| // SPDX-License-Identifier: GPL-2.0 |
| /* |
| * Copyright (C) 2007,2008 Oracle. All rights reserved. |
| */ |
| |
| #include <linux/sched.h> |
| #include <linux/slab.h> |
| #include <linux/rbtree.h> |
| #include <linux/mm.h> |
| #include <linux/error-injection.h> |
| #include "messages.h" |
| #include "ctree.h" |
| #include "disk-io.h" |
| #include "transaction.h" |
| #include "print-tree.h" |
| #include "locking.h" |
| #include "volumes.h" |
| #include "qgroup.h" |
| #include "tree-mod-log.h" |
| #include "tree-checker.h" |
| #include "fs.h" |
| #include "accessors.h" |
| #include "extent-tree.h" |
| #include "relocation.h" |
| #include "file-item.h" |
| |
| static struct kmem_cache *btrfs_path_cachep; |
| |
| static int split_node(struct btrfs_trans_handle *trans, struct btrfs_root |
| *root, struct btrfs_path *path, int level); |
| static int split_leaf(struct btrfs_trans_handle *trans, struct btrfs_root *root, |
| const struct btrfs_key *ins_key, struct btrfs_path *path, |
| int data_size, int extend); |
| static int push_node_left(struct btrfs_trans_handle *trans, |
| struct extent_buffer *dst, |
| struct extent_buffer *src, int empty); |
| static int balance_node_right(struct btrfs_trans_handle *trans, |
| struct extent_buffer *dst_buf, |
| struct extent_buffer *src_buf); |
| static void del_ptr(struct btrfs_root *root, struct btrfs_path *path, |
| int level, int slot); |
| |
| static const struct btrfs_csums { |
| u16 size; |
| const char name[10]; |
| const char driver[12]; |
| } btrfs_csums[] = { |
| [BTRFS_CSUM_TYPE_CRC32] = { .size = 4, .name = "crc32c" }, |
| [BTRFS_CSUM_TYPE_XXHASH] = { .size = 8, .name = "xxhash64" }, |
| [BTRFS_CSUM_TYPE_SHA256] = { .size = 32, .name = "sha256" }, |
| [BTRFS_CSUM_TYPE_BLAKE2] = { .size = 32, .name = "blake2b", |
| .driver = "blake2b-256" }, |
| }; |
| |
| /* |
| * The leaf data grows from end-to-front in the node. this returns the address |
| * of the start of the last item, which is the stop of the leaf data stack. |
| */ |
| static unsigned int leaf_data_end(const struct extent_buffer *leaf) |
| { |
| u32 nr = btrfs_header_nritems(leaf); |
| |
| if (nr == 0) |
| return BTRFS_LEAF_DATA_SIZE(leaf->fs_info); |
| return btrfs_item_offset(leaf, nr - 1); |
| } |
| |
| /* |
| * Move data in a @leaf (using memmove, safe for overlapping ranges). |
| * |
| * @leaf: leaf that we're doing a memmove on |
| * @dst_offset: item data offset we're moving to |
| * @src_offset: item data offset were' moving from |
| * @len: length of the data we're moving |
| * |
| * Wrapper around memmove_extent_buffer() that takes into account the header on |
| * the leaf. The btrfs_item offset's start directly after the header, so we |
| * have to adjust any offsets to account for the header in the leaf. This |
| * handles that math to simplify the callers. |
| */ |
| static inline void memmove_leaf_data(const struct extent_buffer *leaf, |
| unsigned long dst_offset, |
| unsigned long src_offset, |
| unsigned long len) |
| { |
| memmove_extent_buffer(leaf, btrfs_item_nr_offset(leaf, 0) + dst_offset, |
| btrfs_item_nr_offset(leaf, 0) + src_offset, len); |
| } |
| |
| /* |
| * Copy item data from @src into @dst at the given @offset. |
| * |
| * @dst: destination leaf that we're copying into |
| * @src: source leaf that we're copying from |
| * @dst_offset: item data offset we're copying to |
| * @src_offset: item data offset were' copying from |
| * @len: length of the data we're copying |
| * |
| * Wrapper around copy_extent_buffer() that takes into account the header on |
| * the leaf. The btrfs_item offset's start directly after the header, so we |
| * have to adjust any offsets to account for the header in the leaf. This |
| * handles that math to simplify the callers. |
| */ |
| static inline void copy_leaf_data(const struct extent_buffer *dst, |
| const struct extent_buffer *src, |
| unsigned long dst_offset, |
| unsigned long src_offset, unsigned long len) |
| { |
| copy_extent_buffer(dst, src, btrfs_item_nr_offset(dst, 0) + dst_offset, |
| btrfs_item_nr_offset(src, 0) + src_offset, len); |
| } |
| |
| /* |
| * Move items in a @leaf (using memmove). |
| * |
| * @dst: destination leaf for the items |
| * @dst_item: the item nr we're copying into |
| * @src_item: the item nr we're copying from |
| * @nr_items: the number of items to copy |
| * |
| * Wrapper around memmove_extent_buffer() that does the math to get the |
| * appropriate offsets into the leaf from the item numbers. |
| */ |
| static inline void memmove_leaf_items(const struct extent_buffer *leaf, |
| int dst_item, int src_item, int nr_items) |
| { |
| memmove_extent_buffer(leaf, btrfs_item_nr_offset(leaf, dst_item), |
| btrfs_item_nr_offset(leaf, src_item), |
| nr_items * sizeof(struct btrfs_item)); |
| } |
| |
| /* |
| * Copy items from @src into @dst at the given @offset. |
| * |
| * @dst: destination leaf for the items |
| * @src: source leaf for the items |
| * @dst_item: the item nr we're copying into |
| * @src_item: the item nr we're copying from |
| * @nr_items: the number of items to copy |
| * |
| * Wrapper around copy_extent_buffer() that does the math to get the |
| * appropriate offsets into the leaf from the item numbers. |
| */ |
| static inline void copy_leaf_items(const struct extent_buffer *dst, |
| const struct extent_buffer *src, |
| int dst_item, int src_item, int nr_items) |
| { |
| copy_extent_buffer(dst, src, btrfs_item_nr_offset(dst, dst_item), |
| btrfs_item_nr_offset(src, src_item), |
| nr_items * sizeof(struct btrfs_item)); |
| } |
| |
| int btrfs_super_csum_size(const struct btrfs_super_block *s) |
| { |
| u16 t = btrfs_super_csum_type(s); |
| /* |
| * csum type is validated at mount time |
| */ |
| return btrfs_csums[t].size; |
| } |
| |
| const char *btrfs_super_csum_name(u16 csum_type) |
| { |
| /* csum type is validated at mount time */ |
| return btrfs_csums[csum_type].name; |
| } |
| |
| /* |
| * Return driver name if defined, otherwise the name that's also a valid driver |
| * name |
| */ |
| const char *btrfs_super_csum_driver(u16 csum_type) |
| { |
| /* csum type is validated at mount time */ |
| return btrfs_csums[csum_type].driver[0] ? |
| btrfs_csums[csum_type].driver : |
| btrfs_csums[csum_type].name; |
| } |
| |
| size_t __attribute_const__ btrfs_get_num_csums(void) |
| { |
| return ARRAY_SIZE(btrfs_csums); |
| } |
| |
| struct btrfs_path *btrfs_alloc_path(void) |
| { |
| might_sleep(); |
| |
| return kmem_cache_zalloc(btrfs_path_cachep, GFP_NOFS); |
| } |
| |
| /* this also releases the path */ |
| void btrfs_free_path(struct btrfs_path *p) |
| { |
| if (!p) |
| return; |
| btrfs_release_path(p); |
| kmem_cache_free(btrfs_path_cachep, p); |
| } |
| |
| /* |
| * path release drops references on the extent buffers in the path |
| * and it drops any locks held by this path |
| * |
| * It is safe to call this on paths that no locks or extent buffers held. |
| */ |
| noinline void btrfs_release_path(struct btrfs_path *p) |
| { |
| int i; |
| |
| for (i = 0; i < BTRFS_MAX_LEVEL; i++) { |
| p->slots[i] = 0; |
| if (!p->nodes[i]) |
| continue; |
| if (p->locks[i]) { |
| btrfs_tree_unlock_rw(p->nodes[i], p->locks[i]); |
| p->locks[i] = 0; |
| } |
| free_extent_buffer(p->nodes[i]); |
| p->nodes[i] = NULL; |
| } |
| } |
| |
| /* |
| * We want the transaction abort to print stack trace only for errors where the |
| * cause could be a bug, eg. due to ENOSPC, and not for common errors that are |
| * caused by external factors. |
| */ |
| bool __cold abort_should_print_stack(int errno) |
| { |
| switch (errno) { |
| case -EIO: |
| case -EROFS: |
| case -ENOMEM: |
| return false; |
| } |
| return true; |
| } |
| |
| /* |
| * safely gets a reference on the root node of a tree. A lock |
| * is not taken, so a concurrent writer may put a different node |
| * at the root of the tree. See btrfs_lock_root_node for the |
| * looping required. |
| * |
| * The extent buffer returned by this has a reference taken, so |
| * it won't disappear. It may stop being the root of the tree |
| * at any time because there are no locks held. |
| */ |
| struct extent_buffer *btrfs_root_node(struct btrfs_root *root) |
| { |
| struct extent_buffer *eb; |
| |
| while (1) { |
| rcu_read_lock(); |
| eb = rcu_dereference(root->node); |
| |
| /* |
| * RCU really hurts here, we could free up the root node because |
| * it was COWed but we may not get the new root node yet so do |
| * the inc_not_zero dance and if it doesn't work then |
| * synchronize_rcu and try again. |
| */ |
| if (atomic_inc_not_zero(&eb->refs)) { |
| rcu_read_unlock(); |
| break; |
| } |
| rcu_read_unlock(); |
| synchronize_rcu(); |
| } |
| return eb; |
| } |
| |
| /* |
| * Cowonly root (not-shareable trees, everything not subvolume or reloc roots), |
| * just get put onto a simple dirty list. Transaction walks this list to make |
| * sure they get properly updated on disk. |
| */ |
| static void add_root_to_dirty_list(struct btrfs_root *root) |
| { |
| struct btrfs_fs_info *fs_info = root->fs_info; |
| |
| if (test_bit(BTRFS_ROOT_DIRTY, &root->state) || |
| !test_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state)) |
| return; |
| |
| spin_lock(&fs_info->trans_lock); |
| if (!test_and_set_bit(BTRFS_ROOT_DIRTY, &root->state)) { |
| /* Want the extent tree to be the last on the list */ |
| if (root->root_key.objectid == BTRFS_EXTENT_TREE_OBJECTID) |
| list_move_tail(&root->dirty_list, |
| &fs_info->dirty_cowonly_roots); |
| else |
| list_move(&root->dirty_list, |
| &fs_info->dirty_cowonly_roots); |
| } |
| spin_unlock(&fs_info->trans_lock); |
| } |
| |
| /* |
| * used by snapshot creation to make a copy of a root for a tree with |
| * a given objectid. The buffer with the new root node is returned in |
| * cow_ret, and this func returns zero on success or a negative error code. |
| */ |
| int btrfs_copy_root(struct btrfs_trans_handle *trans, |
| struct btrfs_root *root, |
| struct extent_buffer *buf, |
| struct extent_buffer **cow_ret, u64 new_root_objectid) |
| { |
| struct btrfs_fs_info *fs_info = root->fs_info; |
| struct extent_buffer *cow; |
| int ret = 0; |
| int level; |
| struct btrfs_disk_key disk_key; |
| |
| WARN_ON(test_bit(BTRFS_ROOT_SHAREABLE, &root->state) && |
| trans->transid != fs_info->running_transaction->transid); |
| WARN_ON(test_bit(BTRFS_ROOT_SHAREABLE, &root->state) && |
| trans->transid != root->last_trans); |
| |
| level = btrfs_header_level(buf); |
| if (level == 0) |
| btrfs_item_key(buf, &disk_key, 0); |
| else |
| btrfs_node_key(buf, &disk_key, 0); |
| |
| cow = btrfs_alloc_tree_block(trans, root, 0, new_root_objectid, |
| &disk_key, level, buf->start, 0, |
| BTRFS_NESTING_NEW_ROOT); |
| if (IS_ERR(cow)) |
| return PTR_ERR(cow); |
| |
| copy_extent_buffer_full(cow, buf); |
| btrfs_set_header_bytenr(cow, cow->start); |
| btrfs_set_header_generation(cow, trans->transid); |
| btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV); |
| btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN | |
| BTRFS_HEADER_FLAG_RELOC); |
| if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID) |
| btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC); |
| else |
| btrfs_set_header_owner(cow, new_root_objectid); |
| |
| write_extent_buffer_fsid(cow, fs_info->fs_devices->metadata_uuid); |
| |
| WARN_ON(btrfs_header_generation(buf) > trans->transid); |
| if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID) |
| ret = btrfs_inc_ref(trans, root, cow, 1); |
| else |
| ret = btrfs_inc_ref(trans, root, cow, 0); |
| if (ret) { |
| btrfs_tree_unlock(cow); |
| free_extent_buffer(cow); |
| btrfs_abort_transaction(trans, ret); |
| return ret; |
| } |
| |
| btrfs_mark_buffer_dirty(cow); |
| *cow_ret = cow; |
| return 0; |
| } |
| |
| /* |
| * check if the tree block can be shared by multiple trees |
| */ |
| int btrfs_block_can_be_shared(struct btrfs_root *root, |
| struct extent_buffer *buf) |
| { |
| /* |
| * Tree blocks not in shareable trees and tree roots are never shared. |
| * If a block was allocated after the last snapshot and the block was |
| * not allocated by tree relocation, we know the block is not shared. |
| */ |
| if (test_bit(BTRFS_ROOT_SHAREABLE, &root->state) && |
| buf != root->node && buf != root->commit_root && |
| (btrfs_header_generation(buf) <= |
| btrfs_root_last_snapshot(&root->root_item) || |
| btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC))) |
| return 1; |
| |
| return 0; |
| } |
| |
| static noinline int update_ref_for_cow(struct btrfs_trans_handle *trans, |
| struct btrfs_root *root, |
| struct extent_buffer *buf, |
| struct extent_buffer *cow, |
| int *last_ref) |
| { |
| struct btrfs_fs_info *fs_info = root->fs_info; |
| u64 refs; |
| u64 owner; |
| u64 flags; |
| u64 new_flags = 0; |
| int ret; |
| |
| /* |
| * Backrefs update rules: |
| * |
| * Always use full backrefs for extent pointers in tree block |
| * allocated by tree relocation. |
| * |
| * If a shared tree block is no longer referenced by its owner |
| * tree (btrfs_header_owner(buf) == root->root_key.objectid), |
| * use full backrefs for extent pointers in tree block. |
| * |
| * If a tree block is been relocating |
| * (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID), |
| * use full backrefs for extent pointers in tree block. |
| * The reason for this is some operations (such as drop tree) |
| * are only allowed for blocks use full backrefs. |
| */ |
| |
| if (btrfs_block_can_be_shared(root, buf)) { |
| ret = btrfs_lookup_extent_info(trans, fs_info, buf->start, |
| btrfs_header_level(buf), 1, |
| &refs, &flags); |
| if (ret) |
| return ret; |
| if (refs == 0) { |
| ret = -EROFS; |
| btrfs_handle_fs_error(fs_info, ret, NULL); |
| return ret; |
| } |
| } else { |
| refs = 1; |
| if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID || |
| btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV) |
| flags = BTRFS_BLOCK_FLAG_FULL_BACKREF; |
| else |
| flags = 0; |
| } |
| |
| owner = btrfs_header_owner(buf); |
| BUG_ON(owner == BTRFS_TREE_RELOC_OBJECTID && |
| !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)); |
| |
| if (refs > 1) { |
| if ((owner == root->root_key.objectid || |
| root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) && |
| !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)) { |
| ret = btrfs_inc_ref(trans, root, buf, 1); |
| if (ret) |
| return ret; |
| |
| if (root->root_key.objectid == |
| BTRFS_TREE_RELOC_OBJECTID) { |
| ret = btrfs_dec_ref(trans, root, buf, 0); |
| if (ret) |
| return ret; |
| ret = btrfs_inc_ref(trans, root, cow, 1); |
| if (ret) |
| return ret; |
| } |
| new_flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF; |
| } else { |
| |
| if (root->root_key.objectid == |
| BTRFS_TREE_RELOC_OBJECTID) |
| ret = btrfs_inc_ref(trans, root, cow, 1); |
| else |
| ret = btrfs_inc_ref(trans, root, cow, 0); |
| if (ret) |
| return ret; |
| } |
| if (new_flags != 0) { |
| int level = btrfs_header_level(buf); |
| |
| ret = btrfs_set_disk_extent_flags(trans, buf, |
| new_flags, level); |
| if (ret) |
| return ret; |
| } |
| } else { |
| if (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF) { |
| if (root->root_key.objectid == |
| BTRFS_TREE_RELOC_OBJECTID) |
| ret = btrfs_inc_ref(trans, root, cow, 1); |
| else |
| ret = btrfs_inc_ref(trans, root, cow, 0); |
| if (ret) |
| return ret; |
| ret = btrfs_dec_ref(trans, root, buf, 1); |
| if (ret) |
| return ret; |
| } |
| btrfs_clear_buffer_dirty(trans, buf); |
| *last_ref = 1; |
| } |
| return 0; |
| } |
| |
| /* |
| * does the dirty work in cow of a single block. The parent block (if |
| * supplied) is updated to point to the new cow copy. The new buffer is marked |
| * dirty and returned locked. If you modify the block it needs to be marked |
| * dirty again. |
| * |
| * search_start -- an allocation hint for the new block |
| * |
| * empty_size -- a hint that you plan on doing more cow. This is the size in |
| * bytes the allocator should try to find free next to the block it returns. |
| * This is just a hint and may be ignored by the allocator. |
| */ |
| static noinline int __btrfs_cow_block(struct btrfs_trans_handle *trans, |
| struct btrfs_root *root, |
| struct extent_buffer *buf, |
| struct extent_buffer *parent, int parent_slot, |
| struct extent_buffer **cow_ret, |
| u64 search_start, u64 empty_size, |
| enum btrfs_lock_nesting nest) |
| { |
| struct btrfs_fs_info *fs_info = root->fs_info; |
| struct btrfs_disk_key disk_key; |
| struct extent_buffer *cow; |
| int level, ret; |
| int last_ref = 0; |
| int unlock_orig = 0; |
| u64 parent_start = 0; |
| |
| if (*cow_ret == buf) |
| unlock_orig = 1; |
| |
| btrfs_assert_tree_write_locked(buf); |
| |
| WARN_ON(test_bit(BTRFS_ROOT_SHAREABLE, &root->state) && |
| trans->transid != fs_info->running_transaction->transid); |
| WARN_ON(test_bit(BTRFS_ROOT_SHAREABLE, &root->state) && |
| trans->transid != root->last_trans); |
| |
| level = btrfs_header_level(buf); |
| |
| if (level == 0) |
| btrfs_item_key(buf, &disk_key, 0); |
| else |
| btrfs_node_key(buf, &disk_key, 0); |
| |
| if ((root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) && parent) |
| parent_start = parent->start; |
| |
| cow = btrfs_alloc_tree_block(trans, root, parent_start, |
| root->root_key.objectid, &disk_key, level, |
| search_start, empty_size, nest); |
| if (IS_ERR(cow)) |
| return PTR_ERR(cow); |
| |
| /* cow is set to blocking by btrfs_init_new_buffer */ |
| |
| copy_extent_buffer_full(cow, buf); |
| btrfs_set_header_bytenr(cow, cow->start); |
| btrfs_set_header_generation(cow, trans->transid); |
| btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV); |
| btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN | |
| BTRFS_HEADER_FLAG_RELOC); |
| if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) |
| btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC); |
| else |
| btrfs_set_header_owner(cow, root->root_key.objectid); |
| |
| write_extent_buffer_fsid(cow, fs_info->fs_devices->metadata_uuid); |
| |
