| // SPDX-License-Identifier: GPL-2.0 |
| /* |
| * arch/sparc/math-emu/math.c |
| * |
| * Copyright (C) 1998 Peter Maydell (pmaydell@chiark.greenend.org.uk) |
| * Copyright (C) 1997, 1999 Jakub Jelinek (jj@ultra.linux.cz) |
| * Copyright (C) 1999 David S. Miller (davem@redhat.com) |
| * |
| * This is a good place to start if you're trying to understand the |
| * emulation code, because it's pretty simple. What we do is |
| * essentially analyse the instruction to work out what the operation |
| * is and which registers are involved. We then execute the appropriate |
| * FXXXX function. [The floating point queue introduces a minor wrinkle; |
| * see below...] |
| * The fxxxxx.c files each emulate a single insn. They look relatively |
| * simple because the complexity is hidden away in an unholy tangle |
| * of preprocessor macros. |
| * |
| * The first layer of macros is single.h, double.h, quad.h. Generally |
| * these files define macros for working with floating point numbers |
| * of the three IEEE formats. FP_ADD_D(R,A,B) is for adding doubles, |
| * for instance. These macros are usually defined as calls to more |
| * generic macros (in this case _FP_ADD(D,2,R,X,Y) where the number |
| * of machine words required to store the given IEEE format is passed |
| * as a parameter. [double.h and co check the number of bits in a word |
| * and define FP_ADD_D & co appropriately]. |
| * The generic macros are defined in op-common.h. This is where all |
| * the grotty stuff like handling NaNs is coded. To handle the possible |
| * word sizes macros in op-common.h use macros like _FP_FRAC_SLL_##wc() |
| * where wc is the 'number of machine words' parameter (here 2). |
| * These are defined in the third layer of macros: op-1.h, op-2.h |
| * and op-4.h. These handle operations on floating point numbers composed |
| * of 1,2 and 4 machine words respectively. [For example, on sparc64 |
| * doubles are one machine word so macros in double.h eventually use |
| * constructs in op-1.h, but on sparc32 they use op-2.h definitions.] |
| * soft-fp.h is on the same level as op-common.h, and defines some |
| * macros which are independent of both word size and FP format. |
| * Finally, sfp-machine.h is the machine dependent part of the |
| * code: it defines the word size and what type a word is. It also |
| * defines how _FP_MUL_MEAT_t() maps to _FP_MUL_MEAT_n_* : op-n.h |
| * provide several possible flavours of multiply algorithm, most |
| * of which require that you supply some form of asm or C primitive to |
| * do the actual multiply. (such asm primitives should be defined |
| * in sfp-machine.h too). udivmodti4.c is the same sort of thing. |
| * |
| * There may be some errors here because I'm working from a |
| * SPARC architecture manual V9, and what I really want is V8... |
| * Also, the insns which can generate exceptions seem to be a |
| * greater subset of the FPops than for V9 (for example, FCMPED |
| * has to be emulated on V8). So I think I'm going to have |
| * to emulate them all just to be on the safe side... |
| * |
| * Emulation routines originate from soft-fp package, which is |
