blob: 7cc5428c3b3d2562034ffa54da740acd3234dec9 [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0+
/* Copyright (C) 2011 Richard Cochran <richardcochran@gmail.com> */
#include <linux/module.h>
#include <linux/device.h>
#include <linux/pci.h>
#include <linux/ptp_classify.h>
#include "igb.h"
#define INCVALUE_MASK 0x7fffffff
#define ISGN 0x80000000
/* The 82580 timesync updates the system timer every 8ns by 8ns,
* and this update value cannot be reprogrammed.
*
* Neither the 82576 nor the 82580 offer registers wide enough to hold
* nanoseconds time values for very long. For the 82580, SYSTIM always
* counts nanoseconds, but the upper 24 bits are not available. The
* frequency is adjusted by changing the 32 bit fractional nanoseconds
* register, TIMINCA.
*
* For the 82576, the SYSTIM register time unit is affect by the
* choice of the 24 bit TININCA:IV (incvalue) field. Five bits of this
* field are needed to provide the nominal 16 nanosecond period,
* leaving 19 bits for fractional nanoseconds.
*
* We scale the NIC clock cycle by a large factor so that relatively
* small clock corrections can be added or subtracted at each clock
* tick. The drawbacks of a large factor are a) that the clock
* register overflows more quickly (not such a big deal) and b) that
* the increment per tick has to fit into 24 bits. As a result we
* need to use a shift of 19 so we can fit a value of 16 into the
* TIMINCA register.
*
*
* SYSTIMH SYSTIML
* +--------------+ +---+---+------+
* 82576 | 32 | | 8 | 5 | 19 |
* +--------------+ +---+---+------+
* \________ 45 bits _______/ fract
*
* +----------+---+ +--------------+
* 82580 | 24 | 8 | | 32 |
* +----------+---+ +--------------+
* reserved \______ 40 bits _____/
*
*
* The 45 bit 82576 SYSTIM overflows every
* 2^45 * 10^-9 / 3600 = 9.77 hours.
*
* The 40 bit 82580 SYSTIM overflows every
* 2^40 * 10^-9 / 60 = 18.3 minutes.
*
* SYSTIM is converted to real time using a timecounter. As
* timecounter_cyc2time() allows old timestamps, the timecounter needs
* to be updated at least once per half of the SYSTIM interval.
* Scheduling of delayed work is not very accurate, and also the NIC
* clock can be adjusted to run up to 6% faster and the system clock
* up to 10% slower, so we aim for 6 minutes to be sure the actual
* interval in the NIC time is shorter than 9.16 minutes.
*/
#define IGB_SYSTIM_OVERFLOW_PERIOD (HZ * 60 * 6)
#define IGB_PTP_TX_TIMEOUT (HZ * 15)
#define INCPERIOD_82576 BIT(E1000_TIMINCA_16NS_SHIFT)
#define INCVALUE_82576_MASK GENMASK(E1000_TIMINCA_16NS_SHIFT - 1, 0)
#define INCVALUE_82576 (16u << IGB_82576_TSYNC_SHIFT)
#define IGB_NBITS_82580 40
static void igb_ptp_tx_hwtstamp(struct igb_adapter *adapter);
/* SYSTIM read access for the 82576 */
static u64 igb_ptp_read_82576(const struct cyclecounter *cc)
{
struct igb_adapter *igb = container_of(cc, struct igb_adapter, cc);
struct e1000_hw *hw = &igb->hw;
u64 val;
u32 lo, hi;
lo = rd32(E1000_SYSTIML);
hi = rd32(E1000_SYSTIMH);
val = ((u64) hi) << 32;
val |= lo;
return val;
}
/* SYSTIM read access for the 82580 */
static u64 igb_ptp_read_82580(const struct cyclecounter *cc)
{
struct igb_adapter *igb = container_of(cc, struct igb_adapter, cc);
struct e1000_hw *hw = &igb->hw;
u32 lo, hi;
u64 val;
/* The timestamp latches on lowest register read. For the 82580
* the lowest register is SYSTIMR instead of SYSTIML. However we only
* need to provide nanosecond resolution, so we just ignore it.
*/
rd32(E1000_SYSTIMR);
lo = rd32(E1000_SYSTIML);
hi = rd32(E1000_SYSTIMH);
val = ((u64) hi) << 32;
val |= lo;
return val;
}
/* SYSTIM read access for I210/I211 */
static void igb_ptp_read_i210(struct igb_adapter *adapter,
struct timespec64 *ts)
{
struct e1000_hw *hw = &adapter->hw;
u32 sec, nsec;
/* The timestamp latches on lowest register read. For I210/I211, the
* lowest register is SYSTIMR. Since we only need to provide nanosecond
* resolution, we can ignore it.
*/
rd32(E1000_SYSTIMR);
nsec = rd32(E1000_SYSTIML);
sec = rd32(E1000_SYSTIMH);
ts->tv_sec = sec;
ts->tv_nsec = nsec;
}
static void igb_ptp_write_i210(struct igb_adapter *adapter,
const struct timespec64 *ts)
{
struct e1000_hw *hw = &adapter->hw;
/* Writing the SYSTIMR register is not necessary as it only provides
* sub-nanosecond resolution.
*/
wr32(E1000_SYSTIML, ts->tv_nsec);
wr32(E1000_SYSTIMH, (u32)ts->tv_sec);
}
/**
* igb_ptp_systim_to_hwtstamp - convert system time value to hw timestamp
* @adapter: board private structure
* @hwtstamps: timestamp structure to update
* @systim: unsigned 64bit system time value.
*
* We need to convert the system time value stored in the RX/TXSTMP registers
* into a hwtstamp which can be used by the upper level timestamping functions.
*
* The 'tmreg_lock' spinlock is used to protect the consistency of the
* system time value. This is needed because reading the 64 bit time
* value involves reading two (or three) 32 bit registers. The first
* read latches the value. Ditto for writing.
*
* In addition, here have extended the system time with an overflow
* counter in software.