| ret = update_ref_for_cow(trans, root, buf, cow, &last_ref); |
| if (ret) { |
| btrfs_tree_unlock(cow); |
| free_extent_buffer(cow); |
| btrfs_abort_transaction(trans, ret); |
| return ret; |
| } |
| |
| if (test_bit(BTRFS_ROOT_SHAREABLE, &root->state)) { |
| ret = btrfs_reloc_cow_block(trans, root, buf, cow); |
| if (ret) { |
| btrfs_tree_unlock(cow); |
| free_extent_buffer(cow); |
| btrfs_abort_transaction(trans, ret); |
| return ret; |
| } |
| } |
| |
| if (buf == root->node) { |
| WARN_ON(parent && parent != buf); |
| if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID || |
| btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV) |
| parent_start = buf->start; |
| |
| atomic_inc(&cow->refs); |
| ret = btrfs_tree_mod_log_insert_root(root->node, cow, true); |
| BUG_ON(ret < 0); |
| rcu_assign_pointer(root->node, cow); |
| |
| btrfs_free_tree_block(trans, btrfs_root_id(root), buf, |
| parent_start, last_ref); |
| free_extent_buffer(buf); |
| add_root_to_dirty_list(root); |
| } else { |
| WARN_ON(trans->transid != btrfs_header_generation(parent)); |
| btrfs_tree_mod_log_insert_key(parent, parent_slot, |
| BTRFS_MOD_LOG_KEY_REPLACE); |
| btrfs_set_node_blockptr(parent, parent_slot, |
| cow->start); |
| btrfs_set_node_ptr_generation(parent, parent_slot, |
| trans->transid); |
| btrfs_mark_buffer_dirty(parent); |
| if (last_ref) { |
| ret = btrfs_tree_mod_log_free_eb(buf); |
| if (ret) { |
| btrfs_tree_unlock(cow); |
| free_extent_buffer(cow); |
| btrfs_abort_transaction(trans, ret); |
| return ret; |
| } |
| } |
| btrfs_free_tree_block(trans, btrfs_root_id(root), buf, |
| parent_start, last_ref); |
| } |
| if (unlock_orig) |
| btrfs_tree_unlock(buf); |
| free_extent_buffer_stale(buf); |
| btrfs_mark_buffer_dirty(cow); |
| *cow_ret = cow; |
| return 0; |
| } |
| |
| static inline int should_cow_block(struct btrfs_trans_handle *trans, |
| struct btrfs_root *root, |
| struct extent_buffer *buf) |
| { |
| if (btrfs_is_testing(root->fs_info)) |
| return 0; |
| |
| /* Ensure we can see the FORCE_COW bit */ |
| smp_mb__before_atomic(); |
| |
| /* |
| * We do not need to cow a block if |
| * 1) this block is not created or changed in this transaction; |
| * 2) this block does not belong to TREE_RELOC tree; |
| * 3) the root is not forced COW. |
| * |
| * What is forced COW: |
| * when we create snapshot during committing the transaction, |
| * after we've finished copying src root, we must COW the shared |
| * block to ensure the metadata consistency. |
| */ |
| if (btrfs_header_generation(buf) == trans->transid && |
| !btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN) && |
| !(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID && |
| btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC)) && |
| !test_bit(BTRFS_ROOT_FORCE_COW, &root->state)) |
| return 0; |
| return 1; |
| } |
| |
| /* |
| * cows a single block, see __btrfs_cow_block for the real work. |
| * This version of it has extra checks so that a block isn't COWed more than |
| * once per transaction, as long as it hasn't been written yet |
| */ |
| noinline int btrfs_cow_block(struct btrfs_trans_handle *trans, |
| struct btrfs_root *root, struct extent_buffer *buf, |
| struct extent_buffer *parent, int parent_slot, |
| struct extent_buffer **cow_ret, |
| enum btrfs_lock_nesting nest) |
| { |
| struct btrfs_fs_info *fs_info = root->fs_info; |
| u64 search_start; |
| int ret; |
| |
| if (test_bit(BTRFS_ROOT_DELETING, &root->state)) |
| btrfs_err(fs_info, |
| "COW'ing blocks on a fs root that's being dropped"); |
| |
| if (trans->transaction != fs_info->running_transaction) |
| WARN(1, KERN_CRIT "trans %llu running %llu\n", |
| trans->transid, |
| fs_info->running_transaction->transid); |
| |
| if (trans->transid != fs_info->generation) |
| WARN(1, KERN_CRIT "trans %llu running %llu\n", |
| trans->transid, fs_info->generation); |
| |
| if (!should_cow_block(trans, root, buf)) { |
| *cow_ret = buf; |
| return 0; |
| } |
| |
| search_start = buf->start & ~((u64)SZ_1G - 1); |
| |
| /* |
| * Before CoWing this block for later modification, check if it's |
| * the subtree root and do the delayed subtree trace if needed. |
| * |
| * Also We don't care about the error, as it's handled internally. |
| */ |
| btrfs_qgroup_trace_subtree_after_cow(trans, root, buf); |
| ret = __btrfs_cow_block(trans, root, buf, parent, |
| parent_slot, cow_ret, search_start, 0, nest); |
| |
| trace_btrfs_cow_block(root, buf, *cow_ret); |
| |
| return ret; |
| } |
| ALLOW_ERROR_INJECTION(btrfs_cow_block, ERRNO); |
| |
| /* |
| * helper function for defrag to decide if two blocks pointed to by a |
| * node are actually close by |
| */ |
| static int close_blocks(u64 blocknr, u64 other, u32 blocksize) |
| { |
| if (blocknr < other && other - (blocknr + blocksize) < 32768) |
| return 1; |
| if (blocknr > other && blocknr - (other + blocksize) < 32768) |
| return 1; |
| return 0; |
| } |
| |
| #ifdef __LITTLE_ENDIAN |
| |
| /* |
| * Compare two keys, on little-endian the disk order is same as CPU order and |
| * we can avoid the conversion. |
| */ |
| static int comp_keys(const struct btrfs_disk_key *disk_key, |
| const struct btrfs_key *k2) |
| { |
| const struct btrfs_key *k1 = (const struct btrfs_key *)disk_key; |
| |
| return btrfs_comp_cpu_keys(k1, k2); |
| } |
| |
| #else |
| |
| /* |
| * compare two keys in a memcmp fashion |
| */ |
| static int comp_keys(const struct btrfs_disk_key *disk, |
| const struct btrfs_key *k2) |
| { |
| struct btrfs_key k1; |
| |
| btrfs_disk_key_to_cpu(&k1, disk); |
| |
| return btrfs_comp_cpu_keys(&k1, k2); |
| } |
| #endif |
| |
| /* |
| * same as comp_keys only with two btrfs_key's |
| */ |
| int __pure btrfs_comp_cpu_keys(const struct btrfs_key *k1, const struct btrfs_key *k2) |
| { |
| if (k1->objectid > k2->objectid) |
| return 1; |
| if (k1->objectid < k2->objectid) |
| return -1; |
| if (k1->type > k2->type) |
| return 1; |
| if (k1->type < k2->type) |
| return -1; |
| if (k1->offset > k2->offset) |
| return 1; |
| if (k1->offset < k2->offset) |
| return -1; |
| return 0; |
| } |
| |
| /* |
| * this is used by the defrag code to go through all the |
| * leaves pointed to by a node and reallocate them so that |
| * disk order is close to key order |
| */ |
| int btrfs_realloc_node(struct btrfs_trans_handle *trans, |
| struct btrfs_root *root, struct extent_buffer *parent, |
| int start_slot, u64 *last_ret, |
| struct btrfs_key *progress) |
| { |
| struct btrfs_fs_info *fs_info = root->fs_info; |
| struct extent_buffer *cur; |
| u64 blocknr; |
| u64 search_start = *last_ret; |
| u64 last_block = 0; |
| u64 other; |
| u32 parent_nritems; |
| int end_slot; |
| int i; |
| int err = 0; |
| u32 blocksize; |
| int progress_passed = 0; |
| struct btrfs_disk_key disk_key; |
| |
| WARN_ON(trans->transaction != fs_info->running_transaction); |
| WARN_ON(trans->transid != fs_info->generation); |
| |
| parent_nritems = btrfs_header_nritems(parent); |
| blocksize = fs_info->nodesize; |
| end_slot = parent_nritems - 1; |
| |
| if (parent_nritems <= 1) |
| return 0; |
| |
| for (i = start_slot; i <= end_slot; i++) { |
| int close = 1; |
| |
| btrfs_node_key(parent, &disk_key, i); |
| if (!progress_passed && comp_keys(&disk_key, progress) < 0) |
| continue; |
| |
| progress_passed = 1; |
| blocknr = btrfs_node_blockptr(parent, i); |
| if (last_block == 0) |
| last_block = blocknr; |
| |
| if (i > 0) { |
| other = btrfs_node_blockptr(parent, i - 1); |
| close = close_blocks(blocknr, other, blocksize); |
| } |
| if (!close && i < end_slot) { |
| other = btrfs_node_blockptr(parent, i + 1); |
| close = close_blocks(blocknr, other, blocksize); |
| } |
| if (close) { |
| last_block = blocknr; |
| continue; |
| } |
| |
| cur = btrfs_read_node_slot(parent, i); |
| if (IS_ERR(cur)) |
| return PTR_ERR(cur); |
| if (search_start == 0) |
| search_start = last_block; |
| |
| btrfs_tree_lock(cur); |
| err = __btrfs_cow_block(trans, root, cur, parent, i, |
| &cur, search_start, |
| min(16 * blocksize, |
| (end_slot - i) * blocksize), |
| BTRFS_NESTING_COW); |
| if (err) { |
| btrfs_tree_unlock(cur); |
| free_extent_buffer(cur); |
| break; |
| } |
| search_start = cur->start; |
| last_block = cur->start; |
| *last_ret = search_start; |
| btrfs_tree_unlock(cur); |
| free_extent_buffer(cur); |
| } |
| return err; |
| } |
| |
| /* |
| * Search for a key in the given extent_buffer. |
| * |
| * The lower boundary for the search is specified by the slot number @first_slot. |
| * Use a value of 0 to search over the whole extent buffer. Works for both |
| * leaves and nodes. |
| * |
| * The slot in the extent buffer is returned via @slot. If the key exists in the |
| * extent buffer, then @slot will point to the slot where the key is, otherwise |
| * it points to the slot where you would insert the key. |
| * |
| * Slot may point to the total number of items (i.e. one position beyond the last |
| * key) if the key is bigger than the last key in the extent buffer. |
| */ |
| int btrfs_bin_search(struct extent_buffer *eb, int first_slot, |
| const struct btrfs_key *key, int *slot) |
| { |
| unsigned long p; |
| int item_size; |
| /* |
| * Use unsigned types for the low and high slots, so that we get a more |
| * efficient division in the search loop below. |
| */ |
| u32 low = first_slot; |
| u32 high = btrfs_header_nritems(eb); |
| int ret; |
| const int key_size = sizeof(struct btrfs_disk_key); |
| |
| if (unlikely(low > high)) { |
| btrfs_err(eb->fs_info, |
| "%s: low (%u) > high (%u) eb %llu owner %llu level %d", |
| __func__, low, high, eb->start, |
| btrfs_header_owner(eb), btrfs_header_level(eb)); |
| return -EINVAL; |
| } |
| |
| if (btrfs_header_level(eb) == 0) { |
| p = offsetof(struct btrfs_leaf, items); |
| item_size = sizeof(struct btrfs_item); |
| } else { |
| p = offsetof(struct btrfs_node, ptrs); |
| item_size = sizeof(struct btrfs_key_ptr); |
| } |
| |
| while (low < high) { |
| unsigned long oip; |
| unsigned long offset; |
| struct btrfs_disk_key *tmp; |
| struct btrfs_disk_key unaligned; |
| int mid; |
| |
| mid = (low + high) / 2; |
| offset = p + mid * item_size; |
| oip = offset_in_page(offset); |
| |
| if (oip + key_size <= PAGE_SIZE) { |
| const unsigned long idx = get_eb_page_index(offset); |
| char *kaddr = page_address(eb->pages[idx]); |
| |
| oip = get_eb_offset_in_page(eb, offset); |
| tmp = (struct btrfs_disk_key *)(kaddr + oip); |
| } else { |
| read_extent_buffer(eb, &unaligned, offset, key_size); |
| tmp = &unaligned; |
| } |
| |
| ret = comp_keys(tmp, key); |
| |
| if (ret < 0) |
| low = mid + 1; |
| else if (ret > 0) |
| high = mid; |
| else { |
| *slot = mid; |
| return 0; |
| } |
| } |
| *slot = low; |
| return 1; |
| } |
| |
| static void root_add_used(struct btrfs_root *root, u32 size) |
| { |
| spin_lock(&root->accounting_lock); |
| btrfs_set_root_used(&root->root_item, |
| btrfs_root_used(&root->root_item) + size); |
| spin_unlock(&root->accounting_lock); |
| } |
| |
| static void root_sub_used(struct btrfs_root *root, u32 size) |
| { |
| spin_lock(&root->accounting_lock); |
| btrfs_set_root_used(&root->root_item, |
| btrfs_root_used(&root->root_item) - size); |
| spin_unlock(&root->accounting_lock); |
| } |
| |
| /* given a node and slot number, this reads the blocks it points to. The |
| * extent buffer is returned with a reference taken (but unlocked). |
| */ |
| struct extent_buffer *btrfs_read_node_slot(struct extent_buffer *parent, |
| int slot) |
| { |
| int level = btrfs_header_level(parent); |
| struct btrfs_tree_parent_check check = { 0 }; |
| struct extent_buffer *eb; |
| |
| if (slot < 0 || slot >= btrfs_header_nritems(parent)) |
| return ERR_PTR(-ENOENT); |
| |
| ASSERT(level); |
| |
| check.level = level - 1; |
| check.transid = btrfs_node_ptr_generation(parent, slot); |
| check.owner_root = btrfs_header_owner(parent); |
| check.has_first_key = true; |
| btrfs_node_key_to_cpu(parent, &check.first_key, slot); |
| |
| eb = read_tree_block(parent->fs_info, btrfs_node_blockptr(parent, slot), |
| &check); |
| if (IS_ERR(eb)) |
| return eb; |
| if (!extent_buffer_uptodate(eb)) { |
| free_extent_buffer(eb); |
| return ERR_PTR(-EIO); |
| } |
| |
| return eb; |
| } |
| |
| /* |
| * node level balancing, used to make sure nodes are in proper order for |
| * item deletion. We balance from the top down, so we have to make sure |
| * that a deletion won't leave an node completely empty later on. |
| */ |
| static noinline int balance_level(struct btrfs_trans_handle *trans, |
| struct btrfs_root *root, |
| struct btrfs_path *path, int level) |
| { |
| struct btrfs_fs_info *fs_info = root->fs_info; |
| struct extent_buffer *right = NULL; |
| struct extent_buffer *mid; |
| struct extent_buffer *left = NULL; |
| struct extent_buffer *parent = NULL; |
| int ret = 0; |
| int wret; |
| int pslot; |
| int orig_slot = path->slots[level]; |
| u64 orig_ptr; |
| |
| ASSERT(level > 0); |
| |
| mid = path->nodes[level]; |
| |
| WARN_ON(path->locks[level] != BTRFS_WRITE_LOCK); |
| WARN_ON(btrfs_header_generation(mid) != trans->transid); |
| |
| orig_ptr = btrfs_node_blockptr(mid, orig_slot); |
| |
| if (level < BTRFS_MAX_LEVEL - 1) { |
| parent = path->nodes[level + 1]; |
| pslot = path->slots[level + 1]; |
| } |
| |
| /* |
| * deal with the case where there is only one pointer in the root |
| * by promoting the node below to a root |
| */ |
| if (!parent) { |
| struct extent_buffer *child; |
| |
| if (btrfs_header_nritems(mid) != 1) |
| return 0; |
| |
| /* promote the child to a root */ |
| child = btrfs_read_node_slot(mid, 0); |
| if (IS_ERR(child)) { |
| ret = PTR_ERR(child); |
| btrfs_handle_fs_error(fs_info, ret, NULL); |
| goto enospc; |
| } |
| |
| btrfs_tree_lock(child); |
| ret = btrfs_cow_block(trans, root, child, mid, 0, &child, |
| BTRFS_NESTING_COW); |
| if (ret) { |
| btrfs_tree_unlock(child); |
| free_extent_buffer(child); |
| goto enospc; |
| } |
| |
| ret = btrfs_tree_mod_log_insert_root(root->node, child, true); |
| BUG_ON(ret < 0); |
| rcu_assign_pointer(root->node, child); |
| |
| add_root_to_dirty_list(root); |
| btrfs_tree_unlock(child); |
| |
| path->locks[level] = 0; |
| path->nodes[level] = NULL; |
| btrfs_clear_buffer_dirty(trans, mid); |
| btrfs_tree_unlock(mid); |
| /* once for the path */ |
| free_extent_buffer(mid); |
| |
| root_sub_used(root, mid->len); |
| btrfs_free_tree_block(trans, btrfs_root_id(root), mid, 0, 1); |
| /* once for the root ptr */ |
| free_extent_buffer_stale(mid); |
| return 0; |
| } |
| if (btrfs_header_nritems(mid) > |
| BTRFS_NODEPTRS_PER_BLOCK(fs_info) / 4) |
| return 0; |
| |
| if (pslot) { |
| left = btrfs_read_node_slot(parent, pslot - 1); |
| if (IS_ERR(left)) { |
| ret = PTR_ERR(left); |
| left = NULL; |
| goto enospc; |
| } |
| |
| __btrfs_tree_lock(left, BTRFS_NESTING_LEFT); |
| wret = btrfs_cow_block(trans, root, left, |
| parent, pslot - 1, &left, |
| BTRFS_NESTING_LEFT_COW); |
| if (wret) { |
| ret = wret; |
| goto enospc; |
| } |
| } |
| |
| if (pslot + 1 < btrfs_header_nritems(parent)) { |
| right = btrfs_read_node_slot(parent, pslot + 1); |
| if (IS_ERR(right)) { |
| ret = PTR_ERR(right); |
| right = NULL; |
| goto enospc; |
| } |
| |
| __btrfs_tree_lock(right, BTRFS_NESTING_RIGHT); |
| wret = btrfs_cow_block(trans, root, right, |
| parent, pslot + 1, &right, |
| BTRFS_NESTING_RIGHT_COW); |
| if (wret) { |
| ret = wret; |
| goto enospc; |
| } |
| } |
| |
| /* first, try to make some room in the middle buffer */ |
| if (left) { |
| orig_slot += btrfs_header_nritems(left); |
| wret = push_node_left(trans, left, mid, 1); |
| if (wret < 0) |
| ret = wret; |
| } |
| |
| /* |
| * then try to empty the right most buffer into the middle |
| */ |
| if (right) { |
| wret = push_node_left(trans, mid, right, 1); |
| if (wret < 0 && wret != -ENOSPC) |
| ret = wret; |
| if (btrfs_header_nritems(right) == 0) { |
| btrfs_clear_buffer_dirty(trans, right); |
| btrfs_tree_unlock(right); |
| del_ptr(root, path, level + 1, pslot + 1); |
| root_sub_used(root, right->len); |
| btrfs_free_tree_block(trans, btrfs_root_id(root), right, |
| 0, 1); |
| free_extent_buffer_stale(right); |
| right = NULL; |
| } else { |
| struct btrfs_disk_key right_key; |
| btrfs_node_key(right, &right_key, 0); |
| ret = btrfs_tree_mod_log_insert_key(parent, pslot + 1, |
| BTRFS_MOD_LOG_KEY_REPLACE); |
| BUG_ON(ret < 0); |
| btrfs_set_node_key(parent, &right_key, pslot + 1); |
| btrfs_mark_buffer_dirty(parent); |
| } |
| } |
| if (btrfs_header_nritems(mid) == 1) { |
| /* |
| * we're not allowed to leave a node with one item in the |
| * tree during a delete. A deletion from lower in the tree |
| * could try to delete the only pointer in this node. |
| * So, pull some keys from the left. |
| * There has to be a left pointer at this point because |
| * otherwise we would have pulled some pointers from the |
| * right |
| */ |
| if (!left) { |
| ret = -EROFS; |
| btrfs_handle_fs_error(fs_info, ret, NULL); |
| goto enospc; |
| } |
| wret = balance_node_right(trans, mid, left); |
| if (wret < 0) { |
| ret = wret; |
| goto enospc; |
| } |
| if (wret == 1) { |
| wret = push_node_left(trans, left, mid, 1); |
| if (wret < 0) |
| ret = wret; |
| } |
| BUG_ON(wret == 1); |
| } |
| if (btrfs_header_nritems(mid) == 0) { |
| btrfs_clear_buffer_dirty(trans, mid); |
| btrfs_tree_unlock(mid); |
| del_ptr(root, path, level + 1, pslot); |
| root_sub_used(root, mid->len); |
| btrfs_free_tree_block(trans, btrfs_root_id(root), mid, 0, 1); |
| free_extent_buffer_stale(mid); |
| mid = NULL; |
| } else { |
| /* update the parent key to reflect our changes */ |
| struct btrfs_disk_key mid_key; |
| btrfs_node_key(mid, &mid_key, 0); |
| ret = btrfs_tree_mod_log_insert_key(parent, pslot, |
| BTRFS_MOD_LOG_KEY_REPLACE); |
| BUG_ON(ret < 0); |
| btrfs_set_node_key(parent, &mid_key, pslot); |
| btrfs_mark_buffer_dirty(parent); |
| } |
| |
| /* update the path */ |
| if (left) { |
| if (btrfs_header_nritems(left) > orig_slot) { |
| atomic_inc(&left->refs); |
| /* left was locked after cow */ |
