blob: a4bb89fdd51066eeded6cabd4a81492ea5325047 [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0-or-later
/*
* Copyright (C) 2018-2023 Oracle. All Rights Reserved.
* Author: Darrick J. Wong <djwong@kernel.org>
*/
#include "xfs.h"
#include "xfs_fs.h"
#include "xfs_shared.h"
#include "xfs_format.h"
#include "xfs_trans_resv.h"
#include "xfs_mount.h"
#include "xfs_defer.h"
#include "xfs_btree.h"
#include "xfs_btree_staging.h"
#include "xfs_bit.h"
#include "xfs_log_format.h"
#include "xfs_trans.h"
#include "xfs_sb.h"
#include "xfs_inode.h"
#include "xfs_inode_fork.h"
#include "xfs_alloc.h"
#include "xfs_rtalloc.h"
#include "xfs_bmap.h"
#include "xfs_bmap_util.h"
#include "xfs_bmap_btree.h"
#include "xfs_rmap.h"
#include "xfs_rmap_btree.h"
#include "xfs_refcount.h"
#include "xfs_quota.h"
#include "xfs_ialloc.h"
#include "xfs_ag.h"
#include "xfs_reflink.h"
#include "scrub/xfs_scrub.h"
#include "scrub/scrub.h"
#include "scrub/common.h"
#include "scrub/btree.h"
#include "scrub/trace.h"
#include "scrub/repair.h"
#include "scrub/bitmap.h"
#include "scrub/fsb_bitmap.h"
#include "scrub/xfile.h"
#include "scrub/xfarray.h"
#include "scrub/newbt.h"
#include "scrub/reap.h"
/*
* Inode Fork Block Mapping (BMBT) Repair
* ======================================
*
* Gather all the rmap records for the inode and fork we're fixing, reset the
* incore fork, then recreate the btree.
*/
enum reflink_scan_state {
RLS_IRRELEVANT = -1, /* not applicable to this file */
RLS_UNKNOWN, /* shared extent scans required */
RLS_SET_IFLAG, /* iflag must be set */
};
struct xrep_bmap {
/* Old bmbt blocks */
struct xfsb_bitmap old_bmbt_blocks;
/* New fork. */
struct xrep_newbt new_bmapbt;
/* List of new bmap records. */
struct xfarray *bmap_records;
struct xfs_scrub *sc;
/* How many blocks did we find allocated to this file? */
xfs_rfsblock_t nblocks;
/* How many bmbt blocks did we find for this fork? */
xfs_rfsblock_t old_bmbt_block_count;
/* get_records()'s position in the free space record array. */
xfarray_idx_t array_cur;
/* How many real (non-hole, non-delalloc) mappings do we have? */
uint64_t real_mappings;
/* Which fork are we fixing? */
int whichfork;
/* What d the REFLINK flag be set when the repair is over? */
enum reflink_scan_state reflink_scan;
/* Do we allow unwritten extents? */
bool allow_unwritten;
};
/* Is this space extent shared? Flag the inode if it is. */
STATIC int
xrep_bmap_discover_shared(
struct xrep_bmap *rb,
xfs_fsblock_t startblock,
xfs_filblks_t blockcount)
{
struct xfs_scrub *sc = rb->sc;
xfs_agblock_t agbno;
xfs_agblock_t fbno;
xfs_extlen_t flen;
int error;
agbno = XFS_FSB_TO_AGBNO(sc->mp, startblock);
error = xfs_refcount_find_shared(sc->sa.refc_cur, agbno, blockcount,
&fbno, &flen, false);
if (error)
return error;
if (fbno != NULLAGBLOCK)
rb->reflink_scan = RLS_SET_IFLAG;
return 0;
}
/* Remember this reverse-mapping as a series of bmap records. */
STATIC int
xrep_bmap_from_rmap(
struct xrep_bmap *rb,
xfs_fileoff_t startoff,
xfs_fsblock_t startblock,
xfs_filblks_t blockcount,
bool unwritten)
{
struct xfs_bmbt_irec irec = {
.br_startoff = startoff,
.br_startblock = startblock,
.br_state = unwritten ? XFS_EXT_UNWRITTEN : XFS_EXT_NORM,
};
struct xfs_bmbt_rec rbe;
struct xfs_scrub *sc = rb->sc;
int error = 0;
/*
* If we're repairing the data fork of a non-reflinked regular file on
* a reflink filesystem, we need to figure out if this space extent is
* shared.