| * part of glibc and has appropriate copyrights in it (allegedly). |
| * |
| * NB: on sparc int == long == 4 bytes, long long == 8 bytes. |
| * Most bits of the kernel seem to go for long rather than int, |
| * so we follow that practice... |
| */ |
| |
| /* TODO: |
| * fpsave() saves the FP queue but fpload() doesn't reload it. |
| * Therefore when we context switch or change FPU ownership |
| * we have to check to see if the queue had anything in it and |
| * emulate it if it did. This is going to be a pain. |
| */ |
| |
| #include <linux/types.h> |
| #include <linux/sched.h> |
| #include <linux/mm.h> |
| #include <linux/perf_event.h> |
| #include <linux/uaccess.h> |
| |
| #include "sfp-util_32.h" |
| #include <math-emu/soft-fp.h> |
| #include <math-emu/single.h> |
| #include <math-emu/double.h> |
| #include <math-emu/quad.h> |
| |
| #define FLOATFUNC(x) extern int x(void *,void *,void *) |
| |
| /* The Vn labels indicate what version of the SPARC architecture gas thinks |
| * each insn is. This is from the binutils source :-> |
| */ |
| /* quadword instructions */ |
| #define FSQRTQ 0x02b /* v8 */ |
| #define FADDQ 0x043 /* v8 */ |
| #define FSUBQ 0x047 /* v8 */ |
| #define FMULQ 0x04b /* v8 */ |
| #define FDIVQ 0x04f /* v8 */ |
| #define FDMULQ 0x06e /* v8 */ |
| #define FQTOS 0x0c7 /* v8 */ |
| #define FQTOD 0x0cb /* v8 */ |
| #define FITOQ 0x0cc /* v8 */ |
| #define FSTOQ 0x0cd /* v8 */ |
| #define FDTOQ 0x0ce /* v8 */ |
| #define FQTOI 0x0d3 /* v8 */ |
| #define FCMPQ 0x053 /* v8 */ |
| #define FCMPEQ 0x057 /* v8 */ |
| /* single/double instructions (subnormal): should all work */ |
| #define FSQRTS 0x029 /* v7 */ |
| #define FSQRTD 0x02a /* v7 */ |
| #define FADDS 0x041 /* v6 */ |
| #define FADDD 0x042 /* v6 */ |
| #define FSUBS 0x045 /* v6 */ |
| #define FSUBD 0x046 /* v6 */ |
| #define FMULS 0x049 /* v6 */ |
| #define FMULD 0x04a /* v6 */ |
| #define FDIVS 0x04d /* v6 */ |
| #define FDIVD 0x04e /* v6 */ |
| #define FSMULD 0x069 /* v6 */ |
| #define FDTOS 0x0c6 /* v6 */ |
| #define FSTOD 0x0c9 /* v6 */ |
| #define FSTOI 0x0d1 /* v6 */ |
| #define FDTOI 0x0d2 /* v6 */ |
| #define FABSS 0x009 /* v6 */ |
| #define FCMPS 0x051 /* v6 */ |
| #define FCMPES 0x055 /* v6 */ |
| #define FCMPD 0x052 /* v6 */ |
| #define FCMPED 0x056 /* v6 */ |
| #define FMOVS 0x001 /* v6 */ |
| #define FNEGS 0x005 /* v6 */ |
| #define FITOS 0x0c4 /* v6 */ |
| #define FITOD 0x0c8 /* v6 */ |
| |
| #define FSR_TEM_SHIFT 23UL |
| #define FSR_TEM_MASK (0x1fUL << FSR_TEM_SHIFT) |
| #define FSR_AEXC_SHIFT 5UL |
| #define FSR_AEXC_MASK (0x1fUL << FSR_AEXC_SHIFT) |
| #define FSR_CEXC_SHIFT 0UL |
| #define FSR_CEXC_MASK (0x1fUL << FSR_CEXC_SHIFT) |
| |
| static int do_one_mathemu(u32 insn, unsigned long *fsr, unsigned long *fregs); |
| |
| /* Unlike the Sparc64 version (which has a struct fpustate), we |
| * pass the taskstruct corresponding to the task which currently owns the |
| * FPU. This is partly because we don't have the fpustate struct and |
| * partly because the task owning the FPU isn't always current (as is |
| * the case for the Sparc64 port). This is probably SMP-related... |