| path->nodes[level] = left; |
| path->slots[level + 1] -= 1; |
| path->slots[level] = orig_slot; |
| if (mid) { |
| btrfs_tree_unlock(mid); |
| free_extent_buffer(mid); |
| } |
| } else { |
| orig_slot -= btrfs_header_nritems(left); |
| path->slots[level] = orig_slot; |
| } |
| } |
| /* double check we haven't messed things up */ |
| if (orig_ptr != |
| btrfs_node_blockptr(path->nodes[level], path->slots[level])) |
| BUG(); |
| enospc: |
| if (right) { |
| btrfs_tree_unlock(right); |
| free_extent_buffer(right); |
| } |
| if (left) { |
| if (path->nodes[level] != left) |
| btrfs_tree_unlock(left); |
| free_extent_buffer(left); |
| } |
| return ret; |
| } |
| |
| /* Node balancing for insertion. Here we only split or push nodes around |
| * when they are completely full. This is also done top down, so we |
| * have to be pessimistic. |
| */ |
| static noinline int push_nodes_for_insert(struct btrfs_trans_handle *trans, |
| struct btrfs_root *root, |
| struct btrfs_path *path, int level) |
| { |
| struct btrfs_fs_info *fs_info = root->fs_info; |
| struct extent_buffer *right = NULL; |
| struct extent_buffer *mid; |
| struct extent_buffer *left = NULL; |
| struct extent_buffer *parent = NULL; |
| int ret = 0; |
| int wret; |
| int pslot; |
| int orig_slot = path->slots[level]; |
| |
| if (level == 0) |
| return 1; |
| |
| mid = path->nodes[level]; |
| WARN_ON(btrfs_header_generation(mid) != trans->transid); |
| |
| if (level < BTRFS_MAX_LEVEL - 1) { |
| parent = path->nodes[level + 1]; |
| pslot = path->slots[level + 1]; |
| } |
| |
| if (!parent) |
| return 1; |
| |
| /* first, try to make some room in the middle buffer */ |
| if (pslot) { |
| u32 left_nr; |
| |
| left = btrfs_read_node_slot(parent, pslot - 1); |
| if (IS_ERR(left)) |
| return PTR_ERR(left); |
| |
| __btrfs_tree_lock(left, BTRFS_NESTING_LEFT); |
| |
| left_nr = btrfs_header_nritems(left); |
| if (left_nr >= BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 1) { |
| wret = 1; |
| } else { |
| ret = btrfs_cow_block(trans, root, left, parent, |
| pslot - 1, &left, |
| BTRFS_NESTING_LEFT_COW); |
| if (ret) |
| wret = 1; |
| else { |
| wret = push_node_left(trans, left, mid, 0); |
| } |
| } |
| if (wret < 0) |
| ret = wret; |
| if (wret == 0) { |
| struct btrfs_disk_key disk_key; |
| orig_slot += left_nr; |
| btrfs_node_key(mid, &disk_key, 0); |
| ret = btrfs_tree_mod_log_insert_key(parent, pslot, |
| BTRFS_MOD_LOG_KEY_REPLACE); |
| BUG_ON(ret < 0); |
| btrfs_set_node_key(parent, &disk_key, pslot); |
| btrfs_mark_buffer_dirty(parent); |
| if (btrfs_header_nritems(left) > orig_slot) { |
| path->nodes[level] = left; |
| path->slots[level + 1] -= 1; |
| path->slots[level] = orig_slot; |
| btrfs_tree_unlock(mid); |
| free_extent_buffer(mid); |
| } else { |
| orig_slot -= |
| btrfs_header_nritems(left); |
| path->slots[level] = orig_slot; |
| btrfs_tree_unlock(left); |
| free_extent_buffer(left); |
| } |
| return 0; |
| } |
| btrfs_tree_unlock(left); |
| free_extent_buffer(left); |
| } |
| |
| /* |
| * then try to empty the right most buffer into the middle |
| */ |
| if (pslot + 1 < btrfs_header_nritems(parent)) { |
| u32 right_nr; |
| |
| right = btrfs_read_node_slot(parent, pslot + 1); |
| if (IS_ERR(right)) |
| return PTR_ERR(right); |
| |
| __btrfs_tree_lock(right, BTRFS_NESTING_RIGHT); |
| |
| right_nr = btrfs_header_nritems(right); |
| if (right_nr >= BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 1) { |
| wret = 1; |
| } else { |
| ret = btrfs_cow_block(trans, root, right, |
| parent, pslot + 1, |
| &right, BTRFS_NESTING_RIGHT_COW); |
| if (ret) |
| wret = 1; |
| else { |
| wret = balance_node_right(trans, right, mid); |
| } |
| } |
| if (wret < 0) |
| ret = wret; |
| if (wret == 0) { |
| struct btrfs_disk_key disk_key; |
| |
| btrfs_node_key(right, &disk_key, 0); |
| ret = btrfs_tree_mod_log_insert_key(parent, pslot + 1, |
| BTRFS_MOD_LOG_KEY_REPLACE); |
| BUG_ON(ret < 0); |
| btrfs_set_node_key(parent, &disk_key, pslot + 1); |
| btrfs_mark_buffer_dirty(parent); |
| |
| if (btrfs_header_nritems(mid) <= orig_slot) { |
| path->nodes[level] = right; |
| path->slots[level + 1] += 1; |
| path->slots[level] = orig_slot - |
| btrfs_header_nritems(mid); |
| btrfs_tree_unlock(mid); |
| free_extent_buffer(mid); |
| } else { |
| btrfs_tree_unlock(right); |
| free_extent_buffer(right); |
| } |
| return 0; |
| } |
| btrfs_tree_unlock(right); |
| free_extent_buffer(right); |
| } |
| return 1; |
| } |
| |
| /* |
| * readahead one full node of leaves, finding things that are close |
| * to the block in 'slot', and triggering ra on them. |
| */ |
| static void reada_for_search(struct btrfs_fs_info *fs_info, |
| struct btrfs_path *path, |
| int level, int slot, u64 objectid) |
| { |
| struct extent_buffer *node; |
| struct btrfs_disk_key disk_key; |
| u32 nritems; |
| u64 search; |
| u64 target; |
| u64 nread = 0; |
| u64 nread_max; |
| u32 nr; |
| u32 blocksize; |
| u32 nscan = 0; |
| |
| if (level != 1 && path->reada != READA_FORWARD_ALWAYS) |
| return; |
| |
| if (!path->nodes[level]) |
| return; |
| |
| node = path->nodes[level]; |
| |
| /* |
| * Since the time between visiting leaves is much shorter than the time |
| * between visiting nodes, limit read ahead of nodes to 1, to avoid too |
| * much IO at once (possibly random). |
| */ |
| if (path->reada == READA_FORWARD_ALWAYS) { |
| if (level > 1) |
| nread_max = node->fs_info->nodesize; |
| else |
| nread_max = SZ_128K; |
| } else { |
| nread_max = SZ_64K; |
| } |
| |
| search = btrfs_node_blockptr(node, slot); |
| blocksize = fs_info->nodesize; |
| if (path->reada != READA_FORWARD_ALWAYS) { |
| struct extent_buffer *eb; |
| |
| eb = find_extent_buffer(fs_info, search); |
| if (eb) { |
| free_extent_buffer(eb); |
| return; |
| } |
| } |
| |
| target = search; |
| |
| nritems = btrfs_header_nritems(node); |
| nr = slot; |
| |
| while (1) { |
| if (path->reada == READA_BACK) { |
| if (nr == 0) |
| break; |
| nr--; |
| } else if (path->reada == READA_FORWARD || |
| path->reada == READA_FORWARD_ALWAYS) { |
| nr++; |
| if (nr >= nritems) |
| break; |
| } |
| if (path->reada == READA_BACK && objectid) { |
| btrfs_node_key(node, &disk_key, nr); |
| if (btrfs_disk_key_objectid(&disk_key) != objectid) |
| break; |
| } |
| search = btrfs_node_blockptr(node, nr); |
| if (path->reada == READA_FORWARD_ALWAYS || |
| (search <= target && target - search <= 65536) || |
| (search > target && search - target <= 65536)) { |
| btrfs_readahead_node_child(node, nr); |
| nread += blocksize; |
| } |
| nscan++; |
| if (nread > nread_max || nscan > 32) |
| break; |
| } |
| } |
| |
| static noinline void reada_for_balance(struct btrfs_path *path, int level) |
| { |
| struct extent_buffer *parent; |
| int slot; |
| int nritems; |
| |
| parent = path->nodes[level + 1]; |
| if (!parent) |
| return; |
| |
| nritems = btrfs_header_nritems(parent); |
| slot = path->slots[level + 1]; |
| |
| if (slot > 0) |
| btrfs_readahead_node_child(parent, slot - 1); |
| if (slot + 1 < nritems) |
| btrfs_readahead_node_child(parent, slot + 1); |
| } |
| |
| |
| /* |
| * when we walk down the tree, it is usually safe to unlock the higher layers |
| * in the tree. The exceptions are when our path goes through slot 0, because |
| * operations on the tree might require changing key pointers higher up in the |
| * tree. |
| * |
| * callers might also have set path->keep_locks, which tells this code to keep |
| * the lock if the path points to the last slot in the block. This is part of |
| * walking through the tree, and selecting the next slot in the higher block. |
| * |
| * lowest_unlock sets the lowest level in the tree we're allowed to unlock. so |
| * if lowest_unlock is 1, level 0 won't be unlocked |
| */ |
| static noinline void unlock_up(struct btrfs_path *path, int level, |
| int lowest_unlock, int min_write_lock_level, |
| int *write_lock_level) |
| { |
| int i; |
| int skip_level = level; |
| bool check_skip = true; |
| |
| for (i = level; i < BTRFS_MAX_LEVEL; i++) { |
| if (!path->nodes[i]) |
| break; |
| if (!path->locks[i]) |
| break; |
| |
| if (check_skip) { |
| if (path->slots[i] == 0) { |
| skip_level = i + 1; |
| continue; |
| } |
| |
| if (path->keep_locks) { |
| u32 nritems; |
| |
| nritems = btrfs_header_nritems(path->nodes[i]); |
| if (nritems < 1 || path->slots[i] >= nritems - 1) { |
| skip_level = i + 1; |
| continue; |
| } |
| } |
| } |
| |
| if (i >= lowest_unlock && i > skip_level) { |
| check_skip = false; |
| btrfs_tree_unlock_rw(path->nodes[i], path->locks[i]); |
| path->locks[i] = 0; |
| if (write_lock_level && |
| i > min_write_lock_level && |
| i <= *write_lock_level) { |
| *write_lock_level = i - 1; |
| } |
| } |
| } |
| } |
| |
| /* |
| * Helper function for btrfs_search_slot() and other functions that do a search |
| * on a btree. The goal is to find a tree block in the cache (the radix tree at |
| * fs_info->buffer_radix), but if we can't find it, or it's not up to date, read |
| * its pages from disk. |
| * |
| * Returns -EAGAIN, with the path unlocked, if the caller needs to repeat the |
| * whole btree search, starting again from the current root node. |
| */ |
| static int |
| read_block_for_search(struct btrfs_root *root, struct btrfs_path *p, |
| struct extent_buffer **eb_ret, int level, int slot, |
| const struct btrfs_key *key) |
| { |
| struct btrfs_fs_info *fs_info = root->fs_info; |
| struct btrfs_tree_parent_check check = { 0 }; |
| u64 blocknr; |
| u64 gen; |
| struct extent_buffer *tmp; |
| int ret; |
| int parent_level; |
| bool unlock_up; |
| |
| unlock_up = ((level + 1 < BTRFS_MAX_LEVEL) && p->locks[level + 1]); |
| blocknr = btrfs_node_blockptr(*eb_ret, slot); |
| gen = btrfs_node_ptr_generation(*eb_ret, slot); |
| parent_level = btrfs_header_level(*eb_ret); |
| btrfs_node_key_to_cpu(*eb_ret, &check.first_key, slot); |
| check.has_first_key = true; |
| check.level = parent_level - 1; |
| check.transid = gen; |
| check.owner_root = root->root_key.objectid; |
| |
| /* |
| * If we need to read an extent buffer from disk and we are holding locks |
| * on upper level nodes, we unlock all the upper nodes before reading the |
| * extent buffer, and then return -EAGAIN to the caller as it needs to |
| * restart the search. We don't release the lock on the current level |
| * because we need to walk this node to figure out which blocks to read. |
| */ |
| tmp = find_extent_buffer(fs_info, blocknr); |
| if (tmp) { |
| if (p->reada == READA_FORWARD_ALWAYS) |
| reada_for_search(fs_info, p, level, slot, key->objectid); |
| |
| /* first we do an atomic uptodate check */ |
| if (btrfs_buffer_uptodate(tmp, gen, 1) > 0) { |
| /* |
| * Do extra check for first_key, eb can be stale due to |
| * being cached, read from scrub, or have multiple |
| * parents (shared tree blocks). |
| */ |
| if (btrfs_verify_level_key(tmp, |
| parent_level - 1, &check.first_key, gen)) { |
| free_extent_buffer(tmp); |
| return -EUCLEAN; |
| } |
| *eb_ret = tmp; |
| return 0; |
| } |
| |
| if (p->nowait) { |
| free_extent_buffer(tmp); |
| return -EAGAIN; |
| } |
| |
| if (unlock_up) |
| btrfs_unlock_up_safe(p, level + 1); |
| |
| /* now we're allowed to do a blocking uptodate check */ |
| ret = btrfs_read_extent_buffer(tmp, &check); |
| if (ret) { |
| free_extent_buffer(tmp); |
| btrfs_release_path(p); |
| return -EIO; |
| } |
| if (btrfs_check_eb_owner(tmp, root->root_key.objectid)) { |
| free_extent_buffer(tmp); |
| btrfs_release_path(p); |
| return -EUCLEAN; |
| } |
| |
| if (unlock_up) |
| ret = -EAGAIN; |
| |
| goto out; |
| } else if (p->nowait) { |
| return -EAGAIN; |
| } |
| |
| if (unlock_up) { |
| btrfs_unlock_up_safe(p, level + 1); |
| ret = -EAGAIN; |
| } else { |
| ret = 0; |
| } |
| |
| if (p->reada != READA_NONE) |
| reada_for_search(fs_info, p, level, slot, key->objectid); |
| |
| tmp = read_tree_block(fs_info, blocknr, &check); |
| if (IS_ERR(tmp)) { |
| btrfs_release_path(p); |
| return PTR_ERR(tmp); |
| } |
| /* |
| * If the read above didn't mark this buffer up to date, |
| * it will never end up being up to date. Set ret to EIO now |
| * and give up so that our caller doesn't loop forever |
| * on our EAGAINs. |
| */ |
| if (!extent_buffer_uptodate(tmp)) |
| ret = -EIO; |
| |
| out: |
| if (ret == 0) { |
| *eb_ret = tmp; |
| } else { |
| free_extent_buffer(tmp); |
| btrfs_release_path(p); |
| } |
| |
| return ret; |
| } |
| |
| /* |
| * helper function for btrfs_search_slot. This does all of the checks |
| * for node-level blocks and does any balancing required based on |
| * the ins_len. |
| * |
| * If no extra work was required, zero is returned. If we had to |
| * drop the path, -EAGAIN is returned and btrfs_search_slot must |
| * start over |
| */ |
| static int |
| setup_nodes_for_search(struct btrfs_trans_handle *trans, |
| struct btrfs_root *root, struct btrfs_path *p, |
| struct extent_buffer *b, int level, int ins_len, |
| int *write_lock_level) |
| { |
| struct btrfs_fs_info *fs_info = root->fs_info; |
| int ret = 0; |
| |
| if ((p->search_for_split || ins_len > 0) && btrfs_header_nritems(b) >= |
| BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 3) { |
| |
| if (*write_lock_level < level + 1) { |
| *write_lock_level = level + 1; |
| btrfs_release_path(p); |
| return -EAGAIN; |
| } |
| |
| reada_for_balance(p, level); |
| ret = split_node(trans, root, p, level); |
| |
| b = p->nodes[level]; |
| } else if (ins_len < 0 && btrfs_header_nritems(b) < |
| BTRFS_NODEPTRS_PER_BLOCK(fs_info) / 2) { |
| |
| if (*write_lock_level < level + 1) { |
| *write_lock_level = level + 1; |
| btrfs_release_path(p); |
| return -EAGAIN; |
| } |
| |
| reada_for_balance(p, level); |
| ret = balance_level(trans, root, p, level); |
| if (ret) |
| return ret; |
| |
| b = p->nodes[level]; |
| if (!b) { |
| btrfs_release_path(p); |
| return -EAGAIN; |
| } |
| BUG_ON(btrfs_header_nritems(b) == 1); |
| } |
| return ret; |
| } |
| |
| int btrfs_find_item(struct btrfs_root *fs_root, struct btrfs_path *path, |
| u64 iobjectid, u64 ioff, u8 key_type, |
| struct btrfs_key *found_key) |
| { |
| int ret; |
| struct btrfs_key key; |
| struct extent_buffer *eb; |
| |
| ASSERT(path); |
| ASSERT(found_key); |
| |
| key.type = key_type; |
| key.objectid = iobjectid; |
| key.offset = ioff; |
| |
| ret = btrfs_search_slot(NULL, fs_root, &key, path, 0, 0); |
| if (ret < 0) |
| return ret; |
| |
| eb = path->nodes[0]; |
| if (ret && path->slots[0] >= btrfs_header_nritems(eb)) { |
| ret = btrfs_next_leaf(fs_root, path); |
| if (ret) |
| return ret; |
| eb = path->nodes[0]; |
| } |
| |
| btrfs_item_key_to_cpu(eb, found_key, path->slots[0]); |
| if (found_key->type != key.type || |
| found_key->objectid != key.objectid) |
| return 1; |
| |
| return 0; |
| } |
| |
| static struct extent_buffer *btrfs_search_slot_get_root(struct btrfs_root *root, |
| struct btrfs_path *p, |
| int write_lock_level) |
| { |
| struct extent_buffer *b; |
| int root_lock = 0; |
| int level = 0; |
| |
| if (p->search_commit_root) { |
| b = root->commit_root; |
| atomic_inc(&b->refs); |
| level = btrfs_header_level(b); |
| /* |
| * Ensure that all callers have set skip_locking when |
| * p->search_commit_root = 1. |
| */ |
| ASSERT(p->skip_locking == 1); |
| |
| goto out; |
| } |
| |
| if (p->skip_locking) { |
| b = btrfs_root_node(root); |
| level = btrfs_header_level(b); |
| goto out; |
| } |
| |
| /* We try very hard to do read locks on the root */ |
| root_lock = BTRFS_READ_LOCK; |
| |
| /* |
| * If the level is set to maximum, we can skip trying to get the read |
| * lock. |
| */ |
| if (write_lock_level < BTRFS_MAX_LEVEL) { |
| /* |
| * We don't know the level of the root node until we actually |
| * have it read locked |
| */ |
| if (p->nowait) { |
| b = btrfs_try_read_lock_root_node(root); |
| if (IS_ERR(b)) |
| return b; |
| } else { |
| b = btrfs_read_lock_root_node(root); |
| } |
| level = btrfs_header_level(b); |
| if (level > write_lock_level) |
| goto out; |
| |
| /* Whoops, must trade for write lock */ |
| btrfs_tree_read_unlock(b); |
| free_extent_buffer(b); |
| } |
| |
| b = btrfs_lock_root_node(root); |
| root_lock = BTRFS_WRITE_LOCK; |
| |
| /* The level might have changed, check again */ |
| level = btrfs_header_level(b); |
| |
| out: |
| /* |
| * The root may have failed to write out at some point, and thus is no |
| * longer valid, return an error in this case. |
| */ |
| if (!extent_buffer_uptodate(b)) { |
| if (root_lock) |
| btrfs_tree_unlock_rw(b, root_lock); |
| free_extent_buffer(b); |
| return ERR_PTR(-EIO); |
| } |
| |
| p->nodes[level] = b; |
| if (!p->skip_locking) |
| p->locks[level] = root_lock; |
| /* |
| * Callers are responsible for dropping b's references. |
| */ |
| return b; |
| } |
| |
| /* |
| * Replace the extent buffer at the lowest level of the path with a cloned |
| * version. The purpose is to be able to use it safely, after releasing the |
| * commit root semaphore, even if relocation is happening in parallel, the |
| * transaction used for relocation is committed and the extent buffer is |
| * reallocated in the next transaction. |
| * |
| * This is used in a context where the caller does not prevent transaction |
| * commits from happening, either by holding a transaction handle or holding |
| * some lock, while it's doing searches through a commit root. |
| * At the moment it's only used for send operations. |
| */ |
| static int finish_need_commit_sem_search(struct btrfs_path *path) |
| { |
| const int i = path->lowest_level; |
| const int slot = path->slots[i]; |
| struct extent_buffer *lowest = path->nodes[i]; |
| struct extent_buffer *clone; |
| |
| ASSERT(path->need_commit_sem); |
| |
| if (!lowest) |
| return 0; |
| |
| lockdep_assert_held_read(&lowest->fs_info->commit_root_sem); |
| |
| clone = btrfs_clone_extent_buffer(lowest); |
| if (!clone) |
| return -ENOMEM; |
| |
| btrfs_release_path(path); |
| path->nodes[i] = clone; |
| path->slots[i] = slot; |
| |
| return 0; |
| } |
| |
| static inline int search_for_key_slot(struct extent_buffer *eb, |
