| /* | 
 |  * Copyright (C) 1994 Linus Torvalds | 
 |  * | 
 |  * Pentium III FXSR, SSE support | 
 |  * General FPU state handling cleanups | 
 |  *	Gareth Hughes <gareth@valinux.com>, May 2000 | 
 |  * x86-64 work by Andi Kleen 2002 | 
 |  */ | 
 |  | 
 | #ifndef _ASM_X86_FPU_INTERNAL_H | 
 | #define _ASM_X86_FPU_INTERNAL_H | 
 |  | 
 | #include <linux/compat.h> | 
 | #include <linux/sched.h> | 
 | #include <linux/slab.h> | 
 |  | 
 | #include <asm/user.h> | 
 | #include <asm/fpu/api.h> | 
 | #include <asm/fpu/xstate.h> | 
 | #include <asm/cpufeature.h> | 
 | #include <asm/trace/fpu.h> | 
 |  | 
 | /* | 
 |  * High level FPU state handling functions: | 
 |  */ | 
 | extern void fpu__activate_curr(struct fpu *fpu); | 
 | extern void fpu__activate_fpstate_read(struct fpu *fpu); | 
 | extern void fpu__activate_fpstate_write(struct fpu *fpu); | 
 | extern void fpu__current_fpstate_write_begin(void); | 
 | extern void fpu__current_fpstate_write_end(void); | 
 | extern void fpu__save(struct fpu *fpu); | 
 | extern void fpu__restore(struct fpu *fpu); | 
 | extern int  fpu__restore_sig(void __user *buf, int ia32_frame); | 
 | extern void fpu__drop(struct fpu *fpu); | 
 | extern int  fpu__copy(struct fpu *dst_fpu, struct fpu *src_fpu); | 
 | extern void fpu__clear(struct fpu *fpu); | 
 | extern int  fpu__exception_code(struct fpu *fpu, int trap_nr); | 
 | extern int  dump_fpu(struct pt_regs *ptregs, struct user_i387_struct *fpstate); | 
 |  | 
 | /* | 
 |  * Boot time FPU initialization functions: | 
 |  */ | 
 | extern void fpu__init_cpu(void); | 
 | extern void fpu__init_system_xstate(void); | 
 | extern void fpu__init_cpu_xstate(void); | 
 | extern void fpu__init_system(struct cpuinfo_x86 *c); | 
 | extern void fpu__init_check_bugs(void); | 
 | extern void fpu__resume_cpu(void); | 
 | extern u64 fpu__get_supported_xfeatures_mask(void); | 
 |  | 
 | /* | 
 |  * Debugging facility: | 
 |  */ | 
 | #ifdef CONFIG_X86_DEBUG_FPU | 
 | # define WARN_ON_FPU(x) WARN_ON_ONCE(x) | 
 | #else | 
 | # define WARN_ON_FPU(x) ({ (void)(x); 0; }) | 
 | #endif | 
 |  | 
 | /* | 
 |  * FPU related CPU feature flag helper routines: | 
 |  */ | 
 | static __always_inline __pure bool use_xsaveopt(void) | 
 | { | 
 | 	return static_cpu_has(X86_FEATURE_XSAVEOPT); | 
 | } | 
 |  | 
 | static __always_inline __pure bool use_xsave(void) | 
 | { | 
 | 	return static_cpu_has(X86_FEATURE_XSAVE); | 
 | } | 
 |  | 
 | static __always_inline __pure bool use_fxsr(void) | 
 | { | 
 | 	return static_cpu_has(X86_FEATURE_FXSR); | 
 | } | 
 |  | 
 | /* | 
 |  * fpstate handling functions: | 
 |  */ | 
 |  | 
 | extern union fpregs_state init_fpstate; | 
 |  | 
 | extern void fpstate_init(union fpregs_state *state); | 
 | #ifdef CONFIG_MATH_EMULATION | 
 | extern void fpstate_init_soft(struct swregs_state *soft); | 
 | #else | 
 | static inline void fpstate_init_soft(struct swregs_state *soft) {} | 
 | #endif | 
 |  | 
 | static inline void fpstate_init_xstate(struct xregs_state *xsave) | 
 | { | 
 | 	/* | 
 | 	 * XRSTORS requires these bits set in xcomp_bv, or it will | 