**/
static void igb_ptp_systim_to_hwtstamp(struct igb_adapter *adapter,
struct skb_shared_hwtstamps *hwtstamps,
u64 systim)
{
unsigned long flags;
u64 ns;
switch (adapter->hw.mac.type) {
case e1000_82576:
case e1000_82580:
case e1000_i354:
case e1000_i350:
spin_lock_irqsave(&adapter->tmreg_lock, flags);
ns = timecounter_cyc2time(&adapter->tc, systim);
spin_unlock_irqrestore(&adapter->tmreg_lock, flags);
memset(hwtstamps, 0, sizeof(*hwtstamps));
hwtstamps->hwtstamp = ns_to_ktime(ns);
break;
case e1000_i210:
case e1000_i211:
memset(hwtstamps, 0, sizeof(*hwtstamps));
/* Upper 32 bits contain s, lower 32 bits contain ns. */
hwtstamps->hwtstamp = ktime_set(systim >> 32,
systim & 0xFFFFFFFF);
break;
default:
break;
}
}
/* PTP clock operations */
static int igb_ptp_adjfreq_82576(struct ptp_clock_info *ptp, s32 ppb)
{
struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
ptp_caps);
struct e1000_hw *hw = &igb->hw;
int neg_adj = 0;
u64 rate;
u32 incvalue;
if (ppb < 0) {
neg_adj = 1;
ppb = -ppb;
}
rate = ppb;
rate <<= 14;
rate = div_u64(rate, 1953125);
incvalue = 16 << IGB_82576_TSYNC_SHIFT;
if (neg_adj)
incvalue -= rate;
else
incvalue += rate;
wr32(E1000_TIMINCA, INCPERIOD_82576 | (incvalue & INCVALUE_82576_MASK));
return 0;
}
static int igb_ptp_adjfine_82580(struct ptp_clock_info *ptp, long scaled_ppm)
{
struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
ptp_caps);
struct e1000_hw *hw = &igb->hw;
int neg_adj = 0;
u64 rate;
u32 inca;
if (scaled_ppm < 0) {
neg_adj = 1;
scaled_ppm = -scaled_ppm;
}
rate = scaled_ppm;
rate <<= 13;
rate = div_u64(rate, 15625);
inca = rate & INCVALUE_MASK;
if (neg_adj)
inca |= ISGN;
wr32(E1000_TIMINCA, inca);
return 0;
}
static int igb_ptp_adjtime_82576(struct ptp_clock_info *ptp, s64 delta)
{
struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
ptp_caps);
unsigned long flags;
spin_lock_irqsave(&igb->tmreg_lock, flags);
timecounter_adjtime(&igb->tc, delta);
spin_unlock_irqrestore(&igb->tmreg_lock, flags);
return 0;
}
static int igb_ptp_adjtime_i210(struct ptp_clock_info *ptp, s64 delta)
{
struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
ptp_caps);
unsigned long flags;
struct timespec64 now, then = ns_to_timespec64(delta);
spin_lock_irqsave(&igb->tmreg_lock, flags);
igb_ptp_read_i210(igb, &now);
now = timespec64_add(now, then);
igb_ptp_write_i210(igb, (const struct timespec64 *)&now);
spin_unlock_irqrestore(&igb->tmreg_lock, flags);
return 0;
}
static int igb_ptp_gettimex_82576(struct ptp_clock_info *ptp,
struct timespec64 *ts,
struct ptp_system_timestamp *sts)
{
struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
ptp_caps);
struct e1000_hw *hw = &igb->hw;
unsigned long flags;
u32 lo, hi;
u64 ns;
spin_lock_irqsave(&igb->tmreg_lock, flags);
ptp_read_system_prets(sts);
lo = rd32(E1000_SYSTIML);
ptp_read_system_postts(sts);
hi = rd32(E1000_SYSTIMH);
ns = timecounter_cyc2time(&igb->tc, ((u64)hi << 32) | lo);
spin_unlock_irqrestore(&igb->tmreg_lock, flags);
*ts = ns_to_timespec64(ns);
return 0;
}
static int igb_ptp_gettimex_82580(struct ptp_clock_info *ptp,
struct timespec64 *ts,
struct ptp_system_timestamp *sts)
{
struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
ptp_caps);
struct e1000_hw *hw = &igb->hw;
unsigned long flags;
u32 lo, hi;
u64 ns;
spin_lock_irqsave(&igb->tmreg_lock, flags);
ptp_read_system_prets(sts);
rd32(E1000_SYSTIMR);
ptp_read_system_postts(sts);
lo = rd32(E1000_SYSTIML);
hi = rd32(E1000_SYSTIMH);
ns = timecounter_cyc2time(&igb->tc, ((u64)hi << 32) | lo);
spin_unlock_irqrestore(&igb->tmreg_lock, flags);
*ts = ns_to_timespec64(ns);
return 0;
}
static int igb_ptp_gettimex_i210(struct ptp_clock_info *ptp,
struct timespec64 *ts,
struct ptp_system_timestamp *sts)
{
struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
ptp_caps);
struct e1000_hw *hw = &igb->hw;
unsigned long flags;
spin_lock_irqsave(&igb->tmreg_lock, flags);
ptp_read_system_prets(sts);
rd32(E1000_SYSTIMR);
