
HNAE3_PORT_BASE_VLAN_DISABLE)
*vlan_tag = le16_to_cpu(desc->rx.ot_vlan_tag);
else
*vlan_tag = le16_to_cpu(desc->rx.vlan_tag);
return true;
default:
return false;
}
}
static void hns3_rx_ring_move_fw(struct hns3_enet_ring *ring)
{
ring->desc[ring->next_to_clean].rx.bd_base_info &=
cpu_to_le32(~BIT(HNS3_RXD_VLD_B));
ring->desc_cb[ring->next_to_clean].refill = 0;
ring->next_to_clean += 1;
if (unlikely(ring->next_to_clean == ring->desc_num))
ring->next_to_clean = 0;
}
static int hns3_alloc_skb(struct hns3_enet_ring *ring, unsigned int length,
unsigned char *va)
{
struct hns3_desc_cb *desc_cb = &ring->desc_cb[ring->next_to_clean];
struct net_device *netdev = ring_to_netdev(ring);
struct sk_buff *skb;
ring->skb = napi_alloc_skb(&ring->tqp_vector->napi, HNS3_RX_HEAD_SIZE);
skb = ring->skb;
if (unlikely(!skb)) {
hns3_rl_err(netdev, "alloc rx skb fail\n");
hns3_ring_stats_update(ring, sw_err_cnt);
return -ENOMEM;
}
trace_hns3_rx_desc(ring);
prefetchw(skb->data);
ring->pending_buf = 1;
ring->frag_num = 0;
ring->tail_skb = NULL;
if (length <= HNS3_RX_HEAD_SIZE) {
memcpy(__skb_put(skb, length), va, ALIGN(length, sizeof(long)));
/* We can reuse buffer as-is, just make sure it is reusable */
if (dev_page_is_reusable(desc_cb->priv))
desc_cb->reuse_flag = 1;
else if (desc_cb->type & DESC_TYPE_PP_FRAG)
page_pool_put_full_page(ring->page_pool, desc_cb->priv,
false);
else /* This page cannot be reused so discard it */
__page_frag_cache_drain(desc_cb->priv,
desc_cb->pagecnt_bias);
hns3_rx_ring_move_fw(ring);
return 0;
}
if (ring->page_pool)
skb_mark_for_recycle(skb);
hns3_ring_stats_update(ring, seg_pkt_cnt);
ring->pull_len = eth_get_headlen(netdev, va, HNS3_RX_HEAD_SIZE);
__skb_put(skb, ring->pull_len);
hns3_nic_reuse_page(skb, ring->frag_num++, ring, ring->pull_len,
desc_cb);
hns3_rx_ring_move_fw(ring);
return 0;
}
static int hns3_add_frag(struct hns3_enet_ring *ring)
{
struct sk_buff *skb = ring->skb;
struct sk_buff *head_skb = skb;
struct sk_buff *new_skb;
struct hns3_desc_cb *desc_cb;
struct hns3_desc *desc;
u32 bd_base_info;
do {
desc = &ring->desc[ring->next_to_clean];
desc_cb = &ring->desc_cb[ring->next_to_clean];
bd_base_info = le32_to_cpu(desc->rx.bd_base_info);
/* make sure HW write desc complete */
dma_rmb();
if (!(bd_base_info & BIT(HNS3_RXD_VLD_B)))
return -ENXIO;
if (unlikely(ring->frag_num >= MAX_SKB_FRAGS)) {
new_skb = napi_alloc_skb(&ring->tqp_vector->napi, 0);
if (unlikely(!new_skb)) {
hns3_rl_err(ring_to_netdev(ring),
"alloc rx fraglist skb fail\n");
return -ENXIO;
}
if (ring->page_pool)
skb_mark_for_recycle(new_skb);
ring->frag_num = 0;
if (ring->tail_skb) {
ring->tail_skb->next = new_skb;
ring->tail_skb = new_skb;
} else {
skb_shinfo(skb)->frag_list = new_skb;
ring->tail_skb = new_skb;
}
}
if (ring->tail_skb) {
head_skb->truesize += hns3_buf_size(ring);
head_skb->data_len += le16_to_cpu(desc->rx.size);
head_skb->len += le16_to_cpu(desc->rx.size);
skb = ring->tail_skb;
}
dma_sync_single_for_cpu(ring_to_dev(ring),
desc_cb->dma + desc_cb->page_offset,
hns3_buf_size(ring),
DMA_FROM_DEVICE);
hns3_nic_reuse_page(skb, ring->frag_num++, ring, 0, desc_cb);
trace_hns3_rx_desc(ring);
hns3_rx_ring_move_fw(ring);
ring->pending_buf++;
} while (!(bd_base_info & BIT(HNS3_RXD_FE_B)));
return 0;
}
static int hns3_set_gro_and_checksum(struct hns3_enet_ring *ring,
struct sk_buff *skb, u32 l234info,
u32 bd_base_info, u32 ol_info, u16 csum)
{
struct net_device *netdev = ring_to_netdev(ring);
struct hns3_nic_priv *priv = netdev_priv(netdev);
u32 l3_type;
skb_shinfo(skb)->gso_size = hnae3_get_field(bd_base_info,
HNS3_RXD_GRO_SIZE_M,
HNS3_RXD_GRO_SIZE_S);
/* if there is no HW GRO, do not set gro params */
if (!skb_shinfo(skb)->gso_size) {
hns3_rx_checksum(ring, skb, l234info, bd_base_info, ol_info,
csum);
return 0;
}
NAPI_GRO_CB(skb)->count = hnae3_get_field(l234info,
HNS3_RXD_GRO_COUNT_M,
HNS3_RXD_GRO_COUNT_S);
if (test_bit(HNS3_NIC_STATE_RXD_ADV_LAYOUT_ENABLE, &priv->state)) {
u32 ptype = hnae3_get_field(ol_info, HNS3_RXD_PTYPE_M,
HNS3_RXD_PTYPE_S);
l3_type = hns3_rx_ptype_tbl[ptype].l3_type;
} else {
l3_type = hnae3_get_field(l234info, HNS3_RXD_L3ID_M,
HNS3_RXD_L3ID_S);
}
if (l3_type == HNS3_L3_TYPE_IPV4)
skb_shinfo(skb)->gso_type = SKB_GSO_TCPV4;
else if (l3_type == HNS3_L3_TYPE_IPV6)
skb_shinfo(skb)->gso_type = SKB_GSO_TCPV6;
else
return -EFAULT;
return hns3_gro_complete(skb, l234info);
}
static void hns3_set_rx_skb_rss_type(struct hns3_enet_ring *ring,
struct sk_buff *skb, u32 rss_hash,
u32 l234info, u32 ol_info)
{
enum pkt_hash_types rss_type = PKT_HASH_TYPE_NONE;
struct net_device *netdev = ring_to_netdev(ring);
struct hns3_nic_priv *priv = netdev_priv(netdev);
if (test_bit(HNS3_NIC_STATE_RXD_ADV_LAYOUT_ENABLE, &priv->state)) {
u32 ptype = hnae3_get_field(ol_info, HNS3_RXD_PTYPE_M,
HNS3_RXD_PTYPE_S);
rss_type = hns3_rx_ptype_tbl[ptype].hash_type;
} else {
int l3_type = hnae3_get_field(l234info, HNS3_RXD_L3ID_M,
HNS3_RXD_L3ID_S);
int l4_type = hnae3_get_field(l234info, HNS3_RXD_L4ID_M,
HNS3_RXD_L4ID_S);
if (l3_type == HNS3_L3_TYPE_IPV4 ||
l3_type == HNS3_L3_TYPE_IPV6) {
if (l4_type == HNS3_L4_TYPE_UDP ||
l4_type == HNS3_L4_TYPE_TCP ||
l4_type == HNS3_L4_TYPE_SCTP)
rss_type = PKT_HASH_TYPE_L4;
else if (l4_type == HNS3_L4_TYPE_IGMP ||
l4_type == HNS3_L4_TYPE_ICMP)
rss_type = PKT_HASH_TYPE_L3;
}
}
skb_set_hash(skb, rss_hash, rss_type);
}
static void hns3_handle_rx_ts_info(struct net_device *netdev,
struct hns3_desc *desc, struct sk_buff *skb,
u32 bd_base_info)
{
if (unlikely(bd_base_info & BIT(HNS3_RXD_TS_VLD_B))) {
struct hnae3_handle *h = hns3_get_handle(netdev);
u32 nsec = le32_to_cpu(desc->ts_nsec);
u32 sec = le32_to_cpu(desc->ts_sec);
if (h->ae_algo->ops->get_rx_hwts)
h->ae_algo->ops->get_rx_hwts(h, skb, nsec, sec);
}
}
static void hns3_handle_rx_vlan_tag(struct hns3_enet_ring *ring,
struct hns3_desc *desc, struct sk_buff *skb,
u32 l234info)
{
struct net_device *netdev = ring_to_netdev(ring);
/* Based on hw strategy, the tag offloaded will be stored at
* ot_vlan_tag in two layer tag case, and stored at vlan_tag
* in one layer tag case.