| * This function returns 1 if all queued insns were emulated successfully. |
| * The test for unimplemented FPop in kernel mode has been moved into |
| * kernel/traps.c for simplicity. |
| */ |
| int do_mathemu(struct pt_regs *regs, struct task_struct *fpt) |
| { |
| /* regs->pc isn't necessarily the PC at which the offending insn is sitting. |
| * The FPU maintains a queue of FPops which cause traps. |
| * When it hits an instruction that requires that the trapped op succeeded |
| * (usually because it reads a reg. that the trapped op wrote) then it |
| * causes this exception. We need to emulate all the insns on the queue |
| * and then allow the op to proceed. |
| * This code should also handle the case where the trap was precise, |
| * in which case the queue length is zero and regs->pc points at the |
| * single FPop to be emulated. (this case is untested, though :->) |
| * You'll need this case if you want to be able to emulate all FPops |
| * because the FPU either doesn't exist or has been software-disabled. |
| * [The UltraSPARC makes FP a precise trap; this isn't as stupid as it |
| * might sound because the Ultra does funky things with a superscalar |
| * architecture.] |
| */ |
| |
| /* You wouldn't believe how often I typed 'ftp' when I meant 'fpt' :-> */ |
| |
| int i; |
| int retcode = 0; /* assume all succeed */ |
| unsigned long insn; |
| |
| perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS, 1, regs, 0); |
| |
| #ifdef DEBUG_MATHEMU |
| printk("In do_mathemu()... pc is %08lx\n", regs->pc); |
| printk("fpqdepth is %ld\n", fpt->thread.fpqdepth); |
| for (i = 0; i < fpt->thread.fpqdepth; i++) |
| printk("%d: %08lx at %08lx\n", i, fpt->thread.fpqueue[i].insn, |
| (unsigned long)fpt->thread.fpqueue[i].insn_addr); |
| #endif |
| |
| if (fpt->thread.fpqdepth == 0) { /* no queue, guilty insn is at regs->pc */ |
| #ifdef DEBUG_MATHEMU |
| printk("precise trap at %08lx\n", regs->pc); |
| #endif |
| if (!get_user(insn, (u32 __user *) regs->pc)) { |
| retcode = do_one_mathemu(insn, &fpt->thread.fsr, fpt->thread.float_regs); |
| if (retcode) { |
| /* in this case we need to fix up PC & nPC */ |
| regs->pc = regs->npc; |
| regs->npc += 4; |
| } |
| } |
| return retcode; |
| } |
| |
| /* Normal case: need to empty the queue... */ |
| for (i = 0; i < fpt->thread.fpqdepth; i++) { |
| retcode = do_one_mathemu(fpt->thread.fpqueue[i].insn, &(fpt->thread.fsr), fpt->thread.float_regs); |
| if (!retcode) /* insn failed, no point doing any more */ |
| break; |
| } |
| /* Now empty the queue and clear the queue_not_empty flag */ |
| if (retcode) |
| fpt->thread.fsr &= ~(0x3000 | FSR_CEXC_MASK); |
| else |
| fpt->thread.fsr &= ~0x3000; |
| fpt->thread.fpqdepth = 0; |
| |
| return retcode; |
| } |
| |
| /* All routines returning an exception to raise should detect |
| * such exceptions _before_ rounding to be consistent with |
| * the behavior of the hardware in the implemented cases |
| * (and thus with the recommendations in the V9 architecture |
| * manual). |
| * |
| * We return 0 if a SIGFPE should be sent, 1 otherwise. |
| */ |
| static inline int record_exception(unsigned long *pfsr, int eflag) |
| { |