*/
if (rb->reflink_scan == RLS_UNKNOWN && !unwritten) {
error = xrep_bmap_discover_shared(rb, startblock, blockcount);
if (error)
return error;
}
do {
xfs_failaddr_t fa;
irec.br_blockcount = min_t(xfs_filblks_t, blockcount,
XFS_MAX_BMBT_EXTLEN);
fa = xfs_bmap_validate_extent(sc->ip, rb->whichfork, &irec);
if (fa)
return -EFSCORRUPTED;
xfs_bmbt_disk_set_all(&rbe, &irec);
trace_xrep_bmap_found(sc->ip, rb->whichfork, &irec);
if (xchk_should_terminate(sc, &error))
return error;
error = xfarray_append(rb->bmap_records, &rbe);
if (error)
return error;
rb->real_mappings++;
irec.br_startblock += irec.br_blockcount;
irec.br_startoff += irec.br_blockcount;
blockcount -= irec.br_blockcount;
} while (blockcount > 0);
return 0;
}
/* Check for any obvious errors or conflicts in the file mapping. */
STATIC int
xrep_bmap_check_fork_rmap(
struct xrep_bmap *rb,
struct xfs_btree_cur *cur,
const struct xfs_rmap_irec *rec)
{
struct xfs_scrub *sc = rb->sc;
enum xbtree_recpacking outcome;
int error;
/*
* Data extents for rt files are never stored on the data device, but
* everything else (xattrs, bmbt blocks) can be.
*/
if (XFS_IS_REALTIME_INODE(sc->ip) &&
!(rec->rm_flags & (XFS_RMAP_ATTR_FORK | XFS_RMAP_BMBT_BLOCK)))
return -EFSCORRUPTED;
/* Check that this is within the AG. */
if (!xfs_verify_agbext(cur->bc_ag.pag, rec->rm_startblock,
rec->rm_blockcount))
return -EFSCORRUPTED;
/* Check the file offset range. */
if (!(rec->rm_flags & XFS_RMAP_BMBT_BLOCK) &&
!xfs_verify_fileext(sc->mp, rec->rm_offset, rec->rm_blockcount))
return -EFSCORRUPTED;
/* No contradictory flags. */
if ((rec->rm_flags & (XFS_RMAP_ATTR_FORK | XFS_RMAP_BMBT_BLOCK)) &&
(rec->rm_flags & XFS_RMAP_UNWRITTEN))
return -EFSCORRUPTED;
/* Make sure this isn't free space. */
error = xfs_alloc_has_records(sc->sa.bno_cur, rec->rm_startblock,
rec->rm_blockcount, &outcome);
if (error)
return error;
if (outcome != XBTREE_RECPACKING_EMPTY)
return -EFSCORRUPTED;
/* Must not be an inode chunk. */
error = xfs_ialloc_has_inodes_at_extent(sc->sa.ino_cur,
rec->rm_startblock, rec->rm_blockcount, &outcome);
if (error)
return error;
if (outcome != XBTREE_RECPACKING_EMPTY)
return -EFSCORRUPTED;
return 0;
}
/* Record extents that belong to this inode's fork. */
STATIC int
xrep_bmap_walk_rmap(
struct xfs_btree_cur *cur,
const struct xfs_rmap_irec *rec,
void *priv)
{
struct xrep_bmap *rb = priv;
struct xfs_mount *mp = cur->bc_mp;
xfs_fsblock_t fsbno;
int error = 0;
if (xchk_should_terminate(rb->sc, &error))
return error;
if (rec->rm_owner != rb->sc->ip->i_ino)
return 0;
error = xrep_bmap_check_fork_rmap(rb, cur, rec);
if (error)
return error;
/*
* Record all blocks allocated to this file even if the extent isn't
* for the fork we're rebuilding so that we can reset di_nblocks later.
