| /* |
| * Copyright (C) 2016 Facebook |
| * Copyright (C) 2013-2014 Jens Axboe |
| * |
| * This program is free software; you can redistribute it and/or |
| * modify it under the terms of the GNU General Public |
| * License v2 as published by the Free Software Foundation. |
| * |
| * This program is distributed in the hope that it will be useful, |
| * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
| * General Public License for more details. |
| * |
| * You should have received a copy of the GNU General Public License |
| * along with this program. If not, see <https://www.gnu.org/licenses/>. |
| */ |
| |
| #include <linux/sched.h> |
| #include <linux/random.h> |
| #include <linux/sbitmap.h> |
| #include <linux/seq_file.h> |
| |
| int sbitmap_init_node(struct sbitmap *sb, unsigned int depth, int shift, |
| gfp_t flags, int node) |
| { |
| unsigned int bits_per_word; |
| unsigned int i; |
| |
| if (shift < 0) { |
| shift = ilog2(BITS_PER_LONG); |
| /* |
| * If the bitmap is small, shrink the number of bits per word so |
| * we spread over a few cachelines, at least. If less than 4 |
| * bits, just forget about it, it's not going to work optimally |
| * anyway. |
| */ |
| if (depth >= 4) { |
| while ((4U << shift) > depth) |
| shift--; |
| } |
| } |
| bits_per_word = 1U << shift; |
| if (bits_per_word > BITS_PER_LONG) |
| return -EINVAL; |
| |
| sb->shift = shift; |
| sb->depth = depth; |
| sb->map_nr = DIV_ROUND_UP(sb->depth, bits_per_word); |
| |
| if (depth == 0) { |
| sb->map = NULL; |
| return 0; |
| } |
| |
| sb->map = kcalloc_node(sb->map_nr, sizeof(*sb->map), flags, node); |
| if (!sb->map) |
| return -ENOMEM; |
| |
| for (i = 0; i < sb->map_nr; i++) { |
| sb->map[i].depth = min(depth, bits_per_word); |
| depth -= sb->map[i].depth; |
| spin_lock_init(&sb->map[i].swap_lock); |
| } |
| return 0; |
| } |
| EXPORT_SYMBOL_GPL(sbitmap_init_node); |
| |
| void sbitmap_resize(struct sbitmap *sb, unsigned int depth) |
| { |
| unsigned int bits_per_word = 1U << sb->shift; |
| unsigned int i; |
| |
| sb->depth = depth; |
| sb->map_nr = DIV_ROUND_UP(sb->depth, bits_per_word); |
| |
| for (i = 0; i < sb->map_nr; i++) { |
| sb->map[i].depth = min(depth, bits_per_word); |
| depth -= sb->map[i].depth; |
| } |
| } |
| EXPORT_SYMBOL_GPL(sbitmap_resize); |
| |
| static int __sbitmap_get_word(unsigned long *word, unsigned long depth, |
| unsigned int hint, bool wrap) |
| { |
| unsigned int orig_hint = hint; |
| int nr; |
| |
| while (1) { |
| nr = find_next_zero_bit(word, depth, hint); |
| if (unlikely(nr >= depth)) { |
| /* |
| * We started with an offset, and we didn't reset the |
| * offset to 0 in a failure case, so start from 0 to |
| * exhaust the map. |
| */ |
| if (orig_hint && hint && wrap) { |
| hint = orig_hint = 0; |
| continue; |
| } |
| return -1; |
| } |
| |
| if (!test_and_set_bit_lock(nr, word)) |
| break; |
| |
| hint = nr + 1; |
