| // SPDX-License-Identifier: GPL-2.0 |
| /* |
| * Copyright (C) 2014 Facebook. All rights reserved. |
| */ |
| |
| #include <linux/sched.h> |
| #include <linux/stacktrace.h> |
| #include "ctree.h" |
| #include "disk-io.h" |
| #include "locking.h" |
| #include "delayed-ref.h" |
| #include "ref-verify.h" |
| |
| /* |
| * Used to keep track the roots and number of refs each root has for a given |
| * bytenr. This just tracks the number of direct references, no shared |
| * references. |
| */ |
| struct root_entry { |
| u64 root_objectid; |
| u64 num_refs; |
| struct rb_node node; |
| }; |
| |
| /* |
| * These are meant to represent what should exist in the extent tree, these can |
| * be used to verify the extent tree is consistent as these should all match |
| * what the extent tree says. |
| */ |
| struct ref_entry { |
| u64 root_objectid; |
| u64 parent; |
| u64 owner; |
| u64 offset; |
| u64 num_refs; |
| struct rb_node node; |
| }; |
| |
| #define MAX_TRACE 16 |
| |
| /* |
| * Whenever we add/remove a reference we record the action. The action maps |
| * back to the delayed ref action. We hold the ref we are changing in the |
| * action so we can account for the history properly, and we record the root we |
| * were called with since it could be different from ref_root. We also store |
| * stack traces because that's how I roll. |
| */ |
| struct ref_action { |
| int action; |
| u64 root; |
| struct ref_entry ref; |
| struct list_head list; |
| unsigned long trace[MAX_TRACE]; |
| unsigned int trace_len; |
| }; |
| |
| /* |
| * One of these for every block we reference, it holds the roots and references |
| * to it as well as all of the ref actions that have occurred to it. We never |
| * free it until we unmount the file system in order to make sure re-allocations |
| * are happening properly. |
| */ |
| struct block_entry { |
| u64 bytenr; |
| u64 len; |
| u64 num_refs; |
| int metadata; |
| int from_disk; |
| struct rb_root roots; |
| struct rb_root refs; |
| struct rb_node node; |
| struct list_head actions; |
| }; |
| |
| static struct block_entry *insert_block_entry(struct rb_root *root, |
| struct block_entry *be) |
| { |
| struct rb_node **p = &root->rb_node; |
| struct rb_node *parent_node = NULL; |
| struct block_entry *entry; |
| |
| while (*p) { |
| parent_node = *p; |
| entry = rb_entry(parent_node, struct block_entry, node); |
| if (entry->bytenr > be->bytenr) |
| p = &(*p)->rb_left; |
| else if (entry->bytenr < be->bytenr) |
| p = &(*p)->rb_right; |
| else |
| return entry; |
| } |
| |
| rb_link_node(&be->node, parent_node, p); |
| rb_insert_color(&be->node, root); |
| return NULL; |
| } |
| |
| static struct block_entry *lookup_block_entry(struct rb_root *root, u64 bytenr) |
| { |
| struct rb_node *n; |
| struct block_entry *entry = NULL; |
| |
| n = root->rb_node; |
| while (n) { |
| entry = rb_entry(n, struct block_entry, node); |
| if (entry->bytenr < bytenr) |
| n = n->rb_right; |
| else if (entry->bytenr > bytenr) |
| n = n->rb_left; |
| else |
| return entry; |
| } |
| return NULL; |
| } |
| |
| static struct root_entry *insert_root_entry(struct rb_root *root, |
| struct root_entry *re) |
| { |
| struct rb_node **p = &root->rb_node; |
| struct rb_node *parent_node = NULL; |
| struct root_entry *entry; |
| |
| while (*p) { |
| parent_node = *p; |
| entry = rb_entry(parent_node, struct root_entry, node); |
| if (entry->root_objectid > re->root_objectid) |
| p = &(*p)->rb_left; |
| else if (entry->root_objectid < re->root_objectid) |