*/
if (netdev->features & NETIF_F_HW_VLAN_CTAG_RX) {
u16 vlan_tag;
if (hns3_parse_vlan_tag(ring, desc, l234info, &vlan_tag))
__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q),
vlan_tag);
}
}
static int hns3_handle_bdinfo(struct hns3_enet_ring *ring, struct sk_buff *skb)
{
struct net_device *netdev = ring_to_netdev(ring);
enum hns3_pkt_l2t_type l2_frame_type;
u32 bd_base_info, l234info, ol_info;
struct hns3_desc *desc;
unsigned int len;
int pre_ntc, ret;
u16 csum;
/* bdinfo handled below is only valid on the last BD of the
* current packet, and ring->next_to_clean indicates the first
* descriptor of next packet, so need - 1 below.
*/
pre_ntc = ring->next_to_clean ? (ring->next_to_clean - 1) :
(ring->desc_num - 1);
desc = &ring->desc[pre_ntc];
bd_base_info = le32_to_cpu(desc->rx.bd_base_info);
l234info = le32_to_cpu(desc->rx.l234_info);
ol_info = le32_to_cpu(desc->rx.ol_info);
csum = le16_to_cpu(desc->csum);
hns3_handle_rx_ts_info(netdev, desc, skb, bd_base_info);
hns3_handle_rx_vlan_tag(ring, desc, skb, l234info);
if (unlikely(!desc->rx.pkt_len || (l234info & (BIT(HNS3_RXD_TRUNCAT_B) |
BIT(HNS3_RXD_L2E_B))))) {
u64_stats_update_begin(&ring->syncp);
if (l234info & BIT(HNS3_RXD_L2E_B))
ring->stats.l2_err++;
else
ring->stats.err_pkt_len++;
u64_stats_update_end(&ring->syncp);
return -EFAULT;
}
len = skb->len;
/* Do update ip stack process */
skb->protocol = eth_type_trans(skb, netdev);
/* This is needed in order to enable forwarding support */
ret = hns3_set_gro_and_checksum(ring, skb, l234info,
bd_base_info, ol_info, csum);
if (unlikely(ret)) {
hns3_ring_stats_update(ring, rx_err_cnt);
return ret;
}
l2_frame_type = hnae3_get_field(l234info, HNS3_RXD_DMAC_M,
HNS3_RXD_DMAC_S);
u64_stats_update_begin(&ring->syncp);
ring->stats.rx_pkts++;
ring->stats.rx_bytes += len;
if (l2_frame_type == HNS3_L2_TYPE_MULTICAST)
ring->stats.rx_multicast++;
u64_stats_update_end(&ring->syncp);
ring->tqp_vector->rx_group.total_bytes += len;
hns3_set_rx_skb_rss_type(ring, skb, le32_to_cpu(desc->rx.rss_hash),
l234info, ol_info);
return 0;
}
static int hns3_handle_rx_bd(struct hns3_enet_ring *ring)
{
struct sk_buff *skb = ring->skb;
struct hns3_desc_cb *desc_cb;
struct hns3_desc *desc;
unsigned int length;
u32 bd_base_info;
int ret;
desc = &ring->desc[ring->next_to_clean];
desc_cb = &ring->desc_cb[ring->next_to_clean];
prefetch(desc);
if (!skb) {
bd_base_info = le32_to_cpu(desc->rx.bd_base_info);
/* Check valid BD */
if (unlikely(!(bd_base_info & BIT(HNS3_RXD_VLD_B))))
return -ENXIO;
dma_rmb();
length = le16_to_cpu(desc->rx.size);
ring->va = desc_cb->buf + desc_cb->page_offset;
dma_sync_single_for_cpu(ring_to_dev(ring),
desc_cb->dma + desc_cb->page_offset,
hns3_buf_size(ring),
DMA_FROM_DEVICE);
/* Prefetch first cache line of first page.
* Idea is to cache few bytes of the header of the packet.
* Our L1 Cache line size is 64B so need to prefetch twice to make
* it 128B. But in actual we can have greater size of caches with
* 128B Level 1 cache lines. In such a case, single fetch would
* suffice to cache in the relevant part of the header.
*/
net_prefetch(ring->va);
ret = hns3_alloc_skb(ring, length, ring->va);
skb = ring->skb;
if (ret < 0) /* alloc buffer fail */
return ret;
if (!(bd_base_info & BIT(HNS3_RXD_FE_B))) { /* need add frag */
ret = hns3_add_frag(ring);
if (ret)
return ret;
}
} else {
ret = hns3_add_frag(ring);
if (ret)
return ret;
}
/* As the head data may be changed when GRO enable, copy
* the head data in after other data rx completed
*/
if (skb->len > HNS3_RX_HEAD_SIZE)
memcpy(skb->data, ring->va,
ALIGN(ring->pull_len, sizeof(long)));
ret = hns3_handle_bdinfo(ring, skb);
if (unlikely(ret)) {
dev_kfree_skb_any(skb);
return ret;
}
skb_record_rx_queue(skb, ring->tqp->tqp_index);
return 0;
}
int hns3_clean_rx_ring(struct hns3_enet_ring *ring, int budget,
void (*rx_fn)(struct hns3_enet_ring *, struct sk_buff *))
{
#define RCB_NOF_ALLOC_RX_BUFF_ONCE 16
int unused_count = hns3_desc_unused(ring);
bool failure = false;
int recv_pkts = 0;
int err;
unused_count -= ring->pending_buf;
while (recv_pkts < budget) {
/* Reuse or realloc buffers */
if (unused_count >= RCB_NOF_ALLOC_RX_BUFF_ONCE) {
failure = failure ||
hns3_nic_alloc_rx_buffers(ring, unused_count);
unused_count = 0;
}
/* Poll one pkt */
err = hns3_handle_rx_bd(ring);
/* Do not get FE for the packet or failed to alloc skb */
if (unlikely(!ring->skb || err == -ENXIO)) {
goto out;
} else if (likely(!err)) {
rx_fn(ring, ring->skb);
recv_pkts++;
}
unused_count += ring->pending_buf;
ring->skb = NULL;
ring->pending_buf = 0;
}
out:
/* sync head pointer before exiting, since hardware will calculate
* FBD number with head pointer
*/
if (unused_count > 0)
failure = failure ||
hns3_nic_alloc_rx_buffers(ring, unused_count);
return failure ? budget : recv_pkts;
}
static void hns3_update_rx_int_coalesce(struct hns3_enet_tqp_vector *tqp_vector)
{
struct hns3_enet_ring_group *rx_group = &tqp_vector->rx_group;
struct dim_sample sample = {};
if (!rx_group->coal.adapt_enable)
return;
dim_update_sample(tqp_vector->event_cnt, rx_group->total_packets,
rx_group->total_bytes, &sample);
net_dim(&rx_group->dim, sample);
}
static void hns3_update_tx_int_coalesce(struct hns3_enet_tqp_vector *tqp_vector)
{
struct hns3_enet_ring_group *tx_group = &tqp_vector->tx_group;
struct dim_sample sample = {};
if (!tx_group->coal.adapt_enable)
return;
dim_update_sample(tqp_vector->event_cnt, tx_group->total_packets,
tx_group->total_bytes, &sample);
net_dim(&tx_group->dim, sample);
}
static int hns3_nic_common_poll(struct napi_struct *napi, int budget)
{
struct hns3_nic_priv *priv = netdev_priv(napi->dev);
struct hns3_enet_ring *ring;
int rx_pkt_total = 0;
struct hns3_enet_tqp_vector *tqp_vector =
container_of(napi, struct hns3_enet_tqp_vector, napi);
bool clean_complete = true;
int rx_budget = budget;
if (unlikely(test_bit(HNS3_NIC_STATE_DOWN, &priv->state))) {
napi_complete(napi);
return 0;
}
/* Since the actual Tx work is minimal, we can give the Tx a larger
* budget and be more aggressive about cleaning up the Tx descriptors.