| if (hint >= depth - 1) |
| hint = 0; |
| } |
| |
| return nr; |
| } |
| |
| /* |
| * See if we have deferred clears that we can batch move |
| */ |
| static inline bool sbitmap_deferred_clear(struct sbitmap *sb, int index) |
| { |
| unsigned long mask, val; |
| bool ret = false; |
| |
| spin_lock(&sb->map[index].swap_lock); |
| |
| if (!sb->map[index].cleared) |
| goto out_unlock; |
| |
| /* |
| * First get a stable cleared mask, setting the old mask to 0. |
| */ |
| do { |
| mask = sb->map[index].cleared; |
| } while (cmpxchg(&sb->map[index].cleared, mask, 0) != mask); |
| |
| /* |
| * Now clear the masked bits in our free word |
| */ |
| do { |
| val = sb->map[index].word; |
| } while (cmpxchg(&sb->map[index].word, val, val & ~mask) != val); |
| |
| ret = true; |
| out_unlock: |
| spin_unlock(&sb->map[index].swap_lock); |
| return ret; |
| } |
| |
| static int sbitmap_find_bit_in_index(struct sbitmap *sb, int index, |
| unsigned int alloc_hint, bool round_robin) |
| { |
| int nr; |
| |
| do { |
| nr = __sbitmap_get_word(&sb->map[index].word, |
| sb->map[index].depth, alloc_hint, |
| !round_robin); |
| if (nr != -1) |
| break; |
| if (!sbitmap_deferred_clear(sb, index)) |
| break; |
| } while (1); |
| |
| return nr; |
| } |
| |
| int sbitmap_get(struct sbitmap *sb, unsigned int alloc_hint, bool round_robin) |
| { |
| unsigned int i, index; |
| int nr = -1; |
| |
| index = SB_NR_TO_INDEX(sb, alloc_hint); |
| |
| /* |
| * Unless we're doing round robin tag allocation, just use the |
| * alloc_hint to find the right word index. No point in looping |
| * twice in find_next_zero_bit() for that case. |
| */ |
| if (round_robin) |
| alloc_hint = SB_NR_TO_BIT(sb, alloc_hint); |
| else |
| alloc_hint = 0; |
| |
| for (i = 0; i < sb->map_nr; i++) { |
| nr = sbitmap_find_bit_in_index(sb, index, alloc_hint, |
| round_robin); |
| if (nr != -1) { |
| nr += index << sb->shift; |
| break; |
| } |
| |
| /* Jump to next index. */ |
| alloc_hint = 0; |
| if (++index >= sb->map_nr) |
| index = 0; |
| } |
| |
| return nr; |
| } |
| EXPORT_SYMBOL_GPL(sbitmap_get); |
| |
| int sbitmap_get_shallow(struct sbitmap *sb, unsigned int alloc_hint, |
| unsigned long shallow_depth) |
| { |
| unsigned int i, index; |
| int nr = -1; |
| |
| index = SB_NR_TO_INDEX(sb, alloc_hint); |
| |
| for (i = 0; i < sb->map_nr; i++) { |
| nr = __sbitmap_get_word(&sb->map[index].word, |
| min(sb->map[index].depth, shallow_depth), |
| SB_NR_TO_BIT(sb, alloc_hint), true); |
| if (nr != -1) { |
| nr += index << sb->shift; |
| break; |
| } |
| |
| /* Jump to next index. */ |
| index++; |
| alloc_hint = index << sb->shift; |
| |
| if (index >= sb->map_nr) { |
| index = 0; |
| alloc_hint = 0; |
| } |
| } |
| |
| return nr; |
| } |
| EXPORT_SYMBOL_GPL(sbitmap_get_shallow); |
| |
| bool sbitmap_any_bit_set(const struct sbitmap *sb) |
| { |
| unsigned int i; |
| |
