| #! /usr/bin/env perl |
| # SPDX-License-Identifier: GPL-2.0 |
| |
| # This code is taken from the OpenSSL project but the author (Andy Polyakov) |
| # has relicensed it under the GPLv2. Therefore this program is free software; |
| # you can redistribute it and/or modify it under the terms of the GNU General |
| # Public License version 2 as published by the Free Software Foundation. |
| # |
| # The original headers, including the original license headers, are |
| # included below for completeness. |
| |
| # Copyright 2014-2016 The OpenSSL Project Authors. All Rights Reserved. |
| # |
| # Licensed under the OpenSSL license (the "License"). You may not use |
| # this file except in compliance with the License. You can obtain a copy |
| # in the file LICENSE in the source distribution or at |
| # https://www.openssl.org/source/license.html |
| |
| # ==================================================================== |
| # Written by Andy Polyakov <appro@openssl.org> for the OpenSSL |
| # project. The module is, however, dual licensed under OpenSSL and |
| # CRYPTOGAMS licenses depending on where you obtain it. For further |
| # details see http://www.openssl.org/~appro/cryptogams/. |
| # ==================================================================== |
| # |
| # SHA256/512 for ARMv8. |
| # |
| # Performance in cycles per processed byte and improvement coefficient |
| # over code generated with "default" compiler: |
| # |
| # SHA256-hw SHA256(*) SHA512 |
| # Apple A7 1.97 10.5 (+33%) 6.73 (-1%(**)) |
| # Cortex-A53 2.38 15.5 (+115%) 10.0 (+150%(***)) |
| # Cortex-A57 2.31 11.6 (+86%) 7.51 (+260%(***)) |
| # Denver 2.01 10.5 (+26%) 6.70 (+8%) |
| # X-Gene 20.0 (+100%) 12.8 (+300%(***)) |
| # Mongoose 2.36 13.0 (+50%) 8.36 (+33%) |
| # |
| # (*) Software SHA256 results are of lesser relevance, presented |
| # mostly for informational purposes. |
| # (**) The result is a trade-off: it's possible to improve it by |
| # 10% (or by 1 cycle per round), but at the cost of 20% loss |
| # on Cortex-A53 (or by 4 cycles per round). |
| # (***) Super-impressive coefficients over gcc-generated code are |
| # indication of some compiler "pathology", most notably code |
| # generated with -mgeneral-regs-only is significanty faster |
| # and the gap is only 40-90%. |
| # |
| # October 2016. |
| # |
| # Originally it was reckoned that it makes no sense to implement NEON |
| # version of SHA256 for 64-bit processors. This is because performance |
| # improvement on most wide-spread Cortex-A5x processors was observed |
| # to be marginal, same on Cortex-A53 and ~10% on A57. But then it was |
| # observed that 32-bit NEON SHA256 performs significantly better than |
| # 64-bit scalar version on *some* of the more recent processors. As |
| # result 64-bit NEON version of SHA256 was added to provide best |
| # all-round performance. For example it executes ~30% faster on X-Gene |
| # and Mongoose. [For reference, NEON version of SHA512 is bound to |
