|  | /* | 
|  | * sched_clock for unstable cpu clocks | 
|  | * | 
|  | *  Copyright (C) 2008 Red Hat, Inc., Peter Zijlstra | 
|  | * | 
|  | *  Updates and enhancements: | 
|  | *    Copyright (C) 2008 Red Hat, Inc. Steven Rostedt <srostedt@redhat.com> | 
|  | * | 
|  | * Based on code by: | 
|  | *   Ingo Molnar <mingo@redhat.com> | 
|  | *   Guillaume Chazarain <guichaz@gmail.com> | 
|  | * | 
|  | * | 
|  | * What: | 
|  | * | 
|  | * cpu_clock(i) provides a fast (execution time) high resolution | 
|  | * clock with bounded drift between CPUs. The value of cpu_clock(i) | 
|  | * is monotonic for constant i. The timestamp returned is in nanoseconds. | 
|  | * | 
|  | * ######################### BIG FAT WARNING ########################## | 
|  | * # when comparing cpu_clock(i) to cpu_clock(j) for i != j, time can # | 
|  | * # go backwards !!                                                  # | 
|  | * #################################################################### | 
|  | * | 
|  | * There is no strict promise about the base, although it tends to start | 
|  | * at 0 on boot (but people really shouldn't rely on that). | 
|  | * | 
|  | * cpu_clock(i)       -- can be used from any context, including NMI. | 
|  | * local_clock()      -- is cpu_clock() on the current cpu. | 
|  | * | 
|  | * sched_clock_cpu(i) | 
|  | * | 
|  | * How: | 
|  | * | 
|  | * The implementation either uses sched_clock() when | 
|  | * !CONFIG_HAVE_UNSTABLE_SCHED_CLOCK, which means in that case the | 
|  | * sched_clock() is assumed to provide these properties (mostly it means | 
|  | * the architecture provides a globally synchronized highres time source). | 
|  | * | 
|  | * Otherwise it tries to create a semi stable clock from a mixture of other | 
|  | * clocks, including: | 
|  | * | 
|  | *  - GTOD (clock monotomic) | 
|  | *  - sched_clock() | 
|  | *  - explicit idle events | 
|  | * | 
|  | * We use GTOD as base and use sched_clock() deltas to improve resolution. The | 
|  | * deltas are filtered to provide monotonicity and keeping it within an | 
|  | * expected window. | 
|  | * | 
|  | * Furthermore, explicit sleep and wakeup hooks allow us to account for time | 
|  | * that is otherwise invisible (TSC gets stopped). | 
|  | * | 
|  | */ | 
|  | #include <linux/spinlock.h> | 
|  | #include <linux/hardirq.h> | 
|  | #include <linux/export.h> | 
|  | #include <linux/percpu.h> | 
|  | #include <linux/ktime.h> | 
|  | #include <linux/sched.h> | 
|  | #include <linux/static_key.h> | 
|  | #include <linux/workqueue.h> | 
|  | #include <linux/compiler.h> | 
|  | #include <linux/tick.h> | 
|  |  | 
|  | /* | 
|  | * Scheduler clock - returns current time in nanosec units. | 
|  | * This is default implementation. | 
|  | * Architectures and sub-architectures can override this. | 
|  | */ | 
|  | unsigned long long __weak sched_clock(void) | 
|  | { | 
|  | return (unsigned long long)(jiffies - INITIAL_JIFFIES) | 
|  | * (NSEC_PER_SEC / HZ); | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(sched_clock); | 
|  |  | 
|  | __read_mostly int sched_clock_running; | 
|  |  | 
|  | #ifdef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK | 
|  | static struct static_key __sched_clock_stable = STATIC_KEY_INIT; | 
|  | static int __sched_clock_stable_early; | 
|  |  | 
|  | int sched_clock_stable(void) | 
|  | { | 
|  | return static_key_false(&__sched_clock_stable); | 
|  | } | 
|  |  | 
|  | static void __set_sched_clock_stable(void) | 
|  | { | 
|  | if (!sched_clock_stable()) | 
|  | static_key_slow_inc(&__sched_clock_stable); | 
|  |  | 
|  | tick_dep_clear(TICK_DEP_BIT_CLOCK_UNSTABLE); | 
|  | } | 
|  |  | 
|  | void set_sched_clock_stable(void) | 
|  | { | 
|  | __sched_clock_stable_early = 1; | 
|  |  | 
|  | smp_mb(); /* matches sched_clock_init() */ | 
|  |  | 
|  | if (!sched_clock_running) | 
|  | return; | 
|  |  | 
|  | __set_sched_clock_stable(); | 
|  | } | 
|  |  | 
|  | static void __clear_sched_clock_stable(struct work_struct *work) | 
|  | { | 
|  | /* XXX worry about clock continuity */ | 
|  | if (sched_clock_stable()) | 
|  | static_key_slow_dec(&__sched_clock_stable); | 