ptp_read_system_postts(sts);
ts->tv_nsec = rd32(E1000_SYSTIML);
ts->tv_sec = rd32(E1000_SYSTIMH);
spin_unlock_irqrestore(&igb->tmreg_lock, flags);
return 0;
}
static int igb_ptp_settime_82576(struct ptp_clock_info *ptp,
const struct timespec64 *ts)
{
struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
ptp_caps);
unsigned long flags;
u64 ns;
ns = timespec64_to_ns(ts);
spin_lock_irqsave(&igb->tmreg_lock, flags);
timecounter_init(&igb->tc, &igb->cc, ns);
spin_unlock_irqrestore(&igb->tmreg_lock, flags);
return 0;
}
static int igb_ptp_settime_i210(struct ptp_clock_info *ptp,
const struct timespec64 *ts)
{
struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
ptp_caps);
unsigned long flags;
spin_lock_irqsave(&igb->tmreg_lock, flags);
igb_ptp_write_i210(igb, ts);
spin_unlock_irqrestore(&igb->tmreg_lock, flags);
return 0;
}
static void igb_pin_direction(int pin, int input, u32 *ctrl, u32 *ctrl_ext)
{
u32 *ptr = pin < 2 ? ctrl : ctrl_ext;
static const u32 mask[IGB_N_SDP] = {
E1000_CTRL_SDP0_DIR,
E1000_CTRL_SDP1_DIR,
E1000_CTRL_EXT_SDP2_DIR,
E1000_CTRL_EXT_SDP3_DIR,
};
if (input)
*ptr &= ~mask[pin];
else
*ptr |= mask[pin];
}
static void igb_pin_extts(struct igb_adapter *igb, int chan, int pin)
{
static const u32 aux0_sel_sdp[IGB_N_SDP] = {
AUX0_SEL_SDP0, AUX0_SEL_SDP1, AUX0_SEL_SDP2, AUX0_SEL_SDP3,
};
static const u32 aux1_sel_sdp[IGB_N_SDP] = {
AUX1_SEL_SDP0, AUX1_SEL_SDP1, AUX1_SEL_SDP2, AUX1_SEL_SDP3,
};
static const u32 ts_sdp_en[IGB_N_SDP] = {
TS_SDP0_EN, TS_SDP1_EN, TS_SDP2_EN, TS_SDP3_EN,
};
struct e1000_hw *hw = &igb->hw;
u32 ctrl, ctrl_ext, tssdp = 0;
ctrl = rd32(E1000_CTRL);
ctrl_ext = rd32(E1000_CTRL_EXT);
tssdp = rd32(E1000_TSSDP);
igb_pin_direction(pin, 1, &ctrl, &ctrl_ext);
/* Make sure this pin is not enabled as an output. */
tssdp &= ~ts_sdp_en[pin];
if (chan == 1) {
tssdp &= ~AUX1_SEL_SDP3;
tssdp |= aux1_sel_sdp[pin] | AUX1_TS_SDP_EN;
} else {
tssdp &= ~AUX0_SEL_SDP3;
tssdp |= aux0_sel_sdp[pin] | AUX0_TS_SDP_EN;
}
wr32(E1000_TSSDP, tssdp);
wr32(E1000_CTRL, ctrl);
wr32(E1000_CTRL_EXT, ctrl_ext);
}
static void igb_pin_perout(struct igb_adapter *igb, int chan, int pin, int freq)
{
static const u32 aux0_sel_sdp[IGB_N_SDP] = {
AUX0_SEL_SDP0, AUX0_SEL_SDP1, AUX0_SEL_SDP2, AUX0_SEL_SDP3,
};
static const u32 aux1_sel_sdp[IGB_N_SDP] = {
AUX1_SEL_SDP0, AUX1_SEL_SDP1, AUX1_SEL_SDP2, AUX1_SEL_SDP3,
};
static const u32 ts_sdp_en[IGB_N_SDP] = {
TS_SDP0_EN, TS_SDP1_EN, TS_SDP2_EN, TS_SDP3_EN,
};
static const u32 ts_sdp_sel_tt0[IGB_N_SDP] = {
TS_SDP0_SEL_TT0, TS_SDP1_SEL_TT0,
TS_SDP2_SEL_TT0, TS_SDP3_SEL_TT0,
};
static const u32 ts_sdp_sel_tt1[IGB_N_SDP] = {
TS_SDP0_SEL_TT1, TS_SDP1_SEL_TT1,
TS_SDP2_SEL_TT1, TS_SDP3_SEL_TT1,
};
static const u32 ts_sdp_sel_fc0[IGB_N_SDP] = {
TS_SDP0_SEL_FC0, TS_SDP1_SEL_FC0,
TS_SDP2_SEL_FC0, TS_SDP3_SEL_FC0,
};
static const u32 ts_sdp_sel_fc1[IGB_N_SDP] = {
TS_SDP0_SEL_FC1, TS_SDP1_SEL_FC1,
TS_SDP2_SEL_FC1, TS_SDP3_SEL_FC1,
};
static const u32 ts_sdp_sel_clr[IGB_N_SDP] = {
TS_SDP0_SEL_FC1, TS_SDP1_SEL_FC1,
TS_SDP2_SEL_FC1, TS_SDP3_SEL_FC1,
};
struct e1000_hw *hw = &igb->hw;
u32 ctrl, ctrl_ext, tssdp = 0;
ctrl = rd32(E1000_CTRL);
ctrl_ext = rd32(E1000_CTRL_EXT);
tssdp = rd32(E1000_TSSDP);
igb_pin_direction(pin, 0, &ctrl, &ctrl_ext);
/* Make sure this pin is not enabled as an input. */
if ((tssdp & AUX0_SEL_SDP3) == aux0_sel_sdp[pin])
tssdp &= ~AUX0_TS_SDP_EN;
if ((tssdp & AUX1_SEL_SDP3) == aux1_sel_sdp[pin])
tssdp &= ~AUX1_TS_SDP_EN;
tssdp &= ~ts_sdp_sel_clr[pin];
if (freq) {
if (chan == 1)
tssdp |= ts_sdp_sel_fc1[pin];
else
tssdp |= ts_sdp_sel_fc0[pin];
} else {
if (chan == 1)
tssdp |= ts_sdp_sel_tt1[pin];
else
tssdp |= ts_sdp_sel_tt0[pin];
}
tssdp |= ts_sdp_en[pin];
wr32(E1000_TSSDP, tssdp);
wr32(E1000_CTRL, ctrl);
wr32(E1000_CTRL_EXT, ctrl_ext);
}
static int igb_ptp_feature_enable_i210(struct ptp_clock_info *ptp,
struct ptp_clock_request *rq, int on)
{
struct igb_adapter *igb =
container_of(ptp, struct igb_adapter, ptp_caps);