| for (i = 0; i < sb->map_nr; i++) { |
| if (sb->map[i].word) |
| return true; |
| } |
| return false; |
| } |
| EXPORT_SYMBOL_GPL(sbitmap_any_bit_set); |
| |
| bool sbitmap_any_bit_clear(const struct sbitmap *sb) |
| { |
| unsigned int i; |
| |
| for (i = 0; i < sb->map_nr; i++) { |
| const struct sbitmap_word *word = &sb->map[i]; |
| unsigned long ret; |
| |
| ret = find_first_zero_bit(&word->word, word->depth); |
| if (ret < word->depth) |
| return true; |
| } |
| return false; |
| } |
| EXPORT_SYMBOL_GPL(sbitmap_any_bit_clear); |
| |
| static unsigned int __sbitmap_weight(const struct sbitmap *sb, bool set) |
| { |
| unsigned int i, weight = 0; |
| |
| for (i = 0; i < sb->map_nr; i++) { |
| const struct sbitmap_word *word = &sb->map[i]; |
| |
| if (set) |
| weight += bitmap_weight(&word->word, word->depth); |
| else |
| weight += bitmap_weight(&word->cleared, word->depth); |
| } |
| return weight; |
| } |
| |
| static unsigned int sbitmap_weight(const struct sbitmap *sb) |
| { |
| return __sbitmap_weight(sb, true); |
| } |
| |
| static unsigned int sbitmap_cleared(const struct sbitmap *sb) |
| { |
| return __sbitmap_weight(sb, false); |
| } |
| |
| void sbitmap_show(struct sbitmap *sb, struct seq_file *m) |
| { |
| seq_printf(m, "depth=%u\n", sb->depth); |
| seq_printf(m, "busy=%u\n", sbitmap_weight(sb) - sbitmap_cleared(sb)); |
| seq_printf(m, "cleared=%u\n", sbitmap_cleared(sb)); |
| seq_printf(m, "bits_per_word=%u\n", 1U << sb->shift); |
| seq_printf(m, "map_nr=%u\n", sb->map_nr); |
| } |
| EXPORT_SYMBOL_GPL(sbitmap_show); |
| |
| static inline void emit_byte(struct seq_file *m, unsigned int offset, u8 byte) |
| { |
| if ((offset & 0xf) == 0) { |
| if (offset != 0) |
| seq_putc(m, '\n'); |
| seq_printf(m, "%08x:", offset); |
| } |
| if ((offset & 0x1) == 0) |
| seq_putc(m, ' '); |
| seq_printf(m, "%02x", byte); |
| } |
| |
| void sbitmap_bitmap_show(struct sbitmap *sb, struct seq_file *m) |
| { |
| u8 byte = 0; |
| unsigned int byte_bits = 0; |
| unsigned int offset = 0; |
| int i; |
| |
| for (i = 0; i < sb->map_nr; i++) { |
| unsigned long word = READ_ONCE(sb->map[i].word); |
| unsigned int word_bits = READ_ONCE(sb->map[i].depth); |
| |
| while (word_bits > 0) { |
| unsigned int bits = min(8 - byte_bits, word_bits); |
| |
| byte |= (word & (BIT(bits) - 1)) << byte_bits; |
| byte_bits += bits; |
| if (byte_bits == 8) { |
| emit_byte(m, offset, byte); |
| byte = 0; |
| byte_bits = 0; |
| offset++; |
| } |
| word >>= bits; |
| word_bits -= bits; |
| } |
| } |
| if (byte_bits) { |
| emit_byte(m, offset, byte); |
| offset++; |
| } |
| if (offset) |
| seq_putc(m, '\n'); |
| } |
| EXPORT_SYMBOL_GPL(sbitmap_bitmap_show); |
| |
| static unsigned int sbq_calc_wake_batch(struct sbitmap_queue *sbq, |
| unsigned int depth) |
| { |
| unsigned int wake_batch; |
| unsigned int shallow_depth; |
| |
| /* |
| * For each batch, we wake up one queue. We need to make sure that our |