| # deliver much less improvement, likely *negative* on Cortex-A5x. |
| # Which is why NEON support is limited to SHA256.] |
| |
| $output=pop; |
| $flavour=pop; |
| |
| if ($flavour && $flavour ne "void") { |
| $0 =~ m/(.*[\/\\])[^\/\\]+$/; $dir=$1; |
| ( $xlate="${dir}arm-xlate.pl" and -f $xlate ) or |
| ( $xlate="${dir}../../perlasm/arm-xlate.pl" and -f $xlate) or |
| die "can't locate arm-xlate.pl"; |
| |
| open OUT,"| \"$^X\" $xlate $flavour $output"; |
| *STDOUT=*OUT; |
| } else { |
| open STDOUT,">$output"; |
| } |
| |
| if ($output =~ /512/) { |
| $BITS=512; |
| $SZ=8; |
| @Sigma0=(28,34,39); |
| @Sigma1=(14,18,41); |
| @sigma0=(1, 8, 7); |
| @sigma1=(19,61, 6); |
| $rounds=80; |
| $reg_t="x"; |
| } else { |
| $BITS=256; |
| $SZ=4; |
| @Sigma0=( 2,13,22); |
| @Sigma1=( 6,11,25); |
| @sigma0=( 7,18, 3); |
| @sigma1=(17,19,10); |
| $rounds=64; |
| $reg_t="w"; |
| } |
| |
| $func="sha${BITS}_block_data_order"; |
| |
| ($ctx,$inp,$num,$Ktbl)=map("x$_",(0..2,30)); |
| |
| @X=map("$reg_t$_",(3..15,0..2)); |
| @V=($A,$B,$C,$D,$E,$F,$G,$H)=map("$reg_t$_",(20..27)); |
| ($t0,$t1,$t2,$t3)=map("$reg_t$_",(16,17,19,28)); |
| |
| sub BODY_00_xx { |
| my ($i,$a,$b,$c,$d,$e,$f,$g,$h)=@_; |
| my $j=($i+1)&15; |
| my ($T0,$T1,$T2)=(@X[($i-8)&15],@X[($i-9)&15],@X[($i-10)&15]); |
| $T0=@X[$i+3] if ($i<11); |
| |
| $code.=<<___ if ($i<16); |
| #ifndef __AARCH64EB__ |
| rev @X[$i],@X[$i] // $i |
| #endif |
| ___ |
| $code.=<<___ if ($i<13 && ($i&1)); |
| ldp @X[$i+1],@X[$i+2],[$inp],#2*$SZ |
| ___ |
| $code.=<<___ if ($i==13); |
| ldp @X[14],@X[15],[$inp] |
| ___ |
| $code.=<<___ if ($i>=14); |
| ldr @X[($i-11)&15],[sp,#`$SZ*(($i-11)%4)`] |
| ___ |
| $code.=<<___ if ($i>0 && $i<16); |
| add $a,$a,$t1 // h+=Sigma0(a) |
| ___ |
| $code.=<<___ if ($i>=11); |
| str @X[($i-8)&15],[sp,#`$SZ*(($i-8)%4)`] |
| ___ |
| # While ARMv8 specifies merged rotate-n-logical operation such as |
| # 'eor x,y,z,ror#n', it was found to negatively affect performance |
| # on Apple A7. The reason seems to be that it requires even 'y' to |
| # be available earlier. This means that such merged instruction is |
| # not necessarily best choice on critical path... On the other hand |
| # Cortex-A5x handles merged instructions much better than disjoint |
| # rotate and logical... See (**) footnote above. |
| $code.=<<___ if ($i<15); |
| ror $t0,$e,#$Sigma1[0] |
| add $h,$h,$t2 // h+=K[i] |
| eor $T0,$e,$e,ror#`$Sigma1[2]-$Sigma1[1]` |
| and $t1,$f,$e |
| bic $t2,$g,$e |
| add $h,$h,@X[$i&15] // h+=X[i] |
| orr $t1,$t1,$t2 // Ch(e,f,g) |
| eor $t2,$a,$b // a^b, b^c in next round |
| eor $t0,$t0,$T0,ror#$Sigma1[1] // Sigma1(e) |
| ror $T0,$a,#$Sigma0[0] |
| add $h,$h,$t1 // h+=Ch(e,f,g) |
| eor $t1,$a,$a,ror#`$Sigma0[2]-$Sigma0[1]` |
| add $h,$h,$t0 // h+=Sigma1(e) |
| and $t3,$t3,$t2 // (b^c)&=(a^b) |
| add $d,$d,$h // d+=h |
| eor $t3,$t3,$b // Maj(a,b,c) |
| eor $t1,$T0,$t1,ror#$Sigma0[1] // Sigma0(a) |
| add $h,$h,$t3 // h+=Maj(a,b,c) |