*/
hns3_for_each_ring(ring, tqp_vector->tx_group)
hns3_clean_tx_ring(ring, budget);
/* make sure rx ring budget not smaller than 1 */
if (tqp_vector->num_tqps > 1)
rx_budget = max(budget / tqp_vector->num_tqps, 1);
hns3_for_each_ring(ring, tqp_vector->rx_group) {
int rx_cleaned = hns3_clean_rx_ring(ring, rx_budget,
hns3_rx_skb);
if (rx_cleaned >= rx_budget)
clean_complete = false;
rx_pkt_total += rx_cleaned;
}
tqp_vector->rx_group.total_packets += rx_pkt_total;
if (!clean_complete)
return budget;
if (napi_complete(napi) &&
likely(!test_bit(HNS3_NIC_STATE_DOWN, &priv->state))) {
hns3_update_rx_int_coalesce(tqp_vector);
hns3_update_tx_int_coalesce(tqp_vector);
hns3_mask_vector_irq(tqp_vector, 1);
}
return rx_pkt_total;
}
static int hns3_create_ring_chain(struct hns3_enet_tqp_vector *tqp_vector,
struct hnae3_ring_chain_node **head,
bool is_tx)
{
u32 bit_value = is_tx ? HNAE3_RING_TYPE_TX : HNAE3_RING_TYPE_RX;
u32 field_value = is_tx ? HNAE3_RING_GL_TX : HNAE3_RING_GL_RX;
struct hnae3_ring_chain_node *cur_chain = *head;
struct pci_dev *pdev = tqp_vector->handle->pdev;
struct hnae3_ring_chain_node *chain;
struct hns3_enet_ring *ring;
ring = is_tx ? tqp_vector->tx_group.ring : tqp_vector->rx_group.ring;
if (cur_chain) {
while (cur_chain->next)
cur_chain = cur_chain->next;
}
while (ring) {
chain = devm_kzalloc(&pdev->dev, sizeof(*chain), GFP_KERNEL);
if (!chain)
return -ENOMEM;
if (cur_chain)
cur_chain->next = chain;
else
*head = chain;
chain->tqp_index = ring->tqp->tqp_index;
hnae3_set_bit(chain->flag, HNAE3_RING_TYPE_B,
bit_value);
hnae3_set_field(chain->int_gl_idx,
HNAE3_RING_GL_IDX_M,
HNAE3_RING_GL_IDX_S, field_value);
cur_chain = chain;
ring = ring->next;
}
return 0;
}
static struct hnae3_ring_chain_node *
hns3_get_vector_ring_chain(struct hns3_enet_tqp_vector *tqp_vector)
{
struct pci_dev *pdev = tqp_vector->handle->pdev;
struct hnae3_ring_chain_node *cur_chain = NULL;
struct hnae3_ring_chain_node *chain;
if (hns3_create_ring_chain(tqp_vector, &cur_chain, true))
goto err_free_chain;
if (hns3_create_ring_chain(tqp_vector, &cur_chain, false))
goto err_free_chain;
return cur_chain;
err_free_chain:
while (cur_chain) {
chain = cur_chain->next;
devm_kfree(&pdev->dev, cur_chain);
cur_chain = chain;
}
return NULL;
}
static void hns3_free_vector_ring_chain(struct hns3_enet_tqp_vector *tqp_vector,
struct hnae3_ring_chain_node *head)
{
struct pci_dev *pdev = tqp_vector->handle->pdev;
struct hnae3_ring_chain_node *chain_tmp, *chain;
chain = head;
while (chain) {
chain_tmp = chain->next;
devm_kfree(&pdev->dev, chain);
chain = chain_tmp;
}
}
static void hns3_add_ring_to_group(struct hns3_enet_ring_group *group,
struct hns3_enet_ring *ring)
{
ring->next = group->ring;
group->ring = ring;
group->count++;
}
static void hns3_nic_set_cpumask(struct hns3_nic_priv *priv)
{
struct pci_dev *pdev = priv->ae_handle->pdev;
struct hns3_enet_tqp_vector *tqp_vector;
int num_vectors = priv->vector_num;
int numa_node;
int vector_i;
numa_node = dev_to_node(&pdev->dev);
for (vector_i = 0; vector_i < num_vectors; vector_i++) {
tqp_vector = &priv->tqp_vector[vector_i];
cpumask_set_cpu(cpumask_local_spread(vector_i, numa_node),
&tqp_vector->affinity_mask);
}
}
static void hns3_rx_dim_work(struct work_struct *work)
{
struct dim *dim = container_of(work, struct dim, work);
struct hns3_enet_ring_group *group = container_of(dim,
struct hns3_enet_ring_group, dim);
struct hns3_enet_tqp_vector *tqp_vector = group->ring->tqp_vector;
struct dim_cq_moder cur_moder =
net_dim_get_rx_moderation(dim->mode, dim->profile_ix);
hns3_set_vector_coalesce_rx_gl(group->ring->tqp_vector, cur_moder.usec);
tqp_vector->rx_group.coal.int_gl = cur_moder.usec;
if (cur_moder.pkts < tqp_vector->rx_group.coal.int_ql_max) {
hns3_set_vector_coalesce_rx_ql(tqp_vector, cur_moder.pkts);
tqp_vector->rx_group.coal.int_ql = cur_moder.pkts;
}
dim->state = DIM_START_MEASURE;
}
static void hns3_tx_dim_work(struct work_struct *work)
{
struct dim *dim = container_of(work, struct dim, work);
struct hns3_enet_ring_group *group = container_of(dim,
struct hns3_enet_ring_group, dim);
struct hns3_enet_tqp_vector *tqp_vector = group->ring->tqp_vector;
struct dim_cq_moder cur_moder =
net_dim_get_tx_moderation(dim->mode, dim->profile_ix);
hns3_set_vector_coalesce_tx_gl(tqp_vector, cur_moder.usec);
tqp_vector->tx_group.coal.int_gl = cur_moder.usec;
if (cur_moder.pkts < tqp_vector->tx_group.coal.int_ql_max) {
hns3_set_vector_coalesce_tx_ql(tqp_vector, cur_moder.pkts);
tqp_vector->tx_group.coal.int_ql = cur_moder.pkts;
}
dim->state = DIM_START_MEASURE;
}
static void hns3_nic_init_dim(struct hns3_enet_tqp_vector *tqp_vector)
{
INIT_WORK(&tqp_vector->rx_group.dim.work, hns3_rx_dim_work);
INIT_WORK(&tqp_vector->tx_group.dim.work, hns3_tx_dim_work);
}
static int hns3_nic_init_vector_data(struct hns3_nic_priv *priv)
{
struct hnae3_handle *h = priv->ae_handle;
struct hns3_enet_tqp_vector *tqp_vector;
int ret;
int i;
hns3_nic_set_cpumask(priv);
for (i = 0; i < priv->vector_num; i++) {
tqp_vector = &priv->tqp_vector[i];
hns3_vector_coalesce_init_hw(tqp_vector, priv);
tqp_vector->num_tqps = 0;
hns3_nic_init_dim(tqp_vector);
}
for (i = 0; i < h->kinfo.num_tqps; i++) {
u16 vector_i = i % priv->vector_num;
u16 tqp_num = h->kinfo.num_tqps;
tqp_vector = &priv->tqp_vector[vector_i];
hns3_add_ring_to_group(&tqp_vector->tx_group,
&priv->ring[i]);
hns3_add_ring_to_group(&tqp_vector->rx_group,
&priv->ring[i + tqp_num]);
priv->ring[i].tqp_vector = tqp_vector;
priv->ring[i + tqp_num].tqp_vector = tqp_vector;
tqp_vector->num_tqps++;
}
for (i = 0; i < priv->vector_num; i++) {
struct hnae3_ring_chain_node *vector_ring_chain;
tqp_vector = &priv->tqp_vector[i];
tqp_vector->rx_group.total_bytes = 0;
tqp_vector->rx_group.total_packets = 0;
tqp_vector->tx_group.total_bytes = 0;
tqp_vector->tx_group.total_packets = 0;
tqp_vector->handle = h;
vector_ring_chain = hns3_get_vector_ring_chain(tqp_vector);
if (!vector_ring_chain) {
ret = -ENOMEM;
goto map_ring_fail;
}
ret = h->ae_algo->ops->map_ring_to_vector(h,
tqp_vector->vector_irq, vector_ring_chain);
hns3_free_vector_ring_chain(tqp_vector, vector_ring_chain);
if (ret)
goto map_ring_fail;
netif_napi_add(priv->netdev, &tqp_vector->napi,
hns3_nic_common_poll);
}
return 0;
map_ring_fail:
while (i--)
netif_napi_del(&priv->tqp_vector[i].napi);
return ret;
}
static void hns3_nic_init_coal_cfg(struct hns3_nic_priv *priv)
{
struct hnae3_ae_dev *ae_dev = pci_get_drvdata(priv->ae_handle->pdev);
struct hns3_enet_coalesce *tx_coal = &priv->tx_coal;
struct hns3_enet_coalesce *rx_coal = &priv->rx_coal;
/* initialize the configuration for interrupt coalescing.
