| // SPDX-License-Identifier: GPL-2.0-only |
| /* |
| * Driver for Allwinner sun4i Pulse Width Modulation Controller |
| * |
| * Copyright (C) 2014 Alexandre Belloni <alexandre.belloni@free-electrons.com> |
| * |
| * Limitations: |
| * - When outputing the source clock directly, the PWM logic will be bypassed |
| * and the currently running period is not guaranteed to be completed |
| */ |
| |
| #include <linux/bitops.h> |
| #include <linux/clk.h> |
| #include <linux/delay.h> |
| #include <linux/err.h> |
| #include <linux/io.h> |
| #include <linux/jiffies.h> |
| #include <linux/module.h> |
| #include <linux/of.h> |
| #include <linux/of_device.h> |
| #include <linux/platform_device.h> |
| #include <linux/pwm.h> |
| #include <linux/reset.h> |
| #include <linux/slab.h> |
| #include <linux/spinlock.h> |
| #include <linux/time.h> |
| |
| #define PWM_CTRL_REG 0x0 |
| |
| #define PWM_CH_PRD_BASE 0x4 |
| #define PWM_CH_PRD_OFFSET 0x4 |
| #define PWM_CH_PRD(ch) (PWM_CH_PRD_BASE + PWM_CH_PRD_OFFSET * (ch)) |
| |
| #define PWMCH_OFFSET 15 |
| #define PWM_PRESCAL_MASK GENMASK(3, 0) |
| #define PWM_PRESCAL_OFF 0 |
| #define PWM_EN BIT(4) |
| #define PWM_ACT_STATE BIT(5) |
| #define PWM_CLK_GATING BIT(6) |
| #define PWM_MODE BIT(7) |
| #define PWM_PULSE BIT(8) |
| #define PWM_BYPASS BIT(9) |
| |
| #define PWM_RDY_BASE 28 |
| #define PWM_RDY_OFFSET 1 |
| #define PWM_RDY(ch) BIT(PWM_RDY_BASE + PWM_RDY_OFFSET * (ch)) |
| |
| #define PWM_PRD(prd) (((prd) - 1) << 16) |
| #define PWM_PRD_MASK GENMASK(15, 0) |
| |
| #define PWM_DTY_MASK GENMASK(15, 0) |
| |
| #define PWM_REG_PRD(reg) ((((reg) >> 16) & PWM_PRD_MASK) + 1) |
| #define PWM_REG_DTY(reg) ((reg) & PWM_DTY_MASK) |
| #define PWM_REG_PRESCAL(reg, chan) (((reg) >> ((chan) * PWMCH_OFFSET)) & PWM_PRESCAL_MASK) |
| |
| #define BIT_CH(bit, chan) ((bit) << ((chan) * PWMCH_OFFSET)) |
| |
| static const u32 prescaler_table[] = { |
| 120, |
| 180, |
| 240, |
| 360, |
| 480, |
| 0, |
| 0, |
| 0, |
| 12000, |
| 24000, |
| 36000, |
| 48000, |
| 72000, |
| 0, |
| 0, |
| 0, /* Actually 1 but tested separately */ |
| }; |
| |
| struct sun4i_pwm_data { |
| bool has_prescaler_bypass; |
| bool has_direct_mod_clk_output; |
| unsigned int npwm; |
| }; |
| |
| struct sun4i_pwm_chip { |
| struct pwm_chip chip; |
| struct clk *bus_clk; |
| struct clk *clk; |
| struct reset_control *rst; |
| void __iomem *base; |
| spinlock_t ctrl_lock; |
| const struct sun4i_pwm_data *data; |
| unsigned long next_period[2]; |
| }; |
| |
| static inline struct sun4i_pwm_chip *to_sun4i_pwm_chip(struct pwm_chip *chip) |
| { |
| return container_of(chip, struct sun4i_pwm_chip, chip); |
| } |
| |
| static inline u32 sun4i_pwm_readl(struct sun4i_pwm_chip *chip, |
| unsigned long offset) |
| { |
| return readl(chip->base + offset); |
| } |
| |
| static inline void sun4i_pwm_writel(struct sun4i_pwm_chip *chip, |
| u32 val, unsigned long offset) |
| { |
| writel(val, chip->base + offset); |
| } |
| |
