| // SPDX-License-Identifier: GPL-2.0+ |
| /* |
| * rtc-ab-b5ze-s3 - Driver for Abracon AB-RTCMC-32.768Khz-B5ZE-S3 |
| * I2C RTC / Alarm chip |
| * |
| * Copyright (C) 2014, Arnaud EBALARD <arno@natisbad.org> |
| * |
| * Detailed datasheet of the chip is available here: |
| * |
| * https://www.abracon.com/realtimeclock/AB-RTCMC-32.768kHz-B5ZE-S3-Application-Manual.pdf |
| * |
| * This work is based on ISL12057 driver (drivers/rtc/rtc-isl12057.c). |
| * |
| */ |
| |
| #include <linux/module.h> |
| #include <linux/rtc.h> |
| #include <linux/i2c.h> |
| #include <linux/bcd.h> |
| #include <linux/of.h> |
| #include <linux/regmap.h> |
| #include <linux/interrupt.h> |
| |
| #define DRV_NAME "rtc-ab-b5ze-s3" |
| |
| /* Control section */ |
| #define ABB5ZES3_REG_CTRL1 0x00 /* Control 1 register */ |
| #define ABB5ZES3_REG_CTRL1_CIE BIT(0) /* Pulse interrupt enable */ |
| #define ABB5ZES3_REG_CTRL1_AIE BIT(1) /* Alarm interrupt enable */ |
| #define ABB5ZES3_REG_CTRL1_SIE BIT(2) /* Second interrupt enable */ |
| #define ABB5ZES3_REG_CTRL1_PM BIT(3) /* 24h/12h mode */ |
| #define ABB5ZES3_REG_CTRL1_SR BIT(4) /* Software reset */ |
| #define ABB5ZES3_REG_CTRL1_STOP BIT(5) /* RTC circuit enable */ |
| #define ABB5ZES3_REG_CTRL1_CAP BIT(7) |
| |
| #define ABB5ZES3_REG_CTRL2 0x01 /* Control 2 register */ |
| #define ABB5ZES3_REG_CTRL2_CTBIE BIT(0) /* Countdown timer B int. enable */ |
| #define ABB5ZES3_REG_CTRL2_CTAIE BIT(1) /* Countdown timer A int. enable */ |
| #define ABB5ZES3_REG_CTRL2_WTAIE BIT(2) /* Watchdog timer A int. enable */ |
| #define ABB5ZES3_REG_CTRL2_AF BIT(3) /* Alarm interrupt status */ |
| #define ABB5ZES3_REG_CTRL2_SF BIT(4) /* Second interrupt status */ |
| #define ABB5ZES3_REG_CTRL2_CTBF BIT(5) /* Countdown timer B int. status */ |
| #define ABB5ZES3_REG_CTRL2_CTAF BIT(6) /* Countdown timer A int. status */ |
| #define ABB5ZES3_REG_CTRL2_WTAF BIT(7) /* Watchdog timer A int. status */ |
| |
| #define ABB5ZES3_REG_CTRL3 0x02 /* Control 3 register */ |
| #define ABB5ZES3_REG_CTRL3_PM2 BIT(7) /* Power Management bit 2 */ |
| #define ABB5ZES3_REG_CTRL3_PM1 BIT(6) /* Power Management bit 1 */ |
| #define ABB5ZES3_REG_CTRL3_PM0 BIT(5) /* Power Management bit 0 */ |
| #define ABB5ZES3_REG_CTRL3_BSF BIT(3) /* Battery switchover int. status */ |
| #define ABB5ZES3_REG_CTRL3_BLF BIT(2) /* Battery low int. status */ |
| #define ABB5ZES3_REG_CTRL3_BSIE BIT(1) /* Battery switchover int. enable */ |
| #define ABB5ZES3_REG_CTRL3_BLIE BIT(0) /* Battery low int. enable */ |
| |
| #define ABB5ZES3_CTRL_SEC_LEN 3 |
| |
| /* RTC section */ |
| #define ABB5ZES3_REG_RTC_SC 0x03 /* RTC Seconds register */ |
| #define ABB5ZES3_REG_RTC_SC_OSC BIT(7) /* Clock integrity status */ |
| #define ABB5ZES3_REG_RTC_MN 0x04 /* RTC Minutes register */ |
| #define ABB5ZES3_REG_RTC_HR 0x05 /* RTC Hours register */ |
| #define ABB5ZES3_REG_RTC_HR_PM BIT(5) /* RTC Hours PM bit */ |
| #define ABB5ZES3_REG_RTC_DT 0x06 /* RTC Date register */ |
| #define ABB5ZES3_REG_RTC_DW 0x07 /* RTC Day of the week register */ |
| #define ABB5ZES3_REG_RTC_MO 0x08 /* RTC Month register */ |
| #define ABB5ZES3_REG_RTC_YR 0x09 /* RTC Year register */ |
| |
| #define ABB5ZES3_RTC_SEC_LEN 7 |
| |
| /* Alarm section (enable bits are all active low) */ |
| #define ABB5ZES3_REG_ALRM_MN 0x0A /* Alarm - minute register */ |
| #define ABB5ZES3_REG_ALRM_MN_AE BIT(7) /* Minute enable */ |
| #define ABB5ZES3_REG_ALRM_HR 0x0B /* Alarm - hours register */ |
| #define ABB5ZES3_REG_ALRM_HR_AE BIT(7) /* Hour enable */ |
| #define ABB5ZES3_REG_ALRM_DT 0x0C /* Alarm - date register */ |
| #define ABB5ZES3_REG_ALRM_DT_AE BIT(7) /* Date (day of the month) enable */ |
| #define ABB5ZES3_REG_ALRM_DW 0x0D /* Alarm - day of the week reg. */ |
| #define ABB5ZES3_REG_ALRM_DW_AE BIT(7) /* Day of the week enable */ |
| |
| #define ABB5ZES3_ALRM_SEC_LEN 4 |
| |
| /* Frequency offset section */ |