| ldr $t3,[$Ktbl],#$SZ // *K++, $t2 in next round |
| //add $h,$h,$t1 // h+=Sigma0(a) |
| ___ |
| $code.=<<___ if ($i>=15); |
| ror $t0,$e,#$Sigma1[0] |
| add $h,$h,$t2 // h+=K[i] |
| ror $T1,@X[($j+1)&15],#$sigma0[0] |
| and $t1,$f,$e |
| ror $T2,@X[($j+14)&15],#$sigma1[0] |
| bic $t2,$g,$e |
| ror $T0,$a,#$Sigma0[0] |
| add $h,$h,@X[$i&15] // h+=X[i] |
| eor $t0,$t0,$e,ror#$Sigma1[1] |
| eor $T1,$T1,@X[($j+1)&15],ror#$sigma0[1] |
| orr $t1,$t1,$t2 // Ch(e,f,g) |
| eor $t2,$a,$b // a^b, b^c in next round |
| eor $t0,$t0,$e,ror#$Sigma1[2] // Sigma1(e) |
| eor $T0,$T0,$a,ror#$Sigma0[1] |
| add $h,$h,$t1 // h+=Ch(e,f,g) |
| and $t3,$t3,$t2 // (b^c)&=(a^b) |
| eor $T2,$T2,@X[($j+14)&15],ror#$sigma1[1] |
| eor $T1,$T1,@X[($j+1)&15],lsr#$sigma0[2] // sigma0(X[i+1]) |
| add $h,$h,$t0 // h+=Sigma1(e) |
| eor $t3,$t3,$b // Maj(a,b,c) |
| eor $t1,$T0,$a,ror#$Sigma0[2] // Sigma0(a) |
| eor $T2,$T2,@X[($j+14)&15],lsr#$sigma1[2] // sigma1(X[i+14]) |
| add @X[$j],@X[$j],@X[($j+9)&15] |
| add $d,$d,$h // d+=h |
| add $h,$h,$t3 // h+=Maj(a,b,c) |
| ldr $t3,[$Ktbl],#$SZ // *K++, $t2 in next round |
| add @X[$j],@X[$j],$T1 |
| add $h,$h,$t1 // h+=Sigma0(a) |
| add @X[$j],@X[$j],$T2 |
| ___ |
| ($t2,$t3)=($t3,$t2); |
| } |
| |
| $code.=<<___; |
| #ifndef __KERNEL__ |
| # include "arm_arch.h" |
| #endif |
| |
| .text |
| |
| .extern OPENSSL_armcap_P |
| .globl $func |
| .type $func,%function |
| .align 6 |
| $func: |
| ___ |
| $code.=<<___ if ($SZ==4); |
| #ifndef __KERNEL__ |
| # ifdef __ILP32__ |
| ldrsw x16,.LOPENSSL_armcap_P |
| # else |
| ldr x16,.LOPENSSL_armcap_P |
| # endif |
| adr x17,.LOPENSSL_armcap_P |
| add x16,x16,x17 |
| ldr w16,[x16] |
| tst w16,#ARMV8_SHA256 |
| b.ne .Lv8_entry |
| tst w16,#ARMV7_NEON |
| b.ne .Lneon_entry |
| #endif |
| ___ |
| $code.=<<___; |
| stp x29,x30,[sp,#-128]! |
| add x29,sp,#0 |
| |
| stp x19,x20,[sp,#16] |
| stp x21,x22,[sp,#32] |
| stp x23,x24,[sp,#48] |
| stp x25,x26,[sp,#64] |
| stp x27,x28,[sp,#80] |
| sub sp,sp,#4*$SZ |
| |
| ldp $A,$B,[$ctx] // load context |
| ldp $C,$D,[$ctx,#2*$SZ] |
| ldp $E,$F,[$ctx,#4*$SZ] |
| add $num,$inp,$num,lsl#`log(16*$SZ)/log(2)` // end of input |
| ldp $G,$H,[$ctx,#6*$SZ] |
| adr $Ktbl,.LK$BITS |
| stp $ctx,$num,[x29,#96] |
| |
| .Loop: |
| ldp @X[0],@X[1],[$inp],#2*$SZ |
| ldr $t2,[$Ktbl],#$SZ // *K++ |
| eor $t3,$B,$C // magic seed |
| str $inp,[x29,#112] |
| ___ |
| for ($i=0;$i<16;$i++) { &BODY_00_xx($i,@V); unshift(@V,pop(@V)); } |
| $code.=".Loop_16_xx:\n"; |
| for (;$i<32;$i++) { &BODY_00_xx($i,@V); unshift(@V,pop(@V)); } |
| $code.=<<___; |
| cbnz $t2,.Loop_16_xx |
| |
| ldp $ctx,$num,[x29,#96] |
| ldr $inp,[x29,#112] |
| sub $Ktbl,$Ktbl,#`$SZ*($rounds+1)` // rewind |
| |
| ldp @X[0],@X[1],[$ctx] |
| ldp @X[2],@X[3],[$ctx,#2*$SZ] |
| add $inp,$inp,#14*$SZ // advance input pointer |
| ldp @X[4],@X[5],[$ctx,#4*$SZ] |
| add $A,$A,@X[0] |
| ldp @X[6],@X[7],[$ctx,#6*$SZ] |
| add $B,$B,@X[1] |
| add $C,$C,@X[2] |
| add $D,$D,@X[3] |
| stp $A,$B,[$ctx] |
