|  | /** | 
|  | * AMCC SoC PPC4xx Crypto Driver | 
|  | * | 
|  | * Copyright (c) 2008 Applied Micro Circuits Corporation. | 
|  | * All rights reserved. James Hsiao <jhsiao@amcc.com> | 
|  | * | 
|  | * This program is free software; you can redistribute it and/or modify | 
|  | * it under the terms of the GNU General Public License as published by | 
|  | * the Free Software Foundation; either version 2 of the License, or | 
|  | * (at your option) any later version. | 
|  | * | 
|  | * This program is distributed in the hope that it will be useful, | 
|  | * but WITHOUT ANY WARRANTY; without even the implied warranty of | 
|  | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the | 
|  | * GNU General Public License for more details. | 
|  | * | 
|  | * This file implements AMCC crypto offload Linux device driver for use with | 
|  | * Linux CryptoAPI. | 
|  | */ | 
|  |  | 
|  | #include <linux/kernel.h> | 
|  | #include <linux/interrupt.h> | 
|  | #include <linux/spinlock_types.h> | 
|  | #include <linux/random.h> | 
|  | #include <linux/scatterlist.h> | 
|  | #include <linux/crypto.h> | 
|  | #include <linux/dma-mapping.h> | 
|  | #include <linux/platform_device.h> | 
|  | #include <linux/init.h> | 
|  | #include <linux/of_platform.h> | 
|  | #include <linux/slab.h> | 
|  | #include <asm/dcr.h> | 
|  | #include <asm/dcr-regs.h> | 
|  | #include <asm/cacheflush.h> | 
|  | #include <crypto/aes.h> | 
|  | #include <crypto/sha.h> | 
|  | #include "crypto4xx_reg_def.h" | 
|  | #include "crypto4xx_core.h" | 
|  | #include "crypto4xx_sa.h" | 
|  |  | 
|  | #define PPC4XX_SEC_VERSION_STR			"0.5" | 
|  |  | 
|  | /** | 
|  | * PPC4xx Crypto Engine Initialization Routine | 
|  | */ | 
|  | static void crypto4xx_hw_init(struct crypto4xx_device *dev) | 
|  | { | 
|  | union ce_ring_size ring_size; | 
|  | union ce_ring_contol ring_ctrl; | 
|  | union ce_part_ring_size part_ring_size; | 
|  | union ce_io_threshold io_threshold; | 
|  | u32 rand_num; | 
|  | union ce_pe_dma_cfg pe_dma_cfg; | 
|  |  | 
|  | writel(PPC4XX_BYTE_ORDER, dev->ce_base + CRYPTO4XX_BYTE_ORDER_CFG); | 
|  | /* setup pe dma, include reset sg, pdr and pe, then release reset */ | 
|  | pe_dma_cfg.w = 0; | 
|  | pe_dma_cfg.bf.bo_sgpd_en = 1; | 
|  | pe_dma_cfg.bf.bo_data_en = 0; | 
|  | pe_dma_cfg.bf.bo_sa_en = 1; | 
|  | pe_dma_cfg.bf.bo_pd_en = 1; | 
|  | pe_dma_cfg.bf.dynamic_sa_en = 1; | 
|  | pe_dma_cfg.bf.reset_sg = 1; | 
|  | pe_dma_cfg.bf.reset_pdr = 1; | 
|  | pe_dma_cfg.bf.reset_pe = 1; | 
|  | writel(pe_dma_cfg.w, dev->ce_base + CRYPTO4XX_PE_DMA_CFG); | 
|  | /* un reset pe,sg and pdr */ | 
|  | pe_dma_cfg.bf.pe_mode = 0; | 
|  | pe_dma_cfg.bf.reset_sg = 0; | 
|  | pe_dma_cfg.bf.reset_pdr = 0; | 
|  | pe_dma_cfg.bf.reset_pe = 0; | 
|  | pe_dma_cfg.bf.bo_td_en = 0; | 
|  | writel(pe_dma_cfg.w, dev->ce_base + CRYPTO4XX_PE_DMA_CFG); | 
|  | writel(dev->pdr_pa, dev->ce_base + CRYPTO4XX_PDR_BASE); | 
|  | writel(dev->pdr_pa, dev->ce_base + CRYPTO4XX_RDR_BASE); | 
|  | writel(PPC4XX_PRNG_CTRL_AUTO_EN, dev->ce_base + CRYPTO4XX_PRNG_CTRL); | 
|  | get_random_bytes(&rand_num, sizeof(rand_num)); | 
|  | writel(rand_num, dev->ce_base + CRYPTO4XX_PRNG_SEED_L); | 
|  | get_random_bytes(&rand_num, sizeof(rand_num)); | 
|  | writel(rand_num, dev->ce_base + CRYPTO4XX_PRNG_SEED_H); | 
|  | ring_size.w = 0; | 
|  | ring_size.bf.ring_offset = PPC4XX_PD_SIZE; | 
|  | ring_size.bf.ring_size   = PPC4XX_NUM_PD; | 
|  | writel(ring_size.w, dev->ce_base + CRYPTO4XX_RING_SIZE); | 
|  | ring_ctrl.w = 0; | 
|  | writel(ring_ctrl.w, dev->ce_base + CRYPTO4XX_RING_CTRL); | 
|  | writel(PPC4XX_DC_3DES_EN, dev->ce_base + CRYPTO4XX_DEVICE_CTRL); | 
|  | writel(dev->gdr_pa, dev->ce_base + CRYPTO4XX_GATH_RING_BASE); | 
|  | writel(dev->sdr_pa, dev->ce_base + CRYPTO4XX_SCAT_RING_BASE); | 
|  | part_ring_size.w = 0; | 
|  | part_ring_size.bf.sdr_size = PPC4XX_SDR_SIZE; | 
|  | part_ring_size.bf.gdr_size = PPC4XX_GDR_SIZE; | 
|  | writel(part_ring_size.w, dev->ce_base + CRYPTO4XX_PART_RING_SIZE); | 
|  | writel(PPC4XX_SD_BUFFER_SIZE, dev->ce_base + CRYPTO4XX_PART_RING_CFG); | 
|  | io_threshold.w = 0; | 
|  | io_threshold.bf.output_threshold = PPC4XX_OUTPUT_THRESHOLD; | 
|  | io_threshold.bf.input_threshold  = PPC4XX_INPUT_THRESHOLD; | 
|  | writel(io_threshold.w, dev->ce_base + CRYPTO4XX_IO_THRESHOLD); | 
|  | writel(0, dev->ce_base + CRYPTO4XX_PDR_BASE_UADDR); | 
|  | writel(0, dev->ce_base + CRYPTO4XX_RDR_BASE_UADDR); | 
|  | writel(0, dev->ce_base + CRYPTO4XX_PKT_SRC_UADDR); | 
|  | writel(0, dev->ce_base + CRYPTO4XX_PKT_DEST_UADDR); | 
|  | writel(0, dev->ce_base + CRYPTO4XX_SA_UADDR); | 
|  | writel(0, dev->ce_base + CRYPTO4XX_GATH_RING_BASE_UADDR); | 
|  | writel(0, dev->ce_base + CRYPTO4XX_SCAT_RING_BASE_UADDR); | 
|  | /* un reset pe,sg and pdr */ | 
|  | pe_dma_cfg.bf.pe_mode = 1; | 
|  | pe_dma_cfg.bf.reset_sg = 0; | 
|  | pe_dma_cfg.bf.reset_pdr = 0; | 
|  | pe_dma_cfg.bf.reset_pe = 0; | 
|  | pe_dma_cfg.bf.bo_td_en = 0; | 
|  | writel(pe_dma_cfg.w, dev->ce_base + CRYPTO4XX_PE_DMA_CFG); | 
|  | /*clear all pending interrupt*/ | 
|  | writel(PPC4XX_INTERRUPT_CLR, dev->ce_base + CRYPTO4XX_INT_CLR); | 
|  | writel(PPC4XX_INT_DESCR_CNT, dev->ce_base + CRYPTO4XX_INT_DESCR_CNT); | 
|  | writel(PPC4XX_INT_DESCR_CNT, dev->ce_base + CRYPTO4XX_INT_DESCR_CNT); | 
|  | writel(PPC4XX_INT_CFG, dev->ce_base + CRYPTO4XX_INT_CFG); | 