 | 	 * trigger #GP: | 
 | 	 */ | 
 | 	xsave->header.xcomp_bv = XCOMP_BV_COMPACTED_FORMAT | xfeatures_mask; | 
 | } | 
 |  | 
 | static inline void fpstate_init_fxstate(struct fxregs_state *fx) | 
 | { | 
 | 	fx->cwd = 0x37f; | 
 | 	fx->mxcsr = MXCSR_DEFAULT; | 
 | } | 
 | extern void fpstate_sanitize_xstate(struct fpu *fpu); | 
 |  | 
 | #define user_insn(insn, output, input...)				\ | 
 | ({									\ | 
 | 	int err;							\ | 
 | 	asm volatile(ASM_STAC "\n"					\ | 
 | 		     "1:" #insn "\n\t"					\ | 
 | 		     "2: " ASM_CLAC "\n"				\ | 
 | 		     ".section .fixup,\"ax\"\n"				\ | 
 | 		     "3:  movl $-1,%[err]\n"				\ | 
 | 		     "    jmp  2b\n"					\ | 
 | 		     ".previous\n"					\ | 
 | 		     _ASM_EXTABLE(1b, 3b)				\ | 
 | 		     : [err] "=r" (err), output				\ | 
 | 		     : "0"(0), input);					\ | 
 | 	err;								\ | 
 | }) | 
 |  | 
 | #define check_insn(insn, output, input...)				\ | 
 | ({									\ | 
 | 	int err;							\ | 
 | 	asm volatile("1:" #insn "\n\t"					\ | 
 | 		     "2:\n"						\ | 
 | 		     ".section .fixup,\"ax\"\n"				\ | 
 | 		     "3:  movl $-1,%[err]\n"				\ | 
 | 		     "    jmp  2b\n"					\ | 
 | 		     ".previous\n"					\ | 
 | 		     _ASM_EXTABLE(1b, 3b)				\ | 
 | 		     : [err] "=r" (err), output				\ | 
 | 		     : "0"(0), input);					\ | 
 | 	err;								\ | 
 | }) | 
 |  | 
 | static inline int copy_fregs_to_user(struct fregs_state __user *fx) | 
 | { | 
 | 	return user_insn(fnsave %[fx]; fwait,  [fx] "=m" (*fx), "m" (*fx)); | 
 | } | 
 |  | 
 | static inline int copy_fxregs_to_user(struct fxregs_state __user *fx) | 
 | { | 
 | 	if (IS_ENABLED(CONFIG_X86_32)) | 
 | 		return user_insn(fxsave %[fx], [fx] "=m" (*fx), "m" (*fx)); | 
 | 	else if (IS_ENABLED(CONFIG_AS_FXSAVEQ)) | 
 | 		return user_insn(fxsaveq %[fx], [fx] "=m" (*fx), "m" (*fx)); | 
 |  | 
 | 	/* See comment in copy_fxregs_to_kernel() below. */ | 
 | 	return user_insn(rex64/fxsave (%[fx]), "=m" (*fx), [fx] "R" (fx)); | 
 | } | 
 |  | 
 | static inline void copy_kernel_to_fxregs(struct fxregs_state *fx) | 
 | { | 
 | 	int err; | 
 |  | 
 | 	if (IS_ENABLED(CONFIG_X86_32)) { | 
 | 		err = check_insn(fxrstor %[fx], "=m" (*fx), [fx] "m" (*fx)); | 
 | 	} else { | 
 | 		if (IS_ENABLED(CONFIG_AS_FXSAVEQ)) { | 
 | 			err = check_insn(fxrstorq %[fx], "=m" (*fx), [fx] "m" (*fx)); | 
 | 		} else { | 
 | 			/* See comment in copy_fxregs_to_kernel() below. */ | 
 | 			err = check_insn(rex64/fxrstor (%[fx]), "=m" (*fx), [fx] "R" (fx), "m" (*fx)); | 
 | 		} | 
 | 	} | 
 | 	/* Copying from a kernel buffer to FPU registers should never fail: */ | 
 | 	WARN_ON_FPU(err); | 
 | } | 
 |  | 
 | static inline int copy_user_to_fxregs(struct fxregs_state __user *fx) | 
 | { | 
 | 	if (IS_ENABLED(CONFIG_X86_32)) | 
 | 		return user_insn(fxrstor %[fx], "=m" (*fx), [fx] "m" (*fx)); | 
 | 	else if (IS_ENABLED(CONFIG_AS_FXSAVEQ)) | 
 | 		return user_insn(fxrstorq %[fx], "=m" (*fx), [fx] "m" (*fx)); | 
 |  | 
 | 	/* See comment in copy_fxregs_to_kernel() below. */ | 
 | 	return user_insn(rex64/fxrstor (%[fx]), "=m" (*fx), [fx] "R" (fx), | 
 | 			  "m" (*fx)); | 
 | } | 