* 1. GL (Interrupt Gap Limiter)
* 2. RL (Interrupt Rate Limiter)
* 3. QL (Interrupt Quantity Limiter)
*
* Default: enable interrupt coalescing self-adaptive and GL
*/
tx_coal->adapt_enable = 1;
rx_coal->adapt_enable = 1;
tx_coal->int_gl = HNS3_INT_GL_50K;
rx_coal->int_gl = HNS3_INT_GL_50K;
rx_coal->flow_level = HNS3_FLOW_LOW;
tx_coal->flow_level = HNS3_FLOW_LOW;
if (ae_dev->dev_specs.int_ql_max) {
tx_coal->int_ql = HNS3_INT_QL_DEFAULT_CFG;
rx_coal->int_ql = HNS3_INT_QL_DEFAULT_CFG;
}
}
static int hns3_nic_alloc_vector_data(struct hns3_nic_priv *priv)
{
struct hnae3_handle *h = priv->ae_handle;
struct hns3_enet_tqp_vector *tqp_vector;
struct hnae3_vector_info *vector;
struct pci_dev *pdev = h->pdev;
u16 tqp_num = h->kinfo.num_tqps;
u16 vector_num;
int ret = 0;
u16 i;
/* RSS size, cpu online and vector_num should be the same */
/* Should consider 2p/4p later */
vector_num = min_t(u16, num_online_cpus(), tqp_num);
vector = devm_kcalloc(&pdev->dev, vector_num, sizeof(*vector),
GFP_KERNEL);
if (!vector)
return -ENOMEM;
/* save the actual available vector number */
vector_num = h->ae_algo->ops->get_vector(h, vector_num, vector);
priv->vector_num = vector_num;
priv->tqp_vector = (struct hns3_enet_tqp_vector *)
devm_kcalloc(&pdev->dev, vector_num, sizeof(*priv->tqp_vector),
GFP_KERNEL);
if (!priv->tqp_vector) {
ret = -ENOMEM;
goto out;
}
for (i = 0; i < priv->vector_num; i++) {
tqp_vector = &priv->tqp_vector[i];
tqp_vector->idx = i;
tqp_vector->mask_addr = vector[i].io_addr;
tqp_vector->vector_irq = vector[i].vector;
hns3_vector_coalesce_init(tqp_vector, priv);
}
out:
devm_kfree(&pdev->dev, vector);
return ret;
}
static void hns3_clear_ring_group(struct hns3_enet_ring_group *group)
{
group->ring = NULL;
group->count = 0;
}
static void hns3_nic_uninit_vector_data(struct hns3_nic_priv *priv)
{
struct hnae3_ring_chain_node *vector_ring_chain;
struct hnae3_handle *h = priv->ae_handle;
struct hns3_enet_tqp_vector *tqp_vector;
int i;
for (i = 0; i < priv->vector_num; i++) {
tqp_vector = &priv->tqp_vector[i];
if (!tqp_vector->rx_group.ring && !tqp_vector->tx_group.ring)
continue;
/* Since the mapping can be overwritten, when fail to get the
* chain between vector and ring, we should go on to deal with
* the remaining options.
*/
vector_ring_chain = hns3_get_vector_ring_chain(tqp_vector);
if (!vector_ring_chain)
dev_warn(priv->dev, "failed to get ring chain\n");
h->ae_algo->ops->unmap_ring_from_vector(h,
tqp_vector->vector_irq, vector_ring_chain);
hns3_free_vector_ring_chain(tqp_vector, vector_ring_chain);
hns3_clear_ring_group(&tqp_vector->rx_group);
hns3_clear_ring_group(&tqp_vector->tx_group);
netif_napi_del(&priv->tqp_vector[i].napi);
}
}
static void hns3_nic_dealloc_vector_data(struct hns3_nic_priv *priv)
{
struct hnae3_handle *h = priv->ae_handle;
struct pci_dev *pdev = h->pdev;
int i, ret;
for (i = 0; i < priv->vector_num; i++) {
struct hns3_enet_tqp_vector *tqp_vector;
tqp_vector = &priv->tqp_vector[i];
ret = h->ae_algo->ops->put_vector(h, tqp_vector->vector_irq);
if (ret)
return;
}
devm_kfree(&pdev->dev, priv->tqp_vector);
}
static void hns3_ring_get_cfg(struct hnae3_queue *q, struct hns3_nic_priv *priv,
unsigned int ring_type)
{
int queue_num = priv->ae_handle->kinfo.num_tqps;
struct hns3_enet_ring *ring;
int desc_num;
if (ring_type == HNAE3_RING_TYPE_TX) {
ring = &priv->ring[q->tqp_index];
desc_num = priv->ae_handle->kinfo.num_tx_desc;
ring->queue_index = q->tqp_index;
ring->tx_copybreak = priv->tx_copybreak;
ring->last_to_use = 0;
} else {
ring = &priv->ring[q->tqp_index + queue_num];
desc_num = priv->ae_handle->kinfo.num_rx_desc;
ring->queue_index = q->tqp_index;
ring->rx_copybreak = priv->rx_copybreak;
}
hnae3_set_bit(ring->flag, HNAE3_RING_TYPE_B, ring_type);
ring->tqp = q;
ring->desc = NULL;
ring->desc_cb = NULL;
ring->dev = priv->dev;
ring->desc_dma_addr = 0;
ring->buf_size = q->buf_size;
ring->desc_num = desc_num;
ring->next_to_use = 0;
ring->next_to_clean = 0;
}
static void hns3_queue_to_ring(struct hnae3_queue *tqp,
struct hns3_nic_priv *priv)
{
hns3_ring_get_cfg(tqp, priv, HNAE3_RING_TYPE_TX);
hns3_ring_get_cfg(tqp, priv, HNAE3_RING_TYPE_RX);
}
static int hns3_get_ring_config(struct hns3_nic_priv *priv)
{
struct hnae3_handle *h = priv->ae_handle;
struct pci_dev *pdev = h->pdev;
int i;
priv->ring = devm_kzalloc(&pdev->dev,
array3_size(h->kinfo.num_tqps,
sizeof(*priv->ring), 2),
GFP_KERNEL);
if (!priv->ring)
return -ENOMEM;
for (i = 0; i < h->kinfo.num_tqps; i++)
hns3_queue_to_ring(h->kinfo.tqp[i], priv);
return 0;
}
static void hns3_put_ring_config(struct hns3_nic_priv *priv)
{
if (!priv->ring)
return;
devm_kfree(priv->dev, priv->ring);
priv->ring = NULL;
}
static void hns3_alloc_page_pool(struct hns3_enet_ring *ring)
{
struct page_pool_params pp_params = {
.flags = PP_FLAG_DMA_MAP | PP_FLAG_DMA_SYNC_DEV,
.order = hns3_page_order(ring),
.pool_size = ring->desc_num * hns3_buf_size(ring) /
(PAGE_SIZE << hns3_page_order(ring)),
.nid = dev_to_node(ring_to_dev(ring)),
.dev = ring_to_dev(ring),
.dma_dir = DMA_FROM_DEVICE,
.offset = 0,
.max_len = PAGE_SIZE << hns3_page_order(ring),
};
ring->page_pool = page_pool_create(&pp_params);
if (IS_ERR(ring->page_pool)) {
dev_warn(ring_to_dev(ring), "page pool creation failed: %ld\n",
PTR_ERR(ring->page_pool));
ring->page_pool = NULL;
}
}
static int hns3_alloc_ring_memory(struct hns3_enet_ring *ring)
{
int ret;
if (ring->desc_num <= 0 || ring->buf_size <= 0)
return -EINVAL;
ring->desc_cb = devm_kcalloc(ring_to_dev(ring), ring->desc_num,
sizeof(ring->desc_cb[0]), GFP_KERNEL);
if (!ring->desc_cb) {
ret = -ENOMEM;
goto out;
}
ret = hns3_alloc_desc(ring);
if (ret)
goto out_with_desc_cb;
if (!HNAE3_IS_TX_RING(ring)) {
if (page_pool_enabled)
hns3_alloc_page_pool(ring);
ret = hns3_alloc_ring_buffers(ring);
if (ret)
goto out_with_desc;
} else {
hns3_init_tx_spare_buffer(ring);
}
return 0;
out_with_desc:
hns3_free_desc(ring);
out_with_desc_cb:
devm_kfree(ring_to_dev(ring), ring->desc_cb);
ring->desc_cb = NULL;
out:
return ret;
}
void hns3_fini_ring(struct hns3_enet_ring *ring)
{
hns3_free_desc(ring);
