| // SPDX-License-Identifier: GPL-2.0-only |
| /* |
| * linux/arch/arm/lib/copypage-xscale.S |
| * |
| * Copyright (C) 1995-2005 Russell King |
| * |
| * This handles the mini data cache, as found on SA11x0 and XScale |
| * processors. When we copy a user page page, we map it in such a way |
| * that accesses to this page will not touch the main data cache, but |
| * will be cached in the mini data cache. This prevents us thrashing |
| * the main data cache on page faults. |
| */ |
| #include <linux/init.h> |
| #include <linux/mm.h> |
| #include <linux/highmem.h> |
| |
| #include <asm/tlbflush.h> |
| #include <asm/cacheflush.h> |
| |
| #include "mm.h" |
| |
| #define minicache_pgprot __pgprot(L_PTE_PRESENT | L_PTE_YOUNG | \ |
| L_PTE_MT_MINICACHE) |
| |
| static DEFINE_RAW_SPINLOCK(minicache_lock); |
| |
| /* |
| * XScale mini-dcache optimised copy_user_highpage |
| * |
| * We flush the destination cache lines just before we write the data into the |
| * corresponding address. Since the Dcache is read-allocate, this removes the |
| * Dcache aliasing issue. The writes will be forwarded to the write buffer, |
| * and merged as appropriate. |
| */ |
| static void mc_copy_user_page(void *from, void *to) |
| { |
| int tmp; |
| |
| /* |
| * Strangely enough, best performance is achieved |
| * when prefetching destination as well. (NP) |
| */ |
| asm volatile ("\ |
| .arch xscale \n\ |
| pld [%0, #0] \n\ |
| pld [%0, #32] \n\ |
| pld [%1, #0] \n\ |
| pld [%1, #32] \n\ |
| 1: pld [%0, #64] \n\ |
| pld [%0, #96] \n\ |
| pld [%1, #64] \n\ |
| pld [%1, #96] \n\ |
| 2: ldrd r2, r3, [%0], #8 \n\ |
| ldrd r4, r5, [%0], #8 \n\ |
| mov ip, %1 \n\ |
| strd r2, r3, [%1], #8 \n\ |
| ldrd r2, r3, [%0], #8 \n\ |
| strd r4, r5, [%1], #8 \n\ |
| ldrd r4, r5, [%0], #8 \n\ |
| strd r2, r3, [%1], #8 \n\ |
| strd r4, r5, [%1], #8 \n\ |
| mcr p15, 0, ip, c7, c10, 1 @ clean D line\n\ |
| ldrd r2, r3, [%0], #8 \n\ |
| mcr p15, 0, ip, c7, c6, 1 @ invalidate D line\n\ |
| ldrd r4, r5, [%0], #8 \n\ |
| mov ip, %1 \n\ |
| strd r2, r3, [%1], #8 \n\ |
| ldrd r2, r3, [%0], #8 \n\ |
| strd r4, r5, [%1], #8 \n\ |
| ldrd r4, r5, [%0], #8 \n\ |
| strd r2, r3, [%1], #8 \n\ |
| strd r4, r5, [%1], #8 \n\ |
| mcr p15, 0, ip, c7, c10, 1 @ clean D line\n\ |
| subs %2, %2, #1 \n\ |
| mcr p15, 0, ip, c7, c6, 1 @ invalidate D line\n\ |
| bgt 1b \n\ |
| beq 2b " |
| : "+&r" (from), "+&r" (to), "=&r" (tmp) |
| : "2" (PAGE_SIZE / 64 - 1) |
| : "r2", "r3", "r4", "r5", "ip"); |
| } |
| |
| void xscale_mc_copy_user_highpage(struct page *to, struct page *from, |
| unsigned long vaddr, struct vm_area_struct *vma) |
| { |
| void *kto = kmap_atomic(to); |
| |
| if (!test_and_set_bit(PG_dcache_clean, &from->flags)) |
| __flush_dcache_page(page_mapping_file(from), from); |
| |
| raw_spin_lock(&minicache_lock); |
| |
| set_top_pte(COPYPAGE_MINICACHE, mk_pte(from, minicache_pgprot)); |
| |
| mc_copy_user_page((void *)COPYPAGE_MINICACHE, kto); |
| |
| raw_spin_unlock(&minicache_lock); |
| |
| kunmap_atomic(kto); |
| } |
| |
| /* |
| * XScale optimised clear_user_page |
| */ |
| void |
| xscale_mc_clear_user_highpage(struct page *page, unsigned long vaddr) |
| { |
| void *ptr, *kaddr = kmap_atomic(page); |
| asm volatile("\ |
| .arch xscale \n\ |
| mov r1, %2 \n\ |
| mov r2, #0 \n\ |
| mov r3, #0 \n\ |
| 1: mov ip, %0 \n\ |
| strd r2, r3, [%0], #8 \n\ |
| strd r2, r3, [%0], #8 \n\ |
| strd r2, r3, [%0], #8 \n\ |
| strd r2, r3, [%0], #8 \n\ |
| mcr p15, 0, ip, c7, c10, 1 @ clean D line\n\ |
| subs r1, r1, #1 \n\ |
| mcr p15, 0, ip, c7, c6, 1 @ invalidate D line\n\ |
| bne 1b" |
| : "=r" (ptr) |
| : "0" (kaddr), "I" (PAGE_SIZE / 32) |
| : "r1", "r2", "r3", "ip"); |
| kunmap_atomic(kaddr); |
| } |
| |
| struct cpu_user_fns xscale_mc_user_fns __initdata = { |
| .cpu_clear_user_highpage = xscale_mc_clear_user_highpage, |
| .cpu_copy_user_highpage = xscale_mc_copy_user_highpage, |
| }; |