|  | writel(PPC4XX_PD_DONE_INT, dev->ce_base + CRYPTO4XX_INT_EN); | 
|  | } | 
|  |  | 
|  | int crypto4xx_alloc_sa(struct crypto4xx_ctx *ctx, u32 size) | 
|  | { | 
|  | ctx->sa_in = dma_alloc_coherent(ctx->dev->core_dev->device, size * 4, | 
|  | &ctx->sa_in_dma_addr, GFP_ATOMIC); | 
|  | if (ctx->sa_in == NULL) | 
|  | return -ENOMEM; | 
|  |  | 
|  | ctx->sa_out = dma_alloc_coherent(ctx->dev->core_dev->device, size * 4, | 
|  | &ctx->sa_out_dma_addr, GFP_ATOMIC); | 
|  | if (ctx->sa_out == NULL) { | 
|  | dma_free_coherent(ctx->dev->core_dev->device, | 
|  | ctx->sa_len * 4, | 
|  | ctx->sa_in, ctx->sa_in_dma_addr); | 
|  | return -ENOMEM; | 
|  | } | 
|  |  | 
|  | memset(ctx->sa_in, 0, size * 4); | 
|  | memset(ctx->sa_out, 0, size * 4); | 
|  | ctx->sa_len = size; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | void crypto4xx_free_sa(struct crypto4xx_ctx *ctx) | 
|  | { | 
|  | if (ctx->sa_in != NULL) | 
|  | dma_free_coherent(ctx->dev->core_dev->device, ctx->sa_len * 4, | 
|  | ctx->sa_in, ctx->sa_in_dma_addr); | 
|  | if (ctx->sa_out != NULL) | 
|  | dma_free_coherent(ctx->dev->core_dev->device, ctx->sa_len * 4, | 
|  | ctx->sa_out, ctx->sa_out_dma_addr); | 
|  |  | 
|  | ctx->sa_in_dma_addr = 0; | 
|  | ctx->sa_out_dma_addr = 0; | 
|  | ctx->sa_len = 0; | 
|  | } | 
|  |  | 
|  | u32 crypto4xx_alloc_state_record(struct crypto4xx_ctx *ctx) | 
|  | { | 
|  | ctx->state_record = dma_alloc_coherent(ctx->dev->core_dev->device, | 
|  | sizeof(struct sa_state_record), | 
|  | &ctx->state_record_dma_addr, GFP_ATOMIC); | 
|  | if (!ctx->state_record_dma_addr) | 
|  | return -ENOMEM; | 
|  | memset(ctx->state_record, 0, sizeof(struct sa_state_record)); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | void crypto4xx_free_state_record(struct crypto4xx_ctx *ctx) | 
|  | { | 
|  | if (ctx->state_record != NULL) | 
|  | dma_free_coherent(ctx->dev->core_dev->device, | 
|  | sizeof(struct sa_state_record), | 
|  | ctx->state_record, | 
|  | ctx->state_record_dma_addr); | 
|  | ctx->state_record_dma_addr = 0; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * alloc memory for the gather ring | 
|  | * no need to alloc buf for the ring | 
|  | * gdr_tail, gdr_head and gdr_count are initialized by this function | 
|  | */ | 
|  | static u32 crypto4xx_build_pdr(struct crypto4xx_device *dev) | 
|  | { | 
|  | int i; | 
|  | struct pd_uinfo *pd_uinfo; | 
|  | dev->pdr = dma_alloc_coherent(dev->core_dev->device, | 
|  | sizeof(struct ce_pd) * PPC4XX_NUM_PD, | 
|  | &dev->pdr_pa, GFP_ATOMIC); | 
|  | if (!dev->pdr) | 
|  | return -ENOMEM; | 
|  |  | 
|  | dev->pdr_uinfo = kzalloc(sizeof(struct pd_uinfo) * PPC4XX_NUM_PD, | 
|  | GFP_KERNEL); | 
|  | if (!dev->pdr_uinfo) { | 
|  | dma_free_coherent(dev->core_dev->device, | 
|  | sizeof(struct ce_pd) * PPC4XX_NUM_PD, | 
|  | dev->pdr, | 
|  | dev->pdr_pa); | 
|  | return -ENOMEM; | 
|  | } | 
|  | memset(dev->pdr, 0,  sizeof(struct ce_pd) * PPC4XX_NUM_PD); | 
|  | dev->shadow_sa_pool = dma_alloc_coherent(dev->core_dev->device, | 
|  | 256 * PPC4XX_NUM_PD, | 
|  | &dev->shadow_sa_pool_pa, | 
|  | GFP_ATOMIC); | 
|  | if (!dev->shadow_sa_pool) | 
|  | return -ENOMEM; | 
|  |  | 
|  | dev->shadow_sr_pool = dma_alloc_coherent(dev->core_dev->device, | 
|  | sizeof(struct sa_state_record) * PPC4XX_NUM_PD, | 
|  | &dev->shadow_sr_pool_pa, GFP_ATOMIC); | 
|  | if (!dev->shadow_sr_pool) | 
|  | return -ENOMEM; | 
|  | for (i = 0; i < PPC4XX_NUM_PD; i++) { | 
|  | pd_uinfo = (struct pd_uinfo *) (dev->pdr_uinfo + | 
|  | sizeof(struct pd_uinfo) * i); | 
|  |  | 
|  | /* alloc 256 bytes which is enough for any kind of dynamic sa */ | 
|  | pd_uinfo->sa_va = dev->shadow_sa_pool + 256 * i; | 
|  | pd_uinfo->sa_pa = dev->shadow_sa_pool_pa + 256 * i; | 
|  |  | 
|  | /* alloc state record */ | 
|  | pd_uinfo->sr_va = dev->shadow_sr_pool + | 
|  | sizeof(struct sa_state_record) * i; | 
|  | pd_uinfo->sr_pa = dev->shadow_sr_pool_pa + | 
|  | sizeof(struct sa_state_record) * i; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void crypto4xx_destroy_pdr(struct crypto4xx_device *dev) | 
|  | { | 
|  | if (dev->pdr != NULL) | 
|  | dma_free_coherent(dev->core_dev->device, | 
|  | sizeof(struct ce_pd) * PPC4XX_NUM_PD, | 
|  | dev->pdr, dev->pdr_pa); | 
|  | if (dev->shadow_sa_pool) | 
|  | dma_free_coherent(dev->core_dev->device, 256 * PPC4XX_NUM_PD, | 
|  | dev->shadow_sa_pool, dev->shadow_sa_pool_pa); | 
|  | if (dev->shadow_sr_pool) | 
|  | dma_free_coherent(dev->core_dev->device, | 
|  | sizeof(struct sa_state_record) * PPC4XX_NUM_PD, | 
|  | dev->shadow_sr_pool, dev->shadow_sr_pool_pa); | 
|  |  | 
|  | kfree(dev->pdr_uinfo); | 
|  | } | 
|  |  | 
|  | static u32 crypto4xx_get_pd_from_pdr_nolock(struct crypto4xx_device *dev) | 
|  | { | 
|  | u32 retval; | 
|  | u32 tmp; | 
|  |  | 
|  | retval = dev->pdr_head; | 
|  | tmp = (dev->pdr_head + 1) % PPC4XX_NUM_PD; | 
|  |  | 
|  | if (tmp == dev->pdr_tail) | 
|  | return ERING_WAS_FULL; | 
|  |  | 
|  | dev->pdr_head = tmp; | 
|  |  | 
|  | return retval; | 
|  | } | 
|  |  | 
|  | static u32 crypto4xx_put_pd_to_pdr(struct crypto4xx_device *dev, u32 idx) | 
|  | { | 
|  | struct pd_uinfo *pd_uinfo; | 
|  | unsigned long flags; | 
|  |  | 
|  | pd_uinfo = (struct pd_uinfo *)(dev->pdr_uinfo + | 
|  | sizeof(struct pd_uinfo) * idx); | 
|  | spin_lock_irqsave(&dev->core_dev->lock, flags); | 