| add $E,$E,@X[4] |
| add $F,$F,@X[5] |
| stp $C,$D,[$ctx,#2*$SZ] |
| add $G,$G,@X[6] |
| add $H,$H,@X[7] |
| cmp $inp,$num |
| stp $E,$F,[$ctx,#4*$SZ] |
| stp $G,$H,[$ctx,#6*$SZ] |
| b.ne .Loop |
| |
| ldp x19,x20,[x29,#16] |
| add sp,sp,#4*$SZ |
| ldp x21,x22,[x29,#32] |
| ldp x23,x24,[x29,#48] |
| ldp x25,x26,[x29,#64] |
| ldp x27,x28,[x29,#80] |
| ldp x29,x30,[sp],#128 |
| ret |
| .size $func,.-$func |
| |
| .align 6 |
| .type .LK$BITS,%object |
| .LK$BITS: |
| ___ |
| $code.=<<___ if ($SZ==8); |
| .quad 0x428a2f98d728ae22,0x7137449123ef65cd |
| .quad 0xb5c0fbcfec4d3b2f,0xe9b5dba58189dbbc |
| .quad 0x3956c25bf348b538,0x59f111f1b605d019 |
| .quad 0x923f82a4af194f9b,0xab1c5ed5da6d8118 |
| .quad 0xd807aa98a3030242,0x12835b0145706fbe |
| .quad 0x243185be4ee4b28c,0x550c7dc3d5ffb4e2 |
| .quad 0x72be5d74f27b896f,0x80deb1fe3b1696b1 |
| .quad 0x9bdc06a725c71235,0xc19bf174cf692694 |
| .quad 0xe49b69c19ef14ad2,0xefbe4786384f25e3 |
| .quad 0x0fc19dc68b8cd5b5,0x240ca1cc77ac9c65 |
| .quad 0x2de92c6f592b0275,0x4a7484aa6ea6e483 |
| .quad 0x5cb0a9dcbd41fbd4,0x76f988da831153b5 |
| .quad 0x983e5152ee66dfab,0xa831c66d2db43210 |
| .quad 0xb00327c898fb213f,0xbf597fc7beef0ee4 |
| .quad 0xc6e00bf33da88fc2,0xd5a79147930aa725 |
| .quad 0x06ca6351e003826f,0x142929670a0e6e70 |
| .quad 0x27b70a8546d22ffc,0x2e1b21385c26c926 |
| .quad 0x4d2c6dfc5ac42aed,0x53380d139d95b3df |
| .quad 0x650a73548baf63de,0x766a0abb3c77b2a8 |
| .quad 0x81c2c92e47edaee6,0x92722c851482353b |
| .quad 0xa2bfe8a14cf10364,0xa81a664bbc423001 |
| .quad 0xc24b8b70d0f89791,0xc76c51a30654be30 |
| .quad 0xd192e819d6ef5218,0xd69906245565a910 |
| .quad 0xf40e35855771202a,0x106aa07032bbd1b8 |
| .quad 0x19a4c116b8d2d0c8,0x1e376c085141ab53 |
| .quad 0x2748774cdf8eeb99,0x34b0bcb5e19b48a8 |
| .quad 0x391c0cb3c5c95a63,0x4ed8aa4ae3418acb |
| .quad 0x5b9cca4f7763e373,0x682e6ff3d6b2b8a3 |
| .quad 0x748f82ee5defb2fc,0x78a5636f43172f60 |
| .quad 0x84c87814a1f0ab72,0x8cc702081a6439ec |
| .quad 0x90befffa23631e28,0xa4506cebde82bde9 |
| .quad 0xbef9a3f7b2c67915,0xc67178f2e372532b |
| .quad 0xca273eceea26619c,0xd186b8c721c0c207 |
| .quad 0xeada7dd6cde0eb1e,0xf57d4f7fee6ed178 |
| .quad 0x06f067aa72176fba,0x0a637dc5a2c898a6 |
| .quad 0x113f9804bef90dae,0x1b710b35131c471b |
| .quad 0x28db77f523047d84,0x32caab7b40c72493 |
| .quad 0x3c9ebe0a15c9bebc,0x431d67c49c100d4c |
| .quad 0x4cc5d4becb3e42b6,0x597f299cfc657e2a |
| .quad 0x5fcb6fab3ad6faec,0x6c44198c4a475817 |
| .quad 0 // terminator |
| ___ |
| $code.=<<___ if ($SZ==4); |
| .long 0x428a2f98,0x71374491,0xb5c0fbcf,0xe9b5dba5 |
| .long 0x3956c25b,0x59f111f1,0x923f82a4,0xab1c5ed5 |
| .long 0xd807aa98,0x12835b01,0x243185be,0x550c7dc3 |
| .long 0x72be5d74,0x80deb1fe,0x9bdc06a7,0xc19bf174 |
| .long 0xe49b69c1,0xefbe4786,0x0fc19dc6,0x240ca1cc |
| .long 0x2de92c6f,0x4a7484aa,0x5cb0a9dc,0x76f988da |
| .long 0x983e5152,0xa831c66d,0xb00327c8,0xbf597fc7 |
| .long 0xc6e00bf3,0xd5a79147,0x06ca6351,0x14292967 |
| .long 0x27b70a85,0x2e1b2138,0x4d2c6dfc,0x53380d13 |