| int search_low_slot, |
| const struct btrfs_key *key, |
| int prev_cmp, |
| int *slot) |
| { |
| /* |
| * If a previous call to btrfs_bin_search() on a parent node returned an |
| * exact match (prev_cmp == 0), we can safely assume the target key will |
| * always be at slot 0 on lower levels, since each key pointer |
| * (struct btrfs_key_ptr) refers to the lowest key accessible from the |
| * subtree it points to. Thus we can skip searching lower levels. |
| */ |
| if (prev_cmp == 0) { |
| *slot = 0; |
| return 0; |
| } |
| |
| return btrfs_bin_search(eb, search_low_slot, key, slot); |
| } |
| |
| static int search_leaf(struct btrfs_trans_handle *trans, |
| struct btrfs_root *root, |
| const struct btrfs_key *key, |
| struct btrfs_path *path, |
| int ins_len, |
| int prev_cmp) |
| { |
| struct extent_buffer *leaf = path->nodes[0]; |
| int leaf_free_space = -1; |
| int search_low_slot = 0; |
| int ret; |
| bool do_bin_search = true; |
| |
| /* |
| * If we are doing an insertion, the leaf has enough free space and the |
| * destination slot for the key is not slot 0, then we can unlock our |
| * write lock on the parent, and any other upper nodes, before doing the |
| * binary search on the leaf (with search_for_key_slot()), allowing other |
| * tasks to lock the parent and any other upper nodes. |
| */ |
| if (ins_len > 0) { |
| /* |
| * Cache the leaf free space, since we will need it later and it |
| * will not change until then. |
| */ |
| leaf_free_space = btrfs_leaf_free_space(leaf); |
| |
| /* |
| * !path->locks[1] means we have a single node tree, the leaf is |
| * the root of the tree. |
| */ |
| if (path->locks[1] && leaf_free_space >= ins_len) { |
| struct btrfs_disk_key first_key; |
| |
| ASSERT(btrfs_header_nritems(leaf) > 0); |
| btrfs_item_key(leaf, &first_key, 0); |
| |
| /* |
| * Doing the extra comparison with the first key is cheap, |
| * taking into account that the first key is very likely |
| * already in a cache line because it immediately follows |
| * the extent buffer's header and we have recently accessed |
| * the header's level field. |
| */ |
| ret = comp_keys(&first_key, key); |
| if (ret < 0) { |
| /* |
| * The first key is smaller than the key we want |
| * to insert, so we are safe to unlock all upper |
| * nodes and we have to do the binary search. |
| * |
| * We do use btrfs_unlock_up_safe() and not |
| * unlock_up() because the later does not unlock |
| * nodes with a slot of 0 - we can safely unlock |
| * any node even if its slot is 0 since in this |
| * case the key does not end up at slot 0 of the |
| * leaf and there's no need to split the leaf. |
| */ |
| btrfs_unlock_up_safe(path, 1); |
| search_low_slot = 1; |
| } else { |
| /* |
| * The first key is >= then the key we want to |
| * insert, so we can skip the binary search as |
| * the target key will be at slot 0. |
| * |
| * We can not unlock upper nodes when the key is |
| * less than the first key, because we will need |
| * to update the key at slot 0 of the parent node |
| * and possibly of other upper nodes too. |
| * If the key matches the first key, then we can |
| * unlock all the upper nodes, using |
| * btrfs_unlock_up_safe() instead of unlock_up() |
| * as stated above. |
| */ |
| if (ret == 0) |
| btrfs_unlock_up_safe(path, 1); |
| /* |
| * ret is already 0 or 1, matching the result of |
| * a btrfs_bin_search() call, so there is no need |
| * to adjust it. |
| */ |
| do_bin_search = false; |
| path->slots[0] = 0; |
| } |
| } |
| } |
| |
| if (do_bin_search) { |
| ret = search_for_key_slot(leaf, search_low_slot, key, |
| prev_cmp, &path->slots[0]); |
| if (ret < 0) |
| return ret; |
| } |
| |
| if (ins_len > 0) { |
| /* |
| * Item key already exists. In this case, if we are allowed to |
| * insert the item (for example, in dir_item case, item key |
| * collision is allowed), it will be merged with the original |
| * item. Only the item size grows, no new btrfs item will be |
| * added. If search_for_extension is not set, ins_len already |
| * accounts the size btrfs_item, deduct it here so leaf space |
| * check will be correct. |
| */ |
| if (ret == 0 && !path->search_for_extension) { |
| ASSERT(ins_len >= sizeof(struct btrfs_item)); |
| ins_len -= sizeof(struct btrfs_item); |
| } |
| |
| ASSERT(leaf_free_space >= 0); |
| |
| if (leaf_free_space < ins_len) { |
| int err; |
| |
| err = split_leaf(trans, root, key, path, ins_len, |
| (ret == 0)); |
| ASSERT(err <= 0); |
| if (WARN_ON(err > 0)) |
| err = -EUCLEAN; |
| if (err) |
| ret = err; |
| } |
| } |
| |
| return ret; |
| } |
| |
| /* |
| * btrfs_search_slot - look for a key in a tree and perform necessary |
| * modifications to preserve tree invariants. |
| * |
| * @trans: Handle of transaction, used when modifying the tree |
| * @p: Holds all btree nodes along the search path |
| * @root: The root node of the tree |
| * @key: The key we are looking for |
| * @ins_len: Indicates purpose of search: |
| * >0 for inserts it's size of item inserted (*) |
| * <0 for deletions |
| * 0 for plain searches, not modifying the tree |
| * |
| * (*) If size of item inserted doesn't include |
| * sizeof(struct btrfs_item), then p->search_for_extension must |
| * be set. |
| * @cow: boolean should CoW operations be performed. Must always be 1 |
| * when modifying the tree. |
| * |
| * If @ins_len > 0, nodes and leaves will be split as we walk down the tree. |
| * If @ins_len < 0, nodes will be merged as we walk down the tree (if possible) |
| * |
| * If @key is found, 0 is returned and you can find the item in the leaf level |
| * of the path (level 0) |
| * |
| * If @key isn't found, 1 is returned and the leaf level of the path (level 0) |
| * points to the slot where it should be inserted |
| * |
| * If an error is encountered while searching the tree a negative error number |
| * is returned |
| */ |
| int btrfs_search_slot(struct btrfs_trans_handle *trans, struct btrfs_root *root, |
| const struct btrfs_key *key, struct btrfs_path *p, |
| int ins_len, int cow) |
| { |
| struct btrfs_fs_info *fs_info = root->fs_info; |
| struct extent_buffer *b; |
| int slot; |
| int ret; |
| int err; |
| int level; |
| int lowest_unlock = 1; |
| /* everything at write_lock_level or lower must be write locked */ |
| int write_lock_level = 0; |
| u8 lowest_level = 0; |
| int min_write_lock_level; |
| int prev_cmp; |
| |
| might_sleep(); |
| |
| lowest_level = p->lowest_level; |
| WARN_ON(lowest_level && ins_len > 0); |
| WARN_ON(p->nodes[0] != NULL); |
| BUG_ON(!cow && ins_len); |
| |
| /* |
| * For now only allow nowait for read only operations. There's no |
| * strict reason why we can't, we just only need it for reads so it's |
| * only implemented for reads. |
| */ |
| ASSERT(!p->nowait || !cow); |
| |
| if (ins_len < 0) { |
| lowest_unlock = 2; |
| |
| /* when we are removing items, we might have to go up to level |
| * two as we update tree pointers Make sure we keep write |
| * for those levels as well |
| */ |
| write_lock_level = 2; |
| } else if (ins_len > 0) { |
| /* |
| * for inserting items, make sure we have a write lock on |
| * level 1 so we can update keys |
| */ |
| write_lock_level = 1; |
| } |
| |
| if (!cow) |
| write_lock_level = -1; |
| |
| if (cow && (p->keep_locks || p->lowest_level)) |
| write_lock_level = BTRFS_MAX_LEVEL; |
| |
| min_write_lock_level = write_lock_level; |
| |
| if (p->need_commit_sem) { |
| ASSERT(p->search_commit_root); |
| if (p->nowait) { |
| if (!down_read_trylock(&fs_info->commit_root_sem)) |
| return -EAGAIN; |
| } else { |
| down_read(&fs_info->commit_root_sem); |
| } |
| } |
| |
| again: |
| prev_cmp = -1; |
| b = btrfs_search_slot_get_root(root, p, write_lock_level); |
| if (IS_ERR(b)) { |
| ret = PTR_ERR(b); |
| goto done; |
| } |
| |
| while (b) { |
| int dec = 0; |
| |
| level = btrfs_header_level(b); |
| |
| if (cow) { |
| bool last_level = (level == (BTRFS_MAX_LEVEL - 1)); |
| |
| /* |
| * if we don't really need to cow this block |
| * then we don't want to set the path blocking, |
| * so we test it here |
| */ |
| if (!should_cow_block(trans, root, b)) |
| goto cow_done; |
| |
| /* |
| * must have write locks on this node and the |
| * parent |
| */ |
| if (level > write_lock_level || |
| (level + 1 > write_lock_level && |
| level + 1 < BTRFS_MAX_LEVEL && |
| p->nodes[level + 1])) { |
| write_lock_level = level + 1; |
| btrfs_release_path(p); |
| goto again; |
| } |
| |
| if (last_level) |
| err = btrfs_cow_block(trans, root, b, NULL, 0, |
| &b, |
| BTRFS_NESTING_COW); |
| else |
| err = btrfs_cow_block(trans, root, b, |
| p->nodes[level + 1], |
| p->slots[level + 1], &b, |
| BTRFS_NESTING_COW); |
| if (err) { |
| ret = err; |
| goto done; |
| } |
| } |
| cow_done: |
| p->nodes[level] = b; |
| |
| /* |
| * we have a lock on b and as long as we aren't changing |
| * the tree, there is no way to for the items in b to change. |
| * It is safe to drop the lock on our parent before we |
| * go through the expensive btree search on b. |
| * |
| * If we're inserting or deleting (ins_len != 0), then we might |
| * be changing slot zero, which may require changing the parent. |
| * So, we can't drop the lock until after we know which slot |
| * we're operating on. |
| */ |
| if (!ins_len && !p->keep_locks) { |
| int u = level + 1; |
| |
| if (u < BTRFS_MAX_LEVEL && p->locks[u]) { |
| btrfs_tree_unlock_rw(p->nodes[u], p->locks[u]); |
| p->locks[u] = 0; |
| } |
| } |
| |
| if (level == 0) { |
| if (ins_len > 0) |
| ASSERT(write_lock_level >= 1); |
| |
| ret = search_leaf(trans, root, key, p, ins_len, prev_cmp); |
| if (!p->search_for_split) |
| unlock_up(p, level, lowest_unlock, |
| min_write_lock_level, NULL); |
| goto done; |
| } |
| |
| ret = search_for_key_slot(b, 0, key, prev_cmp, &slot); |
| if (ret < 0) |
| goto done; |
| prev_cmp = ret; |
| |
| if (ret && slot > 0) { |
| dec = 1; |
| slot--; |
| } |
| p->slots[level] = slot; |
| err = setup_nodes_for_search(trans, root, p, b, level, ins_len, |
| &write_lock_level); |
| if (err == -EAGAIN) |
| goto again; |
| if (err) { |
| ret = err; |
| goto done; |
| } |
| b = p->nodes[level]; |
| slot = p->slots[level]; |
| |
| /* |
| * Slot 0 is special, if we change the key we have to update |
| * the parent pointer which means we must have a write lock on |
| * the parent |
| */ |
| if (slot == 0 && ins_len && write_lock_level < level + 1) { |
| write_lock_level = level + 1; |
| btrfs_release_path(p); |
| goto again; |
| } |
| |
| unlock_up(p, level, lowest_unlock, min_write_lock_level, |
| &write_lock_level); |
| |
| if (level == lowest_level) { |
| if (dec) |
| p->slots[level]++; |
| goto done; |
| } |
| |
| err = read_block_for_search(root, p, &b, level, slot, key); |
| if (err == -EAGAIN) |
| goto again; |
| if (err) { |
| ret = err; |
| goto done; |
| } |
| |
| if (!p->skip_locking) { |
| level = btrfs_header_level(b); |
| |
| btrfs_maybe_reset_lockdep_class(root, b); |
| |
| if (level <= write_lock_level) { |
| btrfs_tree_lock(b); |
| p->locks[level] = BTRFS_WRITE_LOCK; |
| } else { |
| if (p->nowait) { |
| if (!btrfs_try_tree_read_lock(b)) { |
| free_extent_buffer(b); |
| ret = -EAGAIN; |
| goto done; |
| } |
| } else { |
| btrfs_tree_read_lock(b); |
| } |
| p->locks[level] = BTRFS_READ_LOCK; |
| } |
| p->nodes[level] = b; |
| } |
| } |
| ret = 1; |
| done: |
| if (ret < 0 && !p->skip_release_on_error) |
| btrfs_release_path(p); |
| |
| if (p->need_commit_sem) { |
| int ret2; |
| |
| ret2 = finish_need_commit_sem_search(p); |
| up_read(&fs_info->commit_root_sem); |
| if (ret2) |
| ret = ret2; |
| } |
| |
| return ret; |
| } |
| ALLOW_ERROR_INJECTION(btrfs_search_slot, ERRNO); |
| |
| /* |
| * Like btrfs_search_slot, this looks for a key in the given tree. It uses the |
| * current state of the tree together with the operations recorded in the tree |
| * modification log to search for the key in a previous version of this tree, as |
| * denoted by the time_seq parameter. |
| * |
| * Naturally, there is no support for insert, delete or cow operations. |
| * |
| * The resulting path and return value will be set up as if we called |
| * btrfs_search_slot at that point in time with ins_len and cow both set to 0. |
| */ |
| int btrfs_search_old_slot(struct btrfs_root *root, const struct btrfs_key *key, |
| struct btrfs_path *p, u64 time_seq) |
| { |
| struct btrfs_fs_info *fs_info = root->fs_info; |
| struct extent_buffer *b; |
| int slot; |
| int ret; |
| int err; |
| int level; |
| int lowest_unlock = 1; |
| u8 lowest_level = 0; |
| |
| lowest_level = p->lowest_level; |
| WARN_ON(p->nodes[0] != NULL); |
| ASSERT(!p->nowait); |
| |
| if (p->search_commit_root) { |
| BUG_ON(time_seq); |
| return btrfs_search_slot(NULL, root, key, p, 0, 0); |
| } |
| |
| again: |
| b = btrfs_get_old_root(root, time_seq); |
| if (!b) { |
| ret = -EIO; |
| goto done; |
| } |
| level = btrfs_header_level(b); |
| p->locks[level] = BTRFS_READ_LOCK; |
| |
| while (b) { |
| int dec = 0; |
| |
| level = btrfs_header_level(b); |
| p->nodes[level] = b; |
| |
| /* |
| * we have a lock on b and as long as we aren't changing |
| * the tree, there is no way to for the items in b to change. |
| * It is safe to drop the lock on our parent before we |
| * go through the expensive btree search on b. |
| */ |
| btrfs_unlock_up_safe(p, level + 1); |
| |
| ret = btrfs_bin_search(b, 0, key, &slot); |
| if (ret < 0) |
| goto done; |
| |
| if (level == 0) { |
| p->slots[level] = slot; |
| unlock_up(p, level, lowest_unlock, 0, NULL); |
| goto done; |
| } |
| |
| if (ret && slot > 0) { |
| dec = 1; |
| slot--; |
| } |
| p->slots[level] = slot; |
| unlock_up(p, level, lowest_unlock, 0, NULL); |
| |
| if (level == lowest_level) { |
| if (dec) |
| p->slots[level]++; |
| goto done; |
| } |
| |
| err = read_block_for_search(root, p, &b, level, slot, key); |
| if (err == -EAGAIN) |
| goto again; |
| if (err) { |
| ret = err; |
| goto done; |
| } |
| |
| level = btrfs_header_level(b); |
| btrfs_tree_read_lock(b); |
| b = btrfs_tree_mod_log_rewind(fs_info, p, b, time_seq); |
| if (!b) { |
| ret = -ENOMEM; |
| goto done; |
| } |
| p->locks[level] = BTRFS_READ_LOCK; |
| p->nodes[level] = b; |
| } |
| ret = 1; |
| done: |
| if (ret < 0) |
| btrfs_release_path(p); |
| |
| return ret; |
| } |
| |
| /* |
| * helper to use instead of search slot if no exact match is needed but |
| * instead the next or previous item should be returned. |
| * When find_higher is true, the next higher item is returned, the next lower |
| * otherwise. |
| * When return_any and find_higher are both true, and no higher item is found, |
| * return the next lower instead. |
| * When return_any is true and find_higher is false, and no lower item is found, |
| * return the next higher instead. |
| * It returns 0 if any item is found, 1 if none is found (tree empty), and |
| * < 0 on error |
| */ |
| int btrfs_search_slot_for_read(struct btrfs_root *root, |
| const struct btrfs_key *key, |
| struct btrfs_path *p, int find_higher, |
| int return_any) |
| { |
| int ret; |
| struct extent_buffer *leaf; |
| |
| again: |
| ret = btrfs_search_slot(NULL, root, key, p, 0, 0); |
| if (ret <= 0) |
| return ret; |
| /* |
| * a return value of 1 means the path is at the position where the |
| * item should be inserted. Normally this is the next bigger item, |
| * but in case the previous item is the last in a leaf, path points |
| * to the first free slot in the previous leaf, i.e. at an invalid |
| * item. |
| */ |
| leaf = p->nodes[0]; |
| |
| if (find_higher) { |
| if (p->slots[0] >= btrfs_header_nritems(leaf)) { |
| ret = btrfs_next_leaf(root, p); |
| if (ret <= 0) |
| return ret; |
| if (!return_any) |
| return 1; |
| /* |
| * no higher item found, return the next |
| * lower instead |
| */ |
| return_any = 0; |
| find_higher = 0; |
| btrfs_release_path(p); |
| goto again; |
| } |
| } else { |
| if (p->slots[0] == 0) { |
| ret = btrfs_prev_leaf(root, p); |
| if (ret < 0) |
| return ret; |
| if (!ret) { |
| leaf = p->nodes[0]; |
| if (p->slots[0] == btrfs_header_nritems(leaf)) |
| p->slots[0]--; |
| return 0; |
| } |
| if (!return_any) |
| return 1; |
| /* |
| * no lower item found, return the next |
| * higher instead |
| */ |
| return_any = 0; |
| find_higher = 1; |
| btrfs_release_path(p); |
| goto again; |
| } else { |
| --p->slots[0]; |
| } |
| } |
| return 0; |
| } |
| |
| /* |
| * Execute search and call btrfs_previous_item to traverse backwards if the item |
| * was not found. |
| * |
| * Return 0 if found, 1 if not found and < 0 if error. |
| */ |
| int btrfs_search_backwards(struct btrfs_root *root, struct btrfs_key *key, |
| struct btrfs_path *path) |
| { |
| int ret; |
| |
| ret = btrfs_search_slot(NULL, root, key, path, 0, 0); |
| if (ret > 0) |
| ret = btrfs_previous_item(root, path, key->objectid, key->type); |
| |
| if (ret == 0) |
| btrfs_item_key_to_cpu(path->nodes[0], key, path->slots[0]); |
| |
| return ret; |
| } |
| |
| /* |
| * Search for a valid slot for the given path. |
| * |
| * @root: The root node of the tree. |
| * @key: Will contain a valid item if found. |
| * @path: The starting point to validate the slot. |
| * |
| * Return: 0 if the item is valid |
| * 1 if not found |
| * <0 if error. |
| */ |
| int btrfs_get_next_valid_item(struct btrfs_root *root, struct btrfs_key *key, |
| struct btrfs_path *path) |
| { |
| if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) { |
| int ret; |
| |
| ret = btrfs_next_leaf(root, path); |
| if (ret) |
| return ret; |
| } |
| |
| btrfs_item_key_to_cpu(path->nodes[0], key, path->slots[0]); |
| return 0; |
| } |
| |
| /* |
| * adjust the pointers going up the tree, starting at level |
| * making sure the right key of each node is points to 'key'. |
| * This is used after shifting pointers to the left, so it stops |
| * fixing up pointers when a given leaf/node is not in slot 0 of the |
| * higher levels |
| * |
| */ |
| static void fixup_low_keys(struct btrfs_path *path, |
| struct btrfs_disk_key *key, int level) |
| { |
| int i; |