| static void sun4i_pwm_get_state(struct pwm_chip *chip, |
| struct pwm_device *pwm, |
| struct pwm_state *state) |
| { |
| struct sun4i_pwm_chip *sun4i_pwm = to_sun4i_pwm_chip(chip); |
| u64 clk_rate, tmp; |
| u32 val; |
| unsigned int prescaler; |
| |
| clk_rate = clk_get_rate(sun4i_pwm->clk); |
| |
| val = sun4i_pwm_readl(sun4i_pwm, PWM_CTRL_REG); |
| |
| /* |
| * PWM chapter in H6 manual has a diagram which explains that if bypass |
| * bit is set, no other setting has any meaning. Even more, experiment |
| * proved that also enable bit is ignored in this case. |
| */ |
| if ((val & BIT_CH(PWM_BYPASS, pwm->hwpwm)) && |
| sun4i_pwm->data->has_direct_mod_clk_output) { |
| state->period = DIV_ROUND_UP_ULL(NSEC_PER_SEC, clk_rate); |
| state->duty_cycle = DIV_ROUND_UP_ULL(state->period, 2); |
| state->polarity = PWM_POLARITY_NORMAL; |
| state->enabled = true; |
| return; |
| } |
| |
| if ((PWM_REG_PRESCAL(val, pwm->hwpwm) == PWM_PRESCAL_MASK) && |
| sun4i_pwm->data->has_prescaler_bypass) |
| prescaler = 1; |
| else |
| prescaler = prescaler_table[PWM_REG_PRESCAL(val, pwm->hwpwm)]; |
| |
| if (prescaler == 0) |
| return; |
| |
| if (val & BIT_CH(PWM_ACT_STATE, pwm->hwpwm)) |
| state->polarity = PWM_POLARITY_NORMAL; |
| else |
| state->polarity = PWM_POLARITY_INVERSED; |
| |
| if ((val & BIT_CH(PWM_CLK_GATING | PWM_EN, pwm->hwpwm)) == |
| BIT_CH(PWM_CLK_GATING | PWM_EN, pwm->hwpwm)) |
| state->enabled = true; |
| else |
| state->enabled = false; |
| |
| val = sun4i_pwm_readl(sun4i_pwm, PWM_CH_PRD(pwm->hwpwm)); |
| |
| tmp = (u64)prescaler * NSEC_PER_SEC * PWM_REG_DTY(val); |
| state->duty_cycle = DIV_ROUND_CLOSEST_ULL(tmp, clk_rate); |
| |
| tmp = (u64)prescaler * NSEC_PER_SEC * PWM_REG_PRD(val); |
| state->period = DIV_ROUND_CLOSEST_ULL(tmp, clk_rate); |
| } |
| |
| static int sun4i_pwm_calculate(struct sun4i_pwm_chip *sun4i_pwm, |
| const struct pwm_state *state, |
| u32 *dty, u32 *prd, unsigned int *prsclr, |
| bool *bypass) |
| { |
| u64 clk_rate, div = 0; |
| unsigned int prescaler = 0; |
| |
| clk_rate = clk_get_rate(sun4i_pwm->clk); |
| |
| *bypass = sun4i_pwm->data->has_direct_mod_clk_output && |
| state->enabled && |
| (state->period * clk_rate >= NSEC_PER_SEC) && |
| (state->period * clk_rate < 2 * NSEC_PER_SEC) && |
| (state->duty_cycle * clk_rate * 2 >= NSEC_PER_SEC); |
| |
| /* Skip calculation of other parameters if we bypass them */ |
| if (*bypass) |
| return 0; |
| |
| if (sun4i_pwm->data->has_prescaler_bypass) { |
| /* First, test without any prescaler when available */ |
| prescaler = PWM_PRESCAL_MASK; |
| /* |
| * When not using any prescaler, the clock period in nanoseconds |
| * is not an integer so round it half up instead of |
| * truncating to get less surprising values. |
| */ |
| div = clk_rate * state->period + NSEC_PER_SEC / 2; |
| do_div(div, NSEC_PER_SEC); |
| if (div - 1 > PWM_PRD_MASK) |
| prescaler = 0; |
| } |
| |
| if (prescaler == 0) { |
| /* Go up from the first divider */ |