devm_kfree(ring_to_dev(ring), ring->desc_cb);
ring->desc_cb = NULL;
ring->next_to_clean = 0;
ring->next_to_use = 0;
ring->last_to_use = 0;
ring->pending_buf = 0;
if (!HNAE3_IS_TX_RING(ring) && ring->skb) {
dev_kfree_skb_any(ring->skb);
ring->skb = NULL;
} else if (HNAE3_IS_TX_RING(ring) && ring->tx_spare) {
struct hns3_tx_spare *tx_spare = ring->tx_spare;
dma_unmap_page(ring_to_dev(ring), tx_spare->dma, tx_spare->len,
DMA_TO_DEVICE);
free_pages((unsigned long)tx_spare->buf,
get_order(tx_spare->len));
devm_kfree(ring_to_dev(ring), tx_spare);
ring->tx_spare = NULL;
}
if (!HNAE3_IS_TX_RING(ring) && ring->page_pool) {
page_pool_destroy(ring->page_pool);
ring->page_pool = NULL;
}
}
static int hns3_buf_size2type(u32 buf_size)
{
int bd_size_type;
switch (buf_size) {
case 512:
bd_size_type = HNS3_BD_SIZE_512_TYPE;
break;
case 1024:
bd_size_type = HNS3_BD_SIZE_1024_TYPE;
break;
case 2048:
bd_size_type = HNS3_BD_SIZE_2048_TYPE;
break;
case 4096:
bd_size_type = HNS3_BD_SIZE_4096_TYPE;
break;
default:
bd_size_type = HNS3_BD_SIZE_2048_TYPE;
}
return bd_size_type;
}
static void hns3_init_ring_hw(struct hns3_enet_ring *ring)
{
dma_addr_t dma = ring->desc_dma_addr;
struct hnae3_queue *q = ring->tqp;
if (!HNAE3_IS_TX_RING(ring)) {
hns3_write_dev(q, HNS3_RING_RX_RING_BASEADDR_L_REG, (u32)dma);
hns3_write_dev(q, HNS3_RING_RX_RING_BASEADDR_H_REG,
(u32)((dma >> 31) >> 1));
hns3_write_dev(q, HNS3_RING_RX_RING_BD_LEN_REG,
hns3_buf_size2type(ring->buf_size));
hns3_write_dev(q, HNS3_RING_RX_RING_BD_NUM_REG,
ring->desc_num / 8 - 1);
} else {
hns3_write_dev(q, HNS3_RING_TX_RING_BASEADDR_L_REG,
(u32)dma);
hns3_write_dev(q, HNS3_RING_TX_RING_BASEADDR_H_REG,
(u32)((dma >> 31) >> 1));
hns3_write_dev(q, HNS3_RING_TX_RING_BD_NUM_REG,
ring->desc_num / 8 - 1);
}
}
static void hns3_init_tx_ring_tc(struct hns3_nic_priv *priv)
{
struct hnae3_knic_private_info *kinfo = &priv->ae_handle->kinfo;
struct hnae3_tc_info *tc_info = &kinfo->tc_info;
int i;
for (i = 0; i < tc_info->num_tc; i++) {
int j;
for (j = 0; j < tc_info->tqp_count[i]; j++) {
struct hnae3_queue *q;
q = priv->ring[tc_info->tqp_offset[i] + j].tqp;
hns3_write_dev(q, HNS3_RING_TX_RING_TC_REG, i);
}
}
}
int hns3_init_all_ring(struct hns3_nic_priv *priv)
{
struct hnae3_handle *h = priv->ae_handle;
int ring_num = h->kinfo.num_tqps * 2;
int i, j;
int ret;
for (i = 0; i < ring_num; i++) {
ret = hns3_alloc_ring_memory(&priv->ring[i]);
if (ret) {
dev_err(priv->dev,
"Alloc ring memory fail! ret=%d\n", ret);
goto out_when_alloc_ring_memory;
}
u64_stats_init(&priv->ring[i].syncp);
cond_resched();
}
return 0;
out_when_alloc_ring_memory:
for (j = i - 1; j >= 0; j--)
hns3_fini_ring(&priv->ring[j]);
return -ENOMEM;
}
static void hns3_uninit_all_ring(struct hns3_nic_priv *priv)
{
struct hnae3_handle *h = priv->ae_handle;
int i;
for (i = 0; i < h->kinfo.num_tqps; i++) {
hns3_fini_ring(&priv->ring[i]);
hns3_fini_ring(&priv->ring[i + h->kinfo.num_tqps]);
}
}
/* Set mac addr if it is configured. or leave it to the AE driver */
static int hns3_init_mac_addr(struct net_device *netdev)
{
struct hns3_nic_priv *priv = netdev_priv(netdev);
char format_mac_addr[HNAE3_FORMAT_MAC_ADDR_LEN];
struct hnae3_handle *h = priv->ae_handle;
u8 mac_addr_temp[ETH_ALEN] = {0};
int ret = 0;
if (h->ae_algo->ops->get_mac_addr)
h->ae_algo->ops->get_mac_addr(h, mac_addr_temp);
/* Check if the MAC address is valid, if not get a random one */
if (!is_valid_ether_addr(mac_addr_temp)) {
eth_hw_addr_random(netdev);
hnae3_format_mac_addr(format_mac_addr, netdev->dev_addr);
dev_warn(priv->dev, "using random MAC address %s\n",
format_mac_addr);
} else if (!ether_addr_equal(netdev->dev_addr, mac_addr_temp)) {
eth_hw_addr_set(netdev, mac_addr_temp);
ether_addr_copy(netdev->perm_addr, mac_addr_temp);
} else {
return 0;
}
if (h->ae_algo->ops->set_mac_addr)
ret = h->ae_algo->ops->set_mac_addr(h, netdev->dev_addr, true);
return ret;
}
static int hns3_init_phy(struct net_device *netdev)
{
struct hnae3_handle *h = hns3_get_handle(netdev);
int ret = 0;
if (h->ae_algo->ops->mac_connect_phy)
ret = h->ae_algo->ops->mac_connect_phy(h);
return ret;
}
static void hns3_uninit_phy(struct net_device *netdev)
{
struct hnae3_handle *h = hns3_get_handle(netdev);
if (h->ae_algo->ops->mac_disconnect_phy)
h->ae_algo->ops->mac_disconnect_phy(h);
}
static int hns3_client_start(struct hnae3_handle *handle)
{
if (!handle->ae_algo->ops->client_start)
return 0;
return handle->ae_algo->ops->client_start(handle);
}
static void hns3_client_stop(struct hnae3_handle *handle)
{
if (!handle->ae_algo->ops->client_stop)
return;
handle->ae_algo->ops->client_stop(handle);
}
static void hns3_info_show(struct hns3_nic_priv *priv)
{
struct hnae3_knic_private_info *kinfo = &priv->ae_handle->kinfo;
char format_mac_addr[HNAE3_FORMAT_MAC_ADDR_LEN];
hnae3_format_mac_addr(format_mac_addr, priv->netdev->dev_addr);
dev_info(priv->dev, "MAC address: %s\n", format_mac_addr);
dev_info(priv->dev, "Task queue pairs numbers: %u\n", kinfo->num_tqps);
dev_info(priv->dev, "RSS size: %u\n", kinfo->rss_size);
dev_info(priv->dev, "Allocated RSS size: %u\n", kinfo->req_rss_size);
dev_info(priv->dev, "RX buffer length: %u\n", kinfo->rx_buf_len);
dev_info(priv->dev, "Desc num per TX queue: %u\n", kinfo->num_tx_desc);
dev_info(priv->dev, "Desc num per RX queue: %u\n", kinfo->num_rx_desc);
dev_info(priv->dev, "Total number of enabled TCs: %u\n",
kinfo->tc_info.num_tc);
dev_info(priv->dev, "Max mtu size: %u\n", priv->netdev->max_mtu);
}
static void hns3_set_cq_period_mode(struct hns3_nic_priv *priv,
enum dim_cq_period_mode mode, bool is_tx)
{
struct hnae3_ae_dev *ae_dev = pci_get_drvdata(priv->ae_handle->pdev);
struct hnae3_handle *handle = priv->ae_handle;
int i;
if (is_tx) {
priv->tx_cqe_mode = mode;
for (i = 0; i < priv->vector_num; i++)
priv->tqp_vector[i].tx_group.dim.mode = mode;
} else {
priv->rx_cqe_mode = mode;
for (i = 0; i < priv->vector_num; i++)
priv->tqp_vector[i].rx_group.dim.mode = mode;
}
if (hnae3_ae_dev_cq_supported(ae_dev)) {
u32 new_mode;
u64 reg;
new_mode = (mode == DIM_CQ_PERIOD_MODE_START_FROM_CQE) ?