| struct extent_buffer *t; |
| int ret; |
| |
| for (i = level; i < BTRFS_MAX_LEVEL; i++) { |
| int tslot = path->slots[i]; |
| |
| if (!path->nodes[i]) |
| break; |
| t = path->nodes[i]; |
| ret = btrfs_tree_mod_log_insert_key(t, tslot, |
| BTRFS_MOD_LOG_KEY_REPLACE); |
| BUG_ON(ret < 0); |
| btrfs_set_node_key(t, key, tslot); |
| btrfs_mark_buffer_dirty(path->nodes[i]); |
| if (tslot != 0) |
| break; |
| } |
| } |
| |
| /* |
| * update item key. |
| * |
| * This function isn't completely safe. It's the caller's responsibility |
| * that the new key won't break the order |
| */ |
| void btrfs_set_item_key_safe(struct btrfs_fs_info *fs_info, |
| struct btrfs_path *path, |
| const struct btrfs_key *new_key) |
| { |
| struct btrfs_disk_key disk_key; |
| struct extent_buffer *eb; |
| int slot; |
| |
| eb = path->nodes[0]; |
| slot = path->slots[0]; |
| if (slot > 0) { |
| btrfs_item_key(eb, &disk_key, slot - 1); |
| if (unlikely(comp_keys(&disk_key, new_key) >= 0)) { |
| btrfs_crit(fs_info, |
| "slot %u key (%llu %u %llu) new key (%llu %u %llu)", |
| slot, btrfs_disk_key_objectid(&disk_key), |
| btrfs_disk_key_type(&disk_key), |
| btrfs_disk_key_offset(&disk_key), |
| new_key->objectid, new_key->type, |
| new_key->offset); |
| btrfs_print_leaf(eb); |
| BUG(); |
| } |
| } |
| if (slot < btrfs_header_nritems(eb) - 1) { |
| btrfs_item_key(eb, &disk_key, slot + 1); |
| if (unlikely(comp_keys(&disk_key, new_key) <= 0)) { |
| btrfs_crit(fs_info, |
| "slot %u key (%llu %u %llu) new key (%llu %u %llu)", |
| slot, btrfs_disk_key_objectid(&disk_key), |
| btrfs_disk_key_type(&disk_key), |
| btrfs_disk_key_offset(&disk_key), |
| new_key->objectid, new_key->type, |
| new_key->offset); |
| btrfs_print_leaf(eb); |
| BUG(); |
| } |
| } |
| |
| btrfs_cpu_key_to_disk(&disk_key, new_key); |
| btrfs_set_item_key(eb, &disk_key, slot); |
| btrfs_mark_buffer_dirty(eb); |
| if (slot == 0) |
| fixup_low_keys(path, &disk_key, 1); |
| } |
| |
| /* |
| * Check key order of two sibling extent buffers. |
| * |
| * Return true if something is wrong. |
| * Return false if everything is fine. |
| * |
| * Tree-checker only works inside one tree block, thus the following |
| * corruption can not be detected by tree-checker: |
| * |
| * Leaf @left | Leaf @right |
| * -------------------------------------------------------------- |
| * | 1 | 2 | 3 | 4 | 5 | f6 | | 7 | 8 | |
| * |
| * Key f6 in leaf @left itself is valid, but not valid when the next |
| * key in leaf @right is 7. |
| * This can only be checked at tree block merge time. |
| * And since tree checker has ensured all key order in each tree block |
| * is correct, we only need to bother the last key of @left and the first |
| * key of @right. |
| */ |
| static bool check_sibling_keys(struct extent_buffer *left, |
| struct extent_buffer *right) |
| { |
| struct btrfs_key left_last; |
| struct btrfs_key right_first; |
| int level = btrfs_header_level(left); |
| int nr_left = btrfs_header_nritems(left); |
| int nr_right = btrfs_header_nritems(right); |
| |
| /* No key to check in one of the tree blocks */ |
| if (!nr_left || !nr_right) |
| return false; |
| |
| if (level) { |
| btrfs_node_key_to_cpu(left, &left_last, nr_left - 1); |
| btrfs_node_key_to_cpu(right, &right_first, 0); |
| } else { |
| btrfs_item_key_to_cpu(left, &left_last, nr_left - 1); |
| btrfs_item_key_to_cpu(right, &right_first, 0); |
| } |
| |
| if (btrfs_comp_cpu_keys(&left_last, &right_first) >= 0) { |
| btrfs_crit(left->fs_info, |
| "bad key order, sibling blocks, left last (%llu %u %llu) right first (%llu %u %llu)", |
| left_last.objectid, left_last.type, |
| left_last.offset, right_first.objectid, |
| right_first.type, right_first.offset); |
| return true; |
| } |
| return false; |
| } |
| |
| /* |
| * try to push data from one node into the next node left in the |
| * tree. |
| * |
| * returns 0 if some ptrs were pushed left, < 0 if there was some horrible |
| * error, and > 0 if there was no room in the left hand block. |
| */ |
| static int push_node_left(struct btrfs_trans_handle *trans, |
| struct extent_buffer *dst, |
| struct extent_buffer *src, int empty) |
| { |
| struct btrfs_fs_info *fs_info = trans->fs_info; |
| int push_items = 0; |
| int src_nritems; |
| int dst_nritems; |
| int ret = 0; |
| |
| src_nritems = btrfs_header_nritems(src); |
| dst_nritems = btrfs_header_nritems(dst); |
| push_items = BTRFS_NODEPTRS_PER_BLOCK(fs_info) - dst_nritems; |
| WARN_ON(btrfs_header_generation(src) != trans->transid); |
| WARN_ON(btrfs_header_generation(dst) != trans->transid); |
| |
| if (!empty && src_nritems <= 8) |
| return 1; |
| |
| if (push_items <= 0) |
| return 1; |
| |
| if (empty) { |
| push_items = min(src_nritems, push_items); |
| if (push_items < src_nritems) { |
| /* leave at least 8 pointers in the node if |
| * we aren't going to empty it |
| */ |
| if (src_nritems - push_items < 8) { |
| if (push_items <= 8) |
| return 1; |
| push_items -= 8; |
| } |
| } |
| } else |
| push_items = min(src_nritems - 8, push_items); |
| |
| /* dst is the left eb, src is the middle eb */ |
| if (check_sibling_keys(dst, src)) { |
| ret = -EUCLEAN; |
| btrfs_abort_transaction(trans, ret); |
| return ret; |
| } |
| ret = btrfs_tree_mod_log_eb_copy(dst, src, dst_nritems, 0, push_items); |
| if (ret) { |
| btrfs_abort_transaction(trans, ret); |
| return ret; |
| } |
| copy_extent_buffer(dst, src, |
| btrfs_node_key_ptr_offset(dst, dst_nritems), |
| btrfs_node_key_ptr_offset(src, 0), |
| push_items * sizeof(struct btrfs_key_ptr)); |
| |
| if (push_items < src_nritems) { |
| /* |
| * Don't call btrfs_tree_mod_log_insert_move() here, key removal |
| * was already fully logged by btrfs_tree_mod_log_eb_copy() above. |
| */ |
| memmove_extent_buffer(src, btrfs_node_key_ptr_offset(src, 0), |
| btrfs_node_key_ptr_offset(src, push_items), |
| (src_nritems - push_items) * |
| sizeof(struct btrfs_key_ptr)); |
| } |
| btrfs_set_header_nritems(src, src_nritems - push_items); |
| btrfs_set_header_nritems(dst, dst_nritems + push_items); |
| btrfs_mark_buffer_dirty(src); |
| btrfs_mark_buffer_dirty(dst); |
| |
| return ret; |
| } |
| |
| /* |
| * try to push data from one node into the next node right in the |
| * tree. |
| * |
| * returns 0 if some ptrs were pushed, < 0 if there was some horrible |
| * error, and > 0 if there was no room in the right hand block. |
| * |
| * this will only push up to 1/2 the contents of the left node over |
| */ |
| static int balance_node_right(struct btrfs_trans_handle *trans, |
| struct extent_buffer *dst, |
| struct extent_buffer *src) |
| { |
| struct btrfs_fs_info *fs_info = trans->fs_info; |
| int push_items = 0; |
| int max_push; |
| int src_nritems; |
| int dst_nritems; |
| int ret = 0; |
| |
| WARN_ON(btrfs_header_generation(src) != trans->transid); |
| WARN_ON(btrfs_header_generation(dst) != trans->transid); |
| |
| src_nritems = btrfs_header_nritems(src); |
| dst_nritems = btrfs_header_nritems(dst); |
| push_items = BTRFS_NODEPTRS_PER_BLOCK(fs_info) - dst_nritems; |
| if (push_items <= 0) |
| return 1; |
| |
| if (src_nritems < 4) |
| return 1; |
| |
| max_push = src_nritems / 2 + 1; |
| /* don't try to empty the node */ |
| if (max_push >= src_nritems) |
| return 1; |
| |
| if (max_push < push_items) |
| push_items = max_push; |
| |
| /* dst is the right eb, src is the middle eb */ |
| if (check_sibling_keys(src, dst)) { |
| ret = -EUCLEAN; |
| btrfs_abort_transaction(trans, ret); |
| return ret; |
| } |
| ret = btrfs_tree_mod_log_insert_move(dst, push_items, 0, dst_nritems); |
| BUG_ON(ret < 0); |
| memmove_extent_buffer(dst, btrfs_node_key_ptr_offset(dst, push_items), |
| btrfs_node_key_ptr_offset(dst, 0), |
| (dst_nritems) * |
| sizeof(struct btrfs_key_ptr)); |
| |
| ret = btrfs_tree_mod_log_eb_copy(dst, src, 0, src_nritems - push_items, |
| push_items); |
| if (ret) { |
| btrfs_abort_transaction(trans, ret); |
| return ret; |
| } |
| copy_extent_buffer(dst, src, |
| btrfs_node_key_ptr_offset(dst, 0), |
| btrfs_node_key_ptr_offset(src, src_nritems - push_items), |
| push_items * sizeof(struct btrfs_key_ptr)); |
| |
| btrfs_set_header_nritems(src, src_nritems - push_items); |
| btrfs_set_header_nritems(dst, dst_nritems + push_items); |
| |
| btrfs_mark_buffer_dirty(src); |
| btrfs_mark_buffer_dirty(dst); |
| |
| return ret; |
| } |
| |
| /* |
| * helper function to insert a new root level in the tree. |
| * A new node is allocated, and a single item is inserted to |
| * point to the existing root |
| * |
| * returns zero on success or < 0 on failure. |
| */ |
| static noinline int insert_new_root(struct btrfs_trans_handle *trans, |
| struct btrfs_root *root, |
| struct btrfs_path *path, int level) |
| { |
| struct btrfs_fs_info *fs_info = root->fs_info; |
| u64 lower_gen; |
| struct extent_buffer *lower; |
| struct extent_buffer *c; |
| struct extent_buffer *old; |
| struct btrfs_disk_key lower_key; |
| int ret; |
| |
| BUG_ON(path->nodes[level]); |
| BUG_ON(path->nodes[level-1] != root->node); |
| |
| lower = path->nodes[level-1]; |
| if (level == 1) |
| btrfs_item_key(lower, &lower_key, 0); |
| else |
| btrfs_node_key(lower, &lower_key, 0); |
| |
| c = btrfs_alloc_tree_block(trans, root, 0, root->root_key.objectid, |
| &lower_key, level, root->node->start, 0, |
| BTRFS_NESTING_NEW_ROOT); |
| if (IS_ERR(c)) |
| return PTR_ERR(c); |
| |
| root_add_used(root, fs_info->nodesize); |
| |
| btrfs_set_header_nritems(c, 1); |
| btrfs_set_node_key(c, &lower_key, 0); |
| btrfs_set_node_blockptr(c, 0, lower->start); |
| lower_gen = btrfs_header_generation(lower); |
| WARN_ON(lower_gen != trans->transid); |
| |
| btrfs_set_node_ptr_generation(c, 0, lower_gen); |
| |
| btrfs_mark_buffer_dirty(c); |
| |
| old = root->node; |
| ret = btrfs_tree_mod_log_insert_root(root->node, c, false); |
| BUG_ON(ret < 0); |
| rcu_assign_pointer(root->node, c); |
| |
| /* the super has an extra ref to root->node */ |
| free_extent_buffer(old); |
| |
| add_root_to_dirty_list(root); |
| atomic_inc(&c->refs); |
| path->nodes[level] = c; |
| path->locks[level] = BTRFS_WRITE_LOCK; |
| path->slots[level] = 0; |
| return 0; |
| } |
| |
| /* |
| * worker function to insert a single pointer in a node. |
| * the node should have enough room for the pointer already |
| * |
| * slot and level indicate where you want the key to go, and |
| * blocknr is the block the key points to. |
| */ |
| static void insert_ptr(struct btrfs_trans_handle *trans, |
| struct btrfs_path *path, |
| struct btrfs_disk_key *key, u64 bytenr, |
| int slot, int level) |
| { |
| struct extent_buffer *lower; |
| int nritems; |
| int ret; |
| |
| BUG_ON(!path->nodes[level]); |
| btrfs_assert_tree_write_locked(path->nodes[level]); |
| lower = path->nodes[level]; |
| nritems = btrfs_header_nritems(lower); |
| BUG_ON(slot > nritems); |
| BUG_ON(nritems == BTRFS_NODEPTRS_PER_BLOCK(trans->fs_info)); |
| if (slot != nritems) { |
| if (level) { |
| ret = btrfs_tree_mod_log_insert_move(lower, slot + 1, |
| slot, nritems - slot); |
| BUG_ON(ret < 0); |
| } |
| memmove_extent_buffer(lower, |
| btrfs_node_key_ptr_offset(lower, slot + 1), |
| btrfs_node_key_ptr_offset(lower, slot), |
| (nritems - slot) * sizeof(struct btrfs_key_ptr)); |
| } |
| if (level) { |
| ret = btrfs_tree_mod_log_insert_key(lower, slot, |
| BTRFS_MOD_LOG_KEY_ADD); |
| BUG_ON(ret < 0); |
| } |
| btrfs_set_node_key(lower, key, slot); |
| btrfs_set_node_blockptr(lower, slot, bytenr); |
| WARN_ON(trans->transid == 0); |
| btrfs_set_node_ptr_generation(lower, slot, trans->transid); |
| btrfs_set_header_nritems(lower, nritems + 1); |
| btrfs_mark_buffer_dirty(lower); |
| } |
| |
| /* |
| * split the node at the specified level in path in two. |
| * The path is corrected to point to the appropriate node after the split |
| * |
| * Before splitting this tries to make some room in the node by pushing |
| * left and right, if either one works, it returns right away. |
| * |
| * returns 0 on success and < 0 on failure |
| */ |
| static noinline int split_node(struct btrfs_trans_handle *trans, |
| struct btrfs_root *root, |
| struct btrfs_path *path, int level) |
| { |
| struct btrfs_fs_info *fs_info = root->fs_info; |
| struct extent_buffer *c; |
| struct extent_buffer *split; |
| struct btrfs_disk_key disk_key; |
| int mid; |
| int ret; |
| u32 c_nritems; |
| |
| c = path->nodes[level]; |
| WARN_ON(btrfs_header_generation(c) != trans->transid); |
| if (c == root->node) { |
| /* |
| * trying to split the root, lets make a new one |
| * |
| * tree mod log: We don't log_removal old root in |
| * insert_new_root, because that root buffer will be kept as a |
| * normal node. We are going to log removal of half of the |
| * elements below with btrfs_tree_mod_log_eb_copy(). We're |
| * holding a tree lock on the buffer, which is why we cannot |
| * race with other tree_mod_log users. |
| */ |
| ret = insert_new_root(trans, root, path, level + 1); |
| if (ret) |
| return ret; |
| } else { |
| ret = push_nodes_for_insert(trans, root, path, level); |
| c = path->nodes[level]; |
| if (!ret && btrfs_header_nritems(c) < |
| BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 3) |
| return 0; |
| if (ret < 0) |
| return ret; |
| } |
| |
| c_nritems = btrfs_header_nritems(c); |
| mid = (c_nritems + 1) / 2; |
| btrfs_node_key(c, &disk_key, mid); |
| |
| split = btrfs_alloc_tree_block(trans, root, 0, root->root_key.objectid, |
| &disk_key, level, c->start, 0, |
| BTRFS_NESTING_SPLIT); |
| if (IS_ERR(split)) |
| return PTR_ERR(split); |
| |
| root_add_used(root, fs_info->nodesize); |
| ASSERT(btrfs_header_level(c) == level); |
| |
| ret = btrfs_tree_mod_log_eb_copy(split, c, 0, mid, c_nritems - mid); |
| if (ret) { |
| btrfs_abort_transaction(trans, ret); |
| return ret; |
| } |
| copy_extent_buffer(split, c, |
| btrfs_node_key_ptr_offset(split, 0), |
| btrfs_node_key_ptr_offset(c, mid), |
| (c_nritems - mid) * sizeof(struct btrfs_key_ptr)); |
| btrfs_set_header_nritems(split, c_nritems - mid); |
| btrfs_set_header_nritems(c, mid); |
| |
| btrfs_mark_buffer_dirty(c); |
| btrfs_mark_buffer_dirty(split); |
| |
| insert_ptr(trans, path, &disk_key, split->start, |
| path->slots[level + 1] + 1, level + 1); |
| |
| if (path->slots[level] >= mid) { |
| path->slots[level] -= mid; |
| btrfs_tree_unlock(c); |
| free_extent_buffer(c); |
| path->nodes[level] = split; |
| path->slots[level + 1] += 1; |
| } else { |
| btrfs_tree_unlock(split); |
| free_extent_buffer(split); |
| } |
| return 0; |
| } |
| |
| /* |
| * how many bytes are required to store the items in a leaf. start |
| * and nr indicate which items in the leaf to check. This totals up the |
| * space used both by the item structs and the item data |
| */ |
| static int leaf_space_used(struct extent_buffer *l, int start, int nr) |
| { |
| int data_len; |
| int nritems = btrfs_header_nritems(l); |
| int end = min(nritems, start + nr) - 1; |
| |
| if (!nr) |
| return 0; |
| data_len = btrfs_item_offset(l, start) + btrfs_item_size(l, start); |
| data_len = data_len - btrfs_item_offset(l, end); |
| data_len += sizeof(struct btrfs_item) * nr; |
| WARN_ON(data_len < 0); |
| return data_len; |
| } |
| |
| /* |
| * The space between the end of the leaf items and |
| * the start of the leaf data. IOW, how much room |
| * the leaf has left for both items and data |
| */ |
| noinline int btrfs_leaf_free_space(struct extent_buffer *leaf) |
| { |
| struct btrfs_fs_info *fs_info = leaf->fs_info; |
| int nritems = btrfs_header_nritems(leaf); |
| int ret; |
| |
| ret = BTRFS_LEAF_DATA_SIZE(fs_info) - leaf_space_used(leaf, 0, nritems); |
| if (ret < 0) { |
| btrfs_crit(fs_info, |
| "leaf free space ret %d, leaf data size %lu, used %d nritems %d", |
| ret, |
| (unsigned long) BTRFS_LEAF_DATA_SIZE(fs_info), |
| leaf_space_used(leaf, 0, nritems), nritems); |
| } |
| return ret; |
| } |
| |
| /* |
| * min slot controls the lowest index we're willing to push to the |
| * right. We'll push up to and including min_slot, but no lower |
| */ |
| static noinline int __push_leaf_right(struct btrfs_trans_handle *trans, |
| struct btrfs_path *path, |
| int data_size, int empty, |
| struct extent_buffer *right, |
| int free_space, u32 left_nritems, |
| u32 min_slot) |
| { |
| struct btrfs_fs_info *fs_info = right->fs_info; |
| struct extent_buffer *left = path->nodes[0]; |
| struct extent_buffer *upper = path->nodes[1]; |
| struct btrfs_map_token token; |
| struct btrfs_disk_key disk_key; |
| int slot; |
| u32 i; |
| int push_space = 0; |
| int push_items = 0; |
| u32 nr; |
| u32 right_nritems; |
| u32 data_end; |
| u32 this_item_size; |
| |
| if (empty) |
| nr = 0; |
| else |
| nr = max_t(u32, 1, min_slot); |
| |
| if (path->slots[0] >= left_nritems) |
| push_space += data_size; |
| |
| slot = path->slots[1]; |
| i = left_nritems - 1; |
| while (i >= nr) { |
| if (!empty && push_items > 0) { |
| if (path->slots[0] > i) |
| break; |
| if (path->slots[0] == i) { |
| int space = btrfs_leaf_free_space(left); |
| |
| if (space + push_space * 2 > free_space) |
| break; |
| } |
| } |
| |
| if (path->slots[0] == i) |
| push_space += data_size; |
| |
| this_item_size = btrfs_item_size(left, i); |
| if (this_item_size + sizeof(struct btrfs_item) + |
| push_space > free_space) |
| break; |
| |
| push_items++; |
| push_space += this_item_size + sizeof(struct btrfs_item); |
| if (i == 0) |
| break; |
| i--; |
| } |
| |
| if (push_items == 0) |
| goto out_unlock; |
| |
| WARN_ON(!empty && push_items == left_nritems); |
| |
| /* push left to right */ |
| right_nritems = btrfs_header_nritems(right); |
| |
| push_space = btrfs_item_data_end(left, left_nritems - push_items); |
| push_space -= leaf_data_end(left); |
| |
| /* make room in the right data area */ |
| data_end = leaf_data_end(right); |
| memmove_leaf_data(right, data_end - push_space, data_end, |
| BTRFS_LEAF_DATA_SIZE(fs_info) - data_end); |
| |
| /* copy from the left data area */ |
| copy_leaf_data(right, left, BTRFS_LEAF_DATA_SIZE(fs_info) - push_space, |
| leaf_data_end(left), push_space); |
| |