| for (prescaler = 0; prescaler < PWM_PRESCAL_MASK; prescaler++) { |
| unsigned int pval = prescaler_table[prescaler]; |
| |
| if (!pval) |
| continue; |
| |
| div = clk_rate; |
| do_div(div, pval); |
| div = div * state->period; |
| do_div(div, NSEC_PER_SEC); |
| if (div - 1 <= PWM_PRD_MASK) |
| break; |
| } |
| |
| if (div - 1 > PWM_PRD_MASK) |
| return -EINVAL; |
| } |
| |
| *prd = div; |
| div *= state->duty_cycle; |
| do_div(div, state->period); |
| *dty = div; |
| *prsclr = prescaler; |
| |
| return 0; |
| } |
| |
| static int sun4i_pwm_apply(struct pwm_chip *chip, struct pwm_device *pwm, |
| const struct pwm_state *state) |
| { |
| struct sun4i_pwm_chip *sun4i_pwm = to_sun4i_pwm_chip(chip); |
| struct pwm_state cstate; |
| u32 ctrl, duty = 0, period = 0, val; |
| int ret; |
| unsigned int delay_us, prescaler = 0; |
| unsigned long now; |
| bool bypass; |
| |
| pwm_get_state(pwm, &cstate); |
| |
| if (!cstate.enabled) { |
| ret = clk_prepare_enable(sun4i_pwm->clk); |
| if (ret) { |
| dev_err(chip->dev, "failed to enable PWM clock\n"); |
| return ret; |
| } |
| } |
| |
| ret = sun4i_pwm_calculate(sun4i_pwm, state, &duty, &period, &prescaler, |
| &bypass); |
| if (ret) { |
| dev_err(chip->dev, "period exceeds the maximum value\n"); |
| if (!cstate.enabled) |
| clk_disable_unprepare(sun4i_pwm->clk); |
| return ret; |
| } |
| |
| spin_lock(&sun4i_pwm->ctrl_lock); |
| ctrl = sun4i_pwm_readl(sun4i_pwm, PWM_CTRL_REG); |
| |
| if (sun4i_pwm->data->has_direct_mod_clk_output) { |
| if (bypass) { |
| ctrl |= BIT_CH(PWM_BYPASS, pwm->hwpwm); |
| /* We can skip other parameter */ |
| sun4i_pwm_writel(sun4i_pwm, ctrl, PWM_CTRL_REG); |
| spin_unlock(&sun4i_pwm->ctrl_lock); |
| return 0; |
| } |
| |
| ctrl &= ~BIT_CH(PWM_BYPASS, pwm->hwpwm); |
| } |
| |
| if (PWM_REG_PRESCAL(ctrl, pwm->hwpwm) != prescaler) { |
| /* Prescaler changed, the clock has to be gated */ |
| ctrl &= ~BIT_CH(PWM_CLK_GATING, pwm->hwpwm); |
| sun4i_pwm_writel(sun4i_pwm, ctrl, PWM_CTRL_REG); |
| |
| ctrl &= ~BIT_CH(PWM_PRESCAL_MASK, pwm->hwpwm); |
| ctrl |= BIT_CH(prescaler, pwm->hwpwm); |
| } |
| |
| val = (duty & PWM_DTY_MASK) | PWM_PRD(period); |
| sun4i_pwm_writel(sun4i_pwm, val, PWM_CH_PRD(pwm->hwpwm)); |
| sun4i_pwm->next_period[pwm->hwpwm] = jiffies + |
| nsecs_to_jiffies(cstate.period + 1000); |
| |
| if (state->polarity != PWM_POLARITY_NORMAL) |
| ctrl &= ~BIT_CH(PWM_ACT_STATE, pwm->hwpwm); |
| else |
| ctrl |= BIT_CH(PWM_ACT_STATE, pwm->hwpwm); |
| |
| ctrl |= BIT_CH(PWM_CLK_GATING, pwm->hwpwm); |
| |
| if (state->enabled) { |
| ctrl |= BIT_CH(PWM_EN, pwm->hwpwm); |
| } else { |
| ctrl &= ~BIT_CH(PWM_EN, pwm->hwpwm); |
| ctrl &= ~BIT_CH(PWM_CLK_GATING, pwm->hwpwm); |
| } |
| |
| sun4i_pwm_writel(sun4i_pwm, ctrl, PWM_CTRL_REG); |
| |
| spin_unlock(&sun4i_pwm->ctrl_lock); |
| |
| if (state->enabled) |
| return 0; |
| |
| /* We need a full period to elapse before disabling the channel. */ |
| now = jiffies; |
| if (time_before(now, sun4i_pwm->next_period[pwm->hwpwm])) { |