|  | if (dev->pdr_tail != PPC4XX_LAST_PD) | 
|  | dev->pdr_tail++; | 
|  | else | 
|  | dev->pdr_tail = 0; | 
|  | pd_uinfo->state = PD_ENTRY_FREE; | 
|  | spin_unlock_irqrestore(&dev->core_dev->lock, flags); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static struct ce_pd *crypto4xx_get_pdp(struct crypto4xx_device *dev, | 
|  | dma_addr_t *pd_dma, u32 idx) | 
|  | { | 
|  | *pd_dma = dev->pdr_pa + sizeof(struct ce_pd) * idx; | 
|  |  | 
|  | return dev->pdr + sizeof(struct ce_pd) * idx; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * alloc memory for the gather ring | 
|  | * no need to alloc buf for the ring | 
|  | * gdr_tail, gdr_head and gdr_count are initialized by this function | 
|  | */ | 
|  | static u32 crypto4xx_build_gdr(struct crypto4xx_device *dev) | 
|  | { | 
|  | dev->gdr = dma_alloc_coherent(dev->core_dev->device, | 
|  | sizeof(struct ce_gd) * PPC4XX_NUM_GD, | 
|  | &dev->gdr_pa, GFP_ATOMIC); | 
|  | if (!dev->gdr) | 
|  | return -ENOMEM; | 
|  |  | 
|  | memset(dev->gdr, 0, sizeof(struct ce_gd) * PPC4XX_NUM_GD); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static inline void crypto4xx_destroy_gdr(struct crypto4xx_device *dev) | 
|  | { | 
|  | dma_free_coherent(dev->core_dev->device, | 
|  | sizeof(struct ce_gd) * PPC4XX_NUM_GD, | 
|  | dev->gdr, dev->gdr_pa); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * when this function is called. | 
|  | * preemption or interrupt must be disabled | 
|  | */ | 
|  | u32 crypto4xx_get_n_gd(struct crypto4xx_device *dev, int n) | 
|  | { | 
|  | u32 retval; | 
|  | u32 tmp; | 
|  | if (n >= PPC4XX_NUM_GD) | 
|  | return ERING_WAS_FULL; | 
|  |  | 
|  | retval = dev->gdr_head; | 
|  | tmp = (dev->gdr_head + n) % PPC4XX_NUM_GD; | 
|  | if (dev->gdr_head > dev->gdr_tail) { | 
|  | if (tmp < dev->gdr_head && tmp >= dev->gdr_tail) | 
|  | return ERING_WAS_FULL; | 
|  | } else if (dev->gdr_head < dev->gdr_tail) { | 
|  | if (tmp < dev->gdr_head || tmp >= dev->gdr_tail) | 
|  | return ERING_WAS_FULL; | 
|  | } | 
|  | dev->gdr_head = tmp; | 
|  |  | 
|  | return retval; | 
|  | } | 
|  |  | 
|  | static u32 crypto4xx_put_gd_to_gdr(struct crypto4xx_device *dev) | 
|  | { | 
|  | unsigned long flags; | 
|  |  | 
|  | spin_lock_irqsave(&dev->core_dev->lock, flags); | 
|  | if (dev->gdr_tail == dev->gdr_head) { | 
|  | spin_unlock_irqrestore(&dev->core_dev->lock, flags); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | if (dev->gdr_tail != PPC4XX_LAST_GD) | 
|  | dev->gdr_tail++; | 
|  | else | 
|  | dev->gdr_tail = 0; | 
|  |  | 
|  | spin_unlock_irqrestore(&dev->core_dev->lock, flags); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static inline struct ce_gd *crypto4xx_get_gdp(struct crypto4xx_device *dev, | 
|  | dma_addr_t *gd_dma, u32 idx) | 
|  | { | 
|  | *gd_dma = dev->gdr_pa + sizeof(struct ce_gd) * idx; | 
|  |  | 
|  | return (struct ce_gd *) (dev->gdr + sizeof(struct ce_gd) * idx); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * alloc memory for the scatter ring | 
|  | * need to alloc buf for the ring | 
|  | * sdr_tail, sdr_head and sdr_count are initialized by this function | 
|  | */ | 
|  | static u32 crypto4xx_build_sdr(struct crypto4xx_device *dev) | 
|  | { | 
|  | int i; | 
|  | struct ce_sd *sd_array; | 
|  |  | 
|  | /* alloc memory for scatter descriptor ring */ | 
|  | dev->sdr = dma_alloc_coherent(dev->core_dev->device, | 
|  | sizeof(struct ce_sd) * PPC4XX_NUM_SD, | 
|  | &dev->sdr_pa, GFP_ATOMIC); | 
|  | if (!dev->sdr) | 
|  | return -ENOMEM; | 
|  |  | 
|  | dev->scatter_buffer_size = PPC4XX_SD_BUFFER_SIZE; | 
|  | dev->scatter_buffer_va = | 
|  | dma_alloc_coherent(dev->core_dev->device, | 
|  | dev->scatter_buffer_size * PPC4XX_NUM_SD, | 
|  | &dev->scatter_buffer_pa, GFP_ATOMIC); | 
|  | if (!dev->scatter_buffer_va) { | 
|  | dma_free_coherent(dev->core_dev->device, | 
|  | sizeof(struct ce_sd) * PPC4XX_NUM_SD, | 
|  | dev->sdr, dev->sdr_pa); | 
|  | return -ENOMEM; | 
|  | } | 
|  |  | 
|  | sd_array = dev->sdr; | 
|  |  | 
|  | for (i = 0; i < PPC4XX_NUM_SD; i++) { | 
|  | sd_array[i].ptr = dev->scatter_buffer_pa + | 
|  | dev->scatter_buffer_size * i; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void crypto4xx_destroy_sdr(struct crypto4xx_device *dev) | 
|  | { | 
|  | if (dev->sdr != NULL) | 
|  | dma_free_coherent(dev->core_dev->device, | 
|  | sizeof(struct ce_sd) * PPC4XX_NUM_SD, | 
|  | dev->sdr, dev->sdr_pa); | 
|  |  | 
|  | if (dev->scatter_buffer_va != NULL) | 
|  | dma_free_coherent(dev->core_dev->device, | 
|  | dev->scatter_buffer_size * PPC4XX_NUM_SD, | 
|  | dev->scatter_buffer_va, | 
|  | dev->scatter_buffer_pa); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * when this function is called. | 
|  | * preemption or interrupt must be disabled | 
|  | */ | 
|  | static u32 crypto4xx_get_n_sd(struct crypto4xx_device *dev, int n) | 
|  | { | 
|  | u32 retval; | 
|  | u32 tmp; | 
|  |  | 
|  | if (n >= PPC4XX_NUM_SD) | 
|  | return ERING_WAS_FULL; | 
|  |  | 
|  | retval = dev->sdr_head; | 
|  | tmp = (dev->sdr_head + n) % PPC4XX_NUM_SD; | 
|  | if (dev->sdr_head > dev->gdr_tail) { | 
|  | if (tmp < dev->sdr_head && tmp >= dev->sdr_tail) | 
|  | return ERING_WAS_FULL; | 
|  | } else if (dev->sdr_head < dev->sdr_tail) { | 
|  | if (tmp < dev->sdr_head || tmp >= dev->sdr_tail) | 
|  | return ERING_WAS_FULL; | 