| memmove_leaf_items(right, push_items, 0, right_nritems); |
| |
| /* copy the items from left to right */ |
| copy_leaf_items(right, left, 0, left_nritems - push_items, push_items); |
| |
| /* update the item pointers */ |
| btrfs_init_map_token(&token, right); |
| right_nritems += push_items; |
| btrfs_set_header_nritems(right, right_nritems); |
| push_space = BTRFS_LEAF_DATA_SIZE(fs_info); |
| for (i = 0; i < right_nritems; i++) { |
| push_space -= btrfs_token_item_size(&token, i); |
| btrfs_set_token_item_offset(&token, i, push_space); |
| } |
| |
| left_nritems -= push_items; |
| btrfs_set_header_nritems(left, left_nritems); |
| |
| if (left_nritems) |
| btrfs_mark_buffer_dirty(left); |
| else |
| btrfs_clear_buffer_dirty(trans, left); |
| |
| btrfs_mark_buffer_dirty(right); |
| |
| btrfs_item_key(right, &disk_key, 0); |
| btrfs_set_node_key(upper, &disk_key, slot + 1); |
| btrfs_mark_buffer_dirty(upper); |
| |
| /* then fixup the leaf pointer in the path */ |
| if (path->slots[0] >= left_nritems) { |
| path->slots[0] -= left_nritems; |
| if (btrfs_header_nritems(path->nodes[0]) == 0) |
| btrfs_clear_buffer_dirty(trans, path->nodes[0]); |
| btrfs_tree_unlock(path->nodes[0]); |
| free_extent_buffer(path->nodes[0]); |
| path->nodes[0] = right; |
| path->slots[1] += 1; |
| } else { |
| btrfs_tree_unlock(right); |
| free_extent_buffer(right); |
| } |
| return 0; |
| |
| out_unlock: |
| btrfs_tree_unlock(right); |
| free_extent_buffer(right); |
| return 1; |
| } |
| |
| /* |
| * push some data in the path leaf to the right, trying to free up at |
| * least data_size bytes. returns zero if the push worked, nonzero otherwise |
| * |
| * returns 1 if the push failed because the other node didn't have enough |
| * room, 0 if everything worked out and < 0 if there were major errors. |
| * |
| * this will push starting from min_slot to the end of the leaf. It won't |
| * push any slot lower than min_slot |
| */ |
| static int push_leaf_right(struct btrfs_trans_handle *trans, struct btrfs_root |
| *root, struct btrfs_path *path, |
| int min_data_size, int data_size, |
| int empty, u32 min_slot) |
| { |
| struct extent_buffer *left = path->nodes[0]; |
| struct extent_buffer *right; |
| struct extent_buffer *upper; |
| int slot; |
| int free_space; |
| u32 left_nritems; |
| int ret; |
| |
| if (!path->nodes[1]) |
| return 1; |
| |
| slot = path->slots[1]; |
| upper = path->nodes[1]; |
| if (slot >= btrfs_header_nritems(upper) - 1) |
| return 1; |
| |
| btrfs_assert_tree_write_locked(path->nodes[1]); |
| |
| right = btrfs_read_node_slot(upper, slot + 1); |
| if (IS_ERR(right)) |
| return PTR_ERR(right); |
| |
| __btrfs_tree_lock(right, BTRFS_NESTING_RIGHT); |
| |
| free_space = btrfs_leaf_free_space(right); |
| if (free_space < data_size) |
| goto out_unlock; |
| |
| ret = btrfs_cow_block(trans, root, right, upper, |
| slot + 1, &right, BTRFS_NESTING_RIGHT_COW); |
| if (ret) |
| goto out_unlock; |
| |
| left_nritems = btrfs_header_nritems(left); |
| if (left_nritems == 0) |
| goto out_unlock; |
| |
| if (check_sibling_keys(left, right)) { |
| ret = -EUCLEAN; |
| btrfs_tree_unlock(right); |
| free_extent_buffer(right); |
| return ret; |
| } |
| if (path->slots[0] == left_nritems && !empty) { |
| /* Key greater than all keys in the leaf, right neighbor has |
| * enough room for it and we're not emptying our leaf to delete |
| * it, therefore use right neighbor to insert the new item and |
| * no need to touch/dirty our left leaf. */ |
| btrfs_tree_unlock(left); |
| free_extent_buffer(left); |
| path->nodes[0] = right; |
| path->slots[0] = 0; |
| path->slots[1]++; |
| return 0; |
| } |
| |
| return __push_leaf_right(trans, path, min_data_size, empty, right, |
| free_space, left_nritems, min_slot); |
| out_unlock: |
| btrfs_tree_unlock(right); |
| free_extent_buffer(right); |
| return 1; |
| } |
| |
| /* |
| * push some data in the path leaf to the left, trying to free up at |
| * least data_size bytes. returns zero if the push worked, nonzero otherwise |
| * |
| * max_slot can put a limit on how far into the leaf we'll push items. The |
| * item at 'max_slot' won't be touched. Use (u32)-1 to make us do all the |
| * items |
| */ |
| static noinline int __push_leaf_left(struct btrfs_trans_handle *trans, |
| struct btrfs_path *path, int data_size, |
| int empty, struct extent_buffer *left, |
| int free_space, u32 right_nritems, |
| u32 max_slot) |
| { |
| struct btrfs_fs_info *fs_info = left->fs_info; |
| struct btrfs_disk_key disk_key; |
| struct extent_buffer *right = path->nodes[0]; |
| int i; |
| int push_space = 0; |
| int push_items = 0; |
| u32 old_left_nritems; |
| u32 nr; |
| int ret = 0; |
| u32 this_item_size; |
| u32 old_left_item_size; |
| struct btrfs_map_token token; |
| |
| if (empty) |
| nr = min(right_nritems, max_slot); |
| else |
| nr = min(right_nritems - 1, max_slot); |
| |
| for (i = 0; i < nr; i++) { |
| if (!empty && push_items > 0) { |
| if (path->slots[0] < i) |
| break; |
| if (path->slots[0] == i) { |
| int space = btrfs_leaf_free_space(right); |
| |
| if (space + push_space * 2 > free_space) |
| break; |
| } |
| } |
| |
| if (path->slots[0] == i) |
| push_space += data_size; |
| |
| this_item_size = btrfs_item_size(right, i); |
| if (this_item_size + sizeof(struct btrfs_item) + push_space > |
| free_space) |
| break; |
| |
| push_items++; |
| push_space += this_item_size + sizeof(struct btrfs_item); |
| } |
| |
| if (push_items == 0) { |
| ret = 1; |
| goto out; |
| } |
| WARN_ON(!empty && push_items == btrfs_header_nritems(right)); |
| |
| /* push data from right to left */ |
| copy_leaf_items(left, right, btrfs_header_nritems(left), 0, push_items); |
| |
| push_space = BTRFS_LEAF_DATA_SIZE(fs_info) - |
| btrfs_item_offset(right, push_items - 1); |
| |
| copy_leaf_data(left, right, leaf_data_end(left) - push_space, |
| btrfs_item_offset(right, push_items - 1), push_space); |
| old_left_nritems = btrfs_header_nritems(left); |
| BUG_ON(old_left_nritems <= 0); |
| |
| btrfs_init_map_token(&token, left); |
| old_left_item_size = btrfs_item_offset(left, old_left_nritems - 1); |
| for (i = old_left_nritems; i < old_left_nritems + push_items; i++) { |
| u32 ioff; |
| |
| ioff = btrfs_token_item_offset(&token, i); |
| btrfs_set_token_item_offset(&token, i, |
| ioff - (BTRFS_LEAF_DATA_SIZE(fs_info) - old_left_item_size)); |
| } |
| btrfs_set_header_nritems(left, old_left_nritems + push_items); |
| |
| /* fixup right node */ |
| if (push_items > right_nritems) |
| WARN(1, KERN_CRIT "push items %d nr %u\n", push_items, |
| right_nritems); |
| |
| if (push_items < right_nritems) { |
| push_space = btrfs_item_offset(right, push_items - 1) - |
| leaf_data_end(right); |
| memmove_leaf_data(right, |
| BTRFS_LEAF_DATA_SIZE(fs_info) - push_space, |
| leaf_data_end(right), push_space); |
| |
| memmove_leaf_items(right, 0, push_items, |
| btrfs_header_nritems(right) - push_items); |
| } |
| |
| btrfs_init_map_token(&token, right); |
| right_nritems -= push_items; |
| btrfs_set_header_nritems(right, right_nritems); |
| push_space = BTRFS_LEAF_DATA_SIZE(fs_info); |
| for (i = 0; i < right_nritems; i++) { |
| push_space = push_space - btrfs_token_item_size(&token, i); |
| btrfs_set_token_item_offset(&token, i, push_space); |
| } |
| |
| btrfs_mark_buffer_dirty(left); |
| if (right_nritems) |
| btrfs_mark_buffer_dirty(right); |
| else |
| btrfs_clear_buffer_dirty(trans, right); |
| |
| btrfs_item_key(right, &disk_key, 0); |
| fixup_low_keys(path, &disk_key, 1); |
| |
| /* then fixup the leaf pointer in the path */ |
| if (path->slots[0] < push_items) { |
| path->slots[0] += old_left_nritems; |
| btrfs_tree_unlock(path->nodes[0]); |
| free_extent_buffer(path->nodes[0]); |
| path->nodes[0] = left; |
| path->slots[1] -= 1; |
| } else { |
| btrfs_tree_unlock(left); |
| free_extent_buffer(left); |
| path->slots[0] -= push_items; |
| } |
| BUG_ON(path->slots[0] < 0); |
| return ret; |
| out: |
| btrfs_tree_unlock(left); |
| free_extent_buffer(left); |
| return ret; |
| } |
| |
| /* |
| * push some data in the path leaf to the left, trying to free up at |
| * least data_size bytes. returns zero if the push worked, nonzero otherwise |
| * |
| * max_slot can put a limit on how far into the leaf we'll push items. The |
| * item at 'max_slot' won't be touched. Use (u32)-1 to make us push all the |
| * items |
| */ |
| static int push_leaf_left(struct btrfs_trans_handle *trans, struct btrfs_root |
| *root, struct btrfs_path *path, int min_data_size, |
| int data_size, int empty, u32 max_slot) |
| { |
| struct extent_buffer *right = path->nodes[0]; |
| struct extent_buffer *left; |
| int slot; |
| int free_space; |
| u32 right_nritems; |
| int ret = 0; |
| |
| slot = path->slots[1]; |
| if (slot == 0) |
| return 1; |
| if (!path->nodes[1]) |
| return 1; |
| |
| right_nritems = btrfs_header_nritems(right); |
| if (right_nritems == 0) |
| return 1; |
| |
| btrfs_assert_tree_write_locked(path->nodes[1]); |
| |
| left = btrfs_read_node_slot(path->nodes[1], slot - 1); |
| if (IS_ERR(left)) |
| return PTR_ERR(left); |
| |
| __btrfs_tree_lock(left, BTRFS_NESTING_LEFT); |
| |
| free_space = btrfs_leaf_free_space(left); |
| if (free_space < data_size) { |
| ret = 1; |
| goto out; |
| } |
| |
| ret = btrfs_cow_block(trans, root, left, |
| path->nodes[1], slot - 1, &left, |
| BTRFS_NESTING_LEFT_COW); |
| if (ret) { |
| /* we hit -ENOSPC, but it isn't fatal here */ |
| if (ret == -ENOSPC) |
| ret = 1; |
| goto out; |
| } |
| |
| if (check_sibling_keys(left, right)) { |
| ret = -EUCLEAN; |
| goto out; |
| } |
| return __push_leaf_left(trans, path, min_data_size, empty, left, |
| free_space, right_nritems, max_slot); |
| out: |
| btrfs_tree_unlock(left); |
| free_extent_buffer(left); |
| return ret; |
| } |
| |
| /* |
| * split the path's leaf in two, making sure there is at least data_size |
| * available for the resulting leaf level of the path. |
| */ |
| static noinline void copy_for_split(struct btrfs_trans_handle *trans, |
| struct btrfs_path *path, |
| struct extent_buffer *l, |
| struct extent_buffer *right, |
| int slot, int mid, int nritems) |
| { |
| struct btrfs_fs_info *fs_info = trans->fs_info; |
| int data_copy_size; |
| int rt_data_off; |
| int i; |
| struct btrfs_disk_key disk_key; |
| struct btrfs_map_token token; |
| |
| nritems = nritems - mid; |
| btrfs_set_header_nritems(right, nritems); |
| data_copy_size = btrfs_item_data_end(l, mid) - leaf_data_end(l); |
| |
| copy_leaf_items(right, l, 0, mid, nritems); |
| |
| copy_leaf_data(right, l, BTRFS_LEAF_DATA_SIZE(fs_info) - data_copy_size, |
| leaf_data_end(l), data_copy_size); |
| |
| rt_data_off = BTRFS_LEAF_DATA_SIZE(fs_info) - btrfs_item_data_end(l, mid); |
| |
| btrfs_init_map_token(&token, right); |
| for (i = 0; i < nritems; i++) { |
| u32 ioff; |
| |
| ioff = btrfs_token_item_offset(&token, i); |
| btrfs_set_token_item_offset(&token, i, ioff + rt_data_off); |
| } |
| |
| btrfs_set_header_nritems(l, mid); |
| btrfs_item_key(right, &disk_key, 0); |
| insert_ptr(trans, path, &disk_key, right->start, path->slots[1] + 1, 1); |
| |
| btrfs_mark_buffer_dirty(right); |
| btrfs_mark_buffer_dirty(l); |
| BUG_ON(path->slots[0] != slot); |
| |
| if (mid <= slot) { |
| btrfs_tree_unlock(path->nodes[0]); |
| free_extent_buffer(path->nodes[0]); |
| path->nodes[0] = right; |
| path->slots[0] -= mid; |
| path->slots[1] += 1; |
| } else { |
| btrfs_tree_unlock(right); |
| free_extent_buffer(right); |
| } |
| |
| BUG_ON(path->slots[0] < 0); |
| } |
| |
| /* |
| * double splits happen when we need to insert a big item in the middle |
| * of a leaf. A double split can leave us with 3 mostly empty leaves: |
| * leaf: [ slots 0 - N] [ our target ] [ N + 1 - total in leaf ] |
| * A B C |
| * |
| * We avoid this by trying to push the items on either side of our target |
| * into the adjacent leaves. If all goes well we can avoid the double split |
| * completely. |
| */ |
| static noinline int push_for_double_split(struct btrfs_trans_handle *trans, |
| struct btrfs_root *root, |
| struct btrfs_path *path, |
| int data_size) |
| { |
| int ret; |
| int progress = 0; |
| int slot; |
| u32 nritems; |
| int space_needed = data_size; |
| |
| slot = path->slots[0]; |
| if (slot < btrfs_header_nritems(path->nodes[0])) |
| space_needed -= btrfs_leaf_free_space(path->nodes[0]); |
| |
| /* |
| * try to push all the items after our slot into the |
| * right leaf |
| */ |
| ret = push_leaf_right(trans, root, path, 1, space_needed, 0, slot); |
| if (ret < 0) |
| return ret; |
| |
| if (ret == 0) |
| progress++; |
| |
| nritems = btrfs_header_nritems(path->nodes[0]); |
| /* |
| * our goal is to get our slot at the start or end of a leaf. If |
| * we've done so we're done |
| */ |
| if (path->slots[0] == 0 || path->slots[0] == nritems) |
| return 0; |
| |
| if (btrfs_leaf_free_space(path->nodes[0]) >= data_size) |
| return 0; |
| |
| /* try to push all the items before our slot into the next leaf */ |
| slot = path->slots[0]; |
| space_needed = data_size; |
| if (slot > 0) |
| space_needed -= btrfs_leaf_free_space(path->nodes[0]); |
| ret = push_leaf_left(trans, root, path, 1, space_needed, 0, slot); |
| if (ret < 0) |
| return ret; |
| |
| if (ret == 0) |
| progress++; |
| |
| if (progress) |
| return 0; |
| return 1; |
| } |
| |
| /* |
| * split the path's leaf in two, making sure there is at least data_size |
| * available for the resulting leaf level of the path. |
| * |
| * returns 0 if all went well and < 0 on failure. |
| */ |
| static noinline int split_leaf(struct btrfs_trans_handle *trans, |
| struct btrfs_root *root, |
| const struct btrfs_key *ins_key, |
| struct btrfs_path *path, int data_size, |
| int extend) |
| { |
| struct btrfs_disk_key disk_key; |
| struct extent_buffer *l; |
| u32 nritems; |
| int mid; |
| int slot; |
| struct extent_buffer *right; |
| struct btrfs_fs_info *fs_info = root->fs_info; |
| int ret = 0; |
| int wret; |
| int split; |
| int num_doubles = 0; |
| int tried_avoid_double = 0; |
| |
| l = path->nodes[0]; |
| slot = path->slots[0]; |
| if (extend && data_size + btrfs_item_size(l, slot) + |
| sizeof(struct btrfs_item) > BTRFS_LEAF_DATA_SIZE(fs_info)) |
| return -EOVERFLOW; |
| |
| /* first try to make some room by pushing left and right */ |
| if (data_size && path->nodes[1]) { |
| int space_needed = data_size; |
| |
| if (slot < btrfs_header_nritems(l)) |
| space_needed -= btrfs_leaf_free_space(l); |
| |
| wret = push_leaf_right(trans, root, path, space_needed, |
| space_needed, 0, 0); |
| if (wret < 0) |
| return wret; |
| if (wret) { |
| space_needed = data_size; |
| if (slot > 0) |
| space_needed -= btrfs_leaf_free_space(l); |
| wret = push_leaf_left(trans, root, path, space_needed, |
| space_needed, 0, (u32)-1); |
| if (wret < 0) |
| return wret; |
| } |
| l = path->nodes[0]; |
| |
| /* did the pushes work? */ |
| if (btrfs_leaf_free_space(l) >= data_size) |
| return 0; |
| } |
| |
| if (!path->nodes[1]) { |
| ret = insert_new_root(trans, root, path, 1); |
| if (ret) |
| return ret; |
| } |
| again: |
| split = 1; |
| l = path->nodes[0]; |
| slot = path->slots[0]; |
| nritems = btrfs_header_nritems(l); |
| mid = (nritems + 1) / 2; |
| |
| if (mid <= slot) { |
| if (nritems == 1 || |
| leaf_space_used(l, mid, nritems - mid) + data_size > |
| BTRFS_LEAF_DATA_SIZE(fs_info)) { |
| if (slot >= nritems) { |
| split = 0; |
| } else { |
| mid = slot; |
| if (mid != nritems && |
| leaf_space_used(l, mid, nritems - mid) + |
| data_size > BTRFS_LEAF_DATA_SIZE(fs_info)) { |
| if (data_size && !tried_avoid_double) |
| goto push_for_double; |
| split = 2; |
| } |
| } |
| } |
| } else { |
| if (leaf_space_used(l, 0, mid) + data_size > |
| BTRFS_LEAF_DATA_SIZE(fs_info)) { |
| if (!extend && data_size && slot == 0) { |
| split = 0; |
| } else if ((extend || !data_size) && slot == 0) { |
| mid = 1; |
| } else { |
| mid = slot; |
| if (mid != nritems && |
| leaf_space_used(l, mid, nritems - mid) + |
| data_size > BTRFS_LEAF_DATA_SIZE(fs_info)) { |
| if (data_size && !tried_avoid_double) |
| goto push_for_double; |
| split = 2; |
| } |
| } |
| } |
| } |
| |
| if (split == 0) |
| btrfs_cpu_key_to_disk(&disk_key, ins_key); |
| else |
| btrfs_item_key(l, &disk_key, mid); |
| |
| /* |
| * We have to about BTRFS_NESTING_NEW_ROOT here if we've done a double |
| * split, because we're only allowed to have MAX_LOCKDEP_SUBCLASSES |
| * subclasses, which is 8 at the time of this patch, and we've maxed it |
| * out. In the future we could add a |
| * BTRFS_NESTING_SPLIT_THE_SPLITTENING if we need to, but for now just |
| * use BTRFS_NESTING_NEW_ROOT. |
| */ |
| right = btrfs_alloc_tree_block(trans, root, 0, root->root_key.objectid, |
| &disk_key, 0, l->start, 0, |
| num_doubles ? BTRFS_NESTING_NEW_ROOT : |
| BTRFS_NESTING_SPLIT); |
| if (IS_ERR(right)) |
| return PTR_ERR(right); |
| |
| root_add_used(root, fs_info->nodesize); |
| |
| if (split == 0) { |
| if (mid <= slot) { |
| btrfs_set_header_nritems(right, 0); |
| insert_ptr(trans, path, &disk_key, |
| right->start, path->slots[1] + 1, 1); |
| btrfs_tree_unlock(path->nodes[0]); |
| free_extent_buffer(path->nodes[0]); |
| path->nodes[0] = right; |
| path->slots[0] = 0; |
| path->slots[1] += 1; |
| } else { |
| btrfs_set_header_nritems(right, 0); |
| insert_ptr(trans, path, &disk_key, |
| right->start, path->slots[1], 1); |
| btrfs_tree_unlock(path->nodes[0]); |
| free_extent_buffer(path->nodes[0]); |
| path->nodes[0] = right; |
| path->slots[0] = 0; |
| if (path->slots[1] == 0) |
| fixup_low_keys(path, &disk_key, 1); |
| } |
| /* |
| * We create a new leaf 'right' for the required ins_len and |
| * we'll do btrfs_mark_buffer_dirty() on this leaf after copying |
| * the content of ins_len to 'right'. |
| */ |
| return ret; |
| } |
| |
| copy_for_split(trans, path, l, right, slot, mid, nritems); |
| |
| if (split == 2) { |
| BUG_ON(num_doubles != 0); |
| num_doubles++; |
| goto again; |
| } |
| |
| return 0; |
| |
| push_for_double: |
| push_for_double_split(trans, root, path, data_size); |