| delay_us = jiffies_to_usecs(sun4i_pwm->next_period[pwm->hwpwm] - |
| now); |
| if ((delay_us / 500) > MAX_UDELAY_MS) |
| msleep(delay_us / 1000 + 1); |
| else |
| usleep_range(delay_us, delay_us * 2); |
| } |
| |
| spin_lock(&sun4i_pwm->ctrl_lock); |
| ctrl = sun4i_pwm_readl(sun4i_pwm, PWM_CTRL_REG); |
| ctrl &= ~BIT_CH(PWM_CLK_GATING, pwm->hwpwm); |
| ctrl &= ~BIT_CH(PWM_EN, pwm->hwpwm); |
| sun4i_pwm_writel(sun4i_pwm, ctrl, PWM_CTRL_REG); |
| spin_unlock(&sun4i_pwm->ctrl_lock); |
| |
| clk_disable_unprepare(sun4i_pwm->clk); |
| |
| return 0; |
| } |
| |
| static const struct pwm_ops sun4i_pwm_ops = { |
| .apply = sun4i_pwm_apply, |
| .get_state = sun4i_pwm_get_state, |
| .owner = THIS_MODULE, |
| }; |
| |
| static const struct sun4i_pwm_data sun4i_pwm_dual_nobypass = { |
| .has_prescaler_bypass = false, |
| .npwm = 2, |
| }; |
| |
| static const struct sun4i_pwm_data sun4i_pwm_dual_bypass = { |
| .has_prescaler_bypass = true, |
| .npwm = 2, |
| }; |
| |
| static const struct sun4i_pwm_data sun4i_pwm_single_bypass = { |
| .has_prescaler_bypass = true, |
| .npwm = 1, |
| }; |
| |
| static const struct sun4i_pwm_data sun50i_a64_pwm_data = { |
| .has_prescaler_bypass = true, |
| .has_direct_mod_clk_output = true, |
| .npwm = 1, |
| }; |
| |
| static const struct sun4i_pwm_data sun50i_h6_pwm_data = { |
| .has_prescaler_bypass = true, |
| .has_direct_mod_clk_output = true, |
| .npwm = 2, |
| }; |
| |
| static const struct of_device_id sun4i_pwm_dt_ids[] = { |
| { |
| .compatible = "allwinner,sun4i-a10-pwm", |
| .data = &sun4i_pwm_dual_nobypass, |
| }, { |
| .compatible = "allwinner,sun5i-a10s-pwm", |
| .data = &sun4i_pwm_dual_bypass, |
| }, { |
| .compatible = "allwinner,sun5i-a13-pwm", |
| .data = &sun4i_pwm_single_bypass, |
| }, { |
| .compatible = "allwinner,sun7i-a20-pwm", |
| .data = &sun4i_pwm_dual_bypass, |
| }, { |
| .compatible = "allwinner,sun8i-h3-pwm", |
| .data = &sun4i_pwm_single_bypass, |
| }, { |
| .compatible = "allwinner,sun50i-a64-pwm", |
| .data = &sun50i_a64_pwm_data, |
| }, { |
| .compatible = "allwinner,sun50i-h6-pwm", |
| .data = &sun50i_h6_pwm_data, |
| }, { |
| /* sentinel */ |
| }, |
| }; |
| MODULE_DEVICE_TABLE(of, sun4i_pwm_dt_ids); |
| |
| static int sun4i_pwm_probe(struct platform_device *pdev) |
| { |
| struct sun4i_pwm_chip *pwm; |
| struct resource *res; |
| int ret; |
| |
| pwm = devm_kzalloc(&pdev->dev, sizeof(*pwm), GFP_KERNEL); |
| if (!pwm) |
| return -ENOMEM; |
| |
| pwm->data = of_device_get_match_data(&pdev->dev); |
| if (!pwm->data) |
| return -ENODEV; |
| |
| res = platform_get_resource(pdev, IORESOURCE_MEM, 0); |
| pwm->base = devm_ioremap_resource(&pdev->dev, res); |
| if (IS_ERR(pwm->base)) |
| return PTR_ERR(pwm->base); |
| |
| /* |
| * All hardware variants need a source clock that is divided and |
| * then feeds the counter that defines the output wave form. In the |
| * device tree this clock is either unnamed or called "mod". |
| * Some variants (e.g. H6) need another clock to access the |