|  | } /* the head = tail, or empty case is already take cared */ | 
|  | dev->sdr_head = tmp; | 
|  |  | 
|  | return retval; | 
|  | } | 
|  |  | 
|  | static u32 crypto4xx_put_sd_to_sdr(struct crypto4xx_device *dev) | 
|  | { | 
|  | unsigned long flags; | 
|  |  | 
|  | spin_lock_irqsave(&dev->core_dev->lock, flags); | 
|  | if (dev->sdr_tail == dev->sdr_head) { | 
|  | spin_unlock_irqrestore(&dev->core_dev->lock, flags); | 
|  | return 0; | 
|  | } | 
|  | if (dev->sdr_tail != PPC4XX_LAST_SD) | 
|  | dev->sdr_tail++; | 
|  | else | 
|  | dev->sdr_tail = 0; | 
|  | spin_unlock_irqrestore(&dev->core_dev->lock, flags); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static inline struct ce_sd *crypto4xx_get_sdp(struct crypto4xx_device *dev, | 
|  | dma_addr_t *sd_dma, u32 idx) | 
|  | { | 
|  | *sd_dma = dev->sdr_pa + sizeof(struct ce_sd) * idx; | 
|  |  | 
|  | return  (struct ce_sd *)(dev->sdr + sizeof(struct ce_sd) * idx); | 
|  | } | 
|  |  | 
|  | static u32 crypto4xx_fill_one_page(struct crypto4xx_device *dev, | 
|  | dma_addr_t *addr, u32 *length, | 
|  | u32 *idx, u32 *offset, u32 *nbytes) | 
|  | { | 
|  | u32 len; | 
|  |  | 
|  | if (*length > dev->scatter_buffer_size) { | 
|  | memcpy(phys_to_virt(*addr), | 
|  | dev->scatter_buffer_va + | 
|  | *idx * dev->scatter_buffer_size + *offset, | 
|  | dev->scatter_buffer_size); | 
|  | *offset = 0; | 
|  | *length -= dev->scatter_buffer_size; | 
|  | *nbytes -= dev->scatter_buffer_size; | 
|  | if (*idx == PPC4XX_LAST_SD) | 
|  | *idx = 0; | 
|  | else | 
|  | (*idx)++; | 
|  | *addr = *addr +  dev->scatter_buffer_size; | 
|  | return 1; | 
|  | } else if (*length < dev->scatter_buffer_size) { | 
|  | memcpy(phys_to_virt(*addr), | 
|  | dev->scatter_buffer_va + | 
|  | *idx * dev->scatter_buffer_size + *offset, *length); | 
|  | if ((*offset + *length) == dev->scatter_buffer_size) { | 
|  | if (*idx == PPC4XX_LAST_SD) | 
|  | *idx = 0; | 
|  | else | 
|  | (*idx)++; | 
|  | *nbytes -= *length; | 
|  | *offset = 0; | 
|  | } else { | 
|  | *nbytes -= *length; | 
|  | *offset += *length; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } else { | 
|  | len = (*nbytes <= dev->scatter_buffer_size) ? | 
|  | (*nbytes) : dev->scatter_buffer_size; | 
|  | memcpy(phys_to_virt(*addr), | 
|  | dev->scatter_buffer_va + | 
|  | *idx * dev->scatter_buffer_size + *offset, | 
|  | len); | 
|  | *offset = 0; | 
|  | *nbytes -= len; | 
|  |  | 
|  | if (*idx == PPC4XX_LAST_SD) | 
|  | *idx = 0; | 
|  | else | 
|  | (*idx)++; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  | } | 
|  |  | 
|  | static void crypto4xx_copy_pkt_to_dst(struct crypto4xx_device *dev, | 
|  | struct ce_pd *pd, | 
|  | struct pd_uinfo *pd_uinfo, | 
|  | u32 nbytes, | 
|  | struct scatterlist *dst) | 
|  | { | 
|  | dma_addr_t addr; | 
|  | u32 this_sd; | 
|  | u32 offset; | 
|  | u32 len; | 
|  | u32 i; | 
|  | u32 sg_len; | 
|  | struct scatterlist *sg; | 
|  |  | 
|  | this_sd = pd_uinfo->first_sd; | 
|  | offset = 0; | 
|  | i = 0; | 
|  |  | 
|  | while (nbytes) { | 
|  | sg = &dst[i]; | 
|  | sg_len = sg->length; | 
|  | addr = dma_map_page(dev->core_dev->device, sg_page(sg), | 
|  | sg->offset, sg->length, DMA_TO_DEVICE); | 
|  |  | 
|  | if (offset == 0) { | 
|  | len = (nbytes <= sg->length) ? nbytes : sg->length; | 
|  | while (crypto4xx_fill_one_page(dev, &addr, &len, | 
|  | &this_sd, &offset, &nbytes)) | 
|  | ; | 
|  | if (!nbytes) | 
|  | return; | 
|  | i++; | 
|  | } else { | 
|  | len = (nbytes <= (dev->scatter_buffer_size - offset)) ? | 
|  | nbytes : (dev->scatter_buffer_size - offset); | 
|  | len = (sg->length < len) ? sg->length : len; | 
|  | while (crypto4xx_fill_one_page(dev, &addr, &len, | 
|  | &this_sd, &offset, &nbytes)) | 
|  | ; | 
|  | if (!nbytes) | 
|  | return; | 
|  | sg_len -= len; | 
|  | if (sg_len) { | 
|  | addr += len; | 
|  | while (crypto4xx_fill_one_page(dev, &addr, | 
|  | &sg_len, &this_sd, &offset, &nbytes)) | 
|  | ; | 
|  | } | 
|  | i++; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | static u32 crypto4xx_copy_digest_to_dst(struct pd_uinfo *pd_uinfo, | 
|  | struct crypto4xx_ctx *ctx) | 
|  | { | 
|  | struct dynamic_sa_ctl *sa = (struct dynamic_sa_ctl *) ctx->sa_in; | 
|  | struct sa_state_record *state_record = | 
|  | (struct sa_state_record *) pd_uinfo->sr_va; | 
|  |  | 
|  | if (sa->sa_command_0.bf.hash_alg == SA_HASH_ALG_SHA1) { | 
|  | memcpy((void *) pd_uinfo->dest_va, state_record->save_digest, | 
|  | SA_HASH_ALG_SHA1_DIGEST_SIZE); | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void crypto4xx_ret_sg_desc(struct crypto4xx_device *dev, | 
|  | struct pd_uinfo *pd_uinfo) | 
|  | { | 
|  | int i; | 
|  | if (pd_uinfo->num_gd) { | 
|  | for (i = 0; i < pd_uinfo->num_gd; i++) | 
|  | crypto4xx_put_gd_to_gdr(dev); | 
|  | pd_uinfo->first_gd = 0xffffffff; | 
|  | pd_uinfo->num_gd = 0; | 
|  | } | 
|  | if (pd_uinfo->num_sd) { | 
|  | for (i = 0; i < pd_uinfo->num_sd; i++) | 
|  | crypto4xx_put_sd_to_sdr(dev); | 
|  |  | 
|  | pd_uinfo->first_sd = 0xffffffff; | 
|  | pd_uinfo->num_sd = 0; | 
|  | } | 
|  | } | 
|  |  | 
|  | static u32 crypto4xx_ablkcipher_done(struct crypto4xx_device *dev, | 
|  | struct pd_uinfo *pd_uinfo, | 
|  | struct ce_pd *pd) | 
|  | { | 
|  | struct crypto4xx_ctx *ctx; | 
|  | struct ablkcipher_request *ablk_req; | 
|  | struct scatterlist *dst; | 
|  | dma_addr_t addr; | 