| tried_avoid_double = 1; |
| if (btrfs_leaf_free_space(path->nodes[0]) >= data_size) |
| return 0; |
| goto again; |
| } |
| |
| static noinline int setup_leaf_for_split(struct btrfs_trans_handle *trans, |
| struct btrfs_root *root, |
| struct btrfs_path *path, int ins_len) |
| { |
| struct btrfs_key key; |
| struct extent_buffer *leaf; |
| struct btrfs_file_extent_item *fi; |
| u64 extent_len = 0; |
| u32 item_size; |
| int ret; |
| |
| leaf = path->nodes[0]; |
| btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); |
| |
| BUG_ON(key.type != BTRFS_EXTENT_DATA_KEY && |
| key.type != BTRFS_EXTENT_CSUM_KEY); |
| |
| if (btrfs_leaf_free_space(leaf) >= ins_len) |
| return 0; |
| |
| item_size = btrfs_item_size(leaf, path->slots[0]); |
| if (key.type == BTRFS_EXTENT_DATA_KEY) { |
| fi = btrfs_item_ptr(leaf, path->slots[0], |
| struct btrfs_file_extent_item); |
| extent_len = btrfs_file_extent_num_bytes(leaf, fi); |
| } |
| btrfs_release_path(path); |
| |
| path->keep_locks = 1; |
| path->search_for_split = 1; |
| ret = btrfs_search_slot(trans, root, &key, path, 0, 1); |
| path->search_for_split = 0; |
| if (ret > 0) |
| ret = -EAGAIN; |
| if (ret < 0) |
| goto err; |
| |
| ret = -EAGAIN; |
| leaf = path->nodes[0]; |
| /* if our item isn't there, return now */ |
| if (item_size != btrfs_item_size(leaf, path->slots[0])) |
| goto err; |
| |
| /* the leaf has changed, it now has room. return now */ |
| if (btrfs_leaf_free_space(path->nodes[0]) >= ins_len) |
| goto err; |
| |
| if (key.type == BTRFS_EXTENT_DATA_KEY) { |
| fi = btrfs_item_ptr(leaf, path->slots[0], |
| struct btrfs_file_extent_item); |
| if (extent_len != btrfs_file_extent_num_bytes(leaf, fi)) |
| goto err; |
| } |
| |
| ret = split_leaf(trans, root, &key, path, ins_len, 1); |
| if (ret) |
| goto err; |
| |
| path->keep_locks = 0; |
| btrfs_unlock_up_safe(path, 1); |
| return 0; |
| err: |
| path->keep_locks = 0; |
| return ret; |
| } |
| |
| static noinline int split_item(struct btrfs_path *path, |
| const struct btrfs_key *new_key, |
| unsigned long split_offset) |
| { |
| struct extent_buffer *leaf; |
| int orig_slot, slot; |
| char *buf; |
| u32 nritems; |
| u32 item_size; |
| u32 orig_offset; |
| struct btrfs_disk_key disk_key; |
| |
| leaf = path->nodes[0]; |
| BUG_ON(btrfs_leaf_free_space(leaf) < sizeof(struct btrfs_item)); |
| |
| orig_slot = path->slots[0]; |
| orig_offset = btrfs_item_offset(leaf, path->slots[0]); |
| item_size = btrfs_item_size(leaf, path->slots[0]); |
| |
| buf = kmalloc(item_size, GFP_NOFS); |
| if (!buf) |
| return -ENOMEM; |
| |
| read_extent_buffer(leaf, buf, btrfs_item_ptr_offset(leaf, |
| path->slots[0]), item_size); |
| |
| slot = path->slots[0] + 1; |
| nritems = btrfs_header_nritems(leaf); |
| if (slot != nritems) { |
| /* shift the items */ |
| memmove_leaf_items(leaf, slot + 1, slot, nritems - slot); |
| } |
| |
| btrfs_cpu_key_to_disk(&disk_key, new_key); |
| btrfs_set_item_key(leaf, &disk_key, slot); |
| |
| btrfs_set_item_offset(leaf, slot, orig_offset); |
| btrfs_set_item_size(leaf, slot, item_size - split_offset); |
| |
| btrfs_set_item_offset(leaf, orig_slot, |
| orig_offset + item_size - split_offset); |
| btrfs_set_item_size(leaf, orig_slot, split_offset); |
| |
| btrfs_set_header_nritems(leaf, nritems + 1); |
| |
| /* write the data for the start of the original item */ |
| write_extent_buffer(leaf, buf, |
| btrfs_item_ptr_offset(leaf, path->slots[0]), |
| split_offset); |
| |
| /* write the data for the new item */ |
| write_extent_buffer(leaf, buf + split_offset, |
| btrfs_item_ptr_offset(leaf, slot), |
| item_size - split_offset); |
| btrfs_mark_buffer_dirty(leaf); |
| |
| BUG_ON(btrfs_leaf_free_space(leaf) < 0); |
| kfree(buf); |
| return 0; |
| } |
| |
| /* |
| * This function splits a single item into two items, |
| * giving 'new_key' to the new item and splitting the |
| * old one at split_offset (from the start of the item). |
| * |
| * The path may be released by this operation. After |
| * the split, the path is pointing to the old item. The |
| * new item is going to be in the same node as the old one. |
| * |
| * Note, the item being split must be smaller enough to live alone on |
| * a tree block with room for one extra struct btrfs_item |
| * |
| * This allows us to split the item in place, keeping a lock on the |
| * leaf the entire time. |
| */ |
| int btrfs_split_item(struct btrfs_trans_handle *trans, |
| struct btrfs_root *root, |
| struct btrfs_path *path, |
| const struct btrfs_key *new_key, |
| unsigned long split_offset) |
| { |
| int ret; |
| ret = setup_leaf_for_split(trans, root, path, |
| sizeof(struct btrfs_item)); |
| if (ret) |
| return ret; |
| |
| ret = split_item(path, new_key, split_offset); |
| return ret; |
| } |
| |
| /* |
| * make the item pointed to by the path smaller. new_size indicates |
| * how small to make it, and from_end tells us if we just chop bytes |
| * off the end of the item or if we shift the item to chop bytes off |
| * the front. |
| */ |
| void btrfs_truncate_item(struct btrfs_path *path, u32 new_size, int from_end) |
| { |
| int slot; |
| struct extent_buffer *leaf; |
| u32 nritems; |
| unsigned int data_end; |
| unsigned int old_data_start; |
| unsigned int old_size; |
| unsigned int size_diff; |
| int i; |
| struct btrfs_map_token token; |
| |
| leaf = path->nodes[0]; |
| slot = path->slots[0]; |
| |
| old_size = btrfs_item_size(leaf, slot); |
| if (old_size == new_size) |
| return; |
| |
| nritems = btrfs_header_nritems(leaf); |
| data_end = leaf_data_end(leaf); |
| |
| old_data_start = btrfs_item_offset(leaf, slot); |
| |
| size_diff = old_size - new_size; |
| |
| BUG_ON(slot < 0); |
| BUG_ON(slot >= nritems); |
| |
| /* |
| * item0..itemN ... dataN.offset..dataN.size .. data0.size |
| */ |
| /* first correct the data pointers */ |
| btrfs_init_map_token(&token, leaf); |
| for (i = slot; i < nritems; i++) { |
| u32 ioff; |
| |
| ioff = btrfs_token_item_offset(&token, i); |
| btrfs_set_token_item_offset(&token, i, ioff + size_diff); |
| } |
| |
| /* shift the data */ |
| if (from_end) { |
| memmove_leaf_data(leaf, data_end + size_diff, data_end, |
| old_data_start + new_size - data_end); |
| } else { |
| struct btrfs_disk_key disk_key; |
| u64 offset; |
| |
| btrfs_item_key(leaf, &disk_key, slot); |
| |
| if (btrfs_disk_key_type(&disk_key) == BTRFS_EXTENT_DATA_KEY) { |
| unsigned long ptr; |
| struct btrfs_file_extent_item *fi; |
| |
| fi = btrfs_item_ptr(leaf, slot, |
| struct btrfs_file_extent_item); |
| fi = (struct btrfs_file_extent_item *)( |
| (unsigned long)fi - size_diff); |
| |
| if (btrfs_file_extent_type(leaf, fi) == |
| BTRFS_FILE_EXTENT_INLINE) { |
| ptr = btrfs_item_ptr_offset(leaf, slot); |
| memmove_extent_buffer(leaf, ptr, |
| (unsigned long)fi, |
| BTRFS_FILE_EXTENT_INLINE_DATA_START); |
| } |
| } |
| |
| memmove_leaf_data(leaf, data_end + size_diff, data_end, |
| old_data_start - data_end); |
| |
| offset = btrfs_disk_key_offset(&disk_key); |
| btrfs_set_disk_key_offset(&disk_key, offset + size_diff); |
| btrfs_set_item_key(leaf, &disk_key, slot); |
| if (slot == 0) |
| fixup_low_keys(path, &disk_key, 1); |
| } |
| |
| btrfs_set_item_size(leaf, slot, new_size); |
| btrfs_mark_buffer_dirty(leaf); |
| |
| if (btrfs_leaf_free_space(leaf) < 0) { |
| btrfs_print_leaf(leaf); |
| BUG(); |
| } |
| } |
| |
| /* |
| * make the item pointed to by the path bigger, data_size is the added size. |
| */ |
| void btrfs_extend_item(struct btrfs_path *path, u32 data_size) |
| { |
| int slot; |
| struct extent_buffer *leaf; |
| u32 nritems; |
| unsigned int data_end; |
| unsigned int old_data; |
| unsigned int old_size; |
| int i; |
| struct btrfs_map_token token; |
| |
| leaf = path->nodes[0]; |
| |
| nritems = btrfs_header_nritems(leaf); |
| data_end = leaf_data_end(leaf); |
| |
| if (btrfs_leaf_free_space(leaf) < data_size) { |
| btrfs_print_leaf(leaf); |
| BUG(); |
| } |
| slot = path->slots[0]; |
| old_data = btrfs_item_data_end(leaf, slot); |
| |
| BUG_ON(slot < 0); |
| if (slot >= nritems) { |
| btrfs_print_leaf(leaf); |
| btrfs_crit(leaf->fs_info, "slot %d too large, nritems %d", |
| slot, nritems); |
| BUG(); |
| } |
| |
| /* |
| * item0..itemN ... dataN.offset..dataN.size .. data0.size |
| */ |
| /* first correct the data pointers */ |
| btrfs_init_map_token(&token, leaf); |
| for (i = slot; i < nritems; i++) { |
| u32 ioff; |
| |
| ioff = btrfs_token_item_offset(&token, i); |
| btrfs_set_token_item_offset(&token, i, ioff - data_size); |
| } |
| |
| /* shift the data */ |
| memmove_leaf_data(leaf, data_end - data_size, data_end, |
| old_data - data_end); |
| |
| data_end = old_data; |
| old_size = btrfs_item_size(leaf, slot); |
| btrfs_set_item_size(leaf, slot, old_size + data_size); |
| btrfs_mark_buffer_dirty(leaf); |
| |
| if (btrfs_leaf_free_space(leaf) < 0) { |
| btrfs_print_leaf(leaf); |
| BUG(); |
| } |
| } |
| |
| /* |
| * Make space in the node before inserting one or more items. |
| * |
| * @root: root we are inserting items to |
| * @path: points to the leaf/slot where we are going to insert new items |
| * @batch: information about the batch of items to insert |
| * |
| * Main purpose is to save stack depth by doing the bulk of the work in a |
| * function that doesn't call btrfs_search_slot |
| */ |
| static void setup_items_for_insert(struct btrfs_root *root, struct btrfs_path *path, |
| const struct btrfs_item_batch *batch) |
| { |
| struct btrfs_fs_info *fs_info = root->fs_info; |
| int i; |
| u32 nritems; |
| unsigned int data_end; |
| struct btrfs_disk_key disk_key; |
| struct extent_buffer *leaf; |
| int slot; |
| struct btrfs_map_token token; |
| u32 total_size; |
| |
| /* |
| * Before anything else, update keys in the parent and other ancestors |
| * if needed, then release the write locks on them, so that other tasks |
| * can use them while we modify the leaf. |
| */ |
| if (path->slots[0] == 0) { |
| btrfs_cpu_key_to_disk(&disk_key, &batch->keys[0]); |
| fixup_low_keys(path, &disk_key, 1); |
| } |
| btrfs_unlock_up_safe(path, 1); |
| |
| leaf = path->nodes[0]; |
| slot = path->slots[0]; |
| |
| nritems = btrfs_header_nritems(leaf); |
| data_end = leaf_data_end(leaf); |
| total_size = batch->total_data_size + (batch->nr * sizeof(struct btrfs_item)); |
| |
| if (btrfs_leaf_free_space(leaf) < total_size) { |
| btrfs_print_leaf(leaf); |
| btrfs_crit(fs_info, "not enough freespace need %u have %d", |
| total_size, btrfs_leaf_free_space(leaf)); |
| BUG(); |
| } |
| |
| btrfs_init_map_token(&token, leaf); |
| if (slot != nritems) { |
| unsigned int old_data = btrfs_item_data_end(leaf, slot); |
| |
| if (old_data < data_end) { |
| btrfs_print_leaf(leaf); |
| btrfs_crit(fs_info, |
| "item at slot %d with data offset %u beyond data end of leaf %u", |
| slot, old_data, data_end); |
| BUG(); |
| } |
| /* |
| * item0..itemN ... dataN.offset..dataN.size .. data0.size |
| */ |
| /* first correct the data pointers */ |
| for (i = slot; i < nritems; i++) { |
| u32 ioff; |
| |
| ioff = btrfs_token_item_offset(&token, i); |
| btrfs_set_token_item_offset(&token, i, |
| ioff - batch->total_data_size); |
| } |
| /* shift the items */ |
| memmove_leaf_items(leaf, slot + batch->nr, slot, nritems - slot); |
| |
| /* shift the data */ |
| memmove_leaf_data(leaf, data_end - batch->total_data_size, |
| data_end, old_data - data_end); |
| data_end = old_data; |
| } |
| |
| /* setup the item for the new data */ |
| for (i = 0; i < batch->nr; i++) { |
| btrfs_cpu_key_to_disk(&disk_key, &batch->keys[i]); |
| btrfs_set_item_key(leaf, &disk_key, slot + i); |
| data_end -= batch->data_sizes[i]; |
| btrfs_set_token_item_offset(&token, slot + i, data_end); |
| btrfs_set_token_item_size(&token, slot + i, batch->data_sizes[i]); |
| } |
| |
| btrfs_set_header_nritems(leaf, nritems + batch->nr); |
| btrfs_mark_buffer_dirty(leaf); |
| |
| if (btrfs_leaf_free_space(leaf) < 0) { |
| btrfs_print_leaf(leaf); |
| BUG(); |
| } |
| } |
| |
| /* |
| * Insert a new item into a leaf. |
| * |
| * @root: The root of the btree. |
| * @path: A path pointing to the target leaf and slot. |
| * @key: The key of the new item. |
| * @data_size: The size of the data associated with the new key. |
| */ |
| void btrfs_setup_item_for_insert(struct btrfs_root *root, |
| struct btrfs_path *path, |
| const struct btrfs_key *key, |
| u32 data_size) |
| { |
| struct btrfs_item_batch batch; |
| |
| batch.keys = key; |
| batch.data_sizes = &data_size; |
| batch.total_data_size = data_size; |
| batch.nr = 1; |
| |
| setup_items_for_insert(root, path, &batch); |
| } |
| |
| /* |
| * Given a key and some data, insert items into the tree. |
| * This does all the path init required, making room in the tree if needed. |
| */ |
| int btrfs_insert_empty_items(struct btrfs_trans_handle *trans, |
| struct btrfs_root *root, |
| struct btrfs_path *path, |
| const struct btrfs_item_batch *batch) |
| { |
| int ret = 0; |
| int slot; |
| u32 total_size; |
| |
| total_size = batch->total_data_size + (batch->nr * sizeof(struct btrfs_item)); |
| ret = btrfs_search_slot(trans, root, &batch->keys[0], path, total_size, 1); |
| if (ret == 0) |
| return -EEXIST; |
| if (ret < 0) |
| return ret; |
| |
| slot = path->slots[0]; |
| BUG_ON(slot < 0); |
| |
| setup_items_for_insert(root, path, batch); |
| return 0; |
| } |
| |
| /* |
| * Given a key and some data, insert an item into the tree. |
| * This does all the path init required, making room in the tree if needed. |
| */ |
| int btrfs_insert_item(struct btrfs_trans_handle *trans, struct btrfs_root *root, |
| const struct btrfs_key *cpu_key, void *data, |
| u32 data_size) |
| { |
| int ret = 0; |
| struct btrfs_path *path; |
| struct extent_buffer *leaf; |
| unsigned long ptr; |
| |
| path = btrfs_alloc_path(); |
| if (!path) |
| return -ENOMEM; |
| ret = btrfs_insert_empty_item(trans, root, path, cpu_key, data_size); |
| if (!ret) { |
| leaf = path->nodes[0]; |
| ptr = btrfs_item_ptr_offset(leaf, path->slots[0]); |
| write_extent_buffer(leaf, data, ptr, data_size); |
| btrfs_mark_buffer_dirty(leaf); |
| } |
| btrfs_free_path(path); |
| return ret; |
| } |
| |
| /* |
| * This function duplicates an item, giving 'new_key' to the new item. |
| * It guarantees both items live in the same tree leaf and the new item is |
| * contiguous with the original item. |
| * |
| * This allows us to split a file extent in place, keeping a lock on the leaf |
| * the entire time. |
| */ |
| int btrfs_duplicate_item(struct btrfs_trans_handle *trans, |
| struct btrfs_root *root, |
| struct btrfs_path *path, |
| const struct btrfs_key *new_key) |
| { |
| struct extent_buffer *leaf; |
| int ret; |
| u32 item_size; |
| |
| leaf = path->nodes[0]; |
| item_size = btrfs_item_size(leaf, path->slots[0]); |
| ret = setup_leaf_for_split(trans, root, path, |
| item_size + sizeof(struct btrfs_item)); |
| if (ret) |
| return ret; |
| |
| path->slots[0]++; |
| btrfs_setup_item_for_insert(root, path, new_key, item_size); |
| leaf = path->nodes[0]; |
| memcpy_extent_buffer(leaf, |
| btrfs_item_ptr_offset(leaf, path->slots[0]), |
| btrfs_item_ptr_offset(leaf, path->slots[0] - 1), |
| item_size); |
| return 0; |
| } |
| |
| /* |
| * delete the pointer from a given node. |
| * |
| * the tree should have been previously balanced so the deletion does not |
| * empty a node. |
| */ |
| static void del_ptr(struct btrfs_root *root, struct btrfs_path *path, |
| int level, int slot) |
| { |
| struct extent_buffer *parent = path->nodes[level]; |
| u32 nritems; |
| int ret; |
| |
| nritems = btrfs_header_nritems(parent); |
| if (slot != nritems - 1) { |
| if (level) { |
| ret = btrfs_tree_mod_log_insert_move(parent, slot, |
| slot + 1, nritems - slot - 1); |
| BUG_ON(ret < 0); |
| } |
| memmove_extent_buffer(parent, |
| btrfs_node_key_ptr_offset(parent, slot), |
| btrfs_node_key_ptr_offset(parent, slot + 1), |
| sizeof(struct btrfs_key_ptr) * |
| (nritems - slot - 1)); |
| } else if (level) { |
| ret = btrfs_tree_mod_log_insert_key(parent, slot, |
| BTRFS_MOD_LOG_KEY_REMOVE); |
| BUG_ON(ret < 0); |
| } |
| |
| nritems--; |
| btrfs_set_header_nritems(parent, nritems); |
| if (nritems == 0 && parent == root->node) { |
| BUG_ON(btrfs_header_level(root->node) != 1); |
| /* just turn the root into a leaf and break */ |
| btrfs_set_header_level(root->node, 0); |
| } else if (slot == 0) { |
| struct btrfs_disk_key disk_key; |
| |
| btrfs_node_key(parent, &disk_key, 0); |
| fixup_low_keys(path, &disk_key, level + 1); |
| } |
| btrfs_mark_buffer_dirty(parent); |
| } |
| |
| /* |
| * a helper function to delete the leaf pointed to by path->slots[1] and |
| * path->nodes[1]. |
| * |
| * This deletes the pointer in path->nodes[1] and frees the leaf |
| * block extent. zero is returned if it all worked out, < 0 otherwise. |
| * |
| * The path must have already been setup for deleting the leaf, including |
| * all the proper balancing. path->nodes[1] must be locked. |
| */ |
| static noinline void btrfs_del_leaf(struct btrfs_trans_handle *trans, |
| struct btrfs_root *root, |
| struct btrfs_path *path, |
| struct extent_buffer *leaf) |
| { |
| WARN_ON(btrfs_header_generation(leaf) != trans->transid); |
| del_ptr(root, path, 1, path->slots[1]); |
| |
| /* |
| * btrfs_free_extent is expensive, we want to make sure we |
| * aren't holding any locks when we call it |
| */ |
| btrfs_unlock_up_safe(path, 0); |
| |
| root_sub_used(root, leaf->len); |
| |
| atomic_inc(&leaf->refs); |
| btrfs_free_tree_block(trans, btrfs_root_id(root), leaf, 0, 1); |
| free_extent_buffer_stale(leaf); |
| } |
| /* |
| * delete the item at the leaf level in path. If that empties |
| * the leaf, remove it from the tree |
| */ |
| int btrfs_del_items(struct btrfs_trans_handle *trans, struct btrfs_root *root, |
| struct btrfs_path *path, int slot, int nr) |
| { |
| struct btrfs_fs_info *fs_info = root->fs_info; |
| struct extent_buffer *leaf; |
| int ret = 0; |
| int wret; |
| u32 nritems; |
| |
| leaf = path->nodes[0]; |
| nritems = btrfs_header_nritems(leaf); |
| |