| .long 0x650a7354,0x766a0abb,0x81c2c92e,0x92722c85 |
| .long 0xa2bfe8a1,0xa81a664b,0xc24b8b70,0xc76c51a3 |
| .long 0xd192e819,0xd6990624,0xf40e3585,0x106aa070 |
| .long 0x19a4c116,0x1e376c08,0x2748774c,0x34b0bcb5 |
| .long 0x391c0cb3,0x4ed8aa4a,0x5b9cca4f,0x682e6ff3 |
| .long 0x748f82ee,0x78a5636f,0x84c87814,0x8cc70208 |
| .long 0x90befffa,0xa4506ceb,0xbef9a3f7,0xc67178f2 |
| .long 0 //terminator |
| ___ |
| $code.=<<___; |
| .size .LK$BITS,.-.LK$BITS |
| #ifndef __KERNEL__ |
| .align 3 |
| .LOPENSSL_armcap_P: |
| # ifdef __ILP32__ |
| .long OPENSSL_armcap_P-. |
| # else |
| .quad OPENSSL_armcap_P-. |
| # endif |
| #endif |
| .asciz "SHA$BITS block transform for ARMv8, CRYPTOGAMS by <appro\@openssl.org>" |
| .align 2 |
| ___ |
| |
| if ($SZ==4) { |
| my $Ktbl="x3"; |
| |
| my ($ABCD,$EFGH,$abcd)=map("v$_.16b",(0..2)); |
| my @MSG=map("v$_.16b",(4..7)); |
| my ($W0,$W1)=("v16.4s","v17.4s"); |
| my ($ABCD_SAVE,$EFGH_SAVE)=("v18.16b","v19.16b"); |
| |
| $code.=<<___; |
| #ifndef __KERNEL__ |
| .type sha256_block_armv8,%function |
| .align 6 |
| sha256_block_armv8: |
| .Lv8_entry: |
| stp x29,x30,[sp,#-16]! |
| add x29,sp,#0 |
| |
| ld1.32 {$ABCD,$EFGH},[$ctx] |
| adr $Ktbl,.LK256 |
| |
| .Loop_hw: |
| ld1 {@MSG[0]-@MSG[3]},[$inp],#64 |
| sub $num,$num,#1 |
| ld1.32 {$W0},[$Ktbl],#16 |
| rev32 @MSG[0],@MSG[0] |
| rev32 @MSG[1],@MSG[1] |
| rev32 @MSG[2],@MSG[2] |
| rev32 @MSG[3],@MSG[3] |
| orr $ABCD_SAVE,$ABCD,$ABCD // offload |
| orr $EFGH_SAVE,$EFGH,$EFGH |
| ___ |
| for($i=0;$i<12;$i++) { |
| $code.=<<___; |
| ld1.32 {$W1},[$Ktbl],#16 |
| add.i32 $W0,$W0,@MSG[0] |
| sha256su0 @MSG[0],@MSG[1] |
| orr $abcd,$ABCD,$ABCD |
| sha256h $ABCD,$EFGH,$W0 |
| sha256h2 $EFGH,$abcd,$W0 |
| sha256su1 @MSG[0],@MSG[2],@MSG[3] |
| ___ |
| ($W0,$W1)=($W1,$W0); push(@MSG,shift(@MSG)); |
| } |
| $code.=<<___; |
| ld1.32 {$W1},[$Ktbl],#16 |
| add.i32 $W0,$W0,@MSG[0] |
| orr $abcd,$ABCD,$ABCD |
| sha256h $ABCD,$EFGH,$W0 |
| sha256h2 $EFGH,$abcd,$W0 |
| |
| ld1.32 {$W0},[$Ktbl],#16 |
| add.i32 $W1,$W1,@MSG[1] |
| orr $abcd,$ABCD,$ABCD |
| sha256h $ABCD,$EFGH,$W1 |
| sha256h2 $EFGH,$abcd,$W1 |
| |
| ld1.32 {$W1},[$Ktbl] |
| add.i32 $W0,$W0,@MSG[2] |
| sub $Ktbl,$Ktbl,#$rounds*$SZ-16 // rewind |
| orr $abcd,$ABCD,$ABCD |
| sha256h $ABCD,$EFGH,$W0 |
| sha256h2 $EFGH,$abcd,$W0 |
| |
| add.i32 $W1,$W1,@MSG[3] |
| orr $abcd,$ABCD,$ABCD |
| sha256h $ABCD,$EFGH,$W1 |
| sha256h2 $EFGH,$abcd,$W1 |
| |
| add.i32 $ABCD,$ABCD,$ABCD_SAVE |
| add.i32 $EFGH,$EFGH,$EFGH_SAVE |
| |
| cbnz $num,.Loop_hw |
| |
| st1.32 {$ABCD,$EFGH},[$ctx] |
| |
| ldr x29,[sp],#16 |
| ret |
| .size sha256_block_armv8,.-sha256_block_armv8 |
| #endif |
| ___ |
| } |
| |
| if ($SZ==4) { ######################################### NEON stuff # |
| # You'll surely note a lot of similarities with sha256-armv4 module, |
| # and of course it's not a coincidence. sha256-armv4 was used as |
| # initial template, but was adapted for ARMv8 instruction set and |