| * batch size is small enough that the full depth of the bitmap, |
| * potentially limited by a shallow depth, is enough to wake up all of |
| * the queues. |
| * |
| * Each full word of the bitmap has bits_per_word bits, and there might |
| * be a partial word. There are depth / bits_per_word full words and |
| * depth % bits_per_word bits left over. In bitwise arithmetic: |
| * |
| * bits_per_word = 1 << shift |
| * depth / bits_per_word = depth >> shift |
| * depth % bits_per_word = depth & ((1 << shift) - 1) |
| * |
| * Each word can be limited to sbq->min_shallow_depth bits. |
| */ |
| shallow_depth = min(1U << sbq->sb.shift, sbq->min_shallow_depth); |
| depth = ((depth >> sbq->sb.shift) * shallow_depth + |
| min(depth & ((1U << sbq->sb.shift) - 1), shallow_depth)); |
| wake_batch = clamp_t(unsigned int, depth / SBQ_WAIT_QUEUES, 1, |
| SBQ_WAKE_BATCH); |
| |
| return wake_batch; |
| } |
| |
| int sbitmap_queue_init_node(struct sbitmap_queue *sbq, unsigned int depth, |
| int shift, bool round_robin, gfp_t flags, int node) |
| { |
| int ret; |
| int i; |
| |
| ret = sbitmap_init_node(&sbq->sb, depth, shift, flags, node); |
| if (ret) |
| return ret; |
| |
| sbq->alloc_hint = alloc_percpu_gfp(unsigned int, flags); |
| if (!sbq->alloc_hint) { |
| sbitmap_free(&sbq->sb); |
| return -ENOMEM; |
| } |
| |
| if (depth && !round_robin) { |
| for_each_possible_cpu(i) |
| *per_cpu_ptr(sbq->alloc_hint, i) = prandom_u32() % depth; |
| } |
| |
| sbq->min_shallow_depth = UINT_MAX; |
| sbq->wake_batch = sbq_calc_wake_batch(sbq, depth); |
| atomic_set(&sbq->wake_index, 0); |
| |
| sbq->ws = kzalloc_node(SBQ_WAIT_QUEUES * sizeof(*sbq->ws), flags, node); |
| if (!sbq->ws) { |
| free_percpu(sbq->alloc_hint); |
| sbitmap_free(&sbq->sb); |
| return -ENOMEM; |
| } |
| |
| for (i = 0; i < SBQ_WAIT_QUEUES; i++) { |
| init_waitqueue_head(&sbq->ws[i].wait); |
| atomic_set(&sbq->ws[i].wait_cnt, sbq->wake_batch); |
| } |
| |
| sbq->round_robin = round_robin; |
| return 0; |
| } |
| EXPORT_SYMBOL_GPL(sbitmap_queue_init_node); |
| |
| static void sbitmap_queue_update_wake_batch(struct sbitmap_queue *sbq, |
| unsigned int depth) |
| { |
| unsigned int wake_batch = sbq_calc_wake_batch(sbq, depth); |
| int i; |
| |
| if (sbq->wake_batch != wake_batch) { |
| WRITE_ONCE(sbq->wake_batch, wake_batch); |
| /* |
| * Pairs with the memory barrier in sbitmap_queue_wake_up() |
| * to ensure that the batch size is updated before the wait |
| * counts. |
| */ |
| smp_mb__before_atomic(); |
| for (i = 0; i < SBQ_WAIT_QUEUES; i++) |
| atomic_set(&sbq->ws[i].wait_cnt, 1); |
| } |
| } |
| |
| void sbitmap_queue_resize(struct sbitmap_queue *sbq, unsigned int depth) |
| { |
| sbitmap_queue_update_wake_batch(sbq, depth); |
| sbitmap_resize(&sbq->sb, depth); |
| } |
| EXPORT_SYMBOL_GPL(sbitmap_queue_resize); |
| |
| int __sbitmap_queue_get(struct sbitmap_queue *sbq) |