| p = &(*p)->rb_right; |
| else |
| return entry; |
| } |
| |
| rb_link_node(&re->node, parent_node, p); |
| rb_insert_color(&re->node, root); |
| return NULL; |
| |
| } |
| |
| static int comp_refs(struct ref_entry *ref1, struct ref_entry *ref2) |
| { |
| if (ref1->root_objectid < ref2->root_objectid) |
| return -1; |
| if (ref1->root_objectid > ref2->root_objectid) |
| return 1; |
| if (ref1->parent < ref2->parent) |
| return -1; |
| if (ref1->parent > ref2->parent) |
| return 1; |
| if (ref1->owner < ref2->owner) |
| return -1; |
| if (ref1->owner > ref2->owner) |
| return 1; |
| if (ref1->offset < ref2->offset) |
| return -1; |
| if (ref1->offset > ref2->offset) |
| return 1; |
| return 0; |
| } |
| |
| static struct ref_entry *insert_ref_entry(struct rb_root *root, |
| struct ref_entry *ref) |
| { |
| struct rb_node **p = &root->rb_node; |
| struct rb_node *parent_node = NULL; |
| struct ref_entry *entry; |
| int cmp; |
| |
| while (*p) { |
| parent_node = *p; |
| entry = rb_entry(parent_node, struct ref_entry, node); |
| cmp = comp_refs(entry, ref); |
| if (cmp > 0) |
| p = &(*p)->rb_left; |
| else if (cmp < 0) |
| p = &(*p)->rb_right; |
| else |
| return entry; |
| } |
| |
| rb_link_node(&ref->node, parent_node, p); |
| rb_insert_color(&ref->node, root); |
| return NULL; |
| |
| } |
| |
| static struct root_entry *lookup_root_entry(struct rb_root *root, u64 objectid) |
| { |
| struct rb_node *n; |
| struct root_entry *entry = NULL; |
| |
| n = root->rb_node; |
| while (n) { |
| entry = rb_entry(n, struct root_entry, node); |
| if (entry->root_objectid < objectid) |
| n = n->rb_right; |
| else if (entry->root_objectid > objectid) |
| n = n->rb_left; |
| else |
| return entry; |
| } |
| return NULL; |
| } |
| |
| #ifdef CONFIG_STACKTRACE |
| static void __save_stack_trace(struct ref_action *ra) |
| { |
| struct stack_trace stack_trace; |
| |
| stack_trace.max_entries = MAX_TRACE; |
| stack_trace.nr_entries = 0; |
| stack_trace.entries = ra->trace; |
| stack_trace.skip = 2; |
| save_stack_trace(&stack_trace); |
| ra->trace_len = stack_trace.nr_entries; |
| } |
| |
| static void __print_stack_trace(struct btrfs_fs_info *fs_info, |
| struct ref_action *ra) |
| { |
| struct stack_trace trace; |
| |
| if (ra->trace_len == 0) { |
| btrfs_err(fs_info, " ref-verify: no stacktrace"); |
| return; |
| } |
| trace.nr_entries = ra->trace_len; |
| trace.entries = ra->trace; |
| print_stack_trace(&trace, 2); |
| } |
| #else |
| static void inline __save_stack_trace(struct ref_action *ra) |
| { |
| } |
| |
| static void inline __print_stack_trace(struct btrfs_fs_info *fs_info, |
| struct ref_action *ra) |
| { |
| btrfs_err(fs_info, " ref-verify: no stacktrace support"); |
| } |
| #endif |
| |
| static void free_block_entry(struct block_entry *be) |
| { |
| struct root_entry *re; |
| struct ref_entry *ref; |
| struct ref_action *ra; |
| struct rb_node *n; |
| |
| while ((n = rb_first(&be->roots))) { |
| re = rb_entry(n, struct root_entry, node); |
| rb_erase(&re->node, &be->roots); |
| kfree(re); |
| } |
| |
| while((n = rb_first(&be->refs))) { |
| ref = rb_entry(n, struct ref_entry, node); |
| rb_erase(&ref->node, &be->refs); |
| kfree(ref); |
| } |
| |
| while (!list_empty(&be->actions)) { |
| ra = list_first_entry(&be->actions, struct ref_action, |
| list); |
| list_del(&ra->list); |
| kfree(ra); |
| } |
| kfree(be); |
| } |
| |
| static struct block_entry *add_block_entry(struct btrfs_fs_info *fs_info, |
| u64 bytenr, u64 len, |
| u64 root_objectid) |
| { |
