| /* SPDX-License-Identifier: GPL-2.0 */ |
| /* Copyright (c) 2018, Intel Corporation. */ |
| |
| #ifndef _ICE_TXRX_H_ |
| #define _ICE_TXRX_H_ |
| |
| #define ICE_DFLT_IRQ_WORK 256 |
| #define ICE_RXBUF_2048 2048 |
| #define ICE_MAX_CHAINED_RX_BUFS 5 |
| #define ICE_MAX_BUF_TXD 8 |
| #define ICE_MIN_TX_LEN 17 |
| |
| /* The size limit for a transmit buffer in a descriptor is (16K - 1). |
| * In order to align with the read requests we will align the value to |
| * the nearest 4K which represents our maximum read request size. |
| */ |
| #define ICE_MAX_READ_REQ_SIZE 4096 |
| #define ICE_MAX_DATA_PER_TXD (16 * 1024 - 1) |
| #define ICE_MAX_DATA_PER_TXD_ALIGNED \ |
| (~(ICE_MAX_READ_REQ_SIZE - 1) & ICE_MAX_DATA_PER_TXD) |
| |
| #define ICE_RX_BUF_WRITE 16 /* Must be power of 2 */ |
| #define ICE_MAX_TXQ_PER_TXQG 128 |
| |
| /* We are assuming that the cache line is always 64 Bytes here for ice. |
| * In order to make sure that is a correct assumption there is a check in probe |
| * to print a warning if the read from GLPCI_CNF2 tells us that the cache line |
| * size is 128 bytes. We do it this way because we do not want to read the |
| * GLPCI_CNF2 register or a variable containing the value on every pass through |
| * the Tx path. |
| */ |
| #define ICE_CACHE_LINE_BYTES 64 |
| #define ICE_DESCS_PER_CACHE_LINE (ICE_CACHE_LINE_BYTES / \ |
| sizeof(struct ice_tx_desc)) |
| #define ICE_DESCS_FOR_CTX_DESC 1 |
| #define ICE_DESCS_FOR_SKB_DATA_PTR 1 |
| /* Tx descriptors needed, worst case */ |
| #define DESC_NEEDED (MAX_SKB_FRAGS + ICE_DESCS_FOR_CTX_DESC + \ |
| ICE_DESCS_PER_CACHE_LINE + ICE_DESCS_FOR_SKB_DATA_PTR) |
| #define ICE_DESC_UNUSED(R) \ |
| ((((R)->next_to_clean > (R)->next_to_use) ? 0 : (R)->count) + \ |
| (R)->next_to_clean - (R)->next_to_use - 1) |
| |
| #define ICE_TX_FLAGS_TSO BIT(0) |
| #define ICE_TX_FLAGS_HW_VLAN BIT(1) |
| #define ICE_TX_FLAGS_SW_VLAN BIT(2) |
| #define ICE_TX_FLAGS_VLAN_M 0xffff0000 |
| #define ICE_TX_FLAGS_VLAN_S 16 |
| |
| struct ice_tx_buf { |
| struct ice_tx_desc *next_to_watch; |
| struct sk_buff *skb; |
| unsigned int bytecount; |
| unsigned short gso_segs; |
| u32 tx_flags; |
| DEFINE_DMA_UNMAP_ADDR(dma); |
| DEFINE_DMA_UNMAP_LEN(len); |
| }; |
| |
| struct ice_tx_offload_params { |
| u8 header_len; |
| u32 td_cmd; |
| u32 td_offset; |
| u32 td_l2tag1; |
| u16 cd_l2tag2; |
| u32 cd_tunnel_params; |
| u64 cd_qw1; |
| struct ice_ring *tx_ring; |
| }; |
| |
| struct ice_rx_buf { |
| struct sk_buff *skb; |
| dma_addr_t dma; |
| struct page *page; |
| unsigned int page_offset; |
| }; |
| |
| struct ice_q_stats { |
| u64 pkts; |
| u64 bytes; |
| }; |
| |
| struct ice_txq_stats { |
| u64 restart_q; |
| u64 tx_busy; |
| u64 tx_linearize; |
| int prev_pkt; /* negative if no pending Tx descriptors */ |
| }; |
| |
| struct ice_rxq_stats { |
| u64 non_eop_descs; |
| u64 alloc_page_failed; |
| u64 alloc_buf_failed; |
| u64 page_reuse_count; |
| }; |
| |
| /* this enum matches hardware bits and is meant to be used by DYN_CTLN |
| * registers and QINT registers or more generally anywhere in the manual |
| * mentioning ITR_INDX, ITR_NONE cannot be used as an index 'n' into any |
| * register but instead is a special value meaning "don't update" ITR0/1/2. |
| */ |
| enum ice_dyn_idx_t { |
| ICE_IDX_ITR0 = 0, |
| ICE_IDX_ITR1 = 1, |
| ICE_IDX_ITR2 = 2, |
| ICE_ITR_NONE = 3 /* ITR_NONE must not be used as an index */ |
| }; |
| |
| /* Header split modes defined by DTYPE field of Rx RLAN context */ |
| enum ice_rx_dtype { |
| ICE_RX_DTYPE_NO_SPLIT = 0, |
| ICE_RX_DTYPE_HEADER_SPLIT = 1, |
| ICE_RX_DTYPE_SPLIT_ALWAYS = 2, |
| }; |
| |
| /* indices into GLINT_ITR registers */ |
| #define ICE_RX_ITR ICE_IDX_ITR0 |