| # extensively re-tuned for all-round performance. |
| |
| my @V = ($A,$B,$C,$D,$E,$F,$G,$H) = map("w$_",(3..10)); |
| my ($t0,$t1,$t2,$t3,$t4) = map("w$_",(11..15)); |
| my $Ktbl="x16"; |
| my $Xfer="x17"; |
| my @X = map("q$_",(0..3)); |
| my ($T0,$T1,$T2,$T3,$T4,$T5,$T6,$T7) = map("q$_",(4..7,16..19)); |
| my $j=0; |
| |
| sub AUTOLOAD() # thunk [simplified] x86-style perlasm |
| { my $opcode = $AUTOLOAD; $opcode =~ s/.*:://; $opcode =~ s/_/\./; |
| my $arg = pop; |
| $arg = "#$arg" if ($arg*1 eq $arg); |
| $code .= "\t$opcode\t".join(',',@_,$arg)."\n"; |
| } |
| |
| sub Dscalar { shift =~ m|[qv]([0-9]+)|?"d$1":""; } |
| sub Dlo { shift =~ m|[qv]([0-9]+)|?"v$1.d[0]":""; } |
| sub Dhi { shift =~ m|[qv]([0-9]+)|?"v$1.d[1]":""; } |
| |
| sub Xupdate() |
| { use integer; |
| my $body = shift; |
| my @insns = (&$body,&$body,&$body,&$body); |
| my ($a,$b,$c,$d,$e,$f,$g,$h); |
| |
| &ext_8 ($T0,@X[0],@X[1],4); # X[1..4] |
| eval(shift(@insns)); |
| eval(shift(@insns)); |
| eval(shift(@insns)); |
| &ext_8 ($T3,@X[2],@X[3],4); # X[9..12] |
| eval(shift(@insns)); |
| eval(shift(@insns)); |
| &mov (&Dscalar($T7),&Dhi(@X[3])); # X[14..15] |
| eval(shift(@insns)); |
| eval(shift(@insns)); |
| &ushr_32 ($T2,$T0,$sigma0[0]); |
| eval(shift(@insns)); |
| &ushr_32 ($T1,$T0,$sigma0[2]); |
| eval(shift(@insns)); |
| &add_32 (@X[0],@X[0],$T3); # X[0..3] += X[9..12] |
| eval(shift(@insns)); |
| &sli_32 ($T2,$T0,32-$sigma0[0]); |
| eval(shift(@insns)); |
| eval(shift(@insns)); |
| &ushr_32 ($T3,$T0,$sigma0[1]); |
| eval(shift(@insns)); |
| eval(shift(@insns)); |
| &eor_8 ($T1,$T1,$T2); |
| eval(shift(@insns)); |
| eval(shift(@insns)); |
| &sli_32 ($T3,$T0,32-$sigma0[1]); |
| eval(shift(@insns)); |
| eval(shift(@insns)); |
| &ushr_32 ($T4,$T7,$sigma1[0]); |
| eval(shift(@insns)); |
| eval(shift(@insns)); |
| &eor_8 ($T1,$T1,$T3); # sigma0(X[1..4]) |
| eval(shift(@insns)); |
| eval(shift(@insns)); |
| &sli_32 ($T4,$T7,32-$sigma1[0]); |
| eval(shift(@insns)); |
| eval(shift(@insns)); |
| &ushr_32 ($T5,$T7,$sigma1[2]); |
| eval(shift(@insns)); |
| eval(shift(@insns)); |
| &ushr_32 ($T3,$T7,$sigma1[1]); |
| eval(shift(@insns)); |
| eval(shift(@insns)); |
| &add_32 (@X[0],@X[0],$T1); # X[0..3] += sigma0(X[1..4]) |
| eval(shift(@insns)); |
| eval(shift(@insns)); |
| &sli_u32 ($T3,$T7,32-$sigma1[1]); |
| eval(shift(@insns)); |
| eval(shift(@insns)); |
| &eor_8 ($T5,$T5,$T4); |
| eval(shift(@insns)); |
| eval(shift(@insns)); |
| eval(shift(@insns)); |
| &eor_8 ($T5,$T5,$T3); # sigma1(X[14..15]) |
| eval(shift(@insns)); |
| eval(shift(@insns)); |
| eval(shift(@insns)); |
| &add_32 (@X[0],@X[0],$T5); # X[0..1] += sigma1(X[14..15]) |
| eval(shift(@insns)); |
| eval(shift(@insns)); |
| eval(shift(@insns)); |
| &ushr_32 ($T6,@X[0],$sigma1[0]); |
| eval(shift(@insns)); |
| &ushr_32 ($T7,@X[0],$sigma1[2]); |
| eval(shift(@insns)); |
| eval(shift(@insns)); |
| &sli_32 ($T6,@X[0],32-$sigma1[0]); |
| eval(shift(@insns)); |
| &ushr_32 ($T5,@X[0],$sigma1[1]); |