| #define ABB5ZES3_REG_FREQ_OF 0x0E /* Frequency offset register */ |
| #define ABB5ZES3_REG_FREQ_OF_MODE 0x0E /* Offset mode: 2 hours / minute */ |
| |
| /* CLOCKOUT section */ |
| #define ABB5ZES3_REG_TIM_CLK 0x0F /* Timer & Clockout register */ |
| #define ABB5ZES3_REG_TIM_CLK_TAM BIT(7) /* Permanent/pulsed timer A/int. 2 */ |
| #define ABB5ZES3_REG_TIM_CLK_TBM BIT(6) /* Permanent/pulsed timer B */ |
| #define ABB5ZES3_REG_TIM_CLK_COF2 BIT(5) /* Clkout Freq bit 2 */ |
| #define ABB5ZES3_REG_TIM_CLK_COF1 BIT(4) /* Clkout Freq bit 1 */ |
| #define ABB5ZES3_REG_TIM_CLK_COF0 BIT(3) /* Clkout Freq bit 0 */ |
| #define ABB5ZES3_REG_TIM_CLK_TAC1 BIT(2) /* Timer A: - 01 : countdown */ |
| #define ABB5ZES3_REG_TIM_CLK_TAC0 BIT(1) /* - 10 : timer */ |
| #define ABB5ZES3_REG_TIM_CLK_TBC BIT(0) /* Timer B enable */ |
| |
| /* Timer A Section */ |
| #define ABB5ZES3_REG_TIMA_CLK 0x10 /* Timer A clock register */ |
| #define ABB5ZES3_REG_TIMA_CLK_TAQ2 BIT(2) /* Freq bit 2 */ |
| #define ABB5ZES3_REG_TIMA_CLK_TAQ1 BIT(1) /* Freq bit 1 */ |
| #define ABB5ZES3_REG_TIMA_CLK_TAQ0 BIT(0) /* Freq bit 0 */ |
| #define ABB5ZES3_REG_TIMA 0x11 /* Timer A register */ |
| |
| #define ABB5ZES3_TIMA_SEC_LEN 2 |
| |
| /* Timer B Section */ |
| #define ABB5ZES3_REG_TIMB_CLK 0x12 /* Timer B clock register */ |
| #define ABB5ZES3_REG_TIMB_CLK_TBW2 BIT(6) |
| #define ABB5ZES3_REG_TIMB_CLK_TBW1 BIT(5) |
| #define ABB5ZES3_REG_TIMB_CLK_TBW0 BIT(4) |
| #define ABB5ZES3_REG_TIMB_CLK_TAQ2 BIT(2) |
| #define ABB5ZES3_REG_TIMB_CLK_TAQ1 BIT(1) |
| #define ABB5ZES3_REG_TIMB_CLK_TAQ0 BIT(0) |
| #define ABB5ZES3_REG_TIMB 0x13 /* Timer B register */ |
| #define ABB5ZES3_TIMB_SEC_LEN 2 |
| |
| #define ABB5ZES3_MEM_MAP_LEN 0x14 |
| |
| struct abb5zes3_rtc_data { |
| struct rtc_device *rtc; |
| struct regmap *regmap; |
| |
| int irq; |
| |
| bool battery_low; |
| bool timer_alarm; /* current alarm is via timer A */ |
| }; |
| |
| /* |
| * Try and match register bits w/ fixed null values to see whether we |
| * are dealing with an ABB5ZES3. |
| */ |
| static int abb5zes3_i2c_validate_chip(struct regmap *regmap) |
| { |
| u8 regs[ABB5ZES3_MEM_MAP_LEN]; |
| static const u8 mask[ABB5ZES3_MEM_MAP_LEN] = { 0x00, 0x00, 0x10, 0x00, |
| 0x80, 0xc0, 0xc0, 0xf8, |
| 0xe0, 0x00, 0x00, 0x40, |
| 0x40, 0x78, 0x00, 0x00, |
| 0xf8, 0x00, 0x88, 0x00 }; |
| int ret, i; |
| |
| ret = regmap_bulk_read(regmap, 0, regs, ABB5ZES3_MEM_MAP_LEN); |
| if (ret) |
| return ret; |
| |
| for (i = 0; i < ABB5ZES3_MEM_MAP_LEN; ++i) { |
| if (regs[i] & mask[i]) /* check if bits are cleared */ |
| return -ENODEV; |
| } |
| |
| return 0; |
| } |
| |
| /* Clear alarm status bit. */ |
| static int _abb5zes3_rtc_clear_alarm(struct device *dev) |
| { |
| struct abb5zes3_rtc_data *data = dev_get_drvdata(dev); |
| int ret; |
| |
| ret = regmap_update_bits(data->regmap, ABB5ZES3_REG_CTRL2, |
| ABB5ZES3_REG_CTRL2_AF, 0); |
| if (ret) |
| dev_err(dev, "%s: clearing alarm failed (%d)\n", __func__, ret); |
| |
| return ret; |
| } |
| |
| /* Enable or disable alarm (i.e. alarm interrupt generation) */ |
| static int _abb5zes3_rtc_update_alarm(struct device *dev, bool enable) |
| { |
| struct abb5zes3_rtc_data *data = dev_get_drvdata(dev); |
| int ret; |
| |
| ret = regmap_update_bits(data->regmap, ABB5ZES3_REG_CTRL1, |
| ABB5ZES3_REG_CTRL1_AIE, |
| enable ? ABB5ZES3_REG_CTRL1_AIE : 0); |
| if (ret) |
| dev_err(dev, "%s: writing alarm INT failed (%d)\n", |
| __func__, ret); |
| |
| return ret; |
| } |
| |
| /* Enable or disable timer (watchdog timer A interrupt generation) */ |
| static int _abb5zes3_rtc_update_timer(struct device *dev, bool enable) |
| { |
| struct abb5zes3_rtc_data *data = dev_get_drvdata(dev); |
| int ret; |
| |
| ret = regmap_update_bits(data->regmap, ABB5ZES3_REG_CTRL2, |
| ABB5ZES3_REG_CTRL2_WTAIE, |
| enable ? ABB5ZES3_REG_CTRL2_WTAIE : 0); |
| if (ret) |
| dev_err(dev, "%s: writing timer INT failed (%d)\n", |