|  |  | 
|  | ablk_req = ablkcipher_request_cast(pd_uinfo->async_req); | 
|  | ctx  = crypto_tfm_ctx(ablk_req->base.tfm); | 
|  |  | 
|  | if (pd_uinfo->using_sd) { | 
|  | crypto4xx_copy_pkt_to_dst(dev, pd, pd_uinfo, ablk_req->nbytes, | 
|  | ablk_req->dst); | 
|  | } else { | 
|  | dst = pd_uinfo->dest_va; | 
|  | addr = dma_map_page(dev->core_dev->device, sg_page(dst), | 
|  | dst->offset, dst->length, DMA_FROM_DEVICE); | 
|  | } | 
|  | crypto4xx_ret_sg_desc(dev, pd_uinfo); | 
|  | if (ablk_req->base.complete != NULL) | 
|  | ablk_req->base.complete(&ablk_req->base, 0); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static u32 crypto4xx_ahash_done(struct crypto4xx_device *dev, | 
|  | struct pd_uinfo *pd_uinfo) | 
|  | { | 
|  | struct crypto4xx_ctx *ctx; | 
|  | struct ahash_request *ahash_req; | 
|  |  | 
|  | ahash_req = ahash_request_cast(pd_uinfo->async_req); | 
|  | ctx  = crypto_tfm_ctx(ahash_req->base.tfm); | 
|  |  | 
|  | crypto4xx_copy_digest_to_dst(pd_uinfo, | 
|  | crypto_tfm_ctx(ahash_req->base.tfm)); | 
|  | crypto4xx_ret_sg_desc(dev, pd_uinfo); | 
|  | /* call user provided callback function x */ | 
|  | if (ahash_req->base.complete != NULL) | 
|  | ahash_req->base.complete(&ahash_req->base, 0); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static u32 crypto4xx_pd_done(struct crypto4xx_device *dev, u32 idx) | 
|  | { | 
|  | struct ce_pd *pd; | 
|  | struct pd_uinfo *pd_uinfo; | 
|  |  | 
|  | pd =  dev->pdr + sizeof(struct ce_pd)*idx; | 
|  | pd_uinfo = dev->pdr_uinfo + sizeof(struct pd_uinfo)*idx; | 
|  | if (crypto_tfm_alg_type(pd_uinfo->async_req->tfm) == | 
|  | CRYPTO_ALG_TYPE_ABLKCIPHER) | 
|  | return crypto4xx_ablkcipher_done(dev, pd_uinfo, pd); | 
|  | else | 
|  | return crypto4xx_ahash_done(dev, pd_uinfo); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * Note: Only use this function to copy items that is word aligned. | 
|  | */ | 
|  | void crypto4xx_memcpy_le(unsigned int *dst, | 
|  | const unsigned char *buf, | 
|  | int len) | 
|  | { | 
|  | u8 *tmp; | 
|  | for (; len >= 4; buf += 4, len -= 4) | 
|  | *dst++ = cpu_to_le32(*(unsigned int *) buf); | 
|  |  | 
|  | tmp = (u8 *)dst; | 
|  | switch (len) { | 
|  | case 3: | 
|  | *tmp++ = 0; | 
|  | *tmp++ = *(buf+2); | 
|  | *tmp++ = *(buf+1); | 
|  | *tmp++ = *buf; | 
|  | break; | 
|  | case 2: | 
|  | *tmp++ = 0; | 
|  | *tmp++ = 0; | 
|  | *tmp++ = *(buf+1); | 
|  | *tmp++ = *buf; | 
|  | break; | 
|  | case 1: | 
|  | *tmp++ = 0; | 
|  | *tmp++ = 0; | 
|  | *tmp++ = 0; | 
|  | *tmp++ = *buf; | 
|  | break; | 
|  | default: | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | static void crypto4xx_stop_all(struct crypto4xx_core_device *core_dev) | 
|  | { | 
|  | crypto4xx_destroy_pdr(core_dev->dev); | 
|  | crypto4xx_destroy_gdr(core_dev->dev); | 
|  | crypto4xx_destroy_sdr(core_dev->dev); | 
|  | dev_set_drvdata(core_dev->device, NULL); | 
|  | iounmap(core_dev->dev->ce_base); | 
|  | kfree(core_dev->dev); | 
|  | kfree(core_dev); | 
|  | } | 
|  |  | 
|  | void crypto4xx_return_pd(struct crypto4xx_device *dev, | 
|  | u32 pd_entry, struct ce_pd *pd, | 
|  | struct pd_uinfo *pd_uinfo) | 
|  | { | 
|  | /* irq should be already disabled */ | 
|  | dev->pdr_head = pd_entry; | 
|  | pd->pd_ctl.w = 0; | 
|  | pd->pd_ctl_len.w = 0; | 
|  | pd_uinfo->state = PD_ENTRY_FREE; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * derive number of elements in scatterlist | 
|  | * Shamlessly copy from talitos.c | 
|  | */ | 
|  | static int get_sg_count(struct scatterlist *sg_list, int nbytes) | 
|  | { | 
|  | struct scatterlist *sg = sg_list; | 
|  | int sg_nents = 0; | 
|  |  | 
|  | while (nbytes) { | 
|  | sg_nents++; | 
|  | if (sg->length > nbytes) | 
|  | break; | 
|  | nbytes -= sg->length; | 
|  | sg = sg_next(sg); | 
|  | } | 
|  |  | 
|  | return sg_nents; | 
|  | } | 
|  |  | 
|  | static u32 get_next_gd(u32 current) | 
|  | { | 
|  | if (current != PPC4XX_LAST_GD) | 
|  | return current + 1; | 
|  | else | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static u32 get_next_sd(u32 current) | 
|  | { | 
|  | if (current != PPC4XX_LAST_SD) | 
|  | return current + 1; | 
|  | else | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | u32 crypto4xx_build_pd(struct crypto_async_request *req, | 
|  | struct crypto4xx_ctx *ctx, | 
|  | struct scatterlist *src, | 
|  | struct scatterlist *dst, | 
|  | unsigned int datalen, | 
|  | void *iv, u32 iv_len) | 
|  | { | 
|  | struct crypto4xx_device *dev = ctx->dev; | 
|  | dma_addr_t addr, pd_dma, sd_dma, gd_dma; | 
|  | struct dynamic_sa_ctl *sa; | 
|  | struct scatterlist *sg; | 
|  | struct ce_gd *gd; | 
|  | struct ce_pd *pd; | 
|  | u32 num_gd, num_sd; | 
|  | u32 fst_gd = 0xffffffff; | 
|  | u32 fst_sd = 0xffffffff; | 
|  | u32 pd_entry; | 
|  | unsigned long flags; | 
|  | struct pd_uinfo *pd_uinfo = NULL; | 
|  | unsigned int nbytes = datalen, idx; | 
|  | unsigned int ivlen = 0; | 
|  | u32 gd_idx = 0; | 
|  |  | 
|  | /* figure how many gd is needed */ | 
|  | num_gd = get_sg_count(src, datalen); | 
|  | if (num_gd == 1) | 
|  | num_gd = 0; | 
|  |  | 
|  | /* figure how many sd is needed */ | 
|  | if (sg_is_last(dst) || ctx->is_hash) { | 
|  | num_sd = 0; | 
|  | } else { | 
|  | if (datalen > PPC4XX_SD_BUFFER_SIZE) { | 
|  | num_sd = datalen / PPC4XX_SD_BUFFER_SIZE; | 
|  | if (datalen % PPC4XX_SD_BUFFER_SIZE) | 