| eval(shift(@insns)); |
| eval(shift(@insns)); |
| &eor_8 ($T7,$T7,$T6); |
| eval(shift(@insns)); |
| eval(shift(@insns)); |
| &sli_32 ($T5,@X[0],32-$sigma1[1]); |
| eval(shift(@insns)); |
| eval(shift(@insns)); |
| &ld1_32 ("{$T0}","[$Ktbl], #16"); |
| eval(shift(@insns)); |
| &eor_8 ($T7,$T7,$T5); # sigma1(X[16..17]) |
| eval(shift(@insns)); |
| eval(shift(@insns)); |
| &eor_8 ($T5,$T5,$T5); |
| eval(shift(@insns)); |
| eval(shift(@insns)); |
| &mov (&Dhi($T5), &Dlo($T7)); |
| eval(shift(@insns)); |
| eval(shift(@insns)); |
| eval(shift(@insns)); |
| &add_32 (@X[0],@X[0],$T5); # X[2..3] += sigma1(X[16..17]) |
| eval(shift(@insns)); |
| eval(shift(@insns)); |
| eval(shift(@insns)); |
| &add_32 ($T0,$T0,@X[0]); |
| while($#insns>=1) { eval(shift(@insns)); } |
| &st1_32 ("{$T0}","[$Xfer], #16"); |
| eval(shift(@insns)); |
| |
| push(@X,shift(@X)); # "rotate" X[] |
| } |
| |
| sub Xpreload() |
| { use integer; |
| my $body = shift; |
| my @insns = (&$body,&$body,&$body,&$body); |
| my ($a,$b,$c,$d,$e,$f,$g,$h); |
| |
| eval(shift(@insns)); |
| eval(shift(@insns)); |
| &ld1_8 ("{@X[0]}","[$inp],#16"); |
| eval(shift(@insns)); |
| eval(shift(@insns)); |
| &ld1_32 ("{$T0}","[$Ktbl],#16"); |
| eval(shift(@insns)); |
| eval(shift(@insns)); |
| eval(shift(@insns)); |
| eval(shift(@insns)); |
| &rev32 (@X[0],@X[0]); |
| eval(shift(@insns)); |
| eval(shift(@insns)); |
| eval(shift(@insns)); |
| eval(shift(@insns)); |
| &add_32 ($T0,$T0,@X[0]); |
| foreach (@insns) { eval; } # remaining instructions |
| &st1_32 ("{$T0}","[$Xfer], #16"); |
| |
| push(@X,shift(@X)); # "rotate" X[] |
| } |
| |
| sub body_00_15 () { |
| ( |
| '($a,$b,$c,$d,$e,$f,$g,$h)=@V;'. |
| '&add ($h,$h,$t1)', # h+=X[i]+K[i] |
| '&add ($a,$a,$t4);'. # h+=Sigma0(a) from the past |
| '&and ($t1,$f,$e)', |
| '&bic ($t4,$g,$e)', |
| '&eor ($t0,$e,$e,"ror#".($Sigma1[1]-$Sigma1[0]))', |
| '&add ($a,$a,$t2)', # h+=Maj(a,b,c) from the past |
| '&orr ($t1,$t1,$t4)', # Ch(e,f,g) |
| '&eor ($t0,$t0,$e,"ror#".($Sigma1[2]-$Sigma1[0]))', # Sigma1(e) |
| '&eor ($t4,$a,$a,"ror#".($Sigma0[1]-$Sigma0[0]))', |
| '&add ($h,$h,$t1)', # h+=Ch(e,f,g) |
| '&ror ($t0,$t0,"#$Sigma1[0]")', |
| '&eor ($t2,$a,$b)', # a^b, b^c in next round |
| '&eor ($t4,$t4,$a,"ror#".($Sigma0[2]-$Sigma0[0]))', # Sigma0(a) |
| '&add ($h,$h,$t0)', # h+=Sigma1(e) |
| '&ldr ($t1,sprintf "[sp,#%d]",4*(($j+1)&15)) if (($j&15)!=15);'. |
| '&ldr ($t1,"[$Ktbl]") if ($j==15);'. |
| '&and ($t3,$t3,$t2)', # (b^c)&=(a^b) |
| '&ror ($t4,$t4,"#$Sigma0[0]")', |
| '&add ($d,$d,$h)', # d+=h |
| '&eor ($t3,$t3,$b)', # Maj(a,b,c) |
| '$j++; unshift(@V,pop(@V)); ($t2,$t3)=($t3,$t2);' |
| ) |
| } |
| |
| $code.=<<___; |
| #ifdef __KERNEL__ |
| .globl sha256_block_neon |
| #endif |
| .type sha256_block_neon,%function |
| .align 4 |
| sha256_block_neon: |
| .Lneon_entry: |
| stp x29, x30, [sp, #-16]! |
| mov x29, sp |
| sub sp,sp,#16*4 |
| |
| adr $Ktbl,.LK256 |
| add $num,$inp,$num,lsl#6 // len to point at the end of inp |
| |