| __func__, ret); |
| |
| return ret; |
| } |
| |
| /* |
| * Note: we only read, so regmap inner lock protection is sufficient, i.e. |
| * we do not need driver's main lock protection. |
| */ |
| static int _abb5zes3_rtc_read_time(struct device *dev, struct rtc_time *tm) |
| { |
| struct abb5zes3_rtc_data *data = dev_get_drvdata(dev); |
| u8 regs[ABB5ZES3_REG_RTC_SC + ABB5ZES3_RTC_SEC_LEN]; |
| int ret = 0; |
| |
| /* |
| * As we need to read CTRL1 register anyway to access 24/12h |
| * mode bit, we do a single bulk read of both control and RTC |
| * sections (they are consecutive). This also ease indexing |
| * of register values after bulk read. |
| */ |
| ret = regmap_bulk_read(data->regmap, ABB5ZES3_REG_CTRL1, regs, |
| sizeof(regs)); |
| if (ret) { |
| dev_err(dev, "%s: reading RTC time failed (%d)\n", |
| __func__, ret); |
| return ret; |
| } |
| |
| /* If clock integrity is not guaranteed, do not return a time value */ |
| if (regs[ABB5ZES3_REG_RTC_SC] & ABB5ZES3_REG_RTC_SC_OSC) |
| return -ENODATA; |
| |
| tm->tm_sec = bcd2bin(regs[ABB5ZES3_REG_RTC_SC] & 0x7F); |
| tm->tm_min = bcd2bin(regs[ABB5ZES3_REG_RTC_MN]); |
| |
| if (regs[ABB5ZES3_REG_CTRL1] & ABB5ZES3_REG_CTRL1_PM) { /* 12hr mode */ |
| tm->tm_hour = bcd2bin(regs[ABB5ZES3_REG_RTC_HR] & 0x1f); |
| if (regs[ABB5ZES3_REG_RTC_HR] & ABB5ZES3_REG_RTC_HR_PM) /* PM */ |
| tm->tm_hour += 12; |
| } else { /* 24hr mode */ |
| tm->tm_hour = bcd2bin(regs[ABB5ZES3_REG_RTC_HR]); |
| } |
| |
| tm->tm_mday = bcd2bin(regs[ABB5ZES3_REG_RTC_DT]); |
| tm->tm_wday = bcd2bin(regs[ABB5ZES3_REG_RTC_DW]); |
| tm->tm_mon = bcd2bin(regs[ABB5ZES3_REG_RTC_MO]) - 1; /* starts at 1 */ |
| tm->tm_year = bcd2bin(regs[ABB5ZES3_REG_RTC_YR]) + 100; |
| |
| return ret; |
| } |
| |
| static int abb5zes3_rtc_set_time(struct device *dev, struct rtc_time *tm) |
| { |
| struct abb5zes3_rtc_data *data = dev_get_drvdata(dev); |
| u8 regs[ABB5ZES3_REG_RTC_SC + ABB5ZES3_RTC_SEC_LEN]; |
| int ret; |
| |
| regs[ABB5ZES3_REG_RTC_SC] = bin2bcd(tm->tm_sec); /* MSB=0 clears OSC */ |
| regs[ABB5ZES3_REG_RTC_MN] = bin2bcd(tm->tm_min); |
| regs[ABB5ZES3_REG_RTC_HR] = bin2bcd(tm->tm_hour); /* 24-hour format */ |
| regs[ABB5ZES3_REG_RTC_DT] = bin2bcd(tm->tm_mday); |
| regs[ABB5ZES3_REG_RTC_DW] = bin2bcd(tm->tm_wday); |
| regs[ABB5ZES3_REG_RTC_MO] = bin2bcd(tm->tm_mon + 1); |
| regs[ABB5ZES3_REG_RTC_YR] = bin2bcd(tm->tm_year - 100); |
| |
| ret = regmap_bulk_write(data->regmap, ABB5ZES3_REG_RTC_SC, |
| regs + ABB5ZES3_REG_RTC_SC, |
| ABB5ZES3_RTC_SEC_LEN); |
| |
| return ret; |
| } |
| |
| /* |
| * Set provided TAQ and Timer A registers (TIMA_CLK and TIMA) based on |
| * given number of seconds. |
| */ |
| static inline void sec_to_timer_a(u8 secs, u8 *taq, u8 *timer_a) |
| { |
| *taq = ABB5ZES3_REG_TIMA_CLK_TAQ1; /* 1Hz */ |
| *timer_a = secs; |
| } |
| |
| /* |
| * Return current number of seconds in Timer A. As we only use |
| * timer A with a 1Hz freq, this is what we expect to have. |
| */ |
| static inline int sec_from_timer_a(u8 *secs, u8 taq, u8 timer_a) |
| { |
| if (taq != ABB5ZES3_REG_TIMA_CLK_TAQ1) /* 1Hz */ |
| return -EINVAL; |
| |
| *secs = timer_a; |
| |
| return 0; |
| } |
| |
| /* |
| * Read alarm currently configured via a watchdog timer using timer A. This |
| * is done by reading current RTC time and adding remaining timer time. |
| */ |
| static int _abb5zes3_rtc_read_timer(struct device *dev, |
| struct rtc_wkalrm *alarm) |
| { |
| struct abb5zes3_rtc_data *data = dev_get_drvdata(dev); |
| struct rtc_time rtc_tm, *alarm_tm = &alarm->time; |
| u8 regs[ABB5ZES3_TIMA_SEC_LEN + 1]; |
| unsigned long rtc_secs; |
| unsigned int reg; |
| u8 timer_secs; |
| int ret; |
| |
| /* |
| * Instead of doing two separate calls, because they are consecutive, |
| * we grab both clockout register and Timer A section. The latter is |
| * used to decide if timer A is enabled (as a watchdog timer). |
| */ |