HNS3_CQ_MODE_CQE : HNS3_CQ_MODE_EQE;
reg = is_tx ? HNS3_GL1_CQ_MODE_REG : HNS3_GL0_CQ_MODE_REG;
writel(new_mode, handle->kinfo.io_base + reg);
}
}
void hns3_cq_period_mode_init(struct hns3_nic_priv *priv,
enum dim_cq_period_mode tx_mode,
enum dim_cq_period_mode rx_mode)
{
hns3_set_cq_period_mode(priv, tx_mode, true);
hns3_set_cq_period_mode(priv, rx_mode, false);
}
static void hns3_state_init(struct hnae3_handle *handle)
{
struct hnae3_ae_dev *ae_dev = pci_get_drvdata(handle->pdev);
struct net_device *netdev = handle->kinfo.netdev;
struct hns3_nic_priv *priv = netdev_priv(netdev);
set_bit(HNS3_NIC_STATE_INITED, &priv->state);
if (test_bit(HNAE3_DEV_SUPPORT_TX_PUSH_B, ae_dev->caps))
set_bit(HNS3_NIC_STATE_TX_PUSH_ENABLE, &priv->state);
if (ae_dev->dev_version >= HNAE3_DEVICE_VERSION_V3)
set_bit(HNAE3_PFLAG_LIMIT_PROMISC, &handle->supported_pflags);
if (test_bit(HNAE3_DEV_SUPPORT_HW_TX_CSUM_B, ae_dev->caps))
set_bit(HNS3_NIC_STATE_HW_TX_CSUM_ENABLE, &priv->state);
if (hnae3_ae_dev_rxd_adv_layout_supported(ae_dev))
set_bit(HNS3_NIC_STATE_RXD_ADV_LAYOUT_ENABLE, &priv->state);
}
static void hns3_state_uninit(struct hnae3_handle *handle)
{
struct hns3_nic_priv *priv = handle->priv;
clear_bit(HNS3_NIC_STATE_INITED, &priv->state);
}
static int hns3_client_init(struct hnae3_handle *handle)
{
struct pci_dev *pdev = handle->pdev;
struct hnae3_ae_dev *ae_dev = pci_get_drvdata(pdev);
u16 alloc_tqps, max_rss_size;
struct hns3_nic_priv *priv;
struct net_device *netdev;
int ret;
handle->ae_algo->ops->get_tqps_and_rss_info(handle, &alloc_tqps,
&max_rss_size);
netdev = alloc_etherdev_mq(sizeof(struct hns3_nic_priv), alloc_tqps);
if (!netdev)
return -ENOMEM;
priv = netdev_priv(netdev);
priv->dev = &pdev->dev;
priv->netdev = netdev;
priv->ae_handle = handle;
priv->tx_timeout_count = 0;
priv->max_non_tso_bd_num = ae_dev->dev_specs.max_non_tso_bd_num;
set_bit(HNS3_NIC_STATE_DOWN, &priv->state);
handle->msg_enable = netif_msg_init(debug, DEFAULT_MSG_LEVEL);
handle->kinfo.netdev = netdev;
handle->priv = (void *)priv;
hns3_init_mac_addr(netdev);
hns3_set_default_feature(netdev);
netdev->watchdog_timeo = HNS3_TX_TIMEOUT;
netdev->priv_flags |= IFF_UNICAST_FLT;
netdev->netdev_ops = &hns3_nic_netdev_ops;
SET_NETDEV_DEV(netdev, &pdev->dev);
hns3_ethtool_set_ops(netdev);
/* Carrier off reporting is important to ethtool even BEFORE open */
netif_carrier_off(netdev);
ret = hns3_get_ring_config(priv);
if (ret) {
ret = -ENOMEM;
goto out_get_ring_cfg;
}
hns3_nic_init_coal_cfg(priv);
ret = hns3_nic_alloc_vector_data(priv);
if (ret) {
ret = -ENOMEM;
goto out_alloc_vector_data;
}
ret = hns3_nic_init_vector_data(priv);
if (ret) {
ret = -ENOMEM;
goto out_init_vector_data;
}
ret = hns3_init_all_ring(priv);
if (ret) {
ret = -ENOMEM;
goto out_init_ring;
}
hns3_cq_period_mode_init(priv, DIM_CQ_PERIOD_MODE_START_FROM_EQE,
DIM_CQ_PERIOD_MODE_START_FROM_EQE);
ret = hns3_init_phy(netdev);
if (ret)
goto out_init_phy;
/* the device can work without cpu rmap, only aRFS needs it */
ret = hns3_set_rx_cpu_rmap(netdev);
if (ret)
dev_warn(priv->dev, "set rx cpu rmap fail, ret=%d\n", ret);
ret = hns3_nic_init_irq(priv);
if (ret) {
dev_err(priv->dev, "init irq failed! ret=%d\n", ret);
hns3_free_rx_cpu_rmap(netdev);
goto out_init_irq_fail;
}
ret = hns3_client_start(handle);
if (ret) {
dev_err(priv->dev, "hns3_client_start fail! ret=%d\n", ret);
goto out_client_start;
}
hns3_dcbnl_setup(handle);
ret = hns3_dbg_init(handle);
if (ret) {
dev_err(priv->dev, "failed to init debugfs, ret = %d\n",
ret);
goto out_client_start;
}
netdev->max_mtu = HNS3_MAX_MTU(ae_dev->dev_specs.max_frm_size);
hns3_state_init(handle);
ret = register_netdev(netdev);
if (ret) {
dev_err(priv->dev, "probe register netdev fail!\n");
goto out_reg_netdev_fail;
}
if (netif_msg_drv(handle))
hns3_info_show(priv);
return ret;
out_reg_netdev_fail:
hns3_state_uninit(handle);
hns3_dbg_uninit(handle);
hns3_client_stop(handle);
out_client_start:
hns3_free_rx_cpu_rmap(netdev);
hns3_nic_uninit_irq(priv);
out_init_irq_fail:
hns3_uninit_phy(netdev);
out_init_phy:
hns3_uninit_all_ring(priv);
out_init_ring:
hns3_nic_uninit_vector_data(priv);
out_init_vector_data:
hns3_nic_dealloc_vector_data(priv);
out_alloc_vector_data:
priv->ring = NULL;
out_get_ring_cfg:
priv->ae_handle = NULL;
free_netdev(netdev);
return ret;
}
static void hns3_client_uninit(struct hnae3_handle *handle, bool reset)
{
struct net_device *netdev = handle->kinfo.netdev;
struct hns3_nic_priv *priv = netdev_priv(netdev);
if (netdev->reg_state != NETREG_UNINITIALIZED)
unregister_netdev(netdev);
hns3_client_stop(handle);
hns3_uninit_phy(netdev);
if (!test_and_clear_bit(HNS3_NIC_STATE_INITED, &priv->state)) {
netdev_warn(netdev, "already uninitialized\n");
goto out_netdev_free;
}
hns3_free_rx_cpu_rmap(netdev);
hns3_nic_uninit_irq(priv);
hns3_clear_all_ring(handle, true);
hns3_nic_uninit_vector_data(priv);
hns3_nic_dealloc_vector_data(priv);
hns3_uninit_all_ring(priv);
hns3_put_ring_config(priv);
out_netdev_free:
hns3_dbg_uninit(handle);
free_netdev(netdev);
}
static void hns3_link_status_change(struct hnae3_handle *handle, bool linkup)
{
struct net_device *netdev = handle->kinfo.netdev;
if (!netdev)
return;
if (linkup) {
netif_tx_wake_all_queues(netdev);
netif_carrier_on(netdev);
if (netif_msg_link(handle))
netdev_info(netdev, "link up\n");
} else {
netif_carrier_off(netdev);
netif_tx_stop_all_queues(netdev);
if (netif_msg_link(handle))
netdev_info(netdev, "link down\n");
}
}
static void hns3_clear_tx_ring(struct hns3_enet_ring *ring)
{
while (ring->next_to_clean != ring->next_to_use) {
ring->desc[ring->next_to_clean].tx.bdtp_fe_sc_vld_ra_ri = 0;
hns3_free_buffer_detach(ring, ring->next_to_clean, 0);
ring_ptr_move_fw(ring, next_to_clean);
}
ring->pending_buf = 0;
}
static int hns3_clear_rx_ring(struct hns3_enet_ring *ring)
{
struct hns3_desc_cb res_cbs;
int ret;
while (ring->next_to_use != ring->next_to_clean) {
/* When a buffer is not reused, it's memory has been
* freed in hns3_handle_rx_bd or will be freed by
* stack, so we need to replace the buffer here.