| struct block_entry *be = NULL, *exist; |
| struct root_entry *re = NULL; |
| |
| re = kzalloc(sizeof(struct root_entry), GFP_KERNEL); |
| be = kzalloc(sizeof(struct block_entry), GFP_KERNEL); |
| if (!be || !re) { |
| kfree(re); |
| kfree(be); |
| return ERR_PTR(-ENOMEM); |
| } |
| be->bytenr = bytenr; |
| be->len = len; |
| |
| re->root_objectid = root_objectid; |
| re->num_refs = 0; |
| |
| spin_lock(&fs_info->ref_verify_lock); |
| exist = insert_block_entry(&fs_info->block_tree, be); |
| if (exist) { |
| if (root_objectid) { |
| struct root_entry *exist_re; |
| |
| exist_re = insert_root_entry(&exist->roots, re); |
| if (exist_re) |
| kfree(re); |
| } |
| kfree(be); |
| return exist; |
| } |
| |
| be->num_refs = 0; |
| be->metadata = 0; |
| be->from_disk = 0; |
| be->roots = RB_ROOT; |
| be->refs = RB_ROOT; |
| INIT_LIST_HEAD(&be->actions); |
| if (root_objectid) |
| insert_root_entry(&be->roots, re); |
| else |
| kfree(re); |
| return be; |
| } |
| |
| static int add_tree_block(struct btrfs_fs_info *fs_info, u64 ref_root, |
| u64 parent, u64 bytenr, int level) |
| { |
| struct block_entry *be; |
| struct root_entry *re; |
| struct ref_entry *ref = NULL, *exist; |
| |
| ref = kmalloc(sizeof(struct ref_entry), GFP_KERNEL); |
| if (!ref) |
| return -ENOMEM; |
| |
| if (parent) |
| ref->root_objectid = 0; |
| else |
| ref->root_objectid = ref_root; |
| ref->parent = parent; |
| ref->owner = level; |
| ref->offset = 0; |
| ref->num_refs = 1; |
| |
| be = add_block_entry(fs_info, bytenr, fs_info->nodesize, ref_root); |
| if (IS_ERR(be)) { |
| kfree(ref); |
| return PTR_ERR(be); |
| } |
| be->num_refs++; |
| be->from_disk = 1; |
| be->metadata = 1; |
| |
| if (!parent) { |
| ASSERT(ref_root); |
| re = lookup_root_entry(&be->roots, ref_root); |
| ASSERT(re); |
| re->num_refs++; |
| } |
| exist = insert_ref_entry(&be->refs, ref); |
| if (exist) { |
| exist->num_refs++; |
| kfree(ref); |
| } |
| spin_unlock(&fs_info->ref_verify_lock); |
| |
| return 0; |
| } |
| |
| static int add_shared_data_ref(struct btrfs_fs_info *fs_info, |
| u64 parent, u32 num_refs, u64 bytenr, |
| u64 num_bytes) |
| { |
| struct block_entry *be; |
| struct ref_entry *ref; |
| |
| ref = kzalloc(sizeof(struct ref_entry), GFP_KERNEL); |
| if (!ref) |
| return -ENOMEM; |
| be = add_block_entry(fs_info, bytenr, num_bytes, 0); |
| if (IS_ERR(be)) { |
| kfree(ref); |
| return PTR_ERR(be); |
| } |
| be->num_refs += num_refs; |
| |
| ref->parent = parent; |
| ref->num_refs = num_refs; |
| if (insert_ref_entry(&be->refs, ref)) { |
| spin_unlock(&fs_info->ref_verify_lock); |
| btrfs_err(fs_info, "existing shared ref when reading from disk?"); |
| kfree(ref); |
| return -EINVAL; |
| } |
| spin_unlock(&fs_info->ref_verify_lock); |
| return 0; |
| } |
| |
| static int add_extent_data_ref(struct btrfs_fs_info *fs_info, |
| struct extent_buffer *leaf, |
| struct btrfs_extent_data_ref *dref, |
| u64 bytenr, u64 num_bytes) |
| { |
| struct block_entry *be; |
| struct ref_entry *ref; |
| struct root_entry *re; |
| u64 ref_root = btrfs_extent_data_ref_root(leaf, dref); |
| u64 owner = btrfs_extent_data_ref_objectid(leaf, dref); |
| u64 offset = btrfs_extent_data_ref_offset(leaf, dref); |
| u32 num_refs = btrfs_extent_data_ref_count(leaf, dref); |
| |
| ref = kzalloc(sizeof(struct ref_entry), GFP_KERNEL); |
| if (!ref) |
| return -ENOMEM; |
| be = add_block_entry(fs_info, bytenr, num_bytes, ref_root); |
| if (IS_ERR(be)) { |
| kfree(ref); |
| return PTR_ERR(be); |
| } |
| be->num_refs += num_refs; |
| |