 |  | 
 | static inline void copy_kernel_to_fregs(struct fregs_state *fx) | 
 | { | 
 | 	int err = check_insn(frstor %[fx], "=m" (*fx), [fx] "m" (*fx)); | 
 |  | 
 | 	WARN_ON_FPU(err); | 
 | } | 
 |  | 
 | static inline int copy_user_to_fregs(struct fregs_state __user *fx) | 
 | { | 
 | 	return user_insn(frstor %[fx], "=m" (*fx), [fx] "m" (*fx)); | 
 | } | 
 |  | 
 | static inline void copy_fxregs_to_kernel(struct fpu *fpu) | 
 | { | 
 | 	if (IS_ENABLED(CONFIG_X86_32)) | 
 | 		asm volatile( "fxsave %[fx]" : [fx] "=m" (fpu->state.fxsave)); | 
 | 	else if (IS_ENABLED(CONFIG_AS_FXSAVEQ)) | 
 | 		asm volatile("fxsaveq %[fx]" : [fx] "=m" (fpu->state.fxsave)); | 
 | 	else { | 
 | 		/* Using "rex64; fxsave %0" is broken because, if the memory | 
 | 		 * operand uses any extended registers for addressing, a second | 
 | 		 * REX prefix will be generated (to the assembler, rex64 | 
 | 		 * followed by semicolon is a separate instruction), and hence | 
 | 		 * the 64-bitness is lost. | 
 | 		 * | 
 | 		 * Using "fxsaveq %0" would be the ideal choice, but is only | 
 | 		 * supported starting with gas 2.16. | 
 | 		 * | 
 | 		 * Using, as a workaround, the properly prefixed form below | 
 | 		 * isn't accepted by any binutils version so far released, | 
 | 		 * complaining that the same type of prefix is used twice if | 
 | 		 * an extended register is needed for addressing (fix submitted | 
 | 		 * to mainline 2005-11-21). | 
 | 		 * | 
 | 		 *  asm volatile("rex64/fxsave %0" : "=m" (fpu->state.fxsave)); | 
 | 		 * | 
 | 		 * This, however, we can work around by forcing the compiler to | 
 | 		 * select an addressing mode that doesn't require extended | 
 | 		 * registers. | 
 | 		 */ | 
 | 		asm volatile( "rex64/fxsave (%[fx])" | 
 | 			     : "=m" (fpu->state.fxsave) | 
 | 			     : [fx] "R" (&fpu->state.fxsave)); | 
 | 	} | 
 | } | 
 |  | 
 | /* These macros all use (%edi)/(%rdi) as the single memory argument. */ | 
 | #define XSAVE		".byte " REX_PREFIX "0x0f,0xae,0x27" | 
 | #define XSAVEOPT	".byte " REX_PREFIX "0x0f,0xae,0x37" | 
 | #define XSAVES		".byte " REX_PREFIX "0x0f,0xc7,0x2f" | 
 | #define XRSTOR		".byte " REX_PREFIX "0x0f,0xae,0x2f" | 
 | #define XRSTORS		".byte " REX_PREFIX "0x0f,0xc7,0x1f" | 
 |  | 
 | #define XSTATE_OP(op, st, lmask, hmask, err)				\ | 
 | 	asm volatile("1:" op "\n\t"					\ | 
 | 		     "xor %[err], %[err]\n"				\ | 
 | 		     "2:\n\t"						\ | 
 | 		     ".pushsection .fixup,\"ax\"\n\t"			\ | 
 | 		     "3: movl $-2,%[err]\n\t"				\ | 
 | 		     "jmp 2b\n\t"					\ | 
 | 		     ".popsection\n\t"					\ | 
 | 		     _ASM_EXTABLE(1b, 3b)				\ | 
 | 		     : [err] "=r" (err)					\ | 
 | 		     : "D" (st), "m" (*st), "a" (lmask), "d" (hmask)	\ | 
 | 		     : "memory") | 
 |  | 
 | /* | 
 |  * If XSAVES is enabled, it replaces XSAVEOPT because it supports a compact | 
 |  * format and supervisor states in addition to modified optimization in | 
 |  * XSAVEOPT. | 
 |  * | 
 |  * Otherwise, if XSAVEOPT is enabled, XSAVEOPT replaces XSAVE because XSAVEOPT | 
 |  * supports modified optimization which is not supported by XSAVE. | 