| ret = regmap_bulk_read(data->regmap, ABB5ZES3_REG_TIM_CLK, regs, |
| ABB5ZES3_TIMA_SEC_LEN + 1); |
| if (ret) { |
| dev_err(dev, "%s: reading Timer A section failed (%d)\n", |
| __func__, ret); |
| return ret; |
| } |
| |
| /* get current time ... */ |
| ret = _abb5zes3_rtc_read_time(dev, &rtc_tm); |
| if (ret) |
| return ret; |
| |
| /* ... convert to seconds ... */ |
| rtc_secs = rtc_tm_to_time64(&rtc_tm); |
| |
| /* ... add remaining timer A time ... */ |
| ret = sec_from_timer_a(&timer_secs, regs[1], regs[2]); |
| if (ret) |
| return ret; |
| |
| /* ... and convert back. */ |
| rtc_time64_to_tm(rtc_secs + timer_secs, alarm_tm); |
| |
| ret = regmap_read(data->regmap, ABB5ZES3_REG_CTRL2, ®); |
| if (ret) { |
| dev_err(dev, "%s: reading ctrl reg failed (%d)\n", |
| __func__, ret); |
| return ret; |
| } |
| |
| alarm->enabled = !!(reg & ABB5ZES3_REG_CTRL2_WTAIE); |
| |
| return 0; |
| } |
| |
| /* Read alarm currently configured via a RTC alarm registers. */ |
| static int _abb5zes3_rtc_read_alarm(struct device *dev, |
| struct rtc_wkalrm *alarm) |
| { |
| struct abb5zes3_rtc_data *data = dev_get_drvdata(dev); |
| struct rtc_time rtc_tm, *alarm_tm = &alarm->time; |
| unsigned long rtc_secs, alarm_secs; |
| u8 regs[ABB5ZES3_ALRM_SEC_LEN]; |
| unsigned int reg; |
| int ret; |
| |
| ret = regmap_bulk_read(data->regmap, ABB5ZES3_REG_ALRM_MN, regs, |
| ABB5ZES3_ALRM_SEC_LEN); |
| if (ret) { |
| dev_err(dev, "%s: reading alarm section failed (%d)\n", |
| __func__, ret); |
| return ret; |
| } |
| |
| alarm_tm->tm_sec = 0; |
| alarm_tm->tm_min = bcd2bin(regs[0] & 0x7f); |
| alarm_tm->tm_hour = bcd2bin(regs[1] & 0x3f); |
| alarm_tm->tm_mday = bcd2bin(regs[2] & 0x3f); |
| alarm_tm->tm_wday = -1; |
| |
| /* |
| * The alarm section does not store year/month. We use the ones in rtc |
| * section as a basis and increment month and then year if needed to get |
| * alarm after current time. |
| */ |
| ret = _abb5zes3_rtc_read_time(dev, &rtc_tm); |
| if (ret) |
| return ret; |
| |
| alarm_tm->tm_year = rtc_tm.tm_year; |
| alarm_tm->tm_mon = rtc_tm.tm_mon; |
| |
| rtc_secs = rtc_tm_to_time64(&rtc_tm); |
| alarm_secs = rtc_tm_to_time64(alarm_tm); |
| |
| if (alarm_secs < rtc_secs) { |
| if (alarm_tm->tm_mon == 11) { |
| alarm_tm->tm_mon = 0; |
| alarm_tm->tm_year += 1; |
| } else { |
| alarm_tm->tm_mon += 1; |
| } |
| } |
| |
| ret = regmap_read(data->regmap, ABB5ZES3_REG_CTRL1, ®); |
| if (ret) { |
| dev_err(dev, "%s: reading ctrl reg failed (%d)\n", |
| __func__, ret); |
| return ret; |
| } |
| |
| alarm->enabled = !!(reg & ABB5ZES3_REG_CTRL1_AIE); |
| |
| return 0; |
| } |
| |
| /* |
| * As the Alarm mechanism supported by the chip is only accurate to the |
| * minute, we use the watchdog timer mechanism provided by timer A |
| * (up to 256 seconds w/ a second accuracy) for low alarm values (below |
| * 4 minutes). Otherwise, we use the common alarm mechanism provided |
| * by the chip. In order for that to work, we keep track of currently |
| * configured timer type via 'timer_alarm' flag in our private data |
| * structure. |
| */ |
| static int abb5zes3_rtc_read_alarm(struct device *dev, struct rtc_wkalrm *alarm) |
| { |
| struct abb5zes3_rtc_data *data = dev_get_drvdata(dev); |
| int ret; |
| |
| if (data->timer_alarm) |
| ret = _abb5zes3_rtc_read_timer(dev, alarm); |
| else |
| ret = _abb5zes3_rtc_read_alarm(dev, alarm); |
| |
| return ret; |
| } |
| |
| /* |
| * Set alarm using chip alarm mechanism. It is only accurate to the |
| * minute (not the second). The function expects alarm interrupt to |
| * be disabled. |
| */ |
| static int _abb5zes3_rtc_set_alarm(struct device *dev, struct rtc_wkalrm *alarm) |
| { |
| struct abb5zes3_rtc_data *data = dev_get_drvdata(dev); |
| struct rtc_time *alarm_tm = &alarm->time; |
| u8 regs[ABB5ZES3_ALRM_SEC_LEN]; |
| struct rtc_time rtc_tm; |
| int ret, enable = 1; |
| |
| if (!alarm->enabled) { |
| enable = 0; |