| ref->parent = 0; |
| ref->owner = owner; |
| ref->root_objectid = ref_root; |
| ref->offset = offset; |
| ref->num_refs = num_refs; |
| if (insert_ref_entry(&be->refs, ref)) { |
| spin_unlock(&fs_info->ref_verify_lock); |
| btrfs_err(fs_info, "existing ref when reading from disk?"); |
| kfree(ref); |
| return -EINVAL; |
| } |
| |
| re = lookup_root_entry(&be->roots, ref_root); |
| if (!re) { |
| spin_unlock(&fs_info->ref_verify_lock); |
| btrfs_err(fs_info, "missing root in new block entry?"); |
| return -EINVAL; |
| } |
| re->num_refs += num_refs; |
| spin_unlock(&fs_info->ref_verify_lock); |
| return 0; |
| } |
| |
| static int process_extent_item(struct btrfs_fs_info *fs_info, |
| struct btrfs_path *path, struct btrfs_key *key, |
| int slot, int *tree_block_level) |
| { |
| struct btrfs_extent_item *ei; |
| struct btrfs_extent_inline_ref *iref; |
| struct btrfs_extent_data_ref *dref; |
| struct btrfs_shared_data_ref *sref; |
| struct extent_buffer *leaf = path->nodes[0]; |
| u32 item_size = btrfs_item_size_nr(leaf, slot); |
| unsigned long end, ptr; |
| u64 offset, flags, count; |
| int type, ret; |
| |
| ei = btrfs_item_ptr(leaf, slot, struct btrfs_extent_item); |
| flags = btrfs_extent_flags(leaf, ei); |
| |
| if ((key->type == BTRFS_EXTENT_ITEM_KEY) && |
| flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) { |
| struct btrfs_tree_block_info *info; |
| |
| info = (struct btrfs_tree_block_info *)(ei + 1); |
| *tree_block_level = btrfs_tree_block_level(leaf, info); |
| iref = (struct btrfs_extent_inline_ref *)(info + 1); |
| } else { |
| if (key->type == BTRFS_METADATA_ITEM_KEY) |
| *tree_block_level = key->offset; |
| iref = (struct btrfs_extent_inline_ref *)(ei + 1); |
| } |
| |
| ptr = (unsigned long)iref; |
| end = (unsigned long)ei + item_size; |
| while (ptr < end) { |
| iref = (struct btrfs_extent_inline_ref *)ptr; |
| type = btrfs_extent_inline_ref_type(leaf, iref); |
| offset = btrfs_extent_inline_ref_offset(leaf, iref); |
| switch (type) { |
| case BTRFS_TREE_BLOCK_REF_KEY: |
| ret = add_tree_block(fs_info, offset, 0, key->objectid, |
| *tree_block_level); |
| break; |
| case BTRFS_SHARED_BLOCK_REF_KEY: |
| ret = add_tree_block(fs_info, 0, offset, key->objectid, |
| *tree_block_level); |
| break; |
| case BTRFS_EXTENT_DATA_REF_KEY: |
| dref = (struct btrfs_extent_data_ref *)(&iref->offset); |
| ret = add_extent_data_ref(fs_info, leaf, dref, |
| key->objectid, key->offset); |
| break; |
| case BTRFS_SHARED_DATA_REF_KEY: |
| sref = (struct btrfs_shared_data_ref *)(iref + 1); |
| count = btrfs_shared_data_ref_count(leaf, sref); |
| ret = add_shared_data_ref(fs_info, offset, count, |
| key->objectid, key->offset); |
| break; |
| default: |
| btrfs_err(fs_info, "invalid key type in iref"); |
| ret = -EINVAL; |
| break; |
| } |
| if (ret) |
| break; |
| ptr += btrfs_extent_inline_ref_size(type); |
| } |
| return ret; |
| } |
| |
| static int process_leaf(struct btrfs_root *root, |
| struct btrfs_path *path, u64 *bytenr, u64 *num_bytes) |
| { |
| struct btrfs_fs_info *fs_info = root->fs_info; |
| struct extent_buffer *leaf = path->nodes[0]; |
| struct btrfs_extent_data_ref *dref; |
| struct btrfs_shared_data_ref *sref; |
| u32 count; |
| int i = 0, tree_block_level = 0, ret; |
| struct btrfs_key key; |
| int nritems = btrfs_header_nritems(leaf); |
| |
| for (i = 0; i < nritems; i++) { |
| btrfs_item_key_to_cpu(leaf, &key, i); |
| switch (key.type) { |
| case BTRFS_EXTENT_ITEM_KEY: |
| *num_bytes = key.offset; |
| case BTRFS_METADATA_ITEM_KEY: |