 |  * | 
 |  * We use XSAVE as a fallback. | 
 |  * | 
 |  * The 661 label is defined in the ALTERNATIVE* macros as the address of the | 
 |  * original instruction which gets replaced. We need to use it here as the | 
 |  * address of the instruction where we might get an exception at. | 
 |  */ | 
 | #define XSTATE_XSAVE(st, lmask, hmask, err)				\ | 
 | 	asm volatile(ALTERNATIVE_2(XSAVE,				\ | 
 | 				   XSAVEOPT, X86_FEATURE_XSAVEOPT,	\ | 
 | 				   XSAVES,   X86_FEATURE_XSAVES)	\ | 
 | 		     "\n"						\ | 
 | 		     "xor %[err], %[err]\n"				\ | 
 | 		     "3:\n"						\ | 
 | 		     ".pushsection .fixup,\"ax\"\n"			\ | 
 | 		     "4: movl $-2, %[err]\n"				\ | 
 | 		     "jmp 3b\n"						\ | 
 | 		     ".popsection\n"					\ | 
 | 		     _ASM_EXTABLE(661b, 4b)				\ | 
 | 		     : [err] "=r" (err)					\ | 
 | 		     : "D" (st), "m" (*st), "a" (lmask), "d" (hmask)	\ | 
 | 		     : "memory") | 
 |  | 
 | /* | 
 |  * Use XRSTORS to restore context if it is enabled. XRSTORS supports compact | 
 |  * XSAVE area format. | 
 |  */ | 
 | #define XSTATE_XRESTORE(st, lmask, hmask, err)				\ | 
 | 	asm volatile(ALTERNATIVE(XRSTOR,				\ | 
 | 				 XRSTORS, X86_FEATURE_XSAVES)		\ | 
 | 		     "\n"						\ | 
 | 		     "xor %[err], %[err]\n"				\ | 
 | 		     "3:\n"						\ | 
 | 		     ".pushsection .fixup,\"ax\"\n"			\ | 
 | 		     "4: movl $-2, %[err]\n"				\ | 
 | 		     "jmp 3b\n"						\ | 
 | 		     ".popsection\n"					\ | 
 | 		     _ASM_EXTABLE(661b, 4b)				\ | 
 | 		     : [err] "=r" (err)					\ | 
 | 		     : "D" (st), "m" (*st), "a" (lmask), "d" (hmask)	\ | 
 | 		     : "memory") | 
 |  | 
 | /* | 
 |  * This function is called only during boot time when x86 caps are not set | 
 |  * up and alternative can not be used yet. | 
 |  */ | 
 | static inline void copy_xregs_to_kernel_booting(struct xregs_state *xstate) | 
 | { | 
 | 	u64 mask = -1; | 
 | 	u32 lmask = mask; | 
 | 	u32 hmask = mask >> 32; | 
 | 	int err; | 
 |  | 
 | 	WARN_ON(system_state != SYSTEM_BOOTING); | 
 |  | 
 | 	if (static_cpu_has(X86_FEATURE_XSAVES)) | 
 | 		XSTATE_OP(XSAVES, xstate, lmask, hmask, err); | 
 | 	else | 
 | 		XSTATE_OP(XSAVE, xstate, lmask, hmask, err); | 
 |  | 
 | 	/* We should never fault when copying to a kernel buffer: */ | 
 | 	WARN_ON_FPU(err); | 
 | } | 
 |  | 
 | /* | 
 |  * This function is called only during boot time when x86 caps are not set | 
 |  * up and alternative can not be used yet. | 
 |  */ | 
 | static inline void copy_kernel_to_xregs_booting(struct xregs_state *xstate) | 
 | { | 
 | 	u64 mask = -1; | 
 | 	u32 lmask = mask; | 
 | 	u32 hmask = mask >> 32; | 
 | 	int err; | 
 |  | 
 | 	WARN_ON(system_state != SYSTEM_BOOTING); | 
 |  | 
 | 	if (static_cpu_has(X86_FEATURE_XSAVES)) | 
 | 		XSTATE_OP(XRSTORS, xstate, lmask, hmask, err); | 
 | 	else | 
 | 		XSTATE_OP(XRSTOR, xstate, lmask, hmask, err); | 
 |  | 
 | 	/* We should never fault when copying from a kernel buffer: */ | 
 | 	WARN_ON_FPU(err); | 
 | } | 
 |  | 
 | /* | 
 |  * Save processor xstate to xsave area. | 
 |  */ | 
 | static inline void copy_xregs_to_kernel(struct xregs_state *xstate) | 