| if (slot + nr != nritems) { |
| const u32 last_off = btrfs_item_offset(leaf, slot + nr - 1); |
| const int data_end = leaf_data_end(leaf); |
| struct btrfs_map_token token; |
| u32 dsize = 0; |
| int i; |
| |
| for (i = 0; i < nr; i++) |
| dsize += btrfs_item_size(leaf, slot + i); |
| |
| memmove_leaf_data(leaf, data_end + dsize, data_end, |
| last_off - data_end); |
| |
| btrfs_init_map_token(&token, leaf); |
| for (i = slot + nr; i < nritems; i++) { |
| u32 ioff; |
| |
| ioff = btrfs_token_item_offset(&token, i); |
| btrfs_set_token_item_offset(&token, i, ioff + dsize); |
| } |
| |
| memmove_leaf_items(leaf, slot, slot + nr, nritems - slot - nr); |
| } |
| btrfs_set_header_nritems(leaf, nritems - nr); |
| nritems -= nr; |
| |
| /* delete the leaf if we've emptied it */ |
| if (nritems == 0) { |
| if (leaf == root->node) { |
| btrfs_set_header_level(leaf, 0); |
| } else { |
| btrfs_clear_buffer_dirty(trans, leaf); |
| btrfs_del_leaf(trans, root, path, leaf); |
| } |
| } else { |
| int used = leaf_space_used(leaf, 0, nritems); |
| if (slot == 0) { |
| struct btrfs_disk_key disk_key; |
| |
| btrfs_item_key(leaf, &disk_key, 0); |
| fixup_low_keys(path, &disk_key, 1); |
| } |
| |
| /* |
| * Try to delete the leaf if it is mostly empty. We do this by |
| * trying to move all its items into its left and right neighbours. |
| * If we can't move all the items, then we don't delete it - it's |
| * not ideal, but future insertions might fill the leaf with more |
| * items, or items from other leaves might be moved later into our |
| * leaf due to deletions on those leaves. |
| */ |
| if (used < BTRFS_LEAF_DATA_SIZE(fs_info) / 3) { |
| u32 min_push_space; |
| |
| /* push_leaf_left fixes the path. |
| * make sure the path still points to our leaf |
| * for possible call to del_ptr below |
| */ |
| slot = path->slots[1]; |
| atomic_inc(&leaf->refs); |
| /* |
| * We want to be able to at least push one item to the |
| * left neighbour leaf, and that's the first item. |
| */ |
| min_push_space = sizeof(struct btrfs_item) + |
| btrfs_item_size(leaf, 0); |
| wret = push_leaf_left(trans, root, path, 0, |
| min_push_space, 1, (u32)-1); |
| if (wret < 0 && wret != -ENOSPC) |
| ret = wret; |
| |
| if (path->nodes[0] == leaf && |
| btrfs_header_nritems(leaf)) { |
| /* |
| * If we were not able to push all items from our |
| * leaf to its left neighbour, then attempt to |
| * either push all the remaining items to the |
| * right neighbour or none. There's no advantage |
| * in pushing only some items, instead of all, as |
| * it's pointless to end up with a leaf having |
| * too few items while the neighbours can be full |
| * or nearly full. |
| */ |
| nritems = btrfs_header_nritems(leaf); |
| min_push_space = leaf_space_used(leaf, 0, nritems); |
| wret = push_leaf_right(trans, root, path, 0, |
| min_push_space, 1, 0); |
| if (wret < 0 && wret != -ENOSPC) |
| ret = wret; |
| } |
| |
| if (btrfs_header_nritems(leaf) == 0) { |
| path->slots[1] = slot; |
| btrfs_del_leaf(trans, root, path, leaf); |
| free_extent_buffer(leaf); |
| ret = 0; |
| } else { |
| /* if we're still in the path, make sure |
| * we're dirty. Otherwise, one of the |
| * push_leaf functions must have already |
| * dirtied this buffer |
| */ |
| if (path->nodes[0] == leaf) |
| btrfs_mark_buffer_dirty(leaf); |
| free_extent_buffer(leaf); |
| } |
| } else { |
| btrfs_mark_buffer_dirty(leaf); |
| } |
| } |
| return ret; |
| } |
| |
| /* |
| * search the tree again to find a leaf with lesser keys |
| * returns 0 if it found something or 1 if there are no lesser leaves. |
| * returns < 0 on io errors. |
| * |
| * This may release the path, and so you may lose any locks held at the |
| * time you call it. |
| */ |
| int btrfs_prev_leaf(struct btrfs_root *root, struct btrfs_path *path) |
| { |
| struct btrfs_key key; |
| struct btrfs_disk_key found_key; |
| int ret; |
| |
| btrfs_item_key_to_cpu(path->nodes[0], &key, 0); |
| |
| if (key.offset > 0) { |
| key.offset--; |
| } else if (key.type > 0) { |
| key.type--; |
| key.offset = (u64)-1; |
| } else if (key.objectid > 0) { |
| key.objectid--; |
| key.type = (u8)-1; |
| key.offset = (u64)-1; |
| } else { |
| return 1; |
| } |
| |
| btrfs_release_path(path); |
| ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); |
| if (ret < 0) |
| return ret; |
| btrfs_item_key(path->nodes[0], &found_key, 0); |
| ret = comp_keys(&found_key, &key); |
| /* |
| * We might have had an item with the previous key in the tree right |
| * before we released our path. And after we released our path, that |
| * item might have been pushed to the first slot (0) of the leaf we |
| * were holding due to a tree balance. Alternatively, an item with the |
| * previous key can exist as the only element of a leaf (big fat item). |
| * Therefore account for these 2 cases, so that our callers (like |
| * btrfs_previous_item) don't miss an existing item with a key matching |
| * the previous key we computed above. |
| */ |
| if (ret <= 0) |
| return 0; |
| return 1; |
| } |
| |
| /* |
| * A helper function to walk down the tree starting at min_key, and looking |
| * for nodes or leaves that are have a minimum transaction id. |
| * This is used by the btree defrag code, and tree logging |
| * |
| * This does not cow, but it does stuff the starting key it finds back |
| * into min_key, so you can call btrfs_search_slot with cow=1 on the |
| * key and get a writable path. |
| * |
| * This honors path->lowest_level to prevent descent past a given level |
| * of the tree. |
| * |
| * min_trans indicates the oldest transaction that you are interested |
| * in walking through. Any nodes or leaves older than min_trans are |
| * skipped over (without reading them). |
| * |
| * returns zero if something useful was found, < 0 on error and 1 if there |
| * was nothing in the tree that matched the search criteria. |
| */ |
| int btrfs_search_forward(struct btrfs_root *root, struct btrfs_key *min_key, |
| struct btrfs_path *path, |
| u64 min_trans) |
| { |
| struct extent_buffer *cur; |
| struct btrfs_key found_key; |
| int slot; |
| int sret; |
| u32 nritems; |
| int level; |
| int ret = 1; |
| int keep_locks = path->keep_locks; |
| |
| ASSERT(!path->nowait); |
| path->keep_locks = 1; |
| again: |
| cur = btrfs_read_lock_root_node(root); |
| level = btrfs_header_level(cur); |
| WARN_ON(path->nodes[level]); |
| path->nodes[level] = cur; |
| path->locks[level] = BTRFS_READ_LOCK; |
| |
| if (btrfs_header_generation(cur) < min_trans) { |
| ret = 1; |
| goto out; |
| } |
| while (1) { |
| nritems = btrfs_header_nritems(cur); |
| level = btrfs_header_level(cur); |
| sret = btrfs_bin_search(cur, 0, min_key, &slot); |
| if (sret < 0) { |
| ret = sret; |
| goto out; |
| } |
| |
| /* at the lowest level, we're done, setup the path and exit */ |
| if (level == path->lowest_level) { |
| if (slot >= nritems) |
| goto find_next_key; |
| ret = 0; |
| path->slots[level] = slot; |
| btrfs_item_key_to_cpu(cur, &found_key, slot); |
| goto out; |
| } |
| if (sret && slot > 0) |
| slot--; |
| /* |
| * check this node pointer against the min_trans parameters. |
| * If it is too old, skip to the next one. |
| */ |
| while (slot < nritems) { |
| u64 gen; |
| |
| gen = btrfs_node_ptr_generation(cur, slot); |
| if (gen < min_trans) { |
| slot++; |
| continue; |
| } |
| break; |
| } |
| find_next_key: |
| /* |
| * we didn't find a candidate key in this node, walk forward |
| * and find another one |
| */ |
| if (slot >= nritems) { |
| path->slots[level] = slot; |
| sret = btrfs_find_next_key(root, path, min_key, level, |
| min_trans); |
| if (sret == 0) { |
| btrfs_release_path(path); |
| goto again; |
| } else { |
| goto out; |
| } |
| } |
| /* save our key for returning back */ |
| btrfs_node_key_to_cpu(cur, &found_key, slot); |
| path->slots[level] = slot; |
| if (level == path->lowest_level) { |
| ret = 0; |
| goto out; |
| } |
| cur = btrfs_read_node_slot(cur, slot); |
| if (IS_ERR(cur)) { |
| ret = PTR_ERR(cur); |
| goto out; |
| } |
| |
| btrfs_tree_read_lock(cur); |
| |
| path->locks[level - 1] = BTRFS_READ_LOCK; |
| path->nodes[level - 1] = cur; |
| unlock_up(path, level, 1, 0, NULL); |
| } |
| out: |
| path->keep_locks = keep_locks; |
| if (ret == 0) { |
| btrfs_unlock_up_safe(path, path->lowest_level + 1); |
| memcpy(min_key, &found_key, sizeof(found_key)); |
| } |
| return ret; |
| } |
| |
| /* |
| * this is similar to btrfs_next_leaf, but does not try to preserve |
| * and fixup the path. It looks for and returns the next key in the |
| * tree based on the current path and the min_trans parameters. |
| * |
| * 0 is returned if another key is found, < 0 if there are any errors |
| * and 1 is returned if there are no higher keys in the tree |
| * |
| * path->keep_locks should be set to 1 on the search made before |
| * calling this function. |
| */ |
| int btrfs_find_next_key(struct btrfs_root *root, struct btrfs_path *path, |
| struct btrfs_key *key, int level, u64 min_trans) |
| { |
| int slot; |
| struct extent_buffer *c; |
| |
| WARN_ON(!path->keep_locks && !path->skip_locking); |
| while (level < BTRFS_MAX_LEVEL) { |
| if (!path->nodes[level]) |
| return 1; |
| |
| slot = path->slots[level] + 1; |
| c = path->nodes[level]; |
| next: |
| if (slot >= btrfs_header_nritems(c)) { |
| int ret; |
| int orig_lowest; |
| struct btrfs_key cur_key; |
| if (level + 1 >= BTRFS_MAX_LEVEL || |
| !path->nodes[level + 1]) |
| return 1; |
| |
| if (path->locks[level + 1] || path->skip_locking) { |
| level++; |
| continue; |
| } |
| |
| slot = btrfs_header_nritems(c) - 1; |
| if (level == 0) |
| btrfs_item_key_to_cpu(c, &cur_key, slot); |
| else |
| btrfs_node_key_to_cpu(c, &cur_key, slot); |
| |
| orig_lowest = path->lowest_level; |
| btrfs_release_path(path); |
| path->lowest_level = level; |
| ret = btrfs_search_slot(NULL, root, &cur_key, path, |
| 0, 0); |
| path->lowest_level = orig_lowest; |
| if (ret < 0) |
| return ret; |
| |
| c = path->nodes[level]; |
| slot = path->slots[level]; |
| if (ret == 0) |
| slot++; |
| goto next; |
| } |
| |
| if (level == 0) |
| btrfs_item_key_to_cpu(c, key, slot); |
| else { |
| u64 gen = btrfs_node_ptr_generation(c, slot); |
| |
| if (gen < min_trans) { |
| slot++; |
| goto next; |
| } |
| btrfs_node_key_to_cpu(c, key, slot); |
| } |
| return 0; |
| } |
| return 1; |
| } |
| |
| int btrfs_next_old_leaf(struct btrfs_root *root, struct btrfs_path *path, |
| u64 time_seq) |
| { |
| int slot; |
| int level; |
| struct extent_buffer *c; |
| struct extent_buffer *next; |
| struct btrfs_fs_info *fs_info = root->fs_info; |
| struct btrfs_key key; |
| bool need_commit_sem = false; |
| u32 nritems; |
| int ret; |
| int i; |
| |
| /* |
| * The nowait semantics are used only for write paths, where we don't |
| * use the tree mod log and sequence numbers. |
| */ |
| if (time_seq) |
| ASSERT(!path->nowait); |
| |
| nritems = btrfs_header_nritems(path->nodes[0]); |
| if (nritems == 0) |
| return 1; |
| |
| btrfs_item_key_to_cpu(path->nodes[0], &key, nritems - 1); |
| again: |
| level = 1; |
| next = NULL; |
| btrfs_release_path(path); |
| |
| path->keep_locks = 1; |
| |
| if (time_seq) { |
| ret = btrfs_search_old_slot(root, &key, path, time_seq); |
| } else { |
| if (path->need_commit_sem) { |
| path->need_commit_sem = 0; |
| need_commit_sem = true; |
| if (path->nowait) { |
| if (!down_read_trylock(&fs_info->commit_root_sem)) { |
| ret = -EAGAIN; |
| goto done; |
| } |
| } else { |
| down_read(&fs_info->commit_root_sem); |
| } |
| } |
| ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); |
| } |
| path->keep_locks = 0; |
| |
| if (ret < 0) |
| goto done; |
| |
| nritems = btrfs_header_nritems(path->nodes[0]); |
| /* |
| * by releasing the path above we dropped all our locks. A balance |
| * could have added more items next to the key that used to be |
| * at the very end of the block. So, check again here and |
| * advance the path if there are now more items available. |
| */ |
| if (nritems > 0 && path->slots[0] < nritems - 1) { |
| if (ret == 0) |
| path->slots[0]++; |
| ret = 0; |
| goto done; |
| } |
| /* |
| * So the above check misses one case: |
| * - after releasing the path above, someone has removed the item that |
| * used to be at the very end of the block, and balance between leafs |
| * gets another one with bigger key.offset to replace it. |
| * |
| * This one should be returned as well, or we can get leaf corruption |
| * later(esp. in __btrfs_drop_extents()). |
| * |
| * And a bit more explanation about this check, |
| * with ret > 0, the key isn't found, the path points to the slot |
| * where it should be inserted, so the path->slots[0] item must be the |
| * bigger one. |
| */ |
| if (nritems > 0 && ret > 0 && path->slots[0] == nritems - 1) { |
| ret = 0; |
| goto done; |
| } |
| |
| while (level < BTRFS_MAX_LEVEL) { |
| if (!path->nodes[level]) { |
| ret = 1; |
| goto done; |
| } |
| |
| slot = path->slots[level] + 1; |
| c = path->nodes[level]; |
| if (slot >= btrfs_header_nritems(c)) { |
| level++; |
| if (level == BTRFS_MAX_LEVEL) { |
| ret = 1; |
| goto done; |
| } |
| continue; |
| } |
| |
| |
| /* |
| * Our current level is where we're going to start from, and to |
| * make sure lockdep doesn't complain we need to drop our locks |
| * and nodes from 0 to our current level. |
| */ |
| for (i = 0; i < level; i++) { |
| if (path->locks[level]) { |
| btrfs_tree_read_unlock(path->nodes[i]); |
| path->locks[i] = 0; |
| } |
| free_extent_buffer(path->nodes[i]); |
| path->nodes[i] = NULL; |
| } |
| |
| next = c; |
| ret = read_block_for_search(root, path, &next, level, |
| slot, &key); |
| if (ret == -EAGAIN && !path->nowait) |
| goto again; |
| |
| if (ret < 0) { |
| btrfs_release_path(path); |
| goto done; |
| } |
| |
| if (!path->skip_locking) { |
| ret = btrfs_try_tree_read_lock(next); |
| if (!ret && path->nowait) { |
| ret = -EAGAIN; |
| goto done; |
| } |
| if (!ret && time_seq) { |
| /* |
| * If we don't get the lock, we may be racing |
| * with push_leaf_left, holding that lock while |
| * itself waiting for the leaf we've currently |
| * locked. To solve this situation, we give up |
| * on our lock and cycle. |
| */ |
| free_extent_buffer(next); |
| btrfs_release_path(path); |
| cond_resched(); |
| goto again; |
| } |
| if (!ret) |
| btrfs_tree_read_lock(next); |
| } |
| break; |
| } |
| path->slots[level] = slot; |
| while (1) { |
| level--; |
| path->nodes[level] = next; |
| path->slots[level] = 0; |
| if (!path->skip_locking) |
| path->locks[level] = BTRFS_READ_LOCK; |
| if (!level) |
| break; |
| |
| ret = read_block_for_search(root, path, &next, level, |
| 0, &key); |
| if (ret == -EAGAIN && !path->nowait) |
| goto again; |
| |
| if (ret < 0) { |
| btrfs_release_path(path); |
| goto done; |
| } |
| |
| if (!path->skip_locking) { |
| if (path->nowait) { |
| if (!btrfs_try_tree_read_lock(next)) { |
| ret = -EAGAIN; |
| goto done; |
| } |
| } else { |
| btrfs_tree_read_lock(next); |
| } |
| } |
| } |
| ret = 0; |
| done: |
| unlock_up(path, 0, 1, 0, NULL); |
| if (need_commit_sem) { |
| int ret2; |
| |
| path->need_commit_sem = 1; |
| ret2 = finish_need_commit_sem_search(path); |
| up_read(&fs_info->commit_root_sem); |
| if (ret2) |
| ret = ret2; |
| } |
| |
| return ret; |
| } |
| |
| int btrfs_next_old_item(struct btrfs_root *root, struct btrfs_path *path, u64 time_seq) |
| { |
| path->slots[0]++; |
| if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) |
| return btrfs_next_old_leaf(root, path, time_seq); |
| return 0; |
| } |
| |
| /* |
| * this uses btrfs_prev_leaf to walk backwards in the tree, and keeps |
| * searching until it gets past min_objectid or finds an item of 'type' |
| * |
| * returns 0 if something is found, 1 if nothing was found and < 0 on error |
| */ |
| int btrfs_previous_item(struct btrfs_root *root, |
| struct btrfs_path *path, u64 min_objectid, |
| int type) |
| { |
| struct btrfs_key found_key; |
| struct extent_buffer *leaf; |
| u32 nritems; |
| int ret; |
| |
| while (1) { |
| if (path->slots[0] == 0) { |
| ret = btrfs_prev_leaf(root, path); |
| if (ret != 0) |
| return ret; |
| } else { |
| path->slots[0]--; |
| } |
| leaf = path->nodes[0]; |
| nritems = btrfs_header_nritems(leaf); |
| if (nritems == 0) |
| return 1; |
| if (path->slots[0] == nritems) |
| path->slots[0]--; |
| |
| btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); |
| if (found_key.objectid < min_objectid) |
| break; |
| if (found_key.type == type) |
| return 0; |
| if (found_key.objectid == min_objectid && |
| found_key.type < type) |
| break; |
| } |
| return 1; |
| } |
| |
| /* |
| * search in extent tree to find a previous Metadata/Data extent item with |
| * min objecitd. |
| * |
| * returns 0 if something is found, 1 if nothing was found and < 0 on error |
| */ |
| int btrfs_previous_extent_item(struct btrfs_root *root, |
| struct btrfs_path *path, u64 min_objectid) |
| { |
| struct btrfs_key found_key; |
| struct extent_buffer *leaf; |
| u32 nritems; |
| int ret; |
| |
| while (1) { |
| if (path->slots[0] == 0) { |
| ret = btrfs_prev_leaf(root, path); |
| if (ret != 0) |
| return ret; |
| } else { |
| path->slots[0]--; |
| } |
| leaf = path->nodes[0]; |
| nritems = btrfs_header_nritems(leaf); |
| if (nritems == 0) |
| return 1; |
| if (path->slots[0] == nritems) |
| path->slots[0]--; |
| |
| btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); |
| if (found_key.objectid < min_objectid) |
| break; |
| if (found_key.type == BTRFS_EXTENT_ITEM_KEY || |
| found_key.type == BTRFS_METADATA_ITEM_KEY) |
| return 0; |
| if (found_key.objectid == min_objectid && |
| found_key.type < BTRFS_EXTENT_ITEM_KEY) |
| break; |
| } |
| return 1; |
| } |
| |
| int __init btrfs_ctree_init(void) |
| { |
| btrfs_path_cachep = kmem_cache_create("btrfs_path", |
| sizeof(struct btrfs_path), 0, |
| SLAB_MEM_SPREAD, NULL); |
| if (!btrfs_path_cachep) |
| return -ENOMEM; |
| return 0; |
| } |
| |
| void __cold btrfs_ctree_exit(void) |
| { |
| kmem_cache_destroy(btrfs_path_cachep); |
| } |