| *bytenr = key.objectid; |
| ret = process_extent_item(fs_info, path, &key, i, |
| &tree_block_level); |
| break; |
| case BTRFS_TREE_BLOCK_REF_KEY: |
| ret = add_tree_block(fs_info, key.offset, 0, |
| key.objectid, tree_block_level); |
| break; |
| case BTRFS_SHARED_BLOCK_REF_KEY: |
| ret = add_tree_block(fs_info, 0, key.offset, |
| key.objectid, tree_block_level); |
| break; |
| case BTRFS_EXTENT_DATA_REF_KEY: |
| dref = btrfs_item_ptr(leaf, i, |
| struct btrfs_extent_data_ref); |
| ret = add_extent_data_ref(fs_info, leaf, dref, *bytenr, |
| *num_bytes); |
| break; |
| case BTRFS_SHARED_DATA_REF_KEY: |
| sref = btrfs_item_ptr(leaf, i, |
| struct btrfs_shared_data_ref); |
| count = btrfs_shared_data_ref_count(leaf, sref); |
| ret = add_shared_data_ref(fs_info, key.offset, count, |
| *bytenr, *num_bytes); |
| break; |
| default: |
| break; |
| } |
| if (ret) |
| break; |
| } |
| return ret; |
| } |
| |
| /* Walk down to the leaf from the given level */ |
| static int walk_down_tree(struct btrfs_root *root, struct btrfs_path *path, |
| int level, u64 *bytenr, u64 *num_bytes) |
| { |
| struct btrfs_fs_info *fs_info = root->fs_info; |
| struct extent_buffer *eb; |
| u64 block_bytenr, gen; |
| int ret = 0; |
| |
| while (level >= 0) { |
| if (level) { |
| struct btrfs_key first_key; |
| |
| block_bytenr = btrfs_node_blockptr(path->nodes[level], |
| path->slots[level]); |
| gen = btrfs_node_ptr_generation(path->nodes[level], |
| path->slots[level]); |
| btrfs_node_key_to_cpu(path->nodes[level], &first_key, |
| path->slots[level]); |
| eb = read_tree_block(fs_info, block_bytenr, gen, |
| level - 1, &first_key); |
| if (IS_ERR(eb)) |
| return PTR_ERR(eb); |
| if (!extent_buffer_uptodate(eb)) { |
| free_extent_buffer(eb); |
| return -EIO; |
| } |
| btrfs_tree_read_lock(eb); |
| btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK); |
| path->nodes[level-1] = eb; |
| path->slots[level-1] = 0; |
| path->locks[level-1] = BTRFS_READ_LOCK_BLOCKING; |
| } else { |
| ret = process_leaf(root, path, bytenr, num_bytes); |
| if (ret) |
| break; |
| } |
| level--; |
| } |
| return ret; |
| } |
| |
| /* Walk up to the next node that needs to be processed */ |
| static int walk_up_tree(struct btrfs_path *path, int *level) |
| { |
| int l; |
| |
| for (l = 0; l < BTRFS_MAX_LEVEL; l++) { |
| if (!path->nodes[l]) |
| continue; |
| if (l) { |
| path->slots[l]++; |
| if (path->slots[l] < |
| btrfs_header_nritems(path->nodes[l])) { |
| *level = l; |
| return 0; |
| } |
| } |
| btrfs_tree_unlock_rw(path->nodes[l], path->locks[l]); |
| free_extent_buffer(path->nodes[l]); |
| path->nodes[l] = NULL; |
| path->slots[l] = 0; |
| path->locks[l] = 0; |
| } |
| |
| return 1; |
| } |
| |
| static void dump_ref_action(struct btrfs_fs_info *fs_info, |
| struct ref_action *ra) |
| { |
| btrfs_err(fs_info, |
| " Ref action %d, root %llu, ref_root %llu, parent %llu, owner %llu, offset %llu, num_refs %llu", |
| ra->action, ra->root, ra->ref.root_objectid, ra->ref.parent, |
| ra->ref.owner, ra->ref.offset, ra->ref.num_refs); |
| __print_stack_trace(fs_info, ra); |
| } |
| |
| /* |
| * Dumps all the information from the block entry to printk, it's going to be |
| * awesome. |
| */ |
| static void dump_block_entry(struct btrfs_fs_info *fs_info, |
| struct block_entry *be) |
| { |
| struct ref_entry *ref; |
| struct root_entry *re; |
| struct ref_action *ra; |
| struct rb_node *n; |
| |
| btrfs_err(fs_info, |
| "dumping block entry [%llu %llu], num_refs %llu, metadata %d, from disk %d", |