 | { | 
 | 	u64 mask = -1; | 
 | 	u32 lmask = mask; | 
 | 	u32 hmask = mask >> 32; | 
 | 	int err; | 
 |  | 
 | 	WARN_ON(!alternatives_patched); | 
 |  | 
 | 	XSTATE_XSAVE(xstate, lmask, hmask, err); | 
 |  | 
 | 	/* We should never fault when copying to a kernel buffer: */ | 
 | 	WARN_ON_FPU(err); | 
 | } | 
 |  | 
 | /* | 
 |  * Restore processor xstate from xsave area. | 
 |  */ | 
 | static inline void copy_kernel_to_xregs(struct xregs_state *xstate, u64 mask) | 
 | { | 
 | 	u32 lmask = mask; | 
 | 	u32 hmask = mask >> 32; | 
 | 	int err; | 
 |  | 
 | 	XSTATE_XRESTORE(xstate, lmask, hmask, err); | 
 |  | 
 | 	/* We should never fault when copying from a kernel buffer: */ | 
 | 	WARN_ON_FPU(err); | 
 | } | 
 |  | 
 | /* | 
 |  * Save xstate to user space xsave area. | 
 |  * | 
 |  * We don't use modified optimization because xrstor/xrstors might track | 
 |  * a different application. | 
 |  * | 
 |  * We don't use compacted format xsave area for | 
 |  * backward compatibility for old applications which don't understand | 
 |  * compacted format of xsave area. | 
 |  */ | 
 | static inline int copy_xregs_to_user(struct xregs_state __user *buf) | 
 | { | 
 | 	int err; | 
 |  | 
 | 	/* | 
 | 	 * Clear the xsave header first, so that reserved fields are | 
 | 	 * initialized to zero. | 
 | 	 */ | 
 | 	err = __clear_user(&buf->header, sizeof(buf->header)); | 
 | 	if (unlikely(err)) | 
 | 		return -EFAULT; | 
 |  | 
 | 	stac(); | 
 | 	XSTATE_OP(XSAVE, buf, -1, -1, err); | 
 | 	clac(); | 
 |  | 
 | 	return err; | 
 | } | 
 |  | 
 | /* | 
 |  * Restore xstate from user space xsave area. | 
 |  */ | 
 | static inline int copy_user_to_xregs(struct xregs_state __user *buf, u64 mask) | 
 | { | 
 | 	struct xregs_state *xstate = ((__force struct xregs_state *)buf); | 
 | 	u32 lmask = mask; | 
 | 	u32 hmask = mask >> 32; | 
 | 	int err; | 
 |  | 
 | 	stac(); | 
 | 	XSTATE_OP(XRSTOR, xstate, lmask, hmask, err); | 
 | 	clac(); | 
 |  | 
 | 	return err; | 
 | } | 
 |  | 
 | /* | 
 |  * These must be called with preempt disabled. Returns | 
 |  * 'true' if the FPU state is still intact and we can | 
 |  * keep registers active. | 
 |  * | 
 |  * The legacy FNSAVE instruction cleared all FPU state | 
 |  * unconditionally, so registers are essentially destroyed. | 
 |  * Modern FPU state can be kept in registers, if there are | 
 |  * no pending FP exceptions. | 
 |  */ | 
 | static inline int copy_fpregs_to_fpstate(struct fpu *fpu) | 
 | { | 
 | 	if (likely(use_xsave())) { | 
 | 		copy_xregs_to_kernel(&fpu->state.xsave); | 
 | 		return 1; | 
 | 	} | 
 |  | 
 | 	if (likely(use_fxsr())) { | 
 | 		copy_fxregs_to_kernel(fpu); | 
 | 		return 1; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Legacy FPU register saving, FNSAVE always clears FPU registers, | 
 | 	 * so we have to mark them inactive: | 
 | 	 */ | 
 | 	asm volatile("fnsave %[fp]; fwait" : [fp] "=m" (fpu->state.fsave)); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static inline void __copy_kernel_to_fpregs(union fpregs_state *fpstate, u64 mask) | 