struct e1000_hw *hw = &igb->hw;
u32 tsauxc, tsim, tsauxc_mask, tsim_mask, trgttiml, trgttimh, freqout;
unsigned long flags;
struct timespec64 ts;
int use_freq = 0, pin = -1;
s64 ns;
switch (rq->type) {
case PTP_CLK_REQ_EXTTS:
/* Reject requests with unsupported flags */
if (rq->extts.flags & ~(PTP_ENABLE_FEATURE |
PTP_RISING_EDGE |
PTP_FALLING_EDGE |
PTP_STRICT_FLAGS))
return -EOPNOTSUPP;
/* Reject requests failing to enable both edges. */
if ((rq->extts.flags & PTP_STRICT_FLAGS) &&
(rq->extts.flags & PTP_ENABLE_FEATURE) &&
(rq->extts.flags & PTP_EXTTS_EDGES) != PTP_EXTTS_EDGES)
return -EOPNOTSUPP;
if (on) {
pin = ptp_find_pin(igb->ptp_clock, PTP_PF_EXTTS,
rq->extts.index);
if (pin < 0)
return -EBUSY;
}
if (rq->extts.index == 1) {
tsauxc_mask = TSAUXC_EN_TS1;
tsim_mask = TSINTR_AUTT1;
} else {
tsauxc_mask = TSAUXC_EN_TS0;
tsim_mask = TSINTR_AUTT0;
}
spin_lock_irqsave(&igb->tmreg_lock, flags);
tsauxc = rd32(E1000_TSAUXC);
tsim = rd32(E1000_TSIM);
if (on) {
igb_pin_extts(igb, rq->extts.index, pin);
tsauxc |= tsauxc_mask;
tsim |= tsim_mask;
} else {
tsauxc &= ~tsauxc_mask;
tsim &= ~tsim_mask;
}
wr32(E1000_TSAUXC, tsauxc);
wr32(E1000_TSIM, tsim);
spin_unlock_irqrestore(&igb->tmreg_lock, flags);
return 0;
case PTP_CLK_REQ_PEROUT:
/* Reject requests with unsupported flags */
if (rq->perout.flags)
return -EOPNOTSUPP;
if (on) {
pin = ptp_find_pin(igb->ptp_clock, PTP_PF_PEROUT,
rq->perout.index);
if (pin < 0)
return -EBUSY;
}
ts.tv_sec = rq->perout.period.sec;
ts.tv_nsec = rq->perout.period.nsec;
ns = timespec64_to_ns(&ts);
ns = ns >> 1;
if (on && ((ns <= 70000000LL) || (ns == 125000000LL) ||
(ns == 250000000LL) || (ns == 500000000LL))) {
if (ns < 8LL)
return -EINVAL;
use_freq = 1;
}
ts = ns_to_timespec64(ns);
if (rq->perout.index == 1) {
if (use_freq) {
tsauxc_mask = TSAUXC_EN_CLK1 | TSAUXC_ST1;
tsim_mask = 0;
} else {
tsauxc_mask = TSAUXC_EN_TT1;
tsim_mask = TSINTR_TT1;
}
trgttiml = E1000_TRGTTIML1;
trgttimh = E1000_TRGTTIMH1;
freqout = E1000_FREQOUT1;
} else {
if (use_freq) {
tsauxc_mask = TSAUXC_EN_CLK0 | TSAUXC_ST0;
tsim_mask = 0;
} else {
tsauxc_mask = TSAUXC_EN_TT0;
tsim_mask = TSINTR_TT0;
}
trgttiml = E1000_TRGTTIML0;
trgttimh = E1000_TRGTTIMH0;
freqout = E1000_FREQOUT0;
}
spin_lock_irqsave(&igb->tmreg_lock, flags);
tsauxc = rd32(E1000_TSAUXC);
tsim = rd32(E1000_TSIM);
if (rq->perout.index == 1) {
tsauxc &= ~(TSAUXC_EN_TT1 | TSAUXC_EN_CLK1 | TSAUXC_ST1);
tsim &= ~TSINTR_TT1;
} else {
tsauxc &= ~(TSAUXC_EN_TT0 | TSAUXC_EN_CLK0 | TSAUXC_ST0);
tsim &= ~TSINTR_TT0;
}
if (on) {
int i = rq->perout.index;
igb_pin_perout(igb, i, pin, use_freq);
igb->perout[i].start.tv_sec = rq->perout.start.sec;
igb->perout[i].start.tv_nsec = rq->perout.start.nsec;
igb->perout[i].period.tv_sec = ts.tv_sec;
igb->perout[i].period.tv_nsec = ts.tv_nsec;
wr32(trgttimh, rq->perout.start.sec);
wr32(trgttiml, rq->perout.start.nsec);
if (use_freq)
wr32(freqout, ns);
tsauxc |= tsauxc_mask;
tsim |= tsim_mask;
}
wr32(E1000_TSAUXC, tsauxc);
wr32(E1000_TSIM, tsim);
spin_unlock_irqrestore(&igb->tmreg_lock, flags);
return 0;
case PTP_CLK_REQ_PPS:
spin_lock_irqsave(&igb->tmreg_lock, flags);
tsim = rd32(E1000_TSIM);
if (on)
tsim |= TSINTR_SYS_WRAP;
else
tsim &= ~TSINTR_SYS_WRAP;
igb->pps_sys_wrap_on = !!on;
wr32(E1000_TSIM, tsim);
spin_unlock_irqrestore(&igb->tmreg_lock, flags);
return 0;
}
return -EOPNOTSUPP;
}
static int igb_ptp_feature_enable(struct ptp_clock_info *ptp,
struct ptp_clock_request *rq, int on)
{
return -EOPNOTSUPP;
}
static int igb_ptp_verify_pin(struct ptp_clock_info *ptp, unsigned int pin,
enum ptp_pin_function func, unsigned int chan)
{
switch (func) {
case PTP_PF_NONE:
case PTP_PF_EXTTS:
case PTP_PF_PEROUT:
break;
case PTP_PF_PHYSYNC:
return -1;
}
return 0;
}
/**
* igb_ptp_tx_work
* @work: pointer to work struct
*
* This work function polls the TSYNCTXCTL valid bit to determine when a
* timestamp has been taken for the current stored skb.