*/
rb->nblocks += rec->rm_blockcount;
/* If this rmap isn't for the fork we want, we're done. */
if (rb->whichfork == XFS_DATA_FORK &&
(rec->rm_flags & XFS_RMAP_ATTR_FORK))
return 0;
if (rb->whichfork == XFS_ATTR_FORK &&
!(rec->rm_flags & XFS_RMAP_ATTR_FORK))
return 0;
/* Reject unwritten extents if we don't allow those. */
if ((rec->rm_flags & XFS_RMAP_UNWRITTEN) && !rb->allow_unwritten)
return -EFSCORRUPTED;
fsbno = XFS_AGB_TO_FSB(mp, cur->bc_ag.pag->pag_agno,
rec->rm_startblock);
if (rec->rm_flags & XFS_RMAP_BMBT_BLOCK) {
rb->old_bmbt_block_count += rec->rm_blockcount;
return xfsb_bitmap_set(&rb->old_bmbt_blocks, fsbno,
rec->rm_blockcount);
}
return xrep_bmap_from_rmap(rb, rec->rm_offset, fsbno,
rec->rm_blockcount,
rec->rm_flags & XFS_RMAP_UNWRITTEN);
}
/*
* Compare two block mapping records. We want to sort in order of increasing
* file offset.
*/
static int
xrep_bmap_extent_cmp(
const void *a,
const void *b)
{
const struct xfs_bmbt_rec *ba = a;
const struct xfs_bmbt_rec *bb = b;
xfs_fileoff_t ao = xfs_bmbt_disk_get_startoff(ba);
xfs_fileoff_t bo = xfs_bmbt_disk_get_startoff(bb);
if (ao > bo)
return 1;
else if (ao < bo)
return -1;
return 0;
}
/*
* Sort the bmap extents by fork offset or else the records will be in the
* wrong order. Ensure there are no overlaps in the file offset ranges.
*/
STATIC int
xrep_bmap_sort_records(
struct xrep_bmap *rb)
{
struct xfs_bmbt_irec irec;
xfs_fileoff_t next_off = 0;
xfarray_idx_t array_cur;
int error;
error = xfarray_sort(rb->bmap_records, xrep_bmap_extent_cmp,
XFARRAY_SORT_KILLABLE);
if (error)
return error;
foreach_xfarray_idx(rb->bmap_records, array_cur) {
struct xfs_bmbt_rec rec;
if (xchk_should_terminate(rb->sc, &error))
return error;
error = xfarray_load(rb->bmap_records, array_cur, &rec);
if (error)
return error;
xfs_bmbt_disk_get_all(&rec, &irec);
if (irec.br_startoff < next_off)
return -EFSCORRUPTED;
next_off = irec.br_startoff + irec.br_blockcount;
}
return 0;
}
/* Scan one AG for reverse mappings that we can turn into extent maps. */
STATIC int
xrep_bmap_scan_ag(
struct xrep_bmap *rb,
struct xfs_perag *pag)
{
struct xfs_scrub *sc = rb->sc;
int error;
error = xrep_ag_init(sc, pag, &sc->sa);
if (error)
return error;
error = xfs_rmap_query_all(sc->sa.rmap_cur, xrep_bmap_walk_rmap, rb);
xchk_ag_free(sc, &sc->sa);
return error;
}
/* Find the delalloc extents from the old incore extent tree. */
STATIC int
xrep_bmap_find_delalloc(
struct xrep_bmap *rb)
{
struct xfs_bmbt_irec irec;
struct xfs_iext_cursor icur;
struct xfs_bmbt_rec rbe;
struct xfs_inode *ip = rb->sc->ip;
struct xfs_ifork *ifp = xfs_ifork_ptr(ip, rb->whichfork);
int error = 0;
/*
* Skip this scan if we don't expect to find delayed allocation
* reservations in this fork.
*/
if (rb->whichfork == XFS_ATTR_FORK || ip->i_delayed_blks == 0)
return 0;
for_each_xfs_iext(ifp, &icur, &irec) {
if (!isnullstartblock(irec.br_startblock))
continue;
xfs_bmbt_disk_set_all(&rbe, &irec);
trace_xrep_bmap_found(ip, rb->whichfork, &irec);
if (xchk_should_terminate(rb->sc, &error))
return error;
error = xfarray_append(rb->bmap_records, &rbe);
if (error)
return error;
}
return 0;
}
/*
* Collect block mappings for this fork of this inode and decide if we have
* enough space to rebuild. Caller is responsible for cleaning up the list if
* anything goes wrong.