| ld1.8 {@X[0]},[$inp], #16 |
| ld1.8 {@X[1]},[$inp], #16 |
| ld1.8 {@X[2]},[$inp], #16 |
| ld1.8 {@X[3]},[$inp], #16 |
| ld1.32 {$T0},[$Ktbl], #16 |
| ld1.32 {$T1},[$Ktbl], #16 |
| ld1.32 {$T2},[$Ktbl], #16 |
| ld1.32 {$T3},[$Ktbl], #16 |
| rev32 @X[0],@X[0] // yes, even on |
| rev32 @X[1],@X[1] // big-endian |
| rev32 @X[2],@X[2] |
| rev32 @X[3],@X[3] |
| mov $Xfer,sp |
| add.32 $T0,$T0,@X[0] |
| add.32 $T1,$T1,@X[1] |
| add.32 $T2,$T2,@X[2] |
| st1.32 {$T0-$T1},[$Xfer], #32 |
| add.32 $T3,$T3,@X[3] |
| st1.32 {$T2-$T3},[$Xfer] |
| sub $Xfer,$Xfer,#32 |
| |
| ldp $A,$B,[$ctx] |
| ldp $C,$D,[$ctx,#8] |
| ldp $E,$F,[$ctx,#16] |
| ldp $G,$H,[$ctx,#24] |
| ldr $t1,[sp,#0] |
| mov $t2,wzr |
| eor $t3,$B,$C |
| mov $t4,wzr |
| b .L_00_48 |
| |
| .align 4 |
| .L_00_48: |
| ___ |
| &Xupdate(\&body_00_15); |
| &Xupdate(\&body_00_15); |
| &Xupdate(\&body_00_15); |
| &Xupdate(\&body_00_15); |
| $code.=<<___; |
| cmp $t1,#0 // check for K256 terminator |
| ldr $t1,[sp,#0] |
| sub $Xfer,$Xfer,#64 |
| bne .L_00_48 |
| |
| sub $Ktbl,$Ktbl,#256 // rewind $Ktbl |
| cmp $inp,$num |
| mov $Xfer, #64 |
| csel $Xfer, $Xfer, xzr, eq |
| sub $inp,$inp,$Xfer // avoid SEGV |
| mov $Xfer,sp |
| ___ |
| &Xpreload(\&body_00_15); |
| &Xpreload(\&body_00_15); |
| &Xpreload(\&body_00_15); |
| &Xpreload(\&body_00_15); |
| $code.=<<___; |
| add $A,$A,$t4 // h+=Sigma0(a) from the past |
| ldp $t0,$t1,[$ctx,#0] |
| add $A,$A,$t2 // h+=Maj(a,b,c) from the past |
| ldp $t2,$t3,[$ctx,#8] |
| add $A,$A,$t0 // accumulate |
| add $B,$B,$t1 |
| ldp $t0,$t1,[$ctx,#16] |
| add $C,$C,$t2 |
| add $D,$D,$t3 |
| ldp $t2,$t3,[$ctx,#24] |
| add $E,$E,$t0 |
| add $F,$F,$t1 |
| ldr $t1,[sp,#0] |
| stp $A,$B,[$ctx,#0] |
| add $G,$G,$t2 |
| mov $t2,wzr |
| stp $C,$D,[$ctx,#8] |
| add $H,$H,$t3 |
| stp $E,$F,[$ctx,#16] |
| eor $t3,$B,$C |
| stp $G,$H,[$ctx,#24] |
| mov $t4,wzr |
| mov $Xfer,sp |
| b.ne .L_00_48 |
| |
| ldr x29,[x29] |
| add sp,sp,#16*4+16 |
| ret |
| .size sha256_block_neon,.-sha256_block_neon |
| ___ |
| } |
| |
| $code.=<<___; |
| #ifndef __KERNEL__ |
| .comm OPENSSL_armcap_P,4,4 |
| #endif |
| ___ |
| |
| { my %opcode = ( |
| "sha256h" => 0x5e004000, "sha256h2" => 0x5e005000, |
| "sha256su0" => 0x5e282800, "sha256su1" => 0x5e006000 ); |
| |
| sub unsha256 { |
| my ($mnemonic,$arg)=@_; |
| |
| $arg =~ m/[qv]([0-9]+)[^,]*,\s*[qv]([0-9]+)[^,]*(?:,\s*[qv]([0-9]+))?/o |
| && |
| sprintf ".inst\t0x%08x\t//%s %s", |
| $opcode{$mnemonic}|$1|($2<<5)|($3<<16), |
| $mnemonic,$arg; |
| } |
| } |
| |
| open SELF,$0; |
| while(<SELF>) { |
| next if (/^#!/); |
| last if (!s/^#/\/\// and !/^$/); |
| print; |
| } |
| close SELF; |
| |
| foreach(split("\n",$code)) { |
| |
| s/\`([^\`]*)\`/eval($1)/ge; |
| |
| s/\b(sha256\w+)\s+([qv].*)/unsha256($1,$2)/ge; |
| |
| s/\bq([0-9]+)\b/v$1.16b/g; # old->new registers |
| |
| s/\.[ui]?8(\s)/$1/; |
| s/\.\w?32\b// and s/\.16b/\.4s/g; |
| m/(ld|st)1[^\[]+\[0\]/ and s/\.4s/\.s/g; |
| |
| print $_,"\n"; |
| } |
| |
| close STDOUT; |