| * hardware registers; this is called "bus". |
| * So we request "mod" first (and ignore the corner case that a |
| * parent provides a "mod" clock while the right one would be the |
| * unnamed one of the PWM device) and if this is not found we fall |
| * back to the first clock of the PWM. |
| */ |
| pwm->clk = devm_clk_get_optional(&pdev->dev, "mod"); |
| if (IS_ERR(pwm->clk)) |
| return dev_err_probe(&pdev->dev, PTR_ERR(pwm->clk), |
| "get mod clock failed\n"); |
| |
| if (!pwm->clk) { |
| pwm->clk = devm_clk_get(&pdev->dev, NULL); |
| if (IS_ERR(pwm->clk)) |
| return dev_err_probe(&pdev->dev, PTR_ERR(pwm->clk), |
| "get unnamed clock failed\n"); |
| } |
| |
| pwm->bus_clk = devm_clk_get_optional(&pdev->dev, "bus"); |
| if (IS_ERR(pwm->bus_clk)) |
| return dev_err_probe(&pdev->dev, PTR_ERR(pwm->bus_clk), |
| "get bus clock failed\n"); |
| |
| pwm->rst = devm_reset_control_get_optional_shared(&pdev->dev, NULL); |
| if (IS_ERR(pwm->rst)) |
| return dev_err_probe(&pdev->dev, PTR_ERR(pwm->rst), |
| "get reset failed\n"); |
| |
| /* Deassert reset */ |
| ret = reset_control_deassert(pwm->rst); |
| if (ret) { |
| dev_err(&pdev->dev, "cannot deassert reset control: %pe\n", |
| ERR_PTR(ret)); |
| return ret; |
| } |
| |
| /* |
| * We're keeping the bus clock on for the sake of simplicity. |
| * Actually it only needs to be on for hardware register accesses. |
| */ |
| ret = clk_prepare_enable(pwm->bus_clk); |
| if (ret) { |
| dev_err(&pdev->dev, "cannot prepare and enable bus_clk %pe\n", |
| ERR_PTR(ret)); |
| goto err_bus; |
| } |
| |
| pwm->chip.dev = &pdev->dev; |
| pwm->chip.ops = &sun4i_pwm_ops; |
| pwm->chip.base = -1; |
| pwm->chip.npwm = pwm->data->npwm; |
| pwm->chip.of_xlate = of_pwm_xlate_with_flags; |
| pwm->chip.of_pwm_n_cells = 3; |
| |
| spin_lock_init(&pwm->ctrl_lock); |
| |
| ret = pwmchip_add(&pwm->chip); |
| if (ret < 0) { |
| dev_err(&pdev->dev, "failed to add PWM chip: %d\n", ret); |
| goto err_pwm_add; |
| } |
| |
| platform_set_drvdata(pdev, pwm); |
| |
| return 0; |
| |
| err_pwm_add: |
| clk_disable_unprepare(pwm->bus_clk); |
| err_bus: |
| reset_control_assert(pwm->rst); |
| |
| return ret; |
| } |
| |
| static int sun4i_pwm_remove(struct platform_device *pdev) |
| { |
| struct sun4i_pwm_chip *pwm = platform_get_drvdata(pdev); |
| int ret; |
| |
| ret = pwmchip_remove(&pwm->chip); |
| if (ret) |
| return ret; |
| |
| clk_disable_unprepare(pwm->bus_clk); |
| reset_control_assert(pwm->rst); |
| |
| return 0; |
| } |
| |
| static struct platform_driver sun4i_pwm_driver = { |
| .driver = { |
| .name = "sun4i-pwm", |
| .of_match_table = sun4i_pwm_dt_ids, |
| }, |
| .probe = sun4i_pwm_probe, |
| .remove = sun4i_pwm_remove, |
| }; |
| module_platform_driver(sun4i_pwm_driver); |
| |
| MODULE_ALIAS("platform:sun4i-pwm"); |
| MODULE_AUTHOR("Alexandre Belloni <alexandre.belloni@free-electrons.com>"); |
| MODULE_DESCRIPTION("Allwinner sun4i PWM driver"); |
| MODULE_LICENSE("GPL v2"); |