| unsigned long fsr = *pfsr; |
| int would_trap; |
| |
| /* Determine if this exception would have generated a trap. */ |
| would_trap = (fsr & ((long)eflag << FSR_TEM_SHIFT)) != 0UL; |
| |
| /* If trapping, we only want to signal one bit. */ |
| if (would_trap != 0) { |
| eflag &= ((fsr & FSR_TEM_MASK) >> FSR_TEM_SHIFT); |
| if ((eflag & (eflag - 1)) != 0) { |
| if (eflag & FP_EX_INVALID) |
| eflag = FP_EX_INVALID; |
| else if (eflag & FP_EX_OVERFLOW) |
| eflag = FP_EX_OVERFLOW; |
| else if (eflag & FP_EX_UNDERFLOW) |
| eflag = FP_EX_UNDERFLOW; |
| else if (eflag & FP_EX_DIVZERO) |
| eflag = FP_EX_DIVZERO; |
| else if (eflag & FP_EX_INEXACT) |
| eflag = FP_EX_INEXACT; |
| } |
| } |
| |
| /* Set CEXC, here is the rule: |
| * |
| * In general all FPU ops will set one and only one |
| * bit in the CEXC field, this is always the case |
| * when the IEEE exception trap is enabled in TEM. |
| */ |
| fsr &= ~(FSR_CEXC_MASK); |
| fsr |= ((long)eflag << FSR_CEXC_SHIFT); |
| |
| /* Set the AEXC field, rule is: |
| * |
| * If a trap would not be generated, the |
| * CEXC just generated is OR'd into the |
| * existing value of AEXC. |
| */ |
| if (would_trap == 0) |
| fsr |= ((long)eflag << FSR_AEXC_SHIFT); |
| |
| /* If trapping, indicate fault trap type IEEE. */ |
| if (would_trap != 0) |
| fsr |= (1UL << 14); |
| |
| *pfsr = fsr; |
| |
| return (would_trap ? 0 : 1); |
| } |
| |
| typedef union { |
| u32 s; |
| u64 d; |
| u64 q[2]; |
| } *argp; |
| |
| static int do_one_mathemu(u32 insn, unsigned long *pfsr, unsigned long *fregs) |
| { |
| /* Emulate the given insn, updating fsr and fregs appropriately. */ |
| int type = 0; |
| /* r is rd, b is rs2 and a is rs1. The *u arg tells |
| whether the argument should be packed/unpacked (0 - do not unpack/pack, 1 - unpack/pack) |
| non-u args tells the size of the argument (0 - no argument, 1 - single, 2 - double, 3 - quad */ |
| #define TYPE(dummy, r, ru, b, bu, a, au) type = (au << 2) | (a << 0) | (bu << 5) | (b << 3) | (ru << 8) | (r << 6) |
| int freg; |
| argp rs1 = NULL, rs2 = NULL, rd = NULL; |
| FP_DECL_EX; |
| FP_DECL_S(SA); FP_DECL_S(SB); FP_DECL_S(SR); |
| FP_DECL_D(DA); FP_DECL_D(DB); FP_DECL_D(DR); |
| FP_DECL_Q(QA); FP_DECL_Q(QB); FP_DECL_Q(QR); |
| int IR; |
| long fsr; |
| |
| #ifdef DEBUG_MATHEMU |
| printk("In do_mathemu(), emulating %08lx\n", insn); |
| #endif |
| |
| if ((insn & 0xc1f80000) == 0x81a00000) /* FPOP1 */ { |
| switch ((insn >> 5) & 0x1ff) { |
| case FSQRTQ: TYPE(3,3,1,3,1,0,0); break; |
| case FADDQ: |
| case FSUBQ: |
| case FMULQ: |
| case FDIVQ: TYPE(3,3,1,3,1,3,1); break; |
| case FDMULQ: TYPE(3,3,1,2,1,2,1); break; |
| case FQTOS: TYPE(3,1,1,3,1,0,0); break; |
| case FQTOD: TYPE(3,2,1,3,1,0,0); break; |
| case FITOQ: TYPE(3,3,1,1,0,0,0); break; |
| case FSTOQ: TYPE(3,3,1,1,1,0,0); break; |
| case FDTOQ: TYPE(3,3,1,2,1,0,0); break; |
| case FQTOI: TYPE(3,1,0,3,1,0,0); break; |
| case FSQRTS: TYPE(2,1,1,1,1,0,0); break; |
| case FSQRTD: TYPE(2,2,1,2,1,0,0); break; |
| case FADDD: |
| case FSUBD: |
| case FMULD: |
| case FDIVD: TYPE(2,2,1,2,1,2,1); break; |
| case FADDS: |
| case FSUBS: |
| case FMULS: |
| case FDIVS: TYPE(2,1,1,1,1,1,1); break; |