| be->bytenr, be->len, be->num_refs, be->metadata, |
| be->from_disk); |
| |
| for (n = rb_first(&be->refs); n; n = rb_next(n)) { |
| ref = rb_entry(n, struct ref_entry, node); |
| btrfs_err(fs_info, |
| " ref root %llu, parent %llu, owner %llu, offset %llu, num_refs %llu", |
| ref->root_objectid, ref->parent, ref->owner, |
| ref->offset, ref->num_refs); |
| } |
| |
| for (n = rb_first(&be->roots); n; n = rb_next(n)) { |
| re = rb_entry(n, struct root_entry, node); |
| btrfs_err(fs_info, " root entry %llu, num_refs %llu", |
| re->root_objectid, re->num_refs); |
| } |
| |
| list_for_each_entry(ra, &be->actions, list) |
| dump_ref_action(fs_info, ra); |
| } |
| |
| /* |
| * btrfs_ref_tree_mod: called when we modify a ref for a bytenr |
| * @root: the root we are making this modification from. |
| * @bytenr: the bytenr we are modifying. |
| * @num_bytes: number of bytes. |
| * @parent: the parent bytenr. |
| * @ref_root: the original root owner of the bytenr. |
| * @owner: level in the case of metadata, inode in the case of data. |
| * @offset: 0 for metadata, file offset for data. |
| * @action: the action that we are doing, this is the same as the delayed ref |
| * action. |
| * |
| * This will add an action item to the given bytenr and do sanity checks to make |
| * sure we haven't messed something up. If we are making a new allocation and |
| * this block entry has history we will delete all previous actions as long as |
| * our sanity checks pass as they are no longer needed. |
| */ |
| int btrfs_ref_tree_mod(struct btrfs_root *root, u64 bytenr, u64 num_bytes, |
| u64 parent, u64 ref_root, u64 owner, u64 offset, |
| int action) |
| { |
| struct btrfs_fs_info *fs_info = root->fs_info; |
| struct ref_entry *ref = NULL, *exist; |
| struct ref_action *ra = NULL; |
| struct block_entry *be = NULL; |
| struct root_entry *re = NULL; |
| int ret = 0; |
| bool metadata = owner < BTRFS_FIRST_FREE_OBJECTID; |
| |
| if (!btrfs_test_opt(root->fs_info, REF_VERIFY)) |
| return 0; |
| |
| ref = kzalloc(sizeof(struct ref_entry), GFP_NOFS); |
| ra = kmalloc(sizeof(struct ref_action), GFP_NOFS); |
| if (!ra || !ref) { |
| kfree(ref); |
| kfree(ra); |
| ret = -ENOMEM; |
| goto out; |
| } |
| |
| if (parent) { |
| ref->parent = parent; |
| } else { |
| ref->root_objectid = ref_root; |
| ref->owner = owner; |
| ref->offset = offset; |
| } |
| ref->num_refs = (action == BTRFS_DROP_DELAYED_REF) ? -1 : 1; |
| |
| memcpy(&ra->ref, ref, sizeof(struct ref_entry)); |
| /* |
| * Save the extra info from the delayed ref in the ref action to make it |
| * easier to figure out what is happening. The real ref's we add to the |
| * ref tree need to reflect what we save on disk so it matches any |
| * on-disk refs we pre-loaded. |
| */ |
| ra->ref.owner = owner; |
| ra->ref.offset = offset; |
| ra->ref.root_objectid = ref_root; |
| __save_stack_trace(ra); |
| |
| INIT_LIST_HEAD(&ra->list); |
| ra->action = action; |
| ra->root = root->root_key.objectid; |
| |
| /* |
| * This is an allocation, preallocate the block_entry in case we haven't |
| * used it before. |
| */ |
| ret = -EINVAL; |
| if (action == BTRFS_ADD_DELAYED_EXTENT) { |
| /* |
| * For subvol_create we'll just pass in whatever the parent root |
| * is and the new root objectid, so let's not treat the passed |
| * in root as if it really has a ref for this bytenr. |
| */ |
| be = add_block_entry(root->fs_info, bytenr, num_bytes, ref_root); |
| if (IS_ERR(be)) { |
| kfree(ra); |
| ret = PTR_ERR(be); |
| goto out; |
| } |
| be->num_refs++; |
