| // SPDX-License-Identifier: GPL-2.0-only |
| // |
| // Copyright (C) 2020 BAIKAL ELECTRONICS, JSC |
| // |
| // Authors: |
| // Ramil Zaripov <Ramil.Zaripov@baikalelectronics.ru> |
| // Serge Semin <Sergey.Semin@baikalelectronics.ru> |
| // |
| // Baikal-T1 DW APB SPI and System Boot SPI driver |
| // |
| |
| #include <linux/clk.h> |
| #include <linux/cpumask.h> |
| #include <linux/err.h> |
| #include <linux/interrupt.h> |
| #include <linux/module.h> |
| #include <linux/mux/consumer.h> |
| #include <linux/of.h> |
| #include <linux/of_platform.h> |
| #include <linux/platform_device.h> |
| #include <linux/pm_runtime.h> |
| #include <linux/property.h> |
| #include <linux/slab.h> |
| #include <linux/spi/spi-mem.h> |
| #include <linux/spi/spi.h> |
| |
| #include "spi-dw.h" |
| |
| #define BT1_BOOT_DIRMAP 0 |
| #define BT1_BOOT_REGS 1 |
| |
| struct dw_spi_bt1 { |
| struct dw_spi dws; |
| struct clk *clk; |
| struct mux_control *mux; |
| |
| #ifdef CONFIG_SPI_DW_BT1_DIRMAP |
| void __iomem *map; |
| resource_size_t map_len; |
| #endif |
| }; |
| #define to_dw_spi_bt1(_ctlr) \ |
| container_of(spi_controller_get_devdata(_ctlr), struct dw_spi_bt1, dws) |
| |
| typedef int (*dw_spi_bt1_init_cb)(struct platform_device *pdev, |
| struct dw_spi_bt1 *dwsbt1); |
| |
| #ifdef CONFIG_SPI_DW_BT1_DIRMAP |
| |
| static int dw_spi_bt1_dirmap_create(struct spi_mem_dirmap_desc *desc) |
| { |
| struct dw_spi_bt1 *dwsbt1 = to_dw_spi_bt1(desc->mem->spi->controller); |
| |
| if (!dwsbt1->map || |
| !dwsbt1->dws.mem_ops.supports_op(desc->mem, &desc->info.op_tmpl)) |
| return -EOPNOTSUPP; |
| |
| /* |
| * Make sure the requested region doesn't go out of the physically |
| * mapped flash memory bounds and the operation is read-only. |
| */ |
| if (desc->info.offset + desc->info.length > dwsbt1->map_len || |
| desc->info.op_tmpl.data.dir != SPI_MEM_DATA_IN) |
| return -EOPNOTSUPP; |
| |
| return 0; |
| } |
| |
| /* |
| * Directly mapped SPI memory region is only accessible in the dword chunks. |
| * That's why we have to create a dedicated read-method to copy data from there |
| * to the passed buffer. |
| */ |
| static void dw_spi_bt1_dirmap_copy_from_map(void *to, void __iomem *from, size_t len) |
| { |
| size_t shift, chunk; |
| u32 data; |
| |
| /* |
| * We split the copying up into the next three stages: unaligned head, |
| * aligned body, unaligned tail. |
| */ |
| shift = (size_t)from & 0x3; |
| if (shift) { |
| chunk = min_t(size_t, 4 - shift, len); |
| data = readl_relaxed(from - shift); |
| memcpy(to, &data + shift, chunk); |
| from += chunk; |
| to += chunk; |
| len -= chunk; |
| } |
| |
| while (len >= 4) { |
| data = readl_relaxed(from); |
| memcpy(to, &data, 4); |
| from += 4; |
| to += 4; |
| len -= 4; |
| } |
| |
| if (len) { |
| data = readl_relaxed(from); |
| memcpy(to, &data, len); |
| } |
| } |
| |
| static ssize_t dw_spi_bt1_dirmap_read(struct spi_mem_dirmap_desc *desc, |
| u64 offs, size_t len, void *buf) |
| { |
| struct dw_spi_bt1 *dwsbt1 = to_dw_spi_bt1(desc->mem->spi->controller); |
| struct dw_spi *dws = &dwsbt1->dws; |
| struct spi_mem *mem = desc->mem; |
| struct dw_spi_cfg cfg; |
| int ret; |
| |
| /* |
| * Make sure the requested operation length is valid. Truncate the |
