| // SPDX-License-Identifier: GPL-2.0-only |
| /* |
| * Remote Processor Framework |
| * |
| * Copyright (C) 2011 Texas Instruments, Inc. |
| * Copyright (C) 2011 Google, Inc. |
| * |
| * Ohad Ben-Cohen <ohad@wizery.com> |
| * Mark Grosen <mgrosen@ti.com> |
| * Brian Swetland <swetland@google.com> |
| * Fernando Guzman Lugo <fernando.lugo@ti.com> |
| * Suman Anna <s-anna@ti.com> |
| * Robert Tivy <rtivy@ti.com> |
| * Armando Uribe De Leon <x0095078@ti.com> |
| */ |
| |
| #define pr_fmt(fmt) "%s: " fmt, __func__ |
| |
| #include <linux/kernel.h> |
| #include <linux/debugfs.h> |
| #include <linux/remoteproc.h> |
| #include <linux/device.h> |
| #include <linux/uaccess.h> |
| |
| #include "remoteproc_internal.h" |
| |
| /* remoteproc debugfs parent dir */ |
| static struct dentry *rproc_dbg; |
| |
| /* |
| * A coredump-configuration-to-string lookup table, for exposing a |
| * human readable configuration via debugfs. Always keep in sync with |
| * enum rproc_coredump_mechanism |
| */ |
| static const char * const rproc_coredump_str[] = { |
| [RPROC_COREDUMP_DISABLED] = "disabled", |
| [RPROC_COREDUMP_ENABLED] = "enabled", |
| [RPROC_COREDUMP_INLINE] = "inline", |
| }; |
| |
| /* Expose the current coredump configuration via debugfs */ |
| static ssize_t rproc_coredump_read(struct file *filp, char __user *userbuf, |
| size_t count, loff_t *ppos) |
| { |
| struct rproc *rproc = filp->private_data; |
| char buf[20]; |
| int len; |
| |
| len = scnprintf(buf, sizeof(buf), "%s\n", |
| rproc_coredump_str[rproc->dump_conf]); |
| |
| return simple_read_from_buffer(userbuf, count, ppos, buf, len); |
| } |
| |
| /* |
| * By writing to the 'coredump' debugfs entry, we control the behavior of the |
| * coredump mechanism dynamically. The default value of this entry is "disabled". |
| * |
| * The 'coredump' debugfs entry supports these commands: |
| * |
| * disabled: By default coredump collection is disabled. Recovery will |
| * proceed without collecting any dump. |
| * |
| * enabled: When the remoteproc crashes the entire coredump will be copied |
| * to a separate buffer and exposed to userspace. |
| * |
| * inline: The coredump will not be copied to a separate buffer and the |
| * recovery process will have to wait until data is read by |
| * userspace. But this avoid usage of extra memory. |
| */ |
| static ssize_t rproc_coredump_write(struct file *filp, |
| const char __user *user_buf, size_t count, |
| loff_t *ppos) |
| { |
| struct rproc *rproc = filp->private_data; |
| int ret, err = 0; |
| char buf[20]; |
| |
| if (count > sizeof(buf)) |
| return -EINVAL; |
| |
| ret = copy_from_user(buf, user_buf, count); |
| if (ret) |
| return -EFAULT; |
| |
| /* remove end of line */ |
| if (buf[count - 1] == '\n') |
| buf[count - 1] = '\0'; |
| |
| if (rproc->state == RPROC_CRASHED) { |
| dev_err(&rproc->dev, "can't change coredump configuration\n"); |
| err = -EBUSY; |
| goto out; |
| } |
| |
| if (!strncmp(buf, "disabled", count)) { |
| rproc->dump_conf = RPROC_COREDUMP_DISABLED; |
| } else if (!strncmp(buf, "enabled", count)) { |
| rproc->dump_conf = RPROC_COREDUMP_ENABLED; |
| } else if (!strncmp(buf, "inline", count)) { |
| rproc->dump_conf = RPROC_COREDUMP_INLINE; |
| } else { |
| dev_err(&rproc->dev, "Invalid coredump configuration\n"); |
| err = -EINVAL; |
| } |
| out: |
| return err ? err : count; |
| } |
| |
| static const struct file_operations rproc_coredump_fops = { |
| .read = rproc_coredump_read, |
| .write = rproc_coredump_write, |
| .open = simple_open, |
| .llseek = generic_file_llseek, |
| }; |
| |
| /* |