|  |  | 
|  | tick_dep_set(TICK_DEP_BIT_CLOCK_UNSTABLE); | 
|  | } | 
|  |  | 
|  | static DECLARE_WORK(sched_clock_work, __clear_sched_clock_stable); | 
|  |  | 
|  | void clear_sched_clock_stable(void) | 
|  | { | 
|  | __sched_clock_stable_early = 0; | 
|  |  | 
|  | smp_mb(); /* matches sched_clock_init() */ | 
|  |  | 
|  | if (!sched_clock_running) | 
|  | return; | 
|  |  | 
|  | schedule_work(&sched_clock_work); | 
|  | } | 
|  |  | 
|  | struct sched_clock_data { | 
|  | u64			tick_raw; | 
|  | u64			tick_gtod; | 
|  | u64			clock; | 
|  | }; | 
|  |  | 
|  | static DEFINE_PER_CPU_SHARED_ALIGNED(struct sched_clock_data, sched_clock_data); | 
|  |  | 
|  | static inline struct sched_clock_data *this_scd(void) | 
|  | { | 
|  | return this_cpu_ptr(&sched_clock_data); | 
|  | } | 
|  |  | 
|  | static inline struct sched_clock_data *cpu_sdc(int cpu) | 
|  | { | 
|  | return &per_cpu(sched_clock_data, cpu); | 
|  | } | 
|  |  | 
|  | void sched_clock_init(void) | 
|  | { | 
|  | u64 ktime_now = ktime_to_ns(ktime_get()); | 
|  | int cpu; | 
|  |  | 
|  | for_each_possible_cpu(cpu) { | 
|  | struct sched_clock_data *scd = cpu_sdc(cpu); | 
|  |  | 
|  | scd->tick_raw = 0; | 
|  | scd->tick_gtod = ktime_now; | 
|  | scd->clock = ktime_now; | 
|  | } | 
|  |  | 
|  | sched_clock_running = 1; | 
|  |  | 
|  | /* | 
|  | * Ensure that it is impossible to not do a static_key update. | 
|  | * | 
|  | * Either {set,clear}_sched_clock_stable() must see sched_clock_running | 
|  | * and do the update, or we must see their __sched_clock_stable_early | 
|  | * and do the update, or both. | 
|  | */ | 
|  | smp_mb(); /* matches {set,clear}_sched_clock_stable() */ | 
|  |  | 
|  | if (__sched_clock_stable_early) | 
|  | __set_sched_clock_stable(); | 
|  | else | 
|  | __clear_sched_clock_stable(NULL); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * min, max except they take wrapping into account | 
|  | */ | 
|  |  | 
|  | static inline u64 wrap_min(u64 x, u64 y) | 
|  | { | 
|  | return (s64)(x - y) < 0 ? x : y; | 
|  | } | 
|  |  | 
|  | static inline u64 wrap_max(u64 x, u64 y) | 
|  | { | 
|  | return (s64)(x - y) > 0 ? x : y; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * update the percpu scd from the raw @now value | 
|  | * | 
|  | *  - filter out backward motion | 
|  | *  - use the GTOD tick value to create a window to filter crazy TSC values | 
|  | */ | 
|  | static u64 sched_clock_local(struct sched_clock_data *scd) | 
|  | { | 
|  | u64 now, clock, old_clock, min_clock, max_clock; | 
|  | s64 delta; | 
|  |  | 
|  | again: | 
|  | now = sched_clock(); | 
|  | delta = now - scd->tick_raw; | 
|  | if (unlikely(delta < 0)) | 
|  | delta = 0; | 
|  |  | 
|  | old_clock = scd->clock; | 
|  |  | 
|  | /* | 
|  | * scd->clock = clamp(scd->tick_gtod + delta, | 
|  | *		      max(scd->tick_gtod, scd->clock), | 
|  | *		      scd->tick_gtod + TICK_NSEC); | 
|  | */ | 
|  |  | 
|  | clock = scd->tick_gtod + delta; | 
|  | min_clock = wrap_max(scd->tick_gtod, old_clock); | 
|  | max_clock = wrap_max(old_clock, scd->tick_gtod + TICK_NSEC); | 
|  |  | 
|  | clock = wrap_max(clock, min_clock); | 
|  | clock = wrap_min(clock, max_clock); | 
|  |  | 
|  | if (cmpxchg64(&scd->clock, old_clock, clock) != old_clock) | 
|  | goto again; | 
|  |  | 
|  | return clock; | 
|  | } | 
|  |  | 
|  | static u64 sched_clock_remote(struct sched_clock_data *scd) | 
|  | { | 
|  | struct sched_clock_data *my_scd = this_scd(); | 
|  | u64 this_clock, remote_clock; | 
|  | u64 *ptr, old_val, val; | 
|  |  | 
|  | #if BITS_PER_LONG != 64 | 
|  | again: | 
|  | /* | 
|  | * Careful here: The local and the remote clock values need to | 
|  | * be read out atomic as we need to compare the values and | 
|  | * then update either the local or the remote side. So the | 
|  | * cmpxchg64 below only protects one readout. | 
|  | * | 
|  | * We must reread via sched_clock_local() in the retry case on | 
|  | * 32bit as an NMI could use sched_clock_local() via the | 
|  | * tracer and hit between the readout of | 
|  | * the low32bit and the high 32bit portion. | 