| if (metadata) |
| be->metadata = 1; |
| |
| if (be->num_refs != 1) { |
| btrfs_err(fs_info, |
| "re-allocated a block that still has references to it!"); |
| dump_block_entry(fs_info, be); |
| dump_ref_action(fs_info, ra); |
| goto out_unlock; |
| } |
| |
| while (!list_empty(&be->actions)) { |
| struct ref_action *tmp; |
| |
| tmp = list_first_entry(&be->actions, struct ref_action, |
| list); |
| list_del(&tmp->list); |
| kfree(tmp); |
| } |
| } else { |
| struct root_entry *tmp; |
| |
| if (!parent) { |
| re = kmalloc(sizeof(struct root_entry), GFP_NOFS); |
| if (!re) { |
| kfree(ref); |
| kfree(ra); |
| ret = -ENOMEM; |
| goto out; |
| } |
| /* |
| * This is the root that is modifying us, so it's the |
| * one we want to lookup below when we modify the |
| * re->num_refs. |
| */ |
| ref_root = root->root_key.objectid; |
| re->root_objectid = root->root_key.objectid; |
| re->num_refs = 0; |
| } |
| |
| spin_lock(&root->fs_info->ref_verify_lock); |
| be = lookup_block_entry(&root->fs_info->block_tree, bytenr); |
| if (!be) { |
| btrfs_err(fs_info, |
| "trying to do action %d to bytenr %llu num_bytes %llu but there is no existing entry!", |
| action, (unsigned long long)bytenr, |
| (unsigned long long)num_bytes); |
| dump_ref_action(fs_info, ra); |
| kfree(ref); |
| kfree(ra); |
| goto out_unlock; |
| } |
| |
| if (!parent) { |
| tmp = insert_root_entry(&be->roots, re); |
| if (tmp) { |
| kfree(re); |
| re = tmp; |
| } |
| } |
| } |
| |
| exist = insert_ref_entry(&be->refs, ref); |
| if (exist) { |
| if (action == BTRFS_DROP_DELAYED_REF) { |
| if (exist->num_refs == 0) { |
| btrfs_err(fs_info, |
| "dropping a ref for a existing root that doesn't have a ref on the block"); |
| dump_block_entry(fs_info, be); |
| dump_ref_action(fs_info, ra); |
| kfree(ra); |
| goto out_unlock; |
| } |
| exist->num_refs--; |
| if (exist->num_refs == 0) { |
| rb_erase(&exist->node, &be->refs); |
| kfree(exist); |
| } |
| } else if (!be->metadata) { |
| exist->num_refs++; |
| } else { |
| btrfs_err(fs_info, |
| "attempting to add another ref for an existing ref on a tree block"); |
| dump_block_entry(fs_info, be); |
| dump_ref_action(fs_info, ra); |
| kfree(ra); |
| goto out_unlock; |
| } |
| kfree(ref); |
| } else { |
| if (action == BTRFS_DROP_DELAYED_REF) { |
| btrfs_err(fs_info, |
| "dropping a ref for a root that doesn't have a ref on the block"); |
| dump_block_entry(fs_info, be); |
| dump_ref_action(fs_info, ra); |
| kfree(ra); |
| goto out_unlock; |
| } |
| } |
| |
| if (!parent && !re) { |
| re = lookup_root_entry(&be->roots, ref_root); |
| if (!re) { |
| /* |
| * This shouldn't happen because we will add our re |
| * above when we lookup the be with !parent, but just in |
| * case catch this case so we don't panic because I |
| * didn't think of some other corner case. |
| */ |
| btrfs_err(fs_info, "failed to find root %llu for %llu", |
| root->root_key.objectid, be->bytenr); |
| dump_block_entry(fs_info, be); |
| dump_ref_action(fs_info, ra); |
| kfree(ra); |
| goto out_unlock; |
| } |
| } |
| if (action == BTRFS_DROP_DELAYED_REF) { |
| if (re) |
| re->num_refs--; |
| be->num_refs--; |
| } else if (action == BTRFS_ADD_DELAYED_REF) { |
| be->num_refs++; |
| if (re) |
| re->num_refs++; |
| } |
| list_add_tail(&ra->list, &be->actions); |
| ret = 0; |
| out_unlock: |
| spin_unlock(&root->fs_info->ref_verify_lock); |
| out: |
| if (ret) |
| btrfs_clear_opt(fs_info->mount_opt, REF_VERIFY); |
| return ret; |
| } |
| |
| /* Free up the ref cache */ |