| * Some remote processors may support dumping trace logs into a shared |
| * memory buffer. We expose this trace buffer using debugfs, so users |
| * can easily tell what's going on remotely. |
| * |
| * We will most probably improve the rproc tracing facilities later on, |
| * but this kind of lightweight and simple mechanism is always good to have, |
| * as it provides very early tracing with little to no dependencies at all. |
| */ |
| static ssize_t rproc_trace_read(struct file *filp, char __user *userbuf, |
| size_t count, loff_t *ppos) |
| { |
| struct rproc_debug_trace *data = filp->private_data; |
| struct rproc_mem_entry *trace = &data->trace_mem; |
| void *va; |
| char buf[100]; |
| int len; |
| |
| va = rproc_da_to_va(data->rproc, trace->da, trace->len); |
| |
| if (!va) { |
| len = scnprintf(buf, sizeof(buf), "Trace %s not available\n", |
| trace->name); |
| va = buf; |
| } else { |
| len = strnlen(va, trace->len); |
| } |
| |
| return simple_read_from_buffer(userbuf, count, ppos, va, len); |
| } |
| |
| static const struct file_operations trace_rproc_ops = { |
| .read = rproc_trace_read, |
| .open = simple_open, |
| .llseek = generic_file_llseek, |
| }; |
| |
| /* expose the name of the remote processor via debugfs */ |
| static ssize_t rproc_name_read(struct file *filp, char __user *userbuf, |
| size_t count, loff_t *ppos) |
| { |
| struct rproc *rproc = filp->private_data; |
| /* need room for the name, a newline and a terminating null */ |
| char buf[100]; |
| int i; |
| |
| i = scnprintf(buf, sizeof(buf), "%.98s\n", rproc->name); |
| |
| return simple_read_from_buffer(userbuf, count, ppos, buf, i); |
| } |
| |
| static const struct file_operations rproc_name_ops = { |
| .read = rproc_name_read, |
| .open = simple_open, |
| .llseek = generic_file_llseek, |
| }; |
| |
| /* expose recovery flag via debugfs */ |
| static ssize_t rproc_recovery_read(struct file *filp, char __user *userbuf, |
| size_t count, loff_t *ppos) |
| { |
| struct rproc *rproc = filp->private_data; |
| char *buf = rproc->recovery_disabled ? "disabled\n" : "enabled\n"; |
| |
| return simple_read_from_buffer(userbuf, count, ppos, buf, strlen(buf)); |
| } |
| |
| /* |
| * By writing to the 'recovery' debugfs entry, we control the behavior of the |
| * recovery mechanism dynamically. The default value of this entry is "enabled". |
| * |
| * The 'recovery' debugfs entry supports these commands: |
| * |
| * enabled: When enabled, the remote processor will be automatically |
| * recovered whenever it crashes. Moreover, if the remote |
| * processor crashes while recovery is disabled, it will |
| * be automatically recovered too as soon as recovery is enabled. |
| * |
| * disabled: When disabled, a remote processor will remain in a crashed |
| * state if it crashes. This is useful for debugging purposes; |
| * without it, debugging a crash is substantially harder. |
| * |
| * recover: This function will trigger an immediate recovery if the |
| * remote processor is in a crashed state, without changing |
| * or checking the recovery state (enabled/disabled). |
| * This is useful during debugging sessions, when one expects |
| * additional crashes to happen after enabling recovery. In this |
| * case, enabling recovery will make it hard to debug subsequent |
| * crashes, so it's recommended to keep recovery disabled, and |
| * instead use the "recover" command as needed. |
| */ |
| static ssize_t |
| rproc_recovery_write(struct file *filp, const char __user *user_buf, |
| size_t count, loff_t *ppos) |
| { |
| struct rproc *rproc = filp->private_data; |