| } else { |
| unsigned long rtc_secs, alarm_secs; |
| |
| /* |
| * Chip only support alarms up to one month in the future. Let's |
| * return an error if we get something after that limit. |
| * Comparison is done by incrementing rtc_tm month field by one |
| * and checking alarm value is still below. |
| */ |
| ret = _abb5zes3_rtc_read_time(dev, &rtc_tm); |
| if (ret) |
| return ret; |
| |
| if (rtc_tm.tm_mon == 11) { /* handle year wrapping */ |
| rtc_tm.tm_mon = 0; |
| rtc_tm.tm_year += 1; |
| } else { |
| rtc_tm.tm_mon += 1; |
| } |
| |
| rtc_secs = rtc_tm_to_time64(&rtc_tm); |
| alarm_secs = rtc_tm_to_time64(alarm_tm); |
| |
| if (alarm_secs > rtc_secs) { |
| dev_err(dev, "%s: alarm maximum is one month in the future (%d)\n", |
| __func__, ret); |
| return -EINVAL; |
| } |
| } |
| |
| /* |
| * Program all alarm registers but DW one. For each register, setting |
| * MSB to 0 enables associated alarm. |
| */ |
| regs[0] = bin2bcd(alarm_tm->tm_min) & 0x7f; |
| regs[1] = bin2bcd(alarm_tm->tm_hour) & 0x3f; |
| regs[2] = bin2bcd(alarm_tm->tm_mday) & 0x3f; |
| regs[3] = ABB5ZES3_REG_ALRM_DW_AE; /* do not match day of the week */ |
| |
| ret = regmap_bulk_write(data->regmap, ABB5ZES3_REG_ALRM_MN, regs, |
| ABB5ZES3_ALRM_SEC_LEN); |
| if (ret < 0) { |
| dev_err(dev, "%s: writing ALARM section failed (%d)\n", |
| __func__, ret); |
| return ret; |
| } |
| |
| /* Record currently configured alarm is not a timer */ |
| data->timer_alarm = 0; |
| |
| /* Enable or disable alarm interrupt generation */ |
| return _abb5zes3_rtc_update_alarm(dev, enable); |
| } |
| |
| /* |
| * Set alarm using timer watchdog (via timer A) mechanism. The function expects |
| * timer A interrupt to be disabled. |
| */ |
| static int _abb5zes3_rtc_set_timer(struct device *dev, struct rtc_wkalrm *alarm, |
| u8 secs) |
| { |
| struct abb5zes3_rtc_data *data = dev_get_drvdata(dev); |
| u8 regs[ABB5ZES3_TIMA_SEC_LEN]; |
| u8 mask = ABB5ZES3_REG_TIM_CLK_TAC0 | ABB5ZES3_REG_TIM_CLK_TAC1; |
| int ret = 0; |
| |
| /* Program given number of seconds to Timer A registers */ |
| sec_to_timer_a(secs, ®s[0], ®s[1]); |
| ret = regmap_bulk_write(data->regmap, ABB5ZES3_REG_TIMA_CLK, regs, |
| ABB5ZES3_TIMA_SEC_LEN); |
| if (ret < 0) { |
| dev_err(dev, "%s: writing timer section failed\n", __func__); |
| return ret; |
| } |
| |
| /* Configure Timer A as a watchdog timer */ |
| ret = regmap_update_bits(data->regmap, ABB5ZES3_REG_TIM_CLK, |
| mask, ABB5ZES3_REG_TIM_CLK_TAC1); |
| if (ret) |
| dev_err(dev, "%s: failed to update timer\n", __func__); |
| |
| /* Record currently configured alarm is a timer */ |
| data->timer_alarm = 1; |
| |
| /* Enable or disable timer interrupt generation */ |
| return _abb5zes3_rtc_update_timer(dev, alarm->enabled); |
| } |
| |
| /* |
| * The chip has an alarm which is only accurate to the minute. In order to |
| * handle alarms below that limit, we use the watchdog timer function of |
| * timer A. More precisely, the timer method is used for alarms below 240 |
| * seconds. |
| */ |
| static int abb5zes3_rtc_set_alarm(struct device *dev, struct rtc_wkalrm *alarm) |
| { |
| struct abb5zes3_rtc_data *data = dev_get_drvdata(dev); |
| struct rtc_time *alarm_tm = &alarm->time; |
| unsigned long rtc_secs, alarm_secs; |
| struct rtc_time rtc_tm; |
| int ret; |
| |
| ret = _abb5zes3_rtc_read_time(dev, &rtc_tm); |
| if (ret) |
| return ret; |
| |
| rtc_secs = rtc_tm_to_time64(&rtc_tm); |
| alarm_secs = rtc_tm_to_time64(alarm_tm); |
| |
| /* Let's first disable both the alarm and the timer interrupts */ |
| ret = _abb5zes3_rtc_update_alarm(dev, false); |
| if (ret < 0) { |
| dev_err(dev, "%s: unable to disable alarm (%d)\n", __func__, |
| ret); |
| return ret; |
| } |
| ret = _abb5zes3_rtc_update_timer(dev, false); |
| if (ret < 0) { |
| dev_err(dev, "%s: unable to disable timer (%d)\n", __func__, |
| ret); |
| return ret; |
| } |
| |
| data->timer_alarm = 0; |