| #define ICE_TX_ITR ICE_IDX_ITR1 |
| #define ICE_ITR_8K 124 |
| #define ICE_ITR_20K 50 |
| #define ICE_ITR_MAX 8160 |
| #define ICE_DFLT_TX_ITR (ICE_ITR_20K | ICE_ITR_DYNAMIC) |
| #define ICE_DFLT_RX_ITR (ICE_ITR_20K | ICE_ITR_DYNAMIC) |
| #define ICE_ITR_DYNAMIC 0x8000 /* used as flag for itr_setting */ |
| #define ITR_IS_DYNAMIC(setting) (!!((setting) & ICE_ITR_DYNAMIC)) |
| #define ITR_TO_REG(setting) ((setting) & ~ICE_ITR_DYNAMIC) |
| #define ICE_ITR_GRAN_S 1 /* Assume ITR granularity is 2us */ |
| #define ICE_ITR_MASK 0x1FFE /* ITR register value alignment mask */ |
| #define ITR_REG_ALIGN(setting) __ALIGN_MASK(setting, ~ICE_ITR_MASK) |
| |
| #define ICE_DFLT_INTRL 0 |
| |
| /* Legacy or Advanced Mode Queue */ |
| #define ICE_TX_ADVANCED 0 |
| #define ICE_TX_LEGACY 1 |
| |
| /* descriptor ring, associated with a VSI */ |
| struct ice_ring { |
| struct ice_ring *next; /* pointer to next ring in q_vector */ |
| void *desc; /* Descriptor ring memory */ |
| struct device *dev; /* Used for DMA mapping */ |
| struct net_device *netdev; /* netdev ring maps to */ |
| struct ice_vsi *vsi; /* Backreference to associated VSI */ |
| struct ice_q_vector *q_vector; /* Backreference to associated vector */ |
| u8 __iomem *tail; |
| union { |
| struct ice_tx_buf *tx_buf; |
| struct ice_rx_buf *rx_buf; |
| }; |
| u16 q_index; /* Queue number of ring */ |
| u32 txq_teid; /* Added Tx queue TEID */ |
| |
| u16 count; /* Number of descriptors */ |
| u16 reg_idx; /* HW register index of the ring */ |
| |
| /* used in interrupt processing */ |
| u16 next_to_use; |
| u16 next_to_clean; |
| |
| u8 ring_active; /* is ring online or not */ |
| |
| /* stats structs */ |
| struct ice_q_stats stats; |
| struct u64_stats_sync syncp; |
| union { |
| struct ice_txq_stats tx_stats; |
| struct ice_rxq_stats rx_stats; |
| }; |
| |
| unsigned int size; /* length of descriptor ring in bytes */ |
| dma_addr_t dma; /* physical address of ring */ |
| struct rcu_head rcu; /* to avoid race on free */ |
| u16 next_to_alloc; |
| } ____cacheline_internodealigned_in_smp; |
| |
| enum ice_latency_range { |
| ICE_LOWEST_LATENCY = 0, |
| ICE_LOW_LATENCY = 1, |
| ICE_BULK_LATENCY = 2, |
| ICE_ULTRA_LATENCY = 3, |
| }; |
| |
| struct ice_ring_container { |
| /* head of linked-list of rings */ |
| struct ice_ring *ring; |
| unsigned long next_update; /* jiffies value of next queue update */ |
| unsigned int total_bytes; /* total bytes processed this int */ |
| unsigned int total_pkts; /* total packets processed this int */ |
| enum ice_latency_range latency_range; |
| int itr_idx; /* index in the interrupt vector */ |
| u16 target_itr; /* value in usecs divided by the hw->itr_gran */ |
| u16 current_itr; /* value in usecs divided by the hw->itr_gran */ |
| /* high bit set means dynamic ITR, rest is used to store user |
| * readable ITR value in usecs and must be converted before programming |
| * to a register. |
| */ |
| u16 itr_setting; |
| }; |
| |
| /* iterator for handling rings in ring container */ |
| #define ice_for_each_ring(pos, head) \ |
| for (pos = (head).ring; pos; pos = pos->next) |
| |
| bool ice_alloc_rx_bufs(struct ice_ring *rxr, u16 cleaned_count); |
| netdev_tx_t ice_start_xmit(struct sk_buff *skb, struct net_device *netdev); |
| void ice_clean_tx_ring(struct ice_ring *tx_ring); |
| void ice_clean_rx_ring(struct ice_ring *rx_ring); |
| int ice_setup_tx_ring(struct ice_ring *tx_ring); |
| int ice_setup_rx_ring(struct ice_ring *rx_ring); |
| void ice_free_tx_ring(struct ice_ring *tx_ring); |
| void ice_free_rx_ring(struct ice_ring *rx_ring); |
| int ice_napi_poll(struct napi_struct *napi, int budget); |
| |
| #endif /* _ICE_TXRX_H_ */ |