|  | */ | 
|  | this_clock = sched_clock_local(my_scd); | 
|  | /* | 
|  | * We must enforce atomic readout on 32bit, otherwise the | 
|  | * update on the remote cpu can hit inbetween the readout of | 
|  | * the low32bit and the high 32bit portion. | 
|  | */ | 
|  | remote_clock = cmpxchg64(&scd->clock, 0, 0); | 
|  | #else | 
|  | /* | 
|  | * On 64bit the read of [my]scd->clock is atomic versus the | 
|  | * update, so we can avoid the above 32bit dance. | 
|  | */ | 
|  | sched_clock_local(my_scd); | 
|  | again: | 
|  | this_clock = my_scd->clock; | 
|  | remote_clock = scd->clock; | 
|  | #endif | 
|  |  | 
|  | /* | 
|  | * Use the opportunity that we have both locks | 
|  | * taken to couple the two clocks: we take the | 
|  | * larger time as the latest time for both | 
|  | * runqueues. (this creates monotonic movement) | 
|  | */ | 
|  | if (likely((s64)(remote_clock - this_clock) < 0)) { | 
|  | ptr = &scd->clock; | 
|  | old_val = remote_clock; | 
|  | val = this_clock; | 
|  | } else { | 
|  | /* | 
|  | * Should be rare, but possible: | 
|  | */ | 
|  | ptr = &my_scd->clock; | 
|  | old_val = this_clock; | 
|  | val = remote_clock; | 
|  | } | 
|  |  | 
|  | if (cmpxchg64(ptr, old_val, val) != old_val) | 
|  | goto again; | 
|  |  | 
|  | return val; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Similar to cpu_clock(), but requires local IRQs to be disabled. | 
|  | * | 
|  | * See cpu_clock(). | 
|  | */ | 
|  | u64 sched_clock_cpu(int cpu) | 
|  | { | 
|  | struct sched_clock_data *scd; | 
|  | u64 clock; | 
|  |  | 
|  | if (sched_clock_stable()) | 
|  | return sched_clock(); | 
|  |  | 
|  | if (unlikely(!sched_clock_running)) | 
|  | return 0ull; | 
|  |  | 
|  | preempt_disable_notrace(); | 
|  | scd = cpu_sdc(cpu); | 
|  |  | 
|  | if (cpu != smp_processor_id()) | 
|  | clock = sched_clock_remote(scd); | 
|  | else | 
|  | clock = sched_clock_local(scd); | 
|  | preempt_enable_notrace(); | 
|  |  | 
|  | return clock; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(sched_clock_cpu); | 
|  |  | 
|  | void sched_clock_tick(void) | 
|  | { | 
|  | struct sched_clock_data *scd; | 
|  | u64 now, now_gtod; | 
|  |  | 
|  | if (sched_clock_stable()) | 
|  | return; | 
|  |  | 
|  | if (unlikely(!sched_clock_running)) | 
|  | return; | 
|  |  | 
|  | WARN_ON_ONCE(!irqs_disabled()); | 
|  |  | 
|  | scd = this_scd(); | 
|  | now_gtod = ktime_to_ns(ktime_get()); | 
|  | now = sched_clock(); | 
|  |  | 
|  | scd->tick_raw = now; | 
|  | scd->tick_gtod = now_gtod; | 
|  | sched_clock_local(scd); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * We are going deep-idle (irqs are disabled): | 
|  | */ | 
|  | void sched_clock_idle_sleep_event(void) | 
|  | { | 
|  | sched_clock_cpu(smp_processor_id()); | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(sched_clock_idle_sleep_event); | 
|  |  | 
|  | /* | 
|  | * We just idled delta nanoseconds (called with irqs disabled): | 
|  | */ | 
|  | void sched_clock_idle_wakeup_event(u64 delta_ns) | 
|  | { | 
|  | if (timekeeping_suspended) | 
|  | return; | 
|  |  | 
|  | sched_clock_tick(); | 
|  | touch_softlockup_watchdog_sched(); | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(sched_clock_idle_wakeup_event); | 
|  |  | 
|  | #else /* CONFIG_HAVE_UNSTABLE_SCHED_CLOCK */ | 
|  |  | 
|  | void sched_clock_init(void) | 
|  | { | 
|  | sched_clock_running = 1; | 
|  | } | 
|  |  | 
|  | u64 sched_clock_cpu(int cpu) | 
|  | { | 
|  | if (unlikely(!sched_clock_running)) | 
|  | return 0; | 
|  |  | 
|  | return sched_clock(); | 
|  | } | 
|  | #endif /* CONFIG_HAVE_UNSTABLE_SCHED_CLOCK */ | 
|  |  | 
|  | /* | 
|  | * Running clock - returns the time that has elapsed while a guest has been | 
|  | * running. | 
|  | * On a guest this value should be local_clock minus the time the guest was | 
|  | * suspended by the hypervisor (for any reason). | 
|  | * On bare metal this function should return the same as local_clock. | 
|  | * Architectures and sub-architectures can override this. | 
|  | */ | 
|  | u64 __weak running_clock(void) | 
|  | { | 
|  | return local_clock(); | 
|  | } |