**/
static void igb_ptp_tx_work(struct work_struct *work)
{
struct igb_adapter *adapter = container_of(work, struct igb_adapter,
ptp_tx_work);
struct e1000_hw *hw = &adapter->hw;
u32 tsynctxctl;
if (!adapter->ptp_tx_skb)
return;
if (time_is_before_jiffies(adapter->ptp_tx_start +
IGB_PTP_TX_TIMEOUT)) {
dev_kfree_skb_any(adapter->ptp_tx_skb);
adapter->ptp_tx_skb = NULL;
clear_bit_unlock(__IGB_PTP_TX_IN_PROGRESS, &adapter->state);
adapter->tx_hwtstamp_timeouts++;
/* Clear the tx valid bit in TSYNCTXCTL register to enable
* interrupt
*/
rd32(E1000_TXSTMPH);
dev_warn(&adapter->pdev->dev, "clearing Tx timestamp hang\n");
return;
}
tsynctxctl = rd32(E1000_TSYNCTXCTL);
if (tsynctxctl & E1000_TSYNCTXCTL_VALID)
igb_ptp_tx_hwtstamp(adapter);
else
/* reschedule to check later */
schedule_work(&adapter->ptp_tx_work);
}
static void igb_ptp_overflow_check(struct work_struct *work)
{
struct igb_adapter *igb =
container_of(work, struct igb_adapter, ptp_overflow_work.work);
struct timespec64 ts;
u64 ns;
/* Update the timecounter */
ns = timecounter_read(&igb->tc);
ts = ns_to_timespec64(ns);
pr_debug("igb overflow check at %lld.%09lu\n",
(long long) ts.tv_sec, ts.tv_nsec);
schedule_delayed_work(&igb->ptp_overflow_work,
IGB_SYSTIM_OVERFLOW_PERIOD);
}
/**
* igb_ptp_rx_hang - detect error case when Rx timestamp registers latched
* @adapter: private network adapter structure
*
* This watchdog task is scheduled to detect error case where hardware has
* dropped an Rx packet that was timestamped when the ring is full. The
* particular error is rare but leaves the device in a state unable to timestamp
* any future packets.
**/
void igb_ptp_rx_hang(struct igb_adapter *adapter)
{
struct e1000_hw *hw = &adapter->hw;
u32 tsyncrxctl = rd32(E1000_TSYNCRXCTL);
unsigned long rx_event;
/* Other hardware uses per-packet timestamps */
if (hw->mac.type != e1000_82576)
return;
/* If we don't have a valid timestamp in the registers, just update the
* timeout counter and exit
*/
if (!(tsyncrxctl & E1000_TSYNCRXCTL_VALID)) {
adapter->last_rx_ptp_check = jiffies;
return;
}
/* Determine the most recent watchdog or rx_timestamp event */
rx_event = adapter->last_rx_ptp_check;
if (time_after(adapter->last_rx_timestamp, rx_event))
rx_event = adapter->last_rx_timestamp;
/* Only need to read the high RXSTMP register to clear the lock */
if (time_is_before_jiffies(rx_event + 5 * HZ)) {
rd32(E1000_RXSTMPH);
adapter->last_rx_ptp_check = jiffies;
adapter->rx_hwtstamp_cleared++;
dev_warn(&adapter->pdev->dev, "clearing Rx timestamp hang\n");
}
}
/**
* igb_ptp_tx_hang - detect error case where Tx timestamp never finishes
* @adapter: private network adapter structure
*/
void igb_ptp_tx_hang(struct igb_adapter *adapter)
{
struct e1000_hw *hw = &adapter->hw;
bool timeout = time_is_before_jiffies(adapter->ptp_tx_start +
IGB_PTP_TX_TIMEOUT);
if (!adapter->ptp_tx_skb)
return;
if (!test_bit(__IGB_PTP_TX_IN_PROGRESS, &adapter->state))
return;
/* If we haven't received a timestamp within the timeout, it is
* reasonable to assume that it will never occur, so we can unlock the
* timestamp bit when this occurs.
*/
if (timeout) {
cancel_work_sync(&adapter->ptp_tx_work);
dev_kfree_skb_any(adapter->ptp_tx_skb);
adapter->ptp_tx_skb = NULL;
clear_bit_unlock(__IGB_PTP_TX_IN_PROGRESS, &adapter->state);
adapter->tx_hwtstamp_timeouts++;
/* Clear the tx valid bit in TSYNCTXCTL register to enable
* interrupt
*/
rd32(E1000_TXSTMPH);
dev_warn(&adapter->pdev->dev, "clearing Tx timestamp hang\n");
}
}
/**
* igb_ptp_tx_hwtstamp - utility function which checks for TX time stamp
* @adapter: Board private structure.
*
* If we were asked to do hardware stamping and such a time stamp is
* available, then it must have been for this skb here because we only
* allow only one such packet into the queue.
**/
static void igb_ptp_tx_hwtstamp(struct igb_adapter *adapter)
{
struct sk_buff *skb = adapter->ptp_tx_skb;
struct e1000_hw *hw = &adapter->hw;
struct skb_shared_hwtstamps shhwtstamps;
u64 regval;
int adjust = 0;
regval = rd32(E1000_TXSTMPL);
regval |= (u64)rd32(E1000_TXSTMPH) << 32;
igb_ptp_systim_to_hwtstamp(adapter, &shhwtstamps, regval);
/* adjust timestamp for the TX latency based on link speed */
if (adapter->hw.mac.type == e1000_i210) {
switch (adapter->link_speed) {
case SPEED_10:
adjust = IGB_I210_TX_LATENCY_10;
break;
case SPEED_100:
adjust = IGB_I210_TX_LATENCY_100;
break;
case SPEED_1000:
adjust = IGB_I210_TX_LATENCY_1000;
break;
}
}
shhwtstamps.hwtstamp =
ktime_add_ns(shhwtstamps.hwtstamp, adjust);
/* Clear the lock early before calling skb_tstamp_tx so that
* applications are not woken up before the lock bit is clear. We use
* a copy of the skb pointer to ensure other threads can't change it
* while we're notifying the stack.
*/
adapter->ptp_tx_skb = NULL;
clear_bit_unlock(__IGB_PTP_TX_IN_PROGRESS, &adapter->state);
/* Notify the stack and free the skb after we've unlocked */
skb_tstamp_tx(skb, &shhwtstamps);
dev_kfree_skb_any(skb);
}
/**
* igb_ptp_rx_pktstamp - retrieve Rx per packet timestamp
* @q_vector: Pointer to interrupt specific structure
* @va: Pointer to address containing Rx buffer
* @skb: Buffer containing timestamp and packet
*
* This function is meant to retrieve a timestamp from the first buffer of an
* incoming frame. The value is stored in little endian format starting on
* byte 8.