| char buf[10]; |
| int ret; |
| |
| if (count < 1 || count > sizeof(buf)) |
| return -EINVAL; |
| |
| ret = copy_from_user(buf, user_buf, count); |
| if (ret) |
| return -EFAULT; |
| |
| /* remove end of line */ |
| if (buf[count - 1] == '\n') |
| buf[count - 1] = '\0'; |
| |
| if (!strncmp(buf, "enabled", count)) { |
| /* change the flag and begin the recovery process if needed */ |
| rproc->recovery_disabled = false; |
| rproc_trigger_recovery(rproc); |
| } else if (!strncmp(buf, "disabled", count)) { |
| rproc->recovery_disabled = true; |
| } else if (!strncmp(buf, "recover", count)) { |
| /* begin the recovery process without changing the flag */ |
| rproc_trigger_recovery(rproc); |
| } else { |
| return -EINVAL; |
| } |
| |
| return count; |
| } |
| |
| static const struct file_operations rproc_recovery_ops = { |
| .read = rproc_recovery_read, |
| .write = rproc_recovery_write, |
| .open = simple_open, |
| .llseek = generic_file_llseek, |
| }; |
| |
| /* expose the crash trigger via debugfs */ |
| static ssize_t |
| rproc_crash_write(struct file *filp, const char __user *user_buf, |
| size_t count, loff_t *ppos) |
| { |
| struct rproc *rproc = filp->private_data; |
| unsigned int type; |
| int ret; |
| |
| ret = kstrtouint_from_user(user_buf, count, 0, &type); |
| if (ret < 0) |
| return ret; |
| |
| rproc_report_crash(rproc, type); |
| |
| return count; |
| } |
| |
| static const struct file_operations rproc_crash_ops = { |
| .write = rproc_crash_write, |
| .open = simple_open, |
| .llseek = generic_file_llseek, |
| }; |
| |
| /* Expose resource table content via debugfs */ |
| static int rproc_rsc_table_show(struct seq_file *seq, void *p) |
| { |
| static const char * const types[] = {"carveout", "devmem", "trace", "vdev"}; |
| struct rproc *rproc = seq->private; |
| struct resource_table *table = rproc->table_ptr; |
| struct fw_rsc_carveout *c; |
| struct fw_rsc_devmem *d; |
| struct fw_rsc_trace *t; |
| struct fw_rsc_vdev *v; |
| int i, j; |
| |
| if (!table) { |
| seq_puts(seq, "No resource table found\n"); |
| return 0; |
| } |
| |
| for (i = 0; i < table->num; i++) { |
| int offset = table->offset[i]; |
| struct fw_rsc_hdr *hdr = (void *)table + offset; |
| void *rsc = (void *)hdr + sizeof(*hdr); |
| |
| switch (hdr->type) { |
| case RSC_CARVEOUT: |
| c = rsc; |
| seq_printf(seq, "Entry %d is of type %s\n", i, types[hdr->type]); |
| seq_printf(seq, " Device Address 0x%x\n", c->da); |
| seq_printf(seq, " Physical Address 0x%x\n", c->pa); |
| seq_printf(seq, " Length 0x%x Bytes\n", c->len); |
| seq_printf(seq, " Flags 0x%x\n", c->flags); |
| seq_printf(seq, " Reserved (should be zero) [%d]\n", c->reserved); |
| seq_printf(seq, " Name %s\n\n", c->name); |
| break; |
| case RSC_DEVMEM: |
| d = rsc; |
| seq_printf(seq, "Entry %d is of type %s\n", i, types[hdr->type]); |
| seq_printf(seq, " Device Address 0x%x\n", d->da); |
| seq_printf(seq, " Physical Address 0x%x\n", d->pa); |
| seq_printf(seq, " Length 0x%x Bytes\n", d->len); |
| seq_printf(seq, " Flags 0x%x\n", d->flags); |
| seq_printf(seq, " Reserved (should be zero) [%d]\n", d->reserved); |
| seq_printf(seq, " Name %s\n\n", d->name); |
| break; |
| case RSC_TRACE: |
| t = rsc; |
| seq_printf(seq, "Entry %d is of type %s\n", i, types[hdr->type]); |
| seq_printf(seq, " Device Address 0x%x\n", t->da); |
| seq_printf(seq, " Length 0x%x Bytes\n", t->len); |
| seq_printf(seq, " Reserved (should be zero) [%d]\n", t->reserved); |
| seq_printf(seq, " Name %s\n\n", t->name); |
| break; |
| case RSC_VDEV: |
| v = rsc; |