| case FSMULD: TYPE(2,2,1,1,1,1,1); break; |
| case FDTOS: TYPE(2,1,1,2,1,0,0); break; |
| case FSTOD: TYPE(2,2,1,1,1,0,0); break; |
| case FSTOI: TYPE(2,1,0,1,1,0,0); break; |
| case FDTOI: TYPE(2,1,0,2,1,0,0); break; |
| case FITOS: TYPE(2,1,1,1,0,0,0); break; |
| case FITOD: TYPE(2,2,1,1,0,0,0); break; |
| case FMOVS: |
| case FABSS: |
| case FNEGS: TYPE(2,1,0,1,0,0,0); break; |
| } |
| } else if ((insn & 0xc1f80000) == 0x81a80000) /* FPOP2 */ { |
| switch ((insn >> 5) & 0x1ff) { |
| case FCMPS: TYPE(3,0,0,1,1,1,1); break; |
| case FCMPES: TYPE(3,0,0,1,1,1,1); break; |
| case FCMPD: TYPE(3,0,0,2,1,2,1); break; |
| case FCMPED: TYPE(3,0,0,2,1,2,1); break; |
| case FCMPQ: TYPE(3,0,0,3,1,3,1); break; |
| case FCMPEQ: TYPE(3,0,0,3,1,3,1); break; |
| } |
| } |
| |
| if (!type) { /* oops, didn't recognise that FPop */ |
| #ifdef DEBUG_MATHEMU |
| printk("attempt to emulate unrecognised FPop!\n"); |
| #endif |
| return 0; |
| } |
| |
| /* Decode the registers to be used */ |
| freg = (*pfsr >> 14) & 0xf; |
| |
| *pfsr &= ~0x1c000; /* clear the traptype bits */ |
| |
| freg = ((insn >> 14) & 0x1f); |
| switch (type & 0x3) { /* is rs1 single, double or quad? */ |
| case 3: |
| if (freg & 3) { /* quadwords must have bits 4&5 of the */ |
| /* encoded reg. number set to zero. */ |
| *pfsr |= (6 << 14); |
| return 0; /* simulate invalid_fp_register exception */ |
| } |
| fallthrough; |
| case 2: |
| if (freg & 1) { /* doublewords must have bit 5 zeroed */ |
| *pfsr |= (6 << 14); |
| return 0; |
| } |
| } |
| rs1 = (argp)&fregs[freg]; |
| switch (type & 0x7) { |
| case 7: FP_UNPACK_QP (QA, rs1); break; |
| case 6: FP_UNPACK_DP (DA, rs1); break; |
| case 5: FP_UNPACK_SP (SA, rs1); break; |
| } |
| freg = (insn & 0x1f); |
| switch ((type >> 3) & 0x3) { /* same again for rs2 */ |
| case 3: |
| if (freg & 3) { /* quadwords must have bits 4&5 of the */ |
| /* encoded reg. number set to zero. */ |
| *pfsr |= (6 << 14); |
| return 0; /* simulate invalid_fp_register exception */ |
| } |
| fallthrough; |
| case 2: |
| if (freg & 1) { /* doublewords must have bit 5 zeroed */ |
| *pfsr |= (6 << 14); |
| return 0; |
| } |
| } |
| rs2 = (argp)&fregs[freg]; |
| switch ((type >> 3) & 0x7) { |
| case 7: FP_UNPACK_QP (QB, rs2); break; |
| case 6: FP_UNPACK_DP (DB, rs2); break; |
| case 5: FP_UNPACK_SP (SB, rs2); break; |
| } |
| freg = ((insn >> 25) & 0x1f); |
| switch ((type >> 6) & 0x3) { /* and finally rd. This one's a bit different */ |
| case 0: /* dest is fcc. (this must be FCMPQ or FCMPEQ) */ |
| if (freg) { /* V8 has only one set of condition codes, so */ |
| /* anything but 0 in the rd field is an error */ |
| *pfsr |= (6 << 14); /* (should probably flag as invalid opcode */ |
| return 0; /* but SIGFPE will do :-> ) */ |
| } |
| break; |
| case 3: |
| if (freg & 3) { /* quadwords must have bits 4&5 of the */ |
| /* encoded reg. number set to zero. */ |
| *pfsr |= (6 << 14); |
| return 0; /* simulate invalid_fp_register exception */ |
| } |
| fallthrough; |
| case 2: |
| if (freg & 1) { /* doublewords must have bit 5 zeroed */ |
| *pfsr |= (6 << 14); |
| return 0; |
| } |
| fallthrough; |
| case 1: |