*/
if (!ring->desc_cb[ring->next_to_use].reuse_flag) {
ret = hns3_alloc_and_map_buffer(ring, &res_cbs);
if (ret) {
hns3_ring_stats_update(ring, sw_err_cnt);
/* if alloc new buffer fail, exit directly
* and reclear in up flow.
*/
netdev_warn(ring_to_netdev(ring),
"reserve buffer map failed, ret = %d\n",
ret);
return ret;
}
hns3_replace_buffer(ring, ring->next_to_use, &res_cbs);
}
ring_ptr_move_fw(ring, next_to_use);
}
/* Free the pending skb in rx ring */
if (ring->skb) {
dev_kfree_skb_any(ring->skb);
ring->skb = NULL;
ring->pending_buf = 0;
}
return 0;
}
static void hns3_force_clear_rx_ring(struct hns3_enet_ring *ring)
{
while (ring->next_to_use != ring->next_to_clean) {
/* When a buffer is not reused, it's memory has been
* freed in hns3_handle_rx_bd or will be freed by
* stack, so only need to unmap the buffer here.
*/
if (!ring->desc_cb[ring->next_to_use].reuse_flag) {
hns3_unmap_buffer(ring,
&ring->desc_cb[ring->next_to_use]);
ring->desc_cb[ring->next_to_use].dma = 0;
}
ring_ptr_move_fw(ring, next_to_use);
}
}
static void hns3_clear_all_ring(struct hnae3_handle *h, bool force)
{
struct net_device *ndev = h->kinfo.netdev;
struct hns3_nic_priv *priv = netdev_priv(ndev);
u32 i;
for (i = 0; i < h->kinfo.num_tqps; i++) {
struct hns3_enet_ring *ring;
ring = &priv->ring[i];
hns3_clear_tx_ring(ring);
ring = &priv->ring[i + h->kinfo.num_tqps];
/* Continue to clear other rings even if clearing some
* rings failed.
*/
if (force)
hns3_force_clear_rx_ring(ring);
else
hns3_clear_rx_ring(ring);
}
}
int hns3_nic_reset_all_ring(struct hnae3_handle *h)
{
struct net_device *ndev = h->kinfo.netdev;
struct hns3_nic_priv *priv = netdev_priv(ndev);
struct hns3_enet_ring *rx_ring;
int i, j;
int ret;
ret = h->ae_algo->ops->reset_queue(h);
if (ret)
return ret;
for (i = 0; i < h->kinfo.num_tqps; i++) {
hns3_init_ring_hw(&priv->ring[i]);
/* We need to clear tx ring here because self test will
* use the ring and will not run down before up
*/
hns3_clear_tx_ring(&priv->ring[i]);
priv->ring[i].next_to_clean = 0;
priv->ring[i].next_to_use = 0;
priv->ring[i].last_to_use = 0;
rx_ring = &priv->ring[i + h->kinfo.num_tqps];
hns3_init_ring_hw(rx_ring);
ret = hns3_clear_rx_ring(rx_ring);
if (ret)
return ret;
/* We can not know the hardware head and tail when this
* function is called in reset flow, so we reuse all desc.
*/
for (j = 0; j < rx_ring->desc_num; j++)
hns3_reuse_buffer(rx_ring, j);
rx_ring->next_to_clean = 0;
rx_ring->next_to_use = 0;
}
hns3_init_tx_ring_tc(priv);
return 0;
}
static int hns3_reset_notify_down_enet(struct hnae3_handle *handle)
{
struct hnae3_knic_private_info *kinfo = &handle->kinfo;
struct net_device *ndev = kinfo->netdev;
struct hns3_nic_priv *priv = netdev_priv(ndev);
if (test_and_set_bit(HNS3_NIC_STATE_RESETTING, &priv->state))
return 0;
if (!netif_running(ndev))
return 0;
return hns3_nic_net_stop(ndev);
}
static int hns3_reset_notify_up_enet(struct hnae3_handle *handle)
{
struct hnae3_knic_private_info *kinfo = &handle->kinfo;
struct hns3_nic_priv *priv = netdev_priv(kinfo->netdev);
int ret = 0;
if (!test_bit(HNS3_NIC_STATE_INITED, &priv->state)) {
netdev_err(kinfo->netdev, "device is not initialized yet\n");
return -EFAULT;
}
clear_bit(HNS3_NIC_STATE_RESETTING, &priv->state);
if (netif_running(kinfo->netdev)) {
ret = hns3_nic_net_open(kinfo->netdev);
if (ret) {
set_bit(HNS3_NIC_STATE_RESETTING, &priv->state);
netdev_err(kinfo->netdev,
"net up fail, ret=%d!\n", ret);
return ret;
}
}
return ret;
}
static int hns3_reset_notify_init_enet(struct hnae3_handle *handle)
{
struct net_device *netdev = handle->kinfo.netdev;
struct hns3_nic_priv *priv = netdev_priv(netdev);
int ret;
/* Carrier off reporting is important to ethtool even BEFORE open */
netif_carrier_off(netdev);
ret = hns3_get_ring_config(priv);
if (ret)
return ret;
ret = hns3_nic_alloc_vector_data(priv);
if (ret)
goto err_put_ring;
ret = hns3_nic_init_vector_data(priv);
if (ret)
goto err_dealloc_vector;
ret = hns3_init_all_ring(priv);
if (ret)
goto err_uninit_vector;
hns3_cq_period_mode_init(priv, priv->tx_cqe_mode, priv->rx_cqe_mode);
/* the device can work without cpu rmap, only aRFS needs it */
ret = hns3_set_rx_cpu_rmap(netdev);
if (ret)
dev_warn(priv->dev, "set rx cpu rmap fail, ret=%d\n", ret);
ret = hns3_nic_init_irq(priv);
if (ret) {
dev_err(priv->dev, "init irq failed! ret=%d\n", ret);
hns3_free_rx_cpu_rmap(netdev);
goto err_init_irq_fail;
}
if (!hns3_is_phys_func(handle->pdev))
hns3_init_mac_addr(netdev);
ret = hns3_client_start(handle);
if (ret) {
dev_err(priv->dev, "hns3_client_start fail! ret=%d\n", ret);
goto err_client_start_fail;
}
set_bit(HNS3_NIC_STATE_INITED, &priv->state);
return ret;
err_client_start_fail:
hns3_free_rx_cpu_rmap(netdev);
hns3_nic_uninit_irq(priv);
err_init_irq_fail:
hns3_uninit_all_ring(priv);
err_uninit_vector:
hns3_nic_uninit_vector_data(priv);
err_dealloc_vector:
hns3_nic_dealloc_vector_data(priv);
err_put_ring:
hns3_put_ring_config(priv);
return ret;
}
static int hns3_reset_notify_uninit_enet(struct hnae3_handle *handle)
{
struct net_device *netdev = handle->kinfo.netdev;
struct hns3_nic_priv *priv = netdev_priv(netdev);
if (!test_and_clear_bit(HNS3_NIC_STATE_INITED, &priv->state)) {
netdev_warn(netdev, "already uninitialized\n");
return 0;
}
hns3_free_rx_cpu_rmap(netdev);
hns3_nic_uninit_irq(priv);
hns3_clear_all_ring(handle, true);
hns3_reset_tx_queue(priv->ae_handle);
hns3_nic_uninit_vector_data(priv);
hns3_nic_dealloc_vector_data(priv);
hns3_uninit_all_ring(priv);
hns3_put_ring_config(priv);
return 0;
}
int hns3_reset_notify(struct hnae3_handle *handle,
enum hnae3_reset_notify_type type)
{
int ret = 0;
switch (type) {
case HNAE3_UP_CLIENT:
ret = hns3_reset_notify_up_enet(handle);