**/
void igb_ptp_rx_pktstamp(struct igb_q_vector *q_vector, void *va,
struct sk_buff *skb)
{
__le64 *regval = (__le64 *)va;
struct igb_adapter *adapter = q_vector->adapter;
int adjust = 0;
/* The timestamp is recorded in little endian format.
* DWORD: 0 1 2 3
* Field: Reserved Reserved SYSTIML SYSTIMH
*/
igb_ptp_systim_to_hwtstamp(adapter, skb_hwtstamps(skb),
le64_to_cpu(regval[1]));
/* adjust timestamp for the RX latency based on link speed */
if (adapter->hw.mac.type == e1000_i210) {
switch (adapter->link_speed) {
case SPEED_10:
adjust = IGB_I210_RX_LATENCY_10;
break;
case SPEED_100:
adjust = IGB_I210_RX_LATENCY_100;
break;
case SPEED_1000:
adjust = IGB_I210_RX_LATENCY_1000;
break;
}
}
skb_hwtstamps(skb)->hwtstamp =
ktime_sub_ns(skb_hwtstamps(skb)->hwtstamp, adjust);
}
/**
* igb_ptp_rx_rgtstamp - retrieve Rx timestamp stored in register
* @q_vector: Pointer to interrupt specific structure
* @skb: Buffer containing timestamp and packet
*
* This function is meant to retrieve a timestamp from the internal registers
* of the adapter and store it in the skb.
**/
void igb_ptp_rx_rgtstamp(struct igb_q_vector *q_vector,
struct sk_buff *skb)
{
struct igb_adapter *adapter = q_vector->adapter;
struct e1000_hw *hw = &adapter->hw;
u64 regval;
int adjust = 0;
/* If this bit is set, then the RX registers contain the time stamp. No
* other packet will be time stamped until we read these registers, so
* read the registers to make them available again. Because only one
* packet can be time stamped at a time, we know that the register
* values must belong to this one here and therefore we don't need to
* compare any of the additional attributes stored for it.
*
* If nothing went wrong, then it should have a shared tx_flags that we
* can turn into a skb_shared_hwtstamps.
*/
if (!(rd32(E1000_TSYNCRXCTL) & E1000_TSYNCRXCTL_VALID))
return;
regval = rd32(E1000_RXSTMPL);
regval |= (u64)rd32(E1000_RXSTMPH) << 32;
igb_ptp_systim_to_hwtstamp(adapter, skb_hwtstamps(skb), regval);
/* adjust timestamp for the RX latency based on link speed */
if (adapter->hw.mac.type == e1000_i210) {
switch (adapter->link_speed) {
case SPEED_10:
adjust = IGB_I210_RX_LATENCY_10;
break;
case SPEED_100:
adjust = IGB_I210_RX_LATENCY_100;
break;
case SPEED_1000:
adjust = IGB_I210_RX_LATENCY_1000;
break;
}
}
skb_hwtstamps(skb)->hwtstamp =
ktime_sub_ns(skb_hwtstamps(skb)->hwtstamp, adjust);
/* Update the last_rx_timestamp timer in order to enable watchdog check
* for error case of latched timestamp on a dropped packet.
*/
adapter->last_rx_timestamp = jiffies;
}
/**
* igb_ptp_get_ts_config - get hardware time stamping config
* @netdev: netdev struct
* @ifr: interface struct
*
* Get the hwtstamp_config settings to return to the user. Rather than attempt
* to deconstruct the settings from the registers, just return a shadow copy
* of the last known settings.
**/
int igb_ptp_get_ts_config(struct net_device *netdev, struct ifreq *ifr)
{
struct igb_adapter *adapter = netdev_priv(netdev);
struct hwtstamp_config *config = &adapter->tstamp_config;
return copy_to_user(ifr->ifr_data, config, sizeof(*config)) ?
-EFAULT : 0;
}
/**
* igb_ptp_set_timestamp_mode - setup hardware for timestamping
* @adapter: networking device structure
* @config: hwtstamp configuration
*
* Outgoing time stamping can be enabled and disabled. Play nice and
* disable it when requested, although it shouldn't case any overhead
* when no packet needs it. At most one packet in the queue may be
* marked for time stamping, otherwise it would be impossible to tell
* for sure to which packet the hardware time stamp belongs.
*
* Incoming time stamping has to be configured via the hardware
* filters. Not all combinations are supported, in particular event
* type has to be specified. Matching the kind of event packet is
* not supported, with the exception of "all V2 events regardless of
* level 2 or 4".
*/
static int igb_ptp_set_timestamp_mode(struct igb_adapter *adapter,
struct hwtstamp_config *config)
{
struct e1000_hw *hw = &adapter->hw;
u32 tsync_tx_ctl = E1000_TSYNCTXCTL_ENABLED;
u32 tsync_rx_ctl = E1000_TSYNCRXCTL_ENABLED;
u32 tsync_rx_cfg = 0;
bool is_l4 = false;
bool is_l2 = false;
u32 regval;
/* reserved for future extensions */
if (config->flags)
return -EINVAL;
switch (config->tx_type) {
case HWTSTAMP_TX_OFF:
tsync_tx_ctl = 0;
case HWTSTAMP_TX_ON:
break;
default:
return -ERANGE;
}
switch (config->rx_filter) {
case HWTSTAMP_FILTER_NONE:
tsync_rx_ctl = 0;
break;
case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L4_V1;
tsync_rx_cfg = E1000_TSYNCRXCFG_PTP_V1_SYNC_MESSAGE;
is_l4 = true;
break;
case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L4_V1;
tsync_rx_cfg = E1000_TSYNCRXCFG_PTP_V1_DELAY_REQ_MESSAGE;
is_l4 = true;
break;
case HWTSTAMP_FILTER_PTP_V2_EVENT:
case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
case HWTSTAMP_FILTER_PTP_V2_SYNC:
case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_EVENT_V2;
config->rx_filter = HWTSTAMP_FILTER_PTP_V2_EVENT;
is_l2 = true;
is_l4 = true;
break;
case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
case HWTSTAMP_FILTER_NTP_ALL:
case HWTSTAMP_FILTER_ALL:
/* 82576 cannot timestamp all packets, which it needs to do to
* support both V1 Sync and Delay_Req messages
*/
if (hw->mac.type != e1000_82576) {
tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_ALL;
config->rx_filter = HWTSTAMP_FILTER_ALL;
break;
}
fallthrough;
default:
config->rx_filter = HWTSTAMP_FILTER_NONE;
return -ERANGE;
}
if (hw->mac.type == e1000_82575) {
if (tsync_rx_ctl | tsync_tx_ctl)
return -EINVAL;
return 0;
}
/* Per-packet timestamping only works if all packets are
* timestamped, so enable timestamping in all packets as
* long as one Rx filter was configured.