| { |
| unsigned int hint, depth; |
| int nr; |
| |
| hint = this_cpu_read(*sbq->alloc_hint); |
| depth = READ_ONCE(sbq->sb.depth); |
| if (unlikely(hint >= depth)) { |
| hint = depth ? prandom_u32() % depth : 0; |
| this_cpu_write(*sbq->alloc_hint, hint); |
| } |
| nr = sbitmap_get(&sbq->sb, hint, sbq->round_robin); |
| |
| if (nr == -1) { |
| /* If the map is full, a hint won't do us much good. */ |
| this_cpu_write(*sbq->alloc_hint, 0); |
| } else if (nr == hint || unlikely(sbq->round_robin)) { |
| /* Only update the hint if we used it. */ |
| hint = nr + 1; |
| if (hint >= depth - 1) |
| hint = 0; |
| this_cpu_write(*sbq->alloc_hint, hint); |
| } |
| |
| return nr; |
| } |
| EXPORT_SYMBOL_GPL(__sbitmap_queue_get); |
| |
| int __sbitmap_queue_get_shallow(struct sbitmap_queue *sbq, |
| unsigned int shallow_depth) |
| { |
| unsigned int hint, depth; |
| int nr; |
| |
| WARN_ON_ONCE(shallow_depth < sbq->min_shallow_depth); |
| |
| hint = this_cpu_read(*sbq->alloc_hint); |
| depth = READ_ONCE(sbq->sb.depth); |
| if (unlikely(hint >= depth)) { |
| hint = depth ? prandom_u32() % depth : 0; |
| this_cpu_write(*sbq->alloc_hint, hint); |
| } |
| nr = sbitmap_get_shallow(&sbq->sb, hint, shallow_depth); |
| |
| if (nr == -1) { |
| /* If the map is full, a hint won't do us much good. */ |
| this_cpu_write(*sbq->alloc_hint, 0); |
| } else if (nr == hint || unlikely(sbq->round_robin)) { |
| /* Only update the hint if we used it. */ |
| hint = nr + 1; |
| if (hint >= depth - 1) |
| hint = 0; |
| this_cpu_write(*sbq->alloc_hint, hint); |
| } |
| |
| return nr; |
| } |
| EXPORT_SYMBOL_GPL(__sbitmap_queue_get_shallow); |
| |
| void sbitmap_queue_min_shallow_depth(struct sbitmap_queue *sbq, |
| unsigned int min_shallow_depth) |
| { |
| sbq->min_shallow_depth = min_shallow_depth; |
| sbitmap_queue_update_wake_batch(sbq, sbq->sb.depth); |
| } |
| EXPORT_SYMBOL_GPL(sbitmap_queue_min_shallow_depth); |
| |
| static struct sbq_wait_state *sbq_wake_ptr(struct sbitmap_queue *sbq) |
| { |
| int i, wake_index; |
| |
| wake_index = atomic_read(&sbq->wake_index); |
| for (i = 0; i < SBQ_WAIT_QUEUES; i++) { |
| struct sbq_wait_state *ws = &sbq->ws[wake_index]; |
| |
| if (waitqueue_active(&ws->wait)) { |
| int o = atomic_read(&sbq->wake_index); |
| |
| if (wake_index != o) |
| atomic_cmpxchg(&sbq->wake_index, o, wake_index); |
| return ws; |
| } |
| |
| wake_index = sbq_index_inc(wake_index); |
| } |
| |
| return NULL; |
| } |
| |
| static bool __sbq_wake_up(struct sbitmap_queue *sbq) |
| { |
| struct sbq_wait_state *ws; |
| unsigned int wake_batch; |
| int wait_cnt; |
| |
| ws = sbq_wake_ptr(sbq); |
| if (!ws) |
| return false; |
| |
| wait_cnt = atomic_dec_return(&ws->wait_cnt); |
| if (wait_cnt <= 0) { |
| int ret; |
| |
| wake_batch = READ_ONCE(sbq->wake_batch); |
| |
| /* |
| * Pairs with the memory barrier in sbitmap_queue_resize() to |