break;
case HNAE3_DOWN_CLIENT:
ret = hns3_reset_notify_down_enet(handle);
break;
case HNAE3_INIT_CLIENT:
ret = hns3_reset_notify_init_enet(handle);
break;
case HNAE3_UNINIT_CLIENT:
ret = hns3_reset_notify_uninit_enet(handle);
break;
default:
break;
}
return ret;
}
static int hns3_change_channels(struct hnae3_handle *handle, u32 new_tqp_num,
bool rxfh_configured)
{
int ret;
ret = handle->ae_algo->ops->set_channels(handle, new_tqp_num,
rxfh_configured);
if (ret) {
dev_err(&handle->pdev->dev,
"Change tqp num(%u) fail.\n", new_tqp_num);
return ret;
}
ret = hns3_reset_notify(handle, HNAE3_INIT_CLIENT);
if (ret)
return ret;
ret = hns3_reset_notify(handle, HNAE3_UP_CLIENT);
if (ret)
hns3_reset_notify(handle, HNAE3_UNINIT_CLIENT);
return ret;
}
int hns3_set_channels(struct net_device *netdev,
struct ethtool_channels *ch)
{
struct hnae3_handle *h = hns3_get_handle(netdev);
struct hnae3_knic_private_info *kinfo = &h->kinfo;
bool rxfh_configured = netif_is_rxfh_configured(netdev);
u32 new_tqp_num = ch->combined_count;
u16 org_tqp_num;
int ret;
if (hns3_nic_resetting(netdev))
return -EBUSY;
if (ch->rx_count || ch->tx_count)
return -EINVAL;
if (kinfo->tc_info.mqprio_active) {
dev_err(&netdev->dev,
"it's not allowed to set channels via ethtool when MQPRIO mode is on\n");
return -EINVAL;
}
if (new_tqp_num > hns3_get_max_available_channels(h) ||
new_tqp_num < 1) {
dev_err(&netdev->dev,
"Change tqps fail, the tqp range is from 1 to %u",
hns3_get_max_available_channels(h));
return -EINVAL;
}
if (kinfo->rss_size == new_tqp_num)
return 0;
netif_dbg(h, drv, netdev,
"set channels: tqp_num=%u, rxfh=%d\n",
new_tqp_num, rxfh_configured);
ret = hns3_reset_notify(h, HNAE3_DOWN_CLIENT);
if (ret)
return ret;
ret = hns3_reset_notify(h, HNAE3_UNINIT_CLIENT);
if (ret)
return ret;
org_tqp_num = h->kinfo.num_tqps;
ret = hns3_change_channels(h, new_tqp_num, rxfh_configured);
if (ret) {
int ret1;
netdev_warn(netdev,
"Change channels fail, revert to old value\n");
ret1 = hns3_change_channels(h, org_tqp_num, rxfh_configured);
if (ret1) {
netdev_err(netdev,
"revert to old channel fail\n");
return ret1;
}
return ret;
}
return 0;
}
void hns3_external_lb_prepare(struct net_device *ndev, bool if_running)
{
struct hns3_nic_priv *priv = netdev_priv(ndev);
struct hnae3_handle *h = priv->ae_handle;
int i;
if (!if_running)
return;
if (test_and_set_bit(HNS3_NIC_STATE_DOWN, &priv->state))
return;
netif_carrier_off(ndev);
netif_tx_disable(ndev);
for (i = 0; i < priv->vector_num; i++)
hns3_vector_disable(&priv->tqp_vector[i]);
for (i = 0; i < h->kinfo.num_tqps; i++)
hns3_tqp_disable(h->kinfo.tqp[i]);
/* delay ring buffer clearing to hns3_reset_notify_uninit_enet
* during reset process, because driver may not be able
* to disable the ring through firmware when downing the netdev.
*/
if (!hns3_nic_resetting(ndev))
hns3_nic_reset_all_ring(priv->ae_handle);
hns3_reset_tx_queue(priv->ae_handle);
}
void hns3_external_lb_restore(struct net_device *ndev, bool if_running)
{
struct hns3_nic_priv *priv = netdev_priv(ndev);
struct hnae3_handle *h = priv->ae_handle;
int i;
if (!if_running)
return;
if (hns3_nic_resetting(ndev))
return;
if (!test_bit(HNS3_NIC_STATE_DOWN, &priv->state))
return;
if (hns3_nic_reset_all_ring(priv->ae_handle))
return;
clear_bit(HNS3_NIC_STATE_DOWN, &priv->state);
for (i = 0; i < priv->vector_num; i++)
hns3_vector_enable(&priv->tqp_vector[i]);
for (i = 0; i < h->kinfo.num_tqps; i++)
hns3_tqp_enable(h->kinfo.tqp[i]);
netif_tx_wake_all_queues(ndev);
if (h->ae_algo->ops->get_status(h))
netif_carrier_on(ndev);
}
static const struct hns3_hw_error_info hns3_hw_err[] = {
{ .type = HNAE3_PPU_POISON_ERROR,
.msg = "PPU poison" },
{ .type = HNAE3_CMDQ_ECC_ERROR,
.msg = "IMP CMDQ error" },
{ .type = HNAE3_IMP_RD_POISON_ERROR,
.msg = "IMP RD poison" },
{ .type = HNAE3_ROCEE_AXI_RESP_ERROR,
.msg = "ROCEE AXI RESP error" },
};
static void hns3_process_hw_error(struct hnae3_handle *handle,
enum hnae3_hw_error_type type)
{
int i;
for (i = 0; i < ARRAY_SIZE(hns3_hw_err); i++) {
if (hns3_hw_err[i].type == type) {
dev_err(&handle->pdev->dev, "Detected %s!\n",
hns3_hw_err[i].msg);
break;
}
}
}
static const struct hnae3_client_ops client_ops = {
.init_instance = hns3_client_init,
.uninit_instance = hns3_client_uninit,
.link_status_change = hns3_link_status_change,
.reset_notify = hns3_reset_notify,
.process_hw_error = hns3_process_hw_error,
};
/* hns3_init_module - Driver registration routine
* hns3_init_module is the first routine called when the driver is
* loaded. All it does is register with the PCI subsystem.
*/
static int __init hns3_init_module(void)
{
int ret;
pr_info("%s: %s - version\n", hns3_driver_name, hns3_driver_string);
pr_info("%s: %s\n", hns3_driver_name, hns3_copyright);
client.type = HNAE3_CLIENT_KNIC;
snprintf(client.name, HNAE3_CLIENT_NAME_LENGTH, "%s",
hns3_driver_name);
client.ops = &client_ops;
INIT_LIST_HEAD(&client.node);
hns3_dbg_register_debugfs(hns3_driver_name);
ret = hnae3_register_client(&client);
if (ret)
goto err_reg_client;
ret = pci_register_driver(&hns3_driver);
if (ret)
goto err_reg_driver;
return ret;
err_reg_driver:
hnae3_unregister_client(&client);
err_reg_client:
hns3_dbg_unregister_debugfs();
return ret;
}
module_init(hns3_init_module);
/* hns3_exit_module - Driver exit cleanup routine
* hns3_exit_module is called just before the driver is removed
* from memory.
*/
static void __exit hns3_exit_module(void)
{
pci_unregister_driver(&hns3_driver);
hnae3_unregister_client(&client);
hns3_dbg_unregister_debugfs();
}
module_exit(hns3_exit_module);
MODULE_DESCRIPTION("HNS3: Hisilicon Ethernet Driver");
MODULE_AUTHOR("Huawei Tech. Co., Ltd.");
MODULE_LICENSE("GPL");
MODULE_ALIAS("pci:hns-nic");