 | { | 
 | 	if (use_xsave()) { | 
 | 		copy_kernel_to_xregs(&fpstate->xsave, mask); | 
 | 	} else { | 
 | 		if (use_fxsr()) | 
 | 			copy_kernel_to_fxregs(&fpstate->fxsave); | 
 | 		else | 
 | 			copy_kernel_to_fregs(&fpstate->fsave); | 
 | 	} | 
 | } | 
 |  | 
 | static inline void copy_kernel_to_fpregs(union fpregs_state *fpstate) | 
 | { | 
 | 	/* | 
 | 	 * AMD K7/K8 CPUs don't save/restore FDP/FIP/FOP unless an exception is | 
 | 	 * pending. Clear the x87 state here by setting it to fixed values. | 
 | 	 * "m" is a random variable that should be in L1. | 
 | 	 */ | 
 | 	if (unlikely(static_cpu_has_bug(X86_BUG_FXSAVE_LEAK))) { | 
 | 		asm volatile( | 
 | 			"fnclex\n\t" | 
 | 			"emms\n\t" | 
 | 			"fildl %P[addr]"	/* set F?P to defined value */ | 
 | 			: : [addr] "m" (fpstate)); | 
 | 	} | 
 |  | 
 | 	__copy_kernel_to_fpregs(fpstate, -1); | 
 | } | 
 |  | 
 | extern int copy_fpstate_to_sigframe(void __user *buf, void __user *fp, int size); | 
 |  | 
 | /* | 
 |  * FPU context switch related helper methods: | 
 |  */ | 
 |  | 
 | DECLARE_PER_CPU(struct fpu *, fpu_fpregs_owner_ctx); | 
 |  | 
 | /* | 
 |  * The in-register FPU state for an FPU context on a CPU is assumed to be | 
 |  * valid if the fpu->last_cpu matches the CPU, and the fpu_fpregs_owner_ctx | 
 |  * matches the FPU. | 
 |  * | 
 |  * If the FPU register state is valid, the kernel can skip restoring the | 
 |  * FPU state from memory. | 
 |  * | 
 |  * Any code that clobbers the FPU registers or updates the in-memory | 
 |  * FPU state for a task MUST let the rest of the kernel know that the | 
 |  * FPU registers are no longer valid for this task. | 
 |  * | 
 |  * Either one of these invalidation functions is enough. Invalidate | 
 |  * a resource you control: CPU if using the CPU for something else | 
 |  * (with preemption disabled), FPU for the current task, or a task that | 
 |  * is prevented from running by the current task. | 
 |  */ | 
 | static inline void __cpu_invalidate_fpregs_state(void) | 
 | { | 
 | 	__this_cpu_write(fpu_fpregs_owner_ctx, NULL); | 
 | } | 
 |  | 
 | static inline void __fpu_invalidate_fpregs_state(struct fpu *fpu) | 
 | { | 
 | 	fpu->last_cpu = -1; | 
 | } | 
 |  | 
 | static inline int fpregs_state_valid(struct fpu *fpu, unsigned int cpu) | 
 | { | 
 | 	return fpu == this_cpu_read_stable(fpu_fpregs_owner_ctx) && cpu == fpu->last_cpu; | 
 | } | 
 |  | 
 | /* | 
 |  * These generally need preemption protection to work, | 
 |  * do try to avoid using these on their own: | 
 |  */ | 
 | static inline void fpregs_deactivate(struct fpu *fpu) | 
 | { | 
 | 	WARN_ON_FPU(!fpu->fpregs_active); | 
 |  | 
 | 	fpu->fpregs_active = 0; | 
 | 	this_cpu_write(fpu_fpregs_owner_ctx, NULL); | 
 | 	trace_x86_fpu_regs_deactivated(fpu); | 
 | } | 
 |  | 
 | static inline void fpregs_activate(struct fpu *fpu) | 
 | { | 
 | 	WARN_ON_FPU(fpu->fpregs_active); | 
 |  | 
 | 	fpu->fpregs_active = 1; | 
 | 	this_cpu_write(fpu_fpregs_owner_ctx, fpu); | 
 | 	trace_x86_fpu_regs_activated(fpu); | 
 | } | 
 |  | 
 | /* | 
 |  * The question "does this thread have fpu access?" | 