|  | num_sd++; | 
|  | } else { | 
|  | num_sd = 1; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * The follow section of code needs to be protected | 
|  | * The gather ring and scatter ring needs to be consecutive | 
|  | * In case of run out of any kind of descriptor, the descriptor | 
|  | * already got must be return the original place. | 
|  | */ | 
|  | spin_lock_irqsave(&dev->core_dev->lock, flags); | 
|  | if (num_gd) { | 
|  | fst_gd = crypto4xx_get_n_gd(dev, num_gd); | 
|  | if (fst_gd == ERING_WAS_FULL) { | 
|  | spin_unlock_irqrestore(&dev->core_dev->lock, flags); | 
|  | return -EAGAIN; | 
|  | } | 
|  | } | 
|  | if (num_sd) { | 
|  | fst_sd = crypto4xx_get_n_sd(dev, num_sd); | 
|  | if (fst_sd == ERING_WAS_FULL) { | 
|  | if (num_gd) | 
|  | dev->gdr_head = fst_gd; | 
|  | spin_unlock_irqrestore(&dev->core_dev->lock, flags); | 
|  | return -EAGAIN; | 
|  | } | 
|  | } | 
|  | pd_entry = crypto4xx_get_pd_from_pdr_nolock(dev); | 
|  | if (pd_entry == ERING_WAS_FULL) { | 
|  | if (num_gd) | 
|  | dev->gdr_head = fst_gd; | 
|  | if (num_sd) | 
|  | dev->sdr_head = fst_sd; | 
|  | spin_unlock_irqrestore(&dev->core_dev->lock, flags); | 
|  | return -EAGAIN; | 
|  | } | 
|  | spin_unlock_irqrestore(&dev->core_dev->lock, flags); | 
|  |  | 
|  | pd_uinfo = (struct pd_uinfo *)(dev->pdr_uinfo + | 
|  | sizeof(struct pd_uinfo) * pd_entry); | 
|  | pd = crypto4xx_get_pdp(dev, &pd_dma, pd_entry); | 
|  | pd_uinfo->async_req = req; | 
|  | pd_uinfo->num_gd = num_gd; | 
|  | pd_uinfo->num_sd = num_sd; | 
|  |  | 
|  | if (iv_len || ctx->is_hash) { | 
|  | ivlen = iv_len; | 
|  | pd->sa = pd_uinfo->sa_pa; | 
|  | sa = (struct dynamic_sa_ctl *) pd_uinfo->sa_va; | 
|  | if (ctx->direction == DIR_INBOUND) | 
|  | memcpy(sa, ctx->sa_in, ctx->sa_len * 4); | 
|  | else | 
|  | memcpy(sa, ctx->sa_out, ctx->sa_len * 4); | 
|  |  | 
|  | memcpy((void *) sa + ctx->offset_to_sr_ptr, | 
|  | &pd_uinfo->sr_pa, 4); | 
|  |  | 
|  | if (iv_len) | 
|  | crypto4xx_memcpy_le(pd_uinfo->sr_va, iv, iv_len); | 
|  | } else { | 
|  | if (ctx->direction == DIR_INBOUND) { | 
|  | pd->sa = ctx->sa_in_dma_addr; | 
|  | sa = (struct dynamic_sa_ctl *) ctx->sa_in; | 
|  | } else { | 
|  | pd->sa = ctx->sa_out_dma_addr; | 
|  | sa = (struct dynamic_sa_ctl *) ctx->sa_out; | 
|  | } | 
|  | } | 
|  | pd->sa_len = ctx->sa_len; | 
|  | if (num_gd) { | 
|  | /* get first gd we are going to use */ | 
|  | gd_idx = fst_gd; | 
|  | pd_uinfo->first_gd = fst_gd; | 
|  | pd_uinfo->num_gd = num_gd; | 
|  | gd = crypto4xx_get_gdp(dev, &gd_dma, gd_idx); | 
|  | pd->src = gd_dma; | 
|  | /* enable gather */ | 
|  | sa->sa_command_0.bf.gather = 1; | 
|  | idx = 0; | 
|  | src = &src[0]; | 
|  | /* walk the sg, and setup gather array */ | 
|  | while (nbytes) { | 
|  | sg = &src[idx]; | 
|  | addr = dma_map_page(dev->core_dev->device, sg_page(sg), | 
|  | sg->offset, sg->length, DMA_TO_DEVICE); | 
|  | gd->ptr = addr; | 
|  | gd->ctl_len.len = sg->length; | 
|  | gd->ctl_len.done = 0; | 
|  | gd->ctl_len.ready = 1; | 
|  | if (sg->length >= nbytes) | 
|  | break; | 
|  | nbytes -= sg->length; | 
|  | gd_idx = get_next_gd(gd_idx); | 
|  | gd = crypto4xx_get_gdp(dev, &gd_dma, gd_idx); | 
|  | idx++; | 
|  | } | 
|  | } else { | 
|  | pd->src = (u32)dma_map_page(dev->core_dev->device, sg_page(src), | 
|  | src->offset, src->length, DMA_TO_DEVICE); | 
|  | /* | 
|  | * Disable gather in sa command | 
|  | */ | 
|  | sa->sa_command_0.bf.gather = 0; | 
|  | /* | 
|  | * Indicate gather array is not used | 
|  | */ | 
|  | pd_uinfo->first_gd = 0xffffffff; | 
|  | pd_uinfo->num_gd = 0; | 
|  | } | 
|  | if (ctx->is_hash || sg_is_last(dst)) { | 
|  | /* | 
|  | * we know application give us dst a whole piece of memory | 
|  | * no need to use scatter ring. | 
|  | * In case of is_hash, the icv is always at end of src data. | 
|  | */ | 
|  | pd_uinfo->using_sd = 0; | 
|  | pd_uinfo->first_sd = 0xffffffff; | 
|  | pd_uinfo->num_sd = 0; | 
|  | pd_uinfo->dest_va = dst; | 
|  | sa->sa_command_0.bf.scatter = 0; | 
|  | if (ctx->is_hash) | 
|  | pd->dest = virt_to_phys((void *)dst); | 
|  | else | 
|  | pd->dest = (u32)dma_map_page(dev->core_dev->device, | 
|  | sg_page(dst), dst->offset, | 
|  | dst->length, DMA_TO_DEVICE); | 
|  | } else { | 
|  | struct ce_sd *sd = NULL; | 
|  | u32 sd_idx = fst_sd; | 
|  | nbytes = datalen; | 
|  | sa->sa_command_0.bf.scatter = 1; | 
|  | pd_uinfo->using_sd = 1; | 
|  | pd_uinfo->dest_va = dst; | 
|  | pd_uinfo->first_sd = fst_sd; | 
|  | pd_uinfo->num_sd = num_sd; | 
|  | sd = crypto4xx_get_sdp(dev, &sd_dma, sd_idx); | 
|  | pd->dest = sd_dma; | 
|  | /* setup scatter descriptor */ | 
|  | sd->ctl.done = 0; | 
|  | sd->ctl.rdy = 1; | 
|  | /* sd->ptr should be setup by sd_init routine*/ | 
|  | idx = 0; | 
|  | if (nbytes >= PPC4XX_SD_BUFFER_SIZE) | 
|  | nbytes -= PPC4XX_SD_BUFFER_SIZE; | 
|  | else | 
|  | nbytes = 0; | 
|  | while (nbytes) { | 
|  | sd_idx = get_next_sd(sd_idx); | 
|  | sd = crypto4xx_get_sdp(dev, &sd_dma, sd_idx); | 
|  | /* setup scatter descriptor */ | 
|  | sd->ctl.done = 0; | 
|  | sd->ctl.rdy = 1; | 
|  | if (nbytes >= PPC4XX_SD_BUFFER_SIZE) | 
|  | nbytes -= PPC4XX_SD_BUFFER_SIZE; | 
|  | else | 
|  | /* | 
|  | * SD entry can hold PPC4XX_SD_BUFFER_SIZE, | 
|  | * which is more than nbytes, so done. | 
|  | */ | 
|  | nbytes = 0; | 
|  | } | 