| * length if it's greater than the length of the MMIO region. |
| */ |
| if (offs >= dwsbt1->map_len || !len) |
| return 0; |
| |
| len = min_t(size_t, len, dwsbt1->map_len - offs); |
| |
| /* Collect the controller configuration required by the operation */ |
| cfg.tmode = SPI_TMOD_EPROMREAD; |
| cfg.dfs = 8; |
| cfg.ndf = 4; |
| cfg.freq = mem->spi->max_speed_hz; |
| |
| /* Make sure the corresponding CS is de-asserted on transmission */ |
| dw_spi_set_cs(mem->spi, false); |
| |
| spi_enable_chip(dws, 0); |
| |
| dw_spi_update_config(dws, mem->spi, &cfg); |
| |
| spi_umask_intr(dws, SPI_INT_RXFI); |
| |
| spi_enable_chip(dws, 1); |
| |
| /* |
| * Enable the transparent mode of the System Boot Controller. |
| * The SPI core IO should have been locked before calling this method |
| * so noone would be touching the controller' registers during the |
| * dirmap operation. |
| */ |
| ret = mux_control_select(dwsbt1->mux, BT1_BOOT_DIRMAP); |
| if (ret) |
| return ret; |
| |
| dw_spi_bt1_dirmap_copy_from_map(buf, dwsbt1->map + offs, len); |
| |
| mux_control_deselect(dwsbt1->mux); |
| |
| dw_spi_set_cs(mem->spi, true); |
| |
| ret = dw_spi_check_status(dws, true); |
| |
| return ret ?: len; |
| } |
| |
| #endif /* CONFIG_SPI_DW_BT1_DIRMAP */ |
| |
| static int dw_spi_bt1_std_init(struct platform_device *pdev, |
| struct dw_spi_bt1 *dwsbt1) |
| { |
| struct dw_spi *dws = &dwsbt1->dws; |
| |
| dws->irq = platform_get_irq(pdev, 0); |
| if (dws->irq < 0) |
| return dws->irq; |
| |
| dws->num_cs = 4; |
| |
| /* |
| * Baikal-T1 Normal SPI Controllers don't always keep up with full SPI |
| * bus speed especially when it comes to the concurrent access to the |
| * APB bus resources. Thus we have no choice but to set a constraint on |
| * the SPI bus frequency for the memory operations which require to |
| * read/write data as fast as possible. |
| */ |
| dws->max_mem_freq = 20000000U; |
| |
| dw_spi_dma_setup_generic(dws); |
| |
| return 0; |
| } |
| |
| static int dw_spi_bt1_sys_init(struct platform_device *pdev, |
| struct dw_spi_bt1 *dwsbt1) |
| { |
| struct resource *mem __maybe_unused; |
| struct dw_spi *dws = &dwsbt1->dws; |
| |
| /* |
| * Baikal-T1 System Boot Controller is equipped with a mux, which |
| * switches between the directly mapped SPI flash access mode and |
| * IO access to the DW APB SSI registers. Note the mux controller |
| * must be setup to preserve the registers being accessible by default |
| * (on idle-state). |
| */ |
| dwsbt1->mux = devm_mux_control_get(&pdev->dev, NULL); |
| if (IS_ERR(dwsbt1->mux)) |
| return PTR_ERR(dwsbt1->mux); |
| |
| /* |
| * Directly mapped SPI flash memory is a 16MB MMIO region, which can be |
| * used to access a peripheral memory device just by reading/writing |
| * data from/to it. Note the system APB bus will stall during each IO |
| * from/to the dirmap region until the operation is finished. So don't |
| * use it concurrently with time-critical tasks (like the SPI memory |
| * operations implemented in the DW APB SSI driver). |
| */ |
| #ifdef CONFIG_SPI_DW_BT1_DIRMAP |
| mem = platform_get_resource(pdev, IORESOURCE_MEM, 1); |
| if (mem) { |
| dwsbt1->map = devm_ioremap_resource(&pdev->dev, mem); |
| if (!IS_ERR(dwsbt1->map)) { |