*/
if ((hw->mac.type >= e1000_82580) && tsync_rx_ctl) {
tsync_rx_ctl = E1000_TSYNCRXCTL_ENABLED;
tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_ALL;
config->rx_filter = HWTSTAMP_FILTER_ALL;
is_l2 = true;
is_l4 = true;
if ((hw->mac.type == e1000_i210) ||
(hw->mac.type == e1000_i211)) {
regval = rd32(E1000_RXPBS);
regval |= E1000_RXPBS_CFG_TS_EN;
wr32(E1000_RXPBS, regval);
}
}
/* enable/disable TX */
regval = rd32(E1000_TSYNCTXCTL);
regval &= ~E1000_TSYNCTXCTL_ENABLED;
regval |= tsync_tx_ctl;
wr32(E1000_TSYNCTXCTL, regval);
/* enable/disable RX */
regval = rd32(E1000_TSYNCRXCTL);
regval &= ~(E1000_TSYNCRXCTL_ENABLED | E1000_TSYNCRXCTL_TYPE_MASK);
regval |= tsync_rx_ctl;
wr32(E1000_TSYNCRXCTL, regval);
/* define which PTP packets are time stamped */
wr32(E1000_TSYNCRXCFG, tsync_rx_cfg);
/* define ethertype filter for timestamped packets */
if (is_l2)
wr32(E1000_ETQF(IGB_ETQF_FILTER_1588),
(E1000_ETQF_FILTER_ENABLE | /* enable filter */
E1000_ETQF_1588 | /* enable timestamping */
ETH_P_1588)); /* 1588 eth protocol type */
else
wr32(E1000_ETQF(IGB_ETQF_FILTER_1588), 0);
/* L4 Queue Filter[3]: filter by destination port and protocol */
if (is_l4) {
u32 ftqf = (IPPROTO_UDP /* UDP */
| E1000_FTQF_VF_BP /* VF not compared */
| E1000_FTQF_1588_TIME_STAMP /* Enable Timestamping */
| E1000_FTQF_MASK); /* mask all inputs */
ftqf &= ~E1000_FTQF_MASK_PROTO_BP; /* enable protocol check */
wr32(E1000_IMIR(3), htons(PTP_EV_PORT));
wr32(E1000_IMIREXT(3),
(E1000_IMIREXT_SIZE_BP | E1000_IMIREXT_CTRL_BP));
if (hw->mac.type == e1000_82576) {
/* enable source port check */
wr32(E1000_SPQF(3), htons(PTP_EV_PORT));
ftqf &= ~E1000_FTQF_MASK_SOURCE_PORT_BP;
}
wr32(E1000_FTQF(3), ftqf);
} else {
wr32(E1000_FTQF(3), E1000_FTQF_MASK);
}
wrfl();
/* clear TX/RX time stamp registers, just to be sure */
regval = rd32(E1000_TXSTMPL);
regval = rd32(E1000_TXSTMPH);
regval = rd32(E1000_RXSTMPL);
regval = rd32(E1000_RXSTMPH);
return 0;
}
/**
* igb_ptp_set_ts_config - set hardware time stamping config
* @netdev: netdev struct
* @ifr: interface struct
*
**/
int igb_ptp_set_ts_config(struct net_device *netdev, struct ifreq *ifr)
{
struct igb_adapter *adapter = netdev_priv(netdev);
struct hwtstamp_config config;
int err;
if (copy_from_user(&config, ifr->ifr_data, sizeof(config)))
return -EFAULT;
err = igb_ptp_set_timestamp_mode(adapter, &config);
if (err)
return err;
/* save these settings for future reference */
memcpy(&adapter->tstamp_config, &config,
sizeof(adapter->tstamp_config));
return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ?
-EFAULT : 0;
}
/**
* igb_ptp_init - Initialize PTP functionality
* @adapter: Board private structure
*
* This function is called at device probe to initialize the PTP
* functionality.
*/
void igb_ptp_init(struct igb_adapter *adapter)
{
struct e1000_hw *hw = &adapter->hw;
struct net_device *netdev = adapter->netdev;
int i;
switch (hw->mac.type) {
case e1000_82576:
snprintf(adapter->ptp_caps.name, 16, "%pm", netdev->dev_addr);
adapter->ptp_caps.owner = THIS_MODULE;
adapter->ptp_caps.max_adj = 999999881;
adapter->ptp_caps.n_ext_ts = 0;
adapter->ptp_caps.pps = 0;
adapter->ptp_caps.adjfreq = igb_ptp_adjfreq_82576;
adapter->ptp_caps.adjtime = igb_ptp_adjtime_82576;
adapter->ptp_caps.gettimex64 = igb_ptp_gettimex_82576;
adapter->ptp_caps.settime64 = igb_ptp_settime_82576;
adapter->ptp_caps.enable = igb_ptp_feature_enable;
adapter->cc.read = igb_ptp_read_82576;
adapter->cc.mask = CYCLECOUNTER_MASK(64);
adapter->cc.mult = 1;
adapter->cc.shift = IGB_82576_TSYNC_SHIFT;
adapter->ptp_flags |= IGB_PTP_OVERFLOW_CHECK;
break;
case e1000_82580:
case e1000_i354:
case e1000_i350:
snprintf(adapter->ptp_caps.name, 16, "%pm", netdev->dev_addr);
adapter->ptp_caps.owner = THIS_MODULE;
adapter->ptp_caps.max_adj = 62499999;
adapter->ptp_caps.n_ext_ts = 0;
adapter->ptp_caps.pps = 0;
adapter->ptp_caps.adjfine = igb_ptp_adjfine_82580;
adapter->ptp_caps.adjtime = igb_ptp_adjtime_82576;
adapter->ptp_caps.gettimex64 = igb_ptp_gettimex_82580;
adapter->ptp_caps.settime64 = igb_ptp_settime_82576;
adapter->ptp_caps.enable = igb_ptp_feature_enable;
adapter->cc.read = igb_ptp_read_82580;
adapter->cc.mask = CYCLECOUNTER_MASK(IGB_NBITS_82580);