|  | } | 
|  |  | 
|  | sa->sa_command_1.bf.hash_crypto_offset = 0; | 
|  | pd->pd_ctl.w = ctx->pd_ctl; | 
|  | pd->pd_ctl_len.w = 0x00400000 | (ctx->bypass << 24) | datalen; | 
|  | pd_uinfo->state = PD_ENTRY_INUSE; | 
|  | wmb(); | 
|  | /* write any value to push engine to read a pd */ | 
|  | writel(1, dev->ce_base + CRYPTO4XX_INT_DESCR_RD); | 
|  | return -EINPROGRESS; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * Algorithm Registration Functions | 
|  | */ | 
|  | static int crypto4xx_alg_init(struct crypto_tfm *tfm) | 
|  | { | 
|  | struct crypto_alg *alg = tfm->__crt_alg; | 
|  | struct crypto4xx_alg *amcc_alg = crypto_alg_to_crypto4xx_alg(alg); | 
|  | struct crypto4xx_ctx *ctx = crypto_tfm_ctx(tfm); | 
|  |  | 
|  | ctx->dev = amcc_alg->dev; | 
|  | ctx->sa_in = NULL; | 
|  | ctx->sa_out = NULL; | 
|  | ctx->sa_in_dma_addr = 0; | 
|  | ctx->sa_out_dma_addr = 0; | 
|  | ctx->sa_len = 0; | 
|  |  | 
|  | switch (alg->cra_flags & CRYPTO_ALG_TYPE_MASK) { | 
|  | default: | 
|  | tfm->crt_ablkcipher.reqsize = sizeof(struct crypto4xx_ctx); | 
|  | break; | 
|  | case CRYPTO_ALG_TYPE_AHASH: | 
|  | crypto_ahash_set_reqsize(__crypto_ahash_cast(tfm), | 
|  | sizeof(struct crypto4xx_ctx)); | 
|  | break; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void crypto4xx_alg_exit(struct crypto_tfm *tfm) | 
|  | { | 
|  | struct crypto4xx_ctx *ctx = crypto_tfm_ctx(tfm); | 
|  |  | 
|  | crypto4xx_free_sa(ctx); | 
|  | crypto4xx_free_state_record(ctx); | 
|  | } | 
|  |  | 
|  | int crypto4xx_register_alg(struct crypto4xx_device *sec_dev, | 
|  | struct crypto4xx_alg_common *crypto_alg, | 
|  | int array_size) | 
|  | { | 
|  | struct crypto4xx_alg *alg; | 
|  | int i; | 
|  | int rc = 0; | 
|  |  | 
|  | for (i = 0; i < array_size; i++) { | 
|  | alg = kzalloc(sizeof(struct crypto4xx_alg), GFP_KERNEL); | 
|  | if (!alg) | 
|  | return -ENOMEM; | 
|  |  | 
|  | alg->alg = crypto_alg[i]; | 
|  | alg->dev = sec_dev; | 
|  |  | 
|  | switch (alg->alg.type) { | 
|  | case CRYPTO_ALG_TYPE_AHASH: | 
|  | rc = crypto_register_ahash(&alg->alg.u.hash); | 
|  | break; | 
|  |  | 
|  | default: | 
|  | rc = crypto_register_alg(&alg->alg.u.cipher); | 
|  | break; | 
|  | } | 
|  |  | 
|  | if (rc) { | 
|  | list_del(&alg->entry); | 
|  | kfree(alg); | 
|  | } else { | 
|  | list_add_tail(&alg->entry, &sec_dev->alg_list); | 
|  | } | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void crypto4xx_unregister_alg(struct crypto4xx_device *sec_dev) | 
|  | { | 
|  | struct crypto4xx_alg *alg, *tmp; | 
|  |  | 
|  | list_for_each_entry_safe(alg, tmp, &sec_dev->alg_list, entry) { | 
|  | list_del(&alg->entry); | 
|  | switch (alg->alg.type) { | 
|  | case CRYPTO_ALG_TYPE_AHASH: | 
|  | crypto_unregister_ahash(&alg->alg.u.hash); | 
|  | break; | 
|  |  | 
|  | default: | 
|  | crypto_unregister_alg(&alg->alg.u.cipher); | 
|  | } | 
|  | kfree(alg); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void crypto4xx_bh_tasklet_cb(unsigned long data) | 
|  | { | 
|  | struct device *dev = (struct device *)data; | 
|  | struct crypto4xx_core_device *core_dev = dev_get_drvdata(dev); | 
|  | struct pd_uinfo *pd_uinfo; | 
|  | struct ce_pd *pd; | 
|  | u32 tail; | 
|  |  | 
|  | while (core_dev->dev->pdr_head != core_dev->dev->pdr_tail) { | 
|  | tail = core_dev->dev->pdr_tail; | 
|  | pd_uinfo = core_dev->dev->pdr_uinfo + | 
|  | sizeof(struct pd_uinfo)*tail; | 
|  | pd =  core_dev->dev->pdr + sizeof(struct ce_pd) * tail; | 
|  | if ((pd_uinfo->state == PD_ENTRY_INUSE) && | 
|  | pd->pd_ctl.bf.pe_done && | 
|  | !pd->pd_ctl.bf.host_ready) { | 
|  | pd->pd_ctl.bf.pe_done = 0; | 
|  | crypto4xx_pd_done(core_dev->dev, tail); | 
|  | crypto4xx_put_pd_to_pdr(core_dev->dev, tail); | 
|  | pd_uinfo->state = PD_ENTRY_FREE; | 
|  | } else { | 
|  | /* if tail not done, break */ | 
|  | break; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | /** | 
|  | * Top Half of isr. | 
|  | */ | 
|  | static irqreturn_t crypto4xx_ce_interrupt_handler(int irq, void *data) | 
|  | { | 
|  | struct device *dev = (struct device *)data; | 
|  | struct crypto4xx_core_device *core_dev = dev_get_drvdata(dev); | 
|  |  | 
|  | if (core_dev->dev->ce_base == 0) | 
|  | return 0; | 
|  |  | 
|  | writel(PPC4XX_INTERRUPT_CLR, | 
|  | core_dev->dev->ce_base + CRYPTO4XX_INT_CLR); | 
|  | tasklet_schedule(&core_dev->tasklet); | 
|  |  | 
|  | return IRQ_HANDLED; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * Supported Crypto Algorithms | 
|  | */ | 
|  | struct crypto4xx_alg_common crypto4xx_alg[] = { | 
|  | /* Crypto AES modes */ | 
|  | { .type = CRYPTO_ALG_TYPE_ABLKCIPHER, .u.cipher = { | 
|  | .cra_name 	= "cbc(aes)", | 
|  | .cra_driver_name = "cbc-aes-ppc4xx", | 
|  | .cra_priority 	= CRYPTO4XX_CRYPTO_PRIORITY, | 
|  | .cra_flags 	= CRYPTO_ALG_TYPE_ABLKCIPHER | CRYPTO_ALG_ASYNC, | 
|  | .cra_blocksize 	= AES_BLOCK_SIZE, | 
|  | .cra_ctxsize 	= sizeof(struct crypto4xx_ctx), | 
|  | .cra_type 	= &crypto_ablkcipher_type, | 
|  | .cra_init	= crypto4xx_alg_init, | 
|  | .cra_exit	= crypto4xx_alg_exit, | 
|  | .cra_module 	= THIS_MODULE, | 
|  | .cra_u 		= { | 
|  | .ablkcipher = { | 
|  | .min_keysize 	= AES_MIN_KEY_SIZE, | 
|  | .max_keysize 	= AES_MAX_KEY_SIZE, | 
|  | .ivsize		= AES_IV_SIZE, | 
|  | .setkey 	= crypto4xx_setkey_aes_cbc, | 
|  | .encrypt 	= crypto4xx_encrypt, | 
|  | .decrypt 	= crypto4xx_decrypt, | 