| dwsbt1->map_len = resource_size(mem); |
| dws->mem_ops.dirmap_create = dw_spi_bt1_dirmap_create; |
| dws->mem_ops.dirmap_read = dw_spi_bt1_dirmap_read; |
| } else { |
| dwsbt1->map = NULL; |
| } |
| } |
| #endif /* CONFIG_SPI_DW_BT1_DIRMAP */ |
| |
| /* |
| * There is no IRQ, no DMA and just one CS available on the System Boot |
| * SPI controller. |
| */ |
| dws->irq = IRQ_NOTCONNECTED; |
| dws->num_cs = 1; |
| |
| /* |
| * Baikal-T1 System Boot SPI Controller doesn't keep up with the full |
| * SPI bus speed due to relatively slow APB bus and races for it' |
| * resources from different CPUs. The situation is worsen by a small |
| * FIFOs depth (just 8 words). It works better in a single CPU mode |
| * though, but still tends to be not fast enough at low CPU |
| * frequencies. |
| */ |
| if (num_possible_cpus() > 1) |
| dws->max_mem_freq = 10000000U; |
| else |
| dws->max_mem_freq = 20000000U; |
| |
| return 0; |
| } |
| |
| static int dw_spi_bt1_probe(struct platform_device *pdev) |
| { |
| dw_spi_bt1_init_cb init_func; |
| struct dw_spi_bt1 *dwsbt1; |
| struct resource *mem; |
| struct dw_spi *dws; |
| int ret; |
| |
| dwsbt1 = devm_kzalloc(&pdev->dev, sizeof(struct dw_spi_bt1), GFP_KERNEL); |
| if (!dwsbt1) |
| return -ENOMEM; |
| |
| dws = &dwsbt1->dws; |
| |
| dws->regs = devm_platform_get_and_ioremap_resource(pdev, 0, &mem); |
| if (IS_ERR(dws->regs)) |
| return PTR_ERR(dws->regs); |
| |
| dws->paddr = mem->start; |
| |
| dwsbt1->clk = devm_clk_get(&pdev->dev, NULL); |
| if (IS_ERR(dwsbt1->clk)) |
| return PTR_ERR(dwsbt1->clk); |
| |
| ret = clk_prepare_enable(dwsbt1->clk); |
| if (ret) |
| return ret; |
| |
| dws->bus_num = pdev->id; |
| dws->reg_io_width = 4; |
| dws->max_freq = clk_get_rate(dwsbt1->clk); |
| if (!dws->max_freq) { |
| ret = -EINVAL; |
| goto err_disable_clk; |
| } |
| |
| init_func = device_get_match_data(&pdev->dev); |
| ret = init_func(pdev, dwsbt1); |
| if (ret) |
| goto err_disable_clk; |
| |
| pm_runtime_enable(&pdev->dev); |
| |
| ret = dw_spi_add_host(&pdev->dev, dws); |
| if (ret) |
| goto err_disable_clk; |
| |
| platform_set_drvdata(pdev, dwsbt1); |
| |
| return 0; |
| |
| err_disable_clk: |
| clk_disable_unprepare(dwsbt1->clk); |
| |
| return ret; |
| } |
| |
| static int dw_spi_bt1_remove(struct platform_device *pdev) |
| { |
| struct dw_spi_bt1 *dwsbt1 = platform_get_drvdata(pdev); |
| |
| dw_spi_remove_host(&dwsbt1->dws); |
| |
| pm_runtime_disable(&pdev->dev); |
| |
| clk_disable_unprepare(dwsbt1->clk); |
| |
| return 0; |
| } |
| |
| static const struct of_device_id dw_spi_bt1_of_match[] = { |
| { .compatible = "baikal,bt1-ssi", .data = dw_spi_bt1_std_init}, |
| { .compatible = "baikal,bt1-sys-ssi", .data = dw_spi_bt1_sys_init}, |
| { } |
| }; |
| MODULE_DEVICE_TABLE(of, dw_spi_bt1_of_match); |
| |
| static struct platform_driver dw_spi_bt1_driver = { |
| .probe = dw_spi_bt1_probe, |
| .remove = dw_spi_bt1_remove, |
| .driver = { |
| .name = "bt1-sys-ssi", |
| .of_match_table = dw_spi_bt1_of_match, |
| }, |
| }; |
| module_platform_driver(dw_spi_bt1_driver); |
| |
| MODULE_AUTHOR("Serge Semin <Sergey.Semin@baikalelectronics.ru>"); |
| MODULE_DESCRIPTION("Baikal-T1 System Boot SPI Controller driver"); |
| MODULE_LICENSE("GPL v2"); |