| |
| /* |
| * Let's now configure the alarm; if we are expected to ring in |
| * more than 240s, then we setup an alarm. Otherwise, a timer. |
| */ |
| if ((alarm_secs > rtc_secs) && ((alarm_secs - rtc_secs) <= 240)) |
| ret = _abb5zes3_rtc_set_timer(dev, alarm, |
| alarm_secs - rtc_secs); |
| else |
| ret = _abb5zes3_rtc_set_alarm(dev, alarm); |
| |
| if (ret) |
| dev_err(dev, "%s: unable to configure alarm (%d)\n", __func__, |
| ret); |
| |
| return ret; |
| } |
| |
| /* Enable or disable battery low irq generation */ |
| static inline int _abb5zes3_rtc_battery_low_irq_enable(struct regmap *regmap, |
| bool enable) |
| { |
| return regmap_update_bits(regmap, ABB5ZES3_REG_CTRL3, |
| ABB5ZES3_REG_CTRL3_BLIE, |
| enable ? ABB5ZES3_REG_CTRL3_BLIE : 0); |
| } |
| |
| /* |
| * Check current RTC status and enable/disable what needs to be. Return 0 if |
| * everything went ok and a negative value upon error. |
| */ |
| static int abb5zes3_rtc_check_setup(struct device *dev) |
| { |
| struct abb5zes3_rtc_data *data = dev_get_drvdata(dev); |
| struct regmap *regmap = data->regmap; |
| unsigned int reg; |
| int ret; |
| u8 mask; |
| |
| /* |
| * By default, the devices generates a 32.768KHz signal on IRQ#1 pin. It |
| * is disabled here to prevent polluting the interrupt line and |
| * uselessly triggering the IRQ handler we install for alarm and battery |
| * low events. Note: this is done before clearing int. status below |
| * in this function. |
| * We also disable all timers and set timer interrupt to permanent (not |
| * pulsed). |
| */ |
| mask = (ABB5ZES3_REG_TIM_CLK_TBC | ABB5ZES3_REG_TIM_CLK_TAC0 | |
| ABB5ZES3_REG_TIM_CLK_TAC1 | ABB5ZES3_REG_TIM_CLK_COF0 | |
| ABB5ZES3_REG_TIM_CLK_COF1 | ABB5ZES3_REG_TIM_CLK_COF2 | |
| ABB5ZES3_REG_TIM_CLK_TBM | ABB5ZES3_REG_TIM_CLK_TAM); |
| ret = regmap_update_bits(regmap, ABB5ZES3_REG_TIM_CLK, mask, |
| ABB5ZES3_REG_TIM_CLK_COF0 | |
| ABB5ZES3_REG_TIM_CLK_COF1 | |
| ABB5ZES3_REG_TIM_CLK_COF2); |
| if (ret < 0) { |
| dev_err(dev, "%s: unable to initialize clkout register (%d)\n", |
| __func__, ret); |
| return ret; |
| } |
| |
| /* |
| * Each component of the alarm (MN, HR, DT, DW) can be enabled/disabled |
| * individually by clearing/setting MSB of each associated register. So, |
| * we set all alarm enable bits to disable current alarm setting. |
| */ |
| mask = (ABB5ZES3_REG_ALRM_MN_AE | ABB5ZES3_REG_ALRM_HR_AE | |
| ABB5ZES3_REG_ALRM_DT_AE | ABB5ZES3_REG_ALRM_DW_AE); |
| ret = regmap_update_bits(regmap, ABB5ZES3_REG_CTRL2, mask, mask); |
| if (ret < 0) { |
| dev_err(dev, "%s: unable to disable alarm setting (%d)\n", |
| __func__, ret); |
| return ret; |
| } |
| |
| /* Set Control 1 register (RTC enabled, 24hr mode, all int. disabled) */ |
| mask = (ABB5ZES3_REG_CTRL1_CIE | ABB5ZES3_REG_CTRL1_AIE | |
| ABB5ZES3_REG_CTRL1_SIE | ABB5ZES3_REG_CTRL1_PM | |
| ABB5ZES3_REG_CTRL1_CAP | ABB5ZES3_REG_CTRL1_STOP); |
| ret = regmap_update_bits(regmap, ABB5ZES3_REG_CTRL1, mask, 0); |
| if (ret < 0) { |
| dev_err(dev, "%s: unable to initialize CTRL1 register (%d)\n", |
| __func__, ret); |
| return ret; |
| } |
| |
| /* |
| * Set Control 2 register (timer int. disabled, alarm status cleared). |
| * WTAF is read-only and cleared automatically by reading the register. |
| */ |
| mask = (ABB5ZES3_REG_CTRL2_CTBIE | ABB5ZES3_REG_CTRL2_CTAIE | |
| ABB5ZES3_REG_CTRL2_WTAIE | ABB5ZES3_REG_CTRL2_AF | |
| ABB5ZES3_REG_CTRL2_SF | ABB5ZES3_REG_CTRL2_CTBF | |
| ABB5ZES3_REG_CTRL2_CTAF); |
| ret = regmap_update_bits(regmap, ABB5ZES3_REG_CTRL2, mask, 0); |
| if (ret < 0) { |
| dev_err(dev, "%s: unable to initialize CTRL2 register (%d)\n", |
| __func__, ret); |
| return ret; |
| } |
| |
| /* |
| * Enable battery low detection function and battery switchover function |
| * (standard mode). Disable associated interrupts. Clear battery |
| * switchover flag but not battery low flag. The latter is checked |