adapter->cc.mult = 1;
adapter->cc.shift = 0;
adapter->ptp_flags |= IGB_PTP_OVERFLOW_CHECK;
break;
case e1000_i210:
case e1000_i211:
for (i = 0; i < IGB_N_SDP; i++) {
struct ptp_pin_desc *ppd = &adapter->sdp_config[i];
snprintf(ppd->name, sizeof(ppd->name), "SDP%d", i);
ppd->index = i;
ppd->func = PTP_PF_NONE;
}
snprintf(adapter->ptp_caps.name, 16, "%pm", netdev->dev_addr);
adapter->ptp_caps.owner = THIS_MODULE;
adapter->ptp_caps.max_adj = 62499999;
adapter->ptp_caps.n_ext_ts = IGB_N_EXTTS;
adapter->ptp_caps.n_per_out = IGB_N_PEROUT;
adapter->ptp_caps.n_pins = IGB_N_SDP;
adapter->ptp_caps.pps = 1;
adapter->ptp_caps.pin_config = adapter->sdp_config;
adapter->ptp_caps.adjfine = igb_ptp_adjfine_82580;
adapter->ptp_caps.adjtime = igb_ptp_adjtime_i210;
adapter->ptp_caps.gettimex64 = igb_ptp_gettimex_i210;
adapter->ptp_caps.settime64 = igb_ptp_settime_i210;
adapter->ptp_caps.enable = igb_ptp_feature_enable_i210;
adapter->ptp_caps.verify = igb_ptp_verify_pin;
break;
default:
adapter->ptp_clock = NULL;
return;
}
spin_lock_init(&adapter->tmreg_lock);
INIT_WORK(&adapter->ptp_tx_work, igb_ptp_tx_work);
if (adapter->ptp_flags & IGB_PTP_OVERFLOW_CHECK)
INIT_DELAYED_WORK(&adapter->ptp_overflow_work,
igb_ptp_overflow_check);
adapter->tstamp_config.rx_filter = HWTSTAMP_FILTER_NONE;
adapter->tstamp_config.tx_type = HWTSTAMP_TX_OFF;
igb_ptp_reset(adapter);
adapter->ptp_clock = ptp_clock_register(&adapter->ptp_caps,
&adapter->pdev->dev);
if (IS_ERR(adapter->ptp_clock)) {
adapter->ptp_clock = NULL;
dev_err(&adapter->pdev->dev, "ptp_clock_register failed\n");
} else if (adapter->ptp_clock) {
dev_info(&adapter->pdev->dev, "added PHC on %s\n",
adapter->netdev->name);
adapter->ptp_flags |= IGB_PTP_ENABLED;
}
}
/**
* igb_ptp_suspend - Disable PTP work items and prepare for suspend
* @adapter: Board private structure
*
* This function stops the overflow check work and PTP Tx timestamp work, and
* will prepare the device for OS suspend.
*/
void igb_ptp_suspend(struct igb_adapter *adapter)
{
if (!(adapter->ptp_flags & IGB_PTP_ENABLED))
return;
if (adapter->ptp_flags & IGB_PTP_OVERFLOW_CHECK)
cancel_delayed_work_sync(&adapter->ptp_overflow_work);
cancel_work_sync(&adapter->ptp_tx_work);
if (adapter->ptp_tx_skb) {
dev_kfree_skb_any(adapter->ptp_tx_skb);
adapter->ptp_tx_skb = NULL;
clear_bit_unlock(__IGB_PTP_TX_IN_PROGRESS, &adapter->state);
}
}
/**
* igb_ptp_stop - Disable PTP device and stop the overflow check.
* @adapter: Board private structure.
*
* This function stops the PTP support and cancels the delayed work.
**/
void igb_ptp_stop(struct igb_adapter *adapter)
{
igb_ptp_suspend(adapter);
if (adapter->ptp_clock) {
ptp_clock_unregister(adapter->ptp_clock);
dev_info(&adapter->pdev->dev, "removed PHC on %s\n",
adapter->netdev->name);
adapter->ptp_flags &= ~IGB_PTP_ENABLED;
}
}
/**
* igb_ptp_reset - Re-enable the adapter for PTP following a reset.
* @adapter: Board private structure.
*
* This function handles the reset work required to re-enable the PTP device.
**/
void igb_ptp_reset(struct igb_adapter *adapter)
{
struct e1000_hw *hw = &adapter->hw;
unsigned long flags;
/* reset the tstamp_config */
igb_ptp_set_timestamp_mode(adapter, &adapter->tstamp_config);
spin_lock_irqsave(&adapter->tmreg_lock, flags);
switch (adapter->hw.mac.type) {
case e1000_82576:
/* Dial the nominal frequency. */
wr32(E1000_TIMINCA, INCPERIOD_82576 | INCVALUE_82576);
break;
case e1000_82580:
case e1000_i354:
case e1000_i350:
case e1000_i210:
case e1000_i211:
wr32(E1000_TSAUXC, 0x0);
wr32(E1000_TSSDP, 0x0);
wr32(E1000_TSIM,
TSYNC_INTERRUPTS |
(adapter->pps_sys_wrap_on ? TSINTR_SYS_WRAP : 0));
wr32(E1000_IMS, E1000_IMS_TS);
break;
default:
/* No work to do. */
goto out;
}
/* Re-initialize the timer. */
if ((hw->mac.type == e1000_i210) || (hw->mac.type == e1000_i211)) {
struct timespec64 ts = ktime_to_timespec64(ktime_get_real());
igb_ptp_write_i210(adapter, &ts);
} else {
timecounter_init(&adapter->tc, &adapter->cc,
ktime_to_ns(ktime_get_real()));
}
out:
spin_unlock_irqrestore(&adapter->tmreg_lock, flags);
wrfl();
if (adapter->ptp_flags & IGB_PTP_OVERFLOW_CHECK)
schedule_delayed_work(&adapter->ptp_overflow_work,
IGB_SYSTIM_OVERFLOW_PERIOD);
}