 |  * is slightly racy, since preemption could come in | 
 |  * and revoke it immediately after the test. | 
 |  * | 
 |  * However, even in that very unlikely scenario, | 
 |  * we can just assume we have FPU access - typically | 
 |  * to save the FP state - we'll just take a #NM | 
 |  * fault and get the FPU access back. | 
 |  */ | 
 | static inline int fpregs_active(void) | 
 | { | 
 | 	return current->thread.fpu.fpregs_active; | 
 | } | 
 |  | 
 | /* | 
 |  * FPU state switching for scheduling. | 
 |  * | 
 |  * This is a two-stage process: | 
 |  * | 
 |  *  - switch_fpu_prepare() saves the old state. | 
 |  *    This is done within the context of the old process. | 
 |  * | 
 |  *  - switch_fpu_finish() restores the new state as | 
 |  *    necessary. | 
 |  */ | 
 | static inline void | 
 | switch_fpu_prepare(struct fpu *old_fpu, int cpu) | 
 | { | 
 | 	if (old_fpu->fpregs_active) { | 
 | 		if (!copy_fpregs_to_fpstate(old_fpu)) | 
 | 			old_fpu->last_cpu = -1; | 
 | 		else | 
 | 			old_fpu->last_cpu = cpu; | 
 |  | 
 | 		/* But leave fpu_fpregs_owner_ctx! */ | 
 | 		old_fpu->fpregs_active = 0; | 
 | 		trace_x86_fpu_regs_deactivated(old_fpu); | 
 | 	} else | 
 | 		old_fpu->last_cpu = -1; | 
 | } | 
 |  | 
 | /* | 
 |  * Misc helper functions: | 
 |  */ | 
 |  | 
 | /* | 
 |  * Set up the userspace FPU context for the new task, if the task | 
 |  * has used the FPU. | 
 |  */ | 
 | static inline void switch_fpu_finish(struct fpu *new_fpu, int cpu) | 
 | { | 
 | 	bool preload = static_cpu_has(X86_FEATURE_FPU) && | 
 | 		       new_fpu->fpstate_active; | 
 |  | 
 | 	if (preload) { | 
 | 		if (!fpregs_state_valid(new_fpu, cpu)) | 
 | 			copy_kernel_to_fpregs(&new_fpu->state); | 
 | 		fpregs_activate(new_fpu); | 
 | 	} | 
 | } | 
 |  | 
 | /* | 
 |  * Needs to be preemption-safe. | 
 |  * | 
 |  * NOTE! user_fpu_begin() must be used only immediately before restoring | 
 |  * the save state. It does not do any saving/restoring on its own. In | 
 |  * lazy FPU mode, it is just an optimization to avoid a #NM exception, | 
 |  * the task can lose the FPU right after preempt_enable(). | 
 |  */ | 
 | static inline void user_fpu_begin(void) | 
 | { | 
 | 	struct fpu *fpu = ¤t->thread.fpu; | 
 |  | 
 | 	preempt_disable(); | 
 | 	if (!fpregs_active()) | 
 | 		fpregs_activate(fpu); | 
 | 	preempt_enable(); | 
 | } | 
 |  | 
 | /* | 
 |  * MXCSR and XCR definitions: | 
 |  */ | 
 |  | 
 | extern unsigned int mxcsr_feature_mask; | 
 |  | 
 | #define XCR_XFEATURE_ENABLED_MASK	0x00000000 | 
 |  | 
 | static inline u64 xgetbv(u32 index) | 
 | { | 
 | 	u32 eax, edx; | 
 |  | 
 | 	asm volatile(".byte 0x0f,0x01,0xd0" /* xgetbv */ | 
 | 		     : "=a" (eax), "=d" (edx) | 
 | 		     : "c" (index)); | 
 | 	return eax + ((u64)edx << 32); | 
 | } | 
 |  | 
 | static inline void xsetbv(u32 index, u64 value) | 
 | { | 
 | 	u32 eax = value; | 
 | 	u32 edx = value >> 32; | 
 |  | 
 | 	asm volatile(".byte 0x0f,0x01,0xd1" /* xsetbv */ | 
 | 		     : : "a" (eax), "d" (edx), "c" (index)); | 
 | } | 
 |  | 
 | #endif /* _ASM_X86_FPU_INTERNAL_H */ |