| * ensure that we see the batch size update before the wait |
| * count is reset. |
| */ |
| smp_mb__before_atomic(); |
| |
| /* |
| * For concurrent callers of this, the one that failed the |
| * atomic_cmpxhcg() race should call this function again |
| * to wakeup a new batch on a different 'ws'. |
| */ |
| ret = atomic_cmpxchg(&ws->wait_cnt, wait_cnt, wake_batch); |
| if (ret == wait_cnt) { |
| sbq_index_atomic_inc(&sbq->wake_index); |
| wake_up_nr(&ws->wait, wake_batch); |
| return false; |
| } |
| |
| return true; |
| } |
| |
| return false; |
| } |
| |
| void sbitmap_queue_wake_up(struct sbitmap_queue *sbq) |
| { |
| while (__sbq_wake_up(sbq)) |
| ; |
| } |
| EXPORT_SYMBOL_GPL(sbitmap_queue_wake_up); |
| |
| void sbitmap_queue_clear(struct sbitmap_queue *sbq, unsigned int nr, |
| unsigned int cpu) |
| { |
| sbitmap_deferred_clear_bit(&sbq->sb, nr); |
| |
| /* |
| * Pairs with the memory barrier in set_current_state() to ensure the |
| * proper ordering of clear_bit_unlock()/waitqueue_active() in the waker |
| * and test_and_set_bit_lock()/prepare_to_wait()/finish_wait() in the |
| * waiter. See the comment on waitqueue_active(). |
| */ |
| smp_mb__after_atomic(); |
| sbitmap_queue_wake_up(sbq); |
| |
| if (likely(!sbq->round_robin && nr < sbq->sb.depth)) |
| *per_cpu_ptr(sbq->alloc_hint, cpu) = nr; |
| } |
| EXPORT_SYMBOL_GPL(sbitmap_queue_clear); |
| |
| void sbitmap_queue_wake_all(struct sbitmap_queue *sbq) |
| { |
| int i, wake_index; |
| |
| /* |
| * Pairs with the memory barrier in set_current_state() like in |
| * sbitmap_queue_wake_up(). |
| */ |
| smp_mb(); |
| wake_index = atomic_read(&sbq->wake_index); |
| for (i = 0; i < SBQ_WAIT_QUEUES; i++) { |
| struct sbq_wait_state *ws = &sbq->ws[wake_index]; |
| |
| if (waitqueue_active(&ws->wait)) |
| wake_up(&ws->wait); |
| |
| wake_index = sbq_index_inc(wake_index); |
| } |
| } |
| EXPORT_SYMBOL_GPL(sbitmap_queue_wake_all); |
| |
| void sbitmap_queue_show(struct sbitmap_queue *sbq, struct seq_file *m) |
| { |
| bool first; |
| int i; |
| |
| sbitmap_show(&sbq->sb, m); |
| |
| seq_puts(m, "alloc_hint={"); |
| first = true; |
| for_each_possible_cpu(i) { |
| if (!first) |
| seq_puts(m, ", "); |
| first = false; |
| seq_printf(m, "%u", *per_cpu_ptr(sbq->alloc_hint, i)); |
| } |
| seq_puts(m, "}\n"); |
| |
| seq_printf(m, "wake_batch=%u\n", sbq->wake_batch); |
| seq_printf(m, "wake_index=%d\n", atomic_read(&sbq->wake_index)); |
| |
| seq_puts(m, "ws={\n"); |
| for (i = 0; i < SBQ_WAIT_QUEUES; i++) { |
| struct sbq_wait_state *ws = &sbq->ws[i]; |
| |
| seq_printf(m, "\t{.wait_cnt=%d, .wait=%s},\n", |
| atomic_read(&ws->wait_cnt), |
| waitqueue_active(&ws->wait) ? "active" : "inactive"); |
| } |
| seq_puts(m, "}\n"); |
| |
| seq_printf(m, "round_robin=%d\n", sbq->round_robin); |
| seq_printf(m, "min_shallow_depth=%u\n", sbq->min_shallow_depth); |
| } |
| EXPORT_SYMBOL_GPL(sbitmap_queue_show); |