| rd = (void *)&fregs[freg]; |
| break; |
| } |
| #ifdef DEBUG_MATHEMU |
| printk("executing insn...\n"); |
| #endif |
| /* do the Right Thing */ |
| switch ((insn >> 5) & 0x1ff) { |
| /* + */ |
| case FADDS: FP_ADD_S (SR, SA, SB); break; |
| case FADDD: FP_ADD_D (DR, DA, DB); break; |
| case FADDQ: FP_ADD_Q (QR, QA, QB); break; |
| /* - */ |
| case FSUBS: FP_SUB_S (SR, SA, SB); break; |
| case FSUBD: FP_SUB_D (DR, DA, DB); break; |
| case FSUBQ: FP_SUB_Q (QR, QA, QB); break; |
| /* * */ |
| case FMULS: FP_MUL_S (SR, SA, SB); break; |
| case FSMULD: FP_CONV (D, S, 2, 1, DA, SA); |
| FP_CONV (D, S, 2, 1, DB, SB); |
| case FMULD: FP_MUL_D (DR, DA, DB); break; |
| case FDMULQ: FP_CONV (Q, D, 4, 2, QA, DA); |
| FP_CONV (Q, D, 4, 2, QB, DB); |
| case FMULQ: FP_MUL_Q (QR, QA, QB); break; |
| /* / */ |
| case FDIVS: FP_DIV_S (SR, SA, SB); break; |
| case FDIVD: FP_DIV_D (DR, DA, DB); break; |
| case FDIVQ: FP_DIV_Q (QR, QA, QB); break; |
| /* sqrt */ |
| case FSQRTS: FP_SQRT_S (SR, SB); break; |
| case FSQRTD: FP_SQRT_D (DR, DB); break; |
| case FSQRTQ: FP_SQRT_Q (QR, QB); break; |
| /* mov */ |
| case FMOVS: rd->s = rs2->s; break; |
| case FABSS: rd->s = rs2->s & 0x7fffffff; break; |
| case FNEGS: rd->s = rs2->s ^ 0x80000000; break; |
| /* float to int */ |
| case FSTOI: FP_TO_INT_S (IR, SB, 32, 1); break; |
| case FDTOI: FP_TO_INT_D (IR, DB, 32, 1); break; |
| case FQTOI: FP_TO_INT_Q (IR, QB, 32, 1); break; |
| /* int to float */ |
| case FITOS: IR = rs2->s; FP_FROM_INT_S (SR, IR, 32, int); break; |
| case FITOD: IR = rs2->s; FP_FROM_INT_D (DR, IR, 32, int); break; |
| case FITOQ: IR = rs2->s; FP_FROM_INT_Q (QR, IR, 32, int); break; |
| /* float to float */ |
| case FSTOD: FP_CONV (D, S, 2, 1, DR, SB); break; |
| case FSTOQ: FP_CONV (Q, S, 4, 1, QR, SB); break; |
| case FDTOQ: FP_CONV (Q, D, 4, 2, QR, DB); break; |
| case FDTOS: FP_CONV (S, D, 1, 2, SR, DB); break; |
| case FQTOS: FP_CONV (S, Q, 1, 4, SR, QB); break; |
| case FQTOD: FP_CONV (D, Q, 2, 4, DR, QB); break; |
| /* comparison */ |
| case FCMPS: |
| case FCMPES: |
| FP_CMP_S(IR, SB, SA, 3); |
| if (IR == 3 && |
| (((insn >> 5) & 0x1ff) == FCMPES || |
| FP_ISSIGNAN_S(SA) || |
| FP_ISSIGNAN_S(SB))) |
| FP_SET_EXCEPTION (FP_EX_INVALID); |
| break; |
| case FCMPD: |
| case FCMPED: |
| FP_CMP_D(IR, DB, DA, 3); |
| if (IR == 3 && |
| (((insn >> 5) & 0x1ff) == FCMPED || |
| FP_ISSIGNAN_D(DA) || |
| FP_ISSIGNAN_D(DB))) |
| FP_SET_EXCEPTION (FP_EX_INVALID); |
| break; |
| case FCMPQ: |
| case FCMPEQ: |
| FP_CMP_Q(IR, QB, QA, 3); |
| if (IR == 3 && |
| (((insn >> 5) & 0x1ff) == FCMPEQ || |
| FP_ISSIGNAN_Q(QA) || |
| FP_ISSIGNAN_Q(QB))) |
| FP_SET_EXCEPTION (FP_EX_INVALID); |
| } |
| if (!FP_INHIBIT_RESULTS) { |
| switch ((type >> 6) & 0x7) { |
| case 0: fsr = *pfsr; |
| if (IR == -1) IR = 2; |
| /* fcc is always fcc0 */ |
| fsr &= ~0xc00; fsr |= (IR << 10); |
| *pfsr = fsr; |
| break; |
| case 1: rd->s = IR; break; |
| case 5: FP_PACK_SP (rd, SR); break; |
| case 6: FP_PACK_DP (rd, DR); break; |
| case 7: FP_PACK_QP (rd, QR); break; |
| } |
| } |
| if (_fex == 0) |
| return 1; /* success! */ |
| return record_exception(pfsr, _fex); |
| } |