|  | } | 
|  | } | 
|  | }}, | 
|  | }; | 
|  |  | 
|  | /** | 
|  | * Module Initialization Routine | 
|  | */ | 
|  | static int __init crypto4xx_probe(struct platform_device *ofdev) | 
|  | { | 
|  | int rc; | 
|  | struct resource res; | 
|  | struct device *dev = &ofdev->dev; | 
|  | struct crypto4xx_core_device *core_dev; | 
|  |  | 
|  | rc = of_address_to_resource(ofdev->dev.of_node, 0, &res); | 
|  | if (rc) | 
|  | return -ENODEV; | 
|  |  | 
|  | if (of_find_compatible_node(NULL, NULL, "amcc,ppc460ex-crypto")) { | 
|  | mtdcri(SDR0, PPC460EX_SDR0_SRST, | 
|  | mfdcri(SDR0, PPC460EX_SDR0_SRST) | PPC460EX_CE_RESET); | 
|  | mtdcri(SDR0, PPC460EX_SDR0_SRST, | 
|  | mfdcri(SDR0, PPC460EX_SDR0_SRST) & ~PPC460EX_CE_RESET); | 
|  | } else if (of_find_compatible_node(NULL, NULL, | 
|  | "amcc,ppc405ex-crypto")) { | 
|  | mtdcri(SDR0, PPC405EX_SDR0_SRST, | 
|  | mfdcri(SDR0, PPC405EX_SDR0_SRST) | PPC405EX_CE_RESET); | 
|  | mtdcri(SDR0, PPC405EX_SDR0_SRST, | 
|  | mfdcri(SDR0, PPC405EX_SDR0_SRST) & ~PPC405EX_CE_RESET); | 
|  | } else if (of_find_compatible_node(NULL, NULL, | 
|  | "amcc,ppc460sx-crypto")) { | 
|  | mtdcri(SDR0, PPC460SX_SDR0_SRST, | 
|  | mfdcri(SDR0, PPC460SX_SDR0_SRST) | PPC460SX_CE_RESET); | 
|  | mtdcri(SDR0, PPC460SX_SDR0_SRST, | 
|  | mfdcri(SDR0, PPC460SX_SDR0_SRST) & ~PPC460SX_CE_RESET); | 
|  | } else { | 
|  | printk(KERN_ERR "Crypto Function Not supported!\n"); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | core_dev = kzalloc(sizeof(struct crypto4xx_core_device), GFP_KERNEL); | 
|  | if (!core_dev) | 
|  | return -ENOMEM; | 
|  |  | 
|  | dev_set_drvdata(dev, core_dev); | 
|  | core_dev->ofdev = ofdev; | 
|  | core_dev->dev = kzalloc(sizeof(struct crypto4xx_device), GFP_KERNEL); | 
|  | if (!core_dev->dev) | 
|  | goto err_alloc_dev; | 
|  |  | 
|  | core_dev->dev->core_dev = core_dev; | 
|  | core_dev->device = dev; | 
|  | spin_lock_init(&core_dev->lock); | 
|  | INIT_LIST_HEAD(&core_dev->dev->alg_list); | 
|  | rc = crypto4xx_build_pdr(core_dev->dev); | 
|  | if (rc) | 
|  | goto err_build_pdr; | 
|  |  | 
|  | rc = crypto4xx_build_gdr(core_dev->dev); | 
|  | if (rc) | 
|  | goto err_build_gdr; | 
|  |  | 
|  | rc = crypto4xx_build_sdr(core_dev->dev); | 
|  | if (rc) | 
|  | goto err_build_sdr; | 
|  |  | 
|  | /* Init tasklet for bottom half processing */ | 
|  | tasklet_init(&core_dev->tasklet, crypto4xx_bh_tasklet_cb, | 
|  | (unsigned long) dev); | 
|  |  | 
|  | /* Register for Crypto isr, Crypto Engine IRQ */ | 
|  | core_dev->irq = irq_of_parse_and_map(ofdev->dev.of_node, 0); | 
|  | rc = request_irq(core_dev->irq, crypto4xx_ce_interrupt_handler, 0, | 
|  | core_dev->dev->name, dev); | 
|  | if (rc) | 
|  | goto err_request_irq; | 
|  |  | 
|  | core_dev->dev->ce_base = of_iomap(ofdev->dev.of_node, 0); | 
|  | if (!core_dev->dev->ce_base) { | 
|  | dev_err(dev, "failed to of_iomap\n"); | 
|  | goto err_iomap; | 
|  | } | 
|  |  | 
|  | /* need to setup pdr, rdr, gdr and sdr before this */ | 
|  | crypto4xx_hw_init(core_dev->dev); | 
|  |  | 
|  | /* Register security algorithms with Linux CryptoAPI */ | 
|  | rc = crypto4xx_register_alg(core_dev->dev, crypto4xx_alg, | 
|  | ARRAY_SIZE(crypto4xx_alg)); | 
|  | if (rc) | 
|  | goto err_start_dev; | 
|  |  | 
|  | return 0; | 
|  |  | 
|  | err_start_dev: | 
|  | iounmap(core_dev->dev->ce_base); | 
|  | err_iomap: | 
|  | free_irq(core_dev->irq, dev); | 
|  | irq_dispose_mapping(core_dev->irq); | 
|  | tasklet_kill(&core_dev->tasklet); | 
|  | err_request_irq: | 
|  | crypto4xx_destroy_sdr(core_dev->dev); | 
|  | err_build_sdr: | 
|  | crypto4xx_destroy_gdr(core_dev->dev); | 
|  | err_build_gdr: | 
|  | crypto4xx_destroy_pdr(core_dev->dev); | 
|  | err_build_pdr: | 
|  | kfree(core_dev->dev); | 
|  | err_alloc_dev: | 
|  | kfree(core_dev); | 
|  |  | 
|  | return rc; | 
|  | } | 
|  |  | 
|  | static int __exit crypto4xx_remove(struct platform_device *ofdev) | 
|  | { | 
|  | struct device *dev = &ofdev->dev; | 
|  | struct crypto4xx_core_device *core_dev = dev_get_drvdata(dev); | 
|  |  | 
|  | free_irq(core_dev->irq, dev); | 
|  | irq_dispose_mapping(core_dev->irq); | 
|  |  | 
|  | tasklet_kill(&core_dev->tasklet); | 
|  | /* Un-register with Linux CryptoAPI */ | 
|  | crypto4xx_unregister_alg(core_dev->dev); | 
|  | /* Free all allocated memory */ | 
|  | crypto4xx_stop_all(core_dev); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static const struct of_device_id crypto4xx_match[] = { | 
|  | { .compatible      = "amcc,ppc4xx-crypto",}, | 
|  | { }, | 
|  | }; | 
|  |  | 
|  | static struct platform_driver crypto4xx_driver = { | 
|  | .driver = { | 
|  | .name = "crypto4xx", | 
|  | .owner = THIS_MODULE, | 
|  | .of_match_table = crypto4xx_match, | 
|  | }, | 
|  | .probe		= crypto4xx_probe, | 
|  | .remove		= crypto4xx_remove, | 
|  | }; | 
|  |  | 
|  | static int __init crypto4xx_init(void) | 
|  | { | 
|  | return platform_driver_register(&crypto4xx_driver); | 
|  | } | 
|  |  | 
|  | static void __exit crypto4xx_exit(void) | 
|  | { | 
|  | platform_driver_unregister(&crypto4xx_driver); | 
|  | } | 
|  |  | 
|  | module_init(crypto4xx_init); | 
|  | module_exit(crypto4xx_exit); | 
|  |  | 
|  | MODULE_LICENSE("GPL"); | 
|  | MODULE_AUTHOR("James Hsiao <jhsiao@amcc.com>"); | 
|  | MODULE_DESCRIPTION("Driver for AMCC PPC4xx crypto accelerator"); | 
|  |  |