| seq_printf(seq, "Entry %d is of type %s\n", i, types[hdr->type]); |
| |
| seq_printf(seq, " ID %d\n", v->id); |
| seq_printf(seq, " Notify ID %d\n", v->notifyid); |
| seq_printf(seq, " Device features 0x%x\n", v->dfeatures); |
| seq_printf(seq, " Guest features 0x%x\n", v->gfeatures); |
| seq_printf(seq, " Config length 0x%x\n", v->config_len); |
| seq_printf(seq, " Status 0x%x\n", v->status); |
| seq_printf(seq, " Number of vrings %d\n", v->num_of_vrings); |
| seq_printf(seq, " Reserved (should be zero) [%d][%d]\n\n", |
| v->reserved[0], v->reserved[1]); |
| |
| for (j = 0; j < v->num_of_vrings; j++) { |
| seq_printf(seq, " Vring %d\n", j); |
| seq_printf(seq, " Device Address 0x%x\n", v->vring[j].da); |
| seq_printf(seq, " Alignment %d\n", v->vring[j].align); |
| seq_printf(seq, " Number of buffers %d\n", v->vring[j].num); |
| seq_printf(seq, " Notify ID %d\n", v->vring[j].notifyid); |
| seq_printf(seq, " Physical Address 0x%x\n\n", |
| v->vring[j].pa); |
| } |
| break; |
| default: |
| seq_printf(seq, "Unknown resource type found: %d [hdr: %pK]\n", |
| hdr->type, hdr); |
| break; |
| } |
| } |
| |
| return 0; |
| } |
| |
| DEFINE_SHOW_ATTRIBUTE(rproc_rsc_table); |
| |
| /* Expose carveout content via debugfs */ |
| static int rproc_carveouts_show(struct seq_file *seq, void *p) |
| { |
| struct rproc *rproc = seq->private; |
| struct rproc_mem_entry *carveout; |
| |
| list_for_each_entry(carveout, &rproc->carveouts, node) { |
| seq_puts(seq, "Carveout memory entry:\n"); |
| seq_printf(seq, "\tName: %s\n", carveout->name); |
| seq_printf(seq, "\tVirtual address: %pK\n", carveout->va); |
| seq_printf(seq, "\tDMA address: %pad\n", &carveout->dma); |
| seq_printf(seq, "\tDevice address: 0x%x\n", carveout->da); |
| seq_printf(seq, "\tLength: 0x%zx Bytes\n\n", carveout->len); |
| } |
| |
| return 0; |
| } |
| |
| DEFINE_SHOW_ATTRIBUTE(rproc_carveouts); |
| |
| void rproc_remove_trace_file(struct dentry *tfile) |
| { |
| debugfs_remove(tfile); |
| } |
| |
| struct dentry *rproc_create_trace_file(const char *name, struct rproc *rproc, |
| struct rproc_debug_trace *trace) |
| { |
| struct dentry *tfile; |
| |
| tfile = debugfs_create_file(name, 0400, rproc->dbg_dir, trace, |
| &trace_rproc_ops); |
| if (!tfile) { |
| dev_err(&rproc->dev, "failed to create debugfs trace entry\n"); |
| return NULL; |
| } |
| |
| return tfile; |
| } |
| |
| void rproc_delete_debug_dir(struct rproc *rproc) |
| { |
| debugfs_remove_recursive(rproc->dbg_dir); |
| } |
| |
| void rproc_create_debug_dir(struct rproc *rproc) |
| { |
| struct device *dev = &rproc->dev; |
| |
| if (!rproc_dbg) |
| return; |
| |
| rproc->dbg_dir = debugfs_create_dir(dev_name(dev), rproc_dbg); |
| if (!rproc->dbg_dir) |
| return; |
| |
| debugfs_create_file("name", 0400, rproc->dbg_dir, |
| rproc, &rproc_name_ops); |
| debugfs_create_file("recovery", 0600, rproc->dbg_dir, |
| rproc, &rproc_recovery_ops); |
| debugfs_create_file("crash", 0200, rproc->dbg_dir, |
| rproc, &rproc_crash_ops); |
| debugfs_create_file("resource_table", 0400, rproc->dbg_dir, |
| rproc, &rproc_rsc_table_fops); |
| debugfs_create_file("carveout_memories", 0400, rproc->dbg_dir, |
| rproc, &rproc_carveouts_fops); |
| debugfs_create_file("coredump", 0600, rproc->dbg_dir, |
| rproc, &rproc_coredump_fops); |
| } |
| |
| void __init rproc_init_debugfs(void) |
| { |
| if (debugfs_initialized()) { |
| rproc_dbg = debugfs_create_dir(KBUILD_MODNAME, NULL); |
| if (!rproc_dbg) |
| pr_err("can't create debugfs dir\n"); |
| } |
| } |
| |
| void __exit rproc_exit_debugfs(void) |
| { |
| debugfs_remove(rproc_dbg); |
| } |