| * later below. |
| */ |
| mask = (ABB5ZES3_REG_CTRL3_PM0 | ABB5ZES3_REG_CTRL3_PM1 | |
| ABB5ZES3_REG_CTRL3_PM2 | ABB5ZES3_REG_CTRL3_BLIE | |
| ABB5ZES3_REG_CTRL3_BSIE | ABB5ZES3_REG_CTRL3_BSF); |
| ret = regmap_update_bits(regmap, ABB5ZES3_REG_CTRL3, mask, 0); |
| if (ret < 0) { |
| dev_err(dev, "%s: unable to initialize CTRL3 register (%d)\n", |
| __func__, ret); |
| return ret; |
| } |
| |
| /* Check oscillator integrity flag */ |
| ret = regmap_read(regmap, ABB5ZES3_REG_RTC_SC, ®); |
| if (ret < 0) { |
| dev_err(dev, "%s: unable to read osc. integrity flag (%d)\n", |
| __func__, ret); |
| return ret; |
| } |
| |
| if (reg & ABB5ZES3_REG_RTC_SC_OSC) { |
| dev_err(dev, "clock integrity not guaranteed. Osc. has stopped or has been interrupted.\n"); |
| dev_err(dev, "change battery (if not already done) and then set time to reset osc. failure flag.\n"); |
| } |
| |
| /* |
| * Check battery low flag at startup: this allows reporting battery |
| * is low at startup when IRQ line is not connected. Note: we record |
| * current status to avoid reenabling this interrupt later in probe |
| * function if battery is low. |
| */ |
| ret = regmap_read(regmap, ABB5ZES3_REG_CTRL3, ®); |
| if (ret < 0) { |
| dev_err(dev, "%s: unable to read battery low flag (%d)\n", |
| __func__, ret); |
| return ret; |
| } |
| |
| data->battery_low = reg & ABB5ZES3_REG_CTRL3_BLF; |
| if (data->battery_low) { |
| dev_err(dev, "RTC battery is low; please, consider changing it!\n"); |
| |
| ret = _abb5zes3_rtc_battery_low_irq_enable(regmap, false); |
| if (ret) |
| dev_err(dev, "%s: disabling battery low interrupt generation failed (%d)\n", |
| __func__, ret); |
| } |
| |
| return ret; |
| } |
| |
| static int abb5zes3_rtc_alarm_irq_enable(struct device *dev, |
| unsigned int enable) |
| { |
| struct abb5zes3_rtc_data *rtc_data = dev_get_drvdata(dev); |
| int ret = 0; |
| |
| if (rtc_data->irq) { |
| if (rtc_data->timer_alarm) |
| ret = _abb5zes3_rtc_update_timer(dev, enable); |
| else |
| ret = _abb5zes3_rtc_update_alarm(dev, enable); |
| } |
| |
| return ret; |
| } |
| |
| static irqreturn_t _abb5zes3_rtc_interrupt(int irq, void *data) |
| { |
| struct i2c_client *client = data; |
| struct device *dev = &client->dev; |
| struct abb5zes3_rtc_data *rtc_data = dev_get_drvdata(dev); |
| struct rtc_device *rtc = rtc_data->rtc; |
| u8 regs[ABB5ZES3_CTRL_SEC_LEN]; |
| int ret, handled = IRQ_NONE; |
| |
| ret = regmap_bulk_read(rtc_data->regmap, 0, regs, |
| ABB5ZES3_CTRL_SEC_LEN); |
| if (ret) { |
| dev_err(dev, "%s: unable to read control section (%d)!\n", |
| __func__, ret); |
| return handled; |
| } |
| |
| /* |
| * Check battery low detection flag and disable battery low interrupt |
| * generation if flag is set (interrupt can only be cleared when |
| * battery is replaced). |
| */ |
| if (regs[ABB5ZES3_REG_CTRL3] & ABB5ZES3_REG_CTRL3_BLF) { |
| dev_err(dev, "RTC battery is low; please change it!\n"); |
| |
| _abb5zes3_rtc_battery_low_irq_enable(rtc_data->regmap, false); |
| |
| handled = IRQ_HANDLED; |
| } |
| |
| /* Check alarm flag */ |
| if (regs[ABB5ZES3_REG_CTRL2] & ABB5ZES3_REG_CTRL2_AF) { |
| dev_dbg(dev, "RTC alarm!\n"); |
| |
| rtc_update_irq(rtc, 1, RTC_IRQF | RTC_AF); |
| |
| /* Acknowledge and disable the alarm */ |
| _abb5zes3_rtc_clear_alarm(dev); |
| _abb5zes3_rtc_update_alarm(dev, 0); |
| |
| handled = IRQ_HANDLED; |
| } |
| |
| /* Check watchdog Timer A flag */ |
| if (regs[ABB5ZES3_REG_CTRL2] & ABB5ZES3_REG_CTRL2_WTAF) { |
| dev_dbg(dev, "RTC timer!\n"); |
| |
| rtc_update_irq(rtc, 1, RTC_IRQF | RTC_AF); |
| |
| /* |
| * Acknowledge and disable the alarm. Note: WTAF |
| * flag had been cleared when reading CTRL2 |
| */ |
| _abb5zes3_rtc_update_timer(dev, 0); |
| |
| rtc_data->timer_alarm = 0; |
| |
| handled = IRQ_HANDLED; |
| } |
| |
| return handled; |
| } |
| |
| static const struct rtc_class_ops rtc_ops = { |
| .read_time = _abb5zes3_rtc_read_time, |