| void btrfs_free_ref_cache(struct btrfs_fs_info *fs_info) |
| { |
| struct block_entry *be; |
| struct rb_node *n; |
| |
| if (!btrfs_test_opt(fs_info, REF_VERIFY)) |
| return; |
| |
| spin_lock(&fs_info->ref_verify_lock); |
| while ((n = rb_first(&fs_info->block_tree))) { |
| be = rb_entry(n, struct block_entry, node); |
| rb_erase(&be->node, &fs_info->block_tree); |
| free_block_entry(be); |
| cond_resched_lock(&fs_info->ref_verify_lock); |
| } |
| spin_unlock(&fs_info->ref_verify_lock); |
| } |
| |
| void btrfs_free_ref_tree_range(struct btrfs_fs_info *fs_info, u64 start, |
| u64 len) |
| { |
| struct block_entry *be = NULL, *entry; |
| struct rb_node *n; |
| |
| if (!btrfs_test_opt(fs_info, REF_VERIFY)) |
| return; |
| |
| spin_lock(&fs_info->ref_verify_lock); |
| n = fs_info->block_tree.rb_node; |
| while (n) { |
| entry = rb_entry(n, struct block_entry, node); |
| if (entry->bytenr < start) { |
| n = n->rb_right; |
| } else if (entry->bytenr > start) { |
| n = n->rb_left; |
| } else { |
| be = entry; |
| break; |
| } |
| /* We want to get as close to start as possible */ |
| if (be == NULL || |
| (entry->bytenr < start && be->bytenr > start) || |
| (entry->bytenr < start && entry->bytenr > be->bytenr)) |
| be = entry; |
| } |
| |
| /* |
| * Could have an empty block group, maybe have something to check for |
| * this case to verify we were actually empty? |
| */ |
| if (!be) { |
| spin_unlock(&fs_info->ref_verify_lock); |
| return; |
| } |
| |
| n = &be->node; |
| while (n) { |
| be = rb_entry(n, struct block_entry, node); |
| n = rb_next(n); |
| if (be->bytenr < start && be->bytenr + be->len > start) { |
| btrfs_err(fs_info, |
| "block entry overlaps a block group [%llu,%llu]!", |
| start, len); |
| dump_block_entry(fs_info, be); |
| continue; |
| } |
| if (be->bytenr < start) |
| continue; |
| if (be->bytenr >= start + len) |
| break; |
| if (be->bytenr + be->len > start + len) { |
| btrfs_err(fs_info, |
| "block entry overlaps a block group [%llu,%llu]!", |
| start, len); |
| dump_block_entry(fs_info, be); |
| } |
| rb_erase(&be->node, &fs_info->block_tree); |
| free_block_entry(be); |
| } |
| spin_unlock(&fs_info->ref_verify_lock); |
| } |
| |
| /* Walk down all roots and build the ref tree, meant to be called at mount */ |
| int btrfs_build_ref_tree(struct btrfs_fs_info *fs_info) |
| { |
| struct btrfs_path *path; |
| struct extent_buffer *eb; |
| u64 bytenr = 0, num_bytes = 0; |
| int ret, level; |
| |
| if (!btrfs_test_opt(fs_info, REF_VERIFY)) |
| return 0; |
| |
| path = btrfs_alloc_path(); |
| if (!path) |
| return -ENOMEM; |
| |
| eb = btrfs_read_lock_root_node(fs_info->extent_root); |
| btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK); |
| level = btrfs_header_level(eb); |
| path->nodes[level] = eb; |
| path->slots[level] = 0; |
| path->locks[level] = BTRFS_READ_LOCK_BLOCKING; |
| |
| while (1) { |
| /* |
| * We have to keep track of the bytenr/num_bytes we last hit |
| * because we could have run out of space for an inline ref, and |
| * would have had to added a ref key item which may appear on a |
| * different leaf from the original extent item. |
| */ |
| ret = walk_down_tree(fs_info->extent_root, path, level, |
| &bytenr, &num_bytes); |
| if (ret) |
| break; |
| ret = walk_up_tree(path, &level); |
| if (ret < 0) |
| break; |
| if (ret > 0) { |
| ret = 0; |
| break; |
| } |
| } |
| if (ret) { |
| btrfs_clear_opt(fs_info->mount_opt, REF_VERIFY); |
| btrfs_free_ref_cache(fs_info); |
| } |
| btrfs_free_path(path); |
| return ret; |
| } |