| .set_time = abb5zes3_rtc_set_time, |
| .read_alarm = abb5zes3_rtc_read_alarm, |
| .set_alarm = abb5zes3_rtc_set_alarm, |
| .alarm_irq_enable = abb5zes3_rtc_alarm_irq_enable, |
| }; |
| |
| static const struct regmap_config abb5zes3_rtc_regmap_config = { |
| .reg_bits = 8, |
| .val_bits = 8, |
| }; |
| |
| static int abb5zes3_probe(struct i2c_client *client, |
| const struct i2c_device_id *id) |
| { |
| struct abb5zes3_rtc_data *data = NULL; |
| struct device *dev = &client->dev; |
| struct regmap *regmap; |
| int ret; |
| |
| if (!i2c_check_functionality(client->adapter, I2C_FUNC_I2C | |
| I2C_FUNC_SMBUS_BYTE_DATA | |
| I2C_FUNC_SMBUS_I2C_BLOCK)) |
| return -ENODEV; |
| |
| regmap = devm_regmap_init_i2c(client, &abb5zes3_rtc_regmap_config); |
| if (IS_ERR(regmap)) { |
| ret = PTR_ERR(regmap); |
| dev_err(dev, "%s: regmap allocation failed: %d\n", |
| __func__, ret); |
| return ret; |
| } |
| |
| ret = abb5zes3_i2c_validate_chip(regmap); |
| if (ret) |
| return ret; |
| |
| data = devm_kzalloc(dev, sizeof(*data), GFP_KERNEL); |
| if (!data) |
| return -ENOMEM; |
| |
| data->regmap = regmap; |
| dev_set_drvdata(dev, data); |
| |
| ret = abb5zes3_rtc_check_setup(dev); |
| if (ret) |
| return ret; |
| |
| data->rtc = devm_rtc_allocate_device(dev); |
| ret = PTR_ERR_OR_ZERO(data->rtc); |
| if (ret) { |
| dev_err(dev, "%s: unable to allocate RTC device (%d)\n", |
| __func__, ret); |
| return ret; |
| } |
| |
| if (client->irq > 0) { |
| ret = devm_request_threaded_irq(dev, client->irq, NULL, |
| _abb5zes3_rtc_interrupt, |
| IRQF_SHARED | IRQF_ONESHOT, |
| DRV_NAME, client); |
| if (!ret) { |
| device_init_wakeup(dev, true); |
| data->irq = client->irq; |
| dev_dbg(dev, "%s: irq %d used by RTC\n", __func__, |
| client->irq); |
| } else { |
| dev_err(dev, "%s: irq %d unavailable (%d)\n", |
| __func__, client->irq, ret); |
| goto err; |
| } |
| } |
| |
| data->rtc->ops = &rtc_ops; |
| data->rtc->range_min = RTC_TIMESTAMP_BEGIN_2000; |
| data->rtc->range_max = RTC_TIMESTAMP_END_2099; |
| |
| /* Enable battery low detection interrupt if battery not already low */ |
| if (!data->battery_low && data->irq) { |
| ret = _abb5zes3_rtc_battery_low_irq_enable(regmap, true); |
| if (ret) { |
| dev_err(dev, "%s: enabling battery low interrupt generation failed (%d)\n", |
| __func__, ret); |
| goto err; |
| } |
| } |
| |
| ret = rtc_register_device(data->rtc); |
| |
| err: |
| if (ret && data->irq) |
| device_init_wakeup(dev, false); |
| return ret; |
| } |
| |
| #ifdef CONFIG_PM_SLEEP |
| static int abb5zes3_rtc_suspend(struct device *dev) |
| { |
| struct abb5zes3_rtc_data *rtc_data = dev_get_drvdata(dev); |
| |
| if (device_may_wakeup(dev)) |
| return enable_irq_wake(rtc_data->irq); |
| |
| return 0; |
| } |
| |
| static int abb5zes3_rtc_resume(struct device *dev) |
| { |
| struct abb5zes3_rtc_data *rtc_data = dev_get_drvdata(dev); |
| |
| if (device_may_wakeup(dev)) |
| return disable_irq_wake(rtc_data->irq); |
| |
| return 0; |
| } |
| #endif |
| |
| static SIMPLE_DEV_PM_OPS(abb5zes3_rtc_pm_ops, abb5zes3_rtc_suspend, |
| abb5zes3_rtc_resume); |
| |
| #ifdef CONFIG_OF |
| static const struct of_device_id abb5zes3_dt_match[] = { |
| { .compatible = "abracon,abb5zes3" }, |
| { }, |
| }; |
| MODULE_DEVICE_TABLE(of, abb5zes3_dt_match); |
| #endif |
| |
| static const struct i2c_device_id abb5zes3_id[] = { |
| { "abb5zes3", 0 }, |
| { } |
| }; |
| MODULE_DEVICE_TABLE(i2c, abb5zes3_id); |
| |
| static struct i2c_driver abb5zes3_driver = { |
| .driver = { |
| .name = DRV_NAME, |
| .pm = &abb5zes3_rtc_pm_ops, |
| .of_match_table = of_match_ptr(abb5zes3_dt_match), |
| }, |
| .probe = abb5zes3_probe, |
| .id_table = abb5zes3_id, |
| }; |
| module_i2c_driver(abb5zes3_driver); |
| |
| MODULE_AUTHOR("Arnaud EBALARD <arno@natisbad.org>"); |
| MODULE_DESCRIPTION("Abracon AB-RTCMC-32.768kHz-B5ZE-S3 RTC/Alarm driver"); |
| MODULE_LICENSE("GPL"); |