*/
STATIC int
xrep_bmap_find_mappings(
struct xrep_bmap *rb)
{
struct xfs_scrub *sc = rb->sc;
struct xfs_perag *pag;
xfs_agnumber_t agno;
int error = 0;
/* Iterate the rmaps for extents. */
for_each_perag(sc->mp, agno, pag) {
error = xrep_bmap_scan_ag(rb, pag);
if (error) {
xfs_perag_rele(pag);
return error;
}
}
return xrep_bmap_find_delalloc(rb);
}
/* Retrieve real extent mappings for bulk loading the bmap btree. */
STATIC int
xrep_bmap_get_records(
struct xfs_btree_cur *cur,
unsigned int idx,
struct xfs_btree_block *block,
unsigned int nr_wanted,
void *priv)
{
struct xfs_bmbt_rec rec;
struct xfs_bmbt_irec *irec = &cur->bc_rec.b;
struct xrep_bmap *rb = priv;
union xfs_btree_rec *block_rec;
unsigned int loaded;
int error;
for (loaded = 0; loaded < nr_wanted; loaded++, idx++) {
do {
error = xfarray_load(rb->bmap_records, rb->array_cur++,
&rec);
if (error)
return error;
xfs_bmbt_disk_get_all(&rec, irec);
} while (isnullstartblock(irec->br_startblock));
block_rec = xfs_btree_rec_addr(cur, idx, block);
cur->bc_ops->init_rec_from_cur(cur, block_rec);
}
return loaded;
}
/* Feed one of the new btree blocks to the bulk loader. */
STATIC int
xrep_bmap_claim_block(
struct xfs_btree_cur *cur,
union xfs_btree_ptr *ptr,
void *priv)
{
struct xrep_bmap *rb = priv;
return xrep_newbt_claim_block(cur, &rb->new_bmapbt, ptr);
}
/* Figure out how much space we need to create the incore btree root block. */
STATIC size_t
xrep_bmap_iroot_size(
struct xfs_btree_cur *cur,
unsigned int level,
unsigned int nr_this_level,
void *priv)
{
ASSERT(level > 0);
return XFS_BMAP_BROOT_SPACE_CALC(cur->bc_mp, nr_this_level);
}
/* Update the inode counters. */
STATIC int
xrep_bmap_reset_counters(
struct xrep_bmap *rb)
{
struct xfs_scrub *sc = rb->sc;
struct xbtree_ifakeroot *ifake = &rb->new_bmapbt.ifake;
int64_t delta;
if (rb->reflink_scan == RLS_SET_IFLAG)
sc->ip->i_diflags2 |= XFS_DIFLAG2_REFLINK;
/*
* Update the inode block counts to reflect the extents we found in the
* rmapbt.
*/
delta = ifake->if_blocks - rb->old_bmbt_block_count;
sc->ip->i_nblocks = rb->nblocks + delta;
xfs_trans_log_inode(sc->tp, sc->ip, XFS_ILOG_CORE);
/*
* Adjust the quota counts by the difference in size between the old
* and new bmbt.
*/
xfs_trans_mod_dquot_byino(sc->tp, sc->ip, XFS_TRANS_DQ_BCOUNT, delta);
return 0;
}
/*
* Create a new iext tree and load it with block mappings. If the inode is
* in extents format, that's all we need to do to commit the new mappings.
* If it is in btree format, this takes care of preloading the incore tree.
*/
STATIC int
xrep_bmap_extents_load(
struct xrep_bmap *rb)
{
struct xfs_iext_cursor icur;
struct xfs_bmbt_irec irec;
struct xfs_ifork *ifp = rb->new_bmapbt.ifake.if_fork;
xfarray_idx_t array_cur;
int error;
ASSERT(ifp->if_bytes == 0);
/* Add all the mappings (incl. delalloc) to the incore extent tree. */
xfs_iext_first(ifp, &icur);
foreach_xfarray_idx(rb->bmap_records, array_cur) {
struct xfs_bmbt_rec rec;
error = xfarray_load(rb->bmap_records, array_cur, &rec);
if (error)
return error;
xfs_bmbt_disk_get_all(&rec, &irec);
xfs_iext_insert_raw(ifp, &icur, &irec);
if (!isnullstartblock(irec.br_startblock))
ifp->if_nextents++;
xfs_iext_next(ifp, &icur);
}
return xrep_ino_ensure_extent_count(rb->sc, rb->whichfork,
ifp->if_nextents);
}
/*
* Reserve new btree blocks, bulk load the bmap records into the ondisk btree,
* and load the incore extent tree.
*/
STATIC int
xrep_bmap_btree_load(
struct xrep_bmap *rb,
struct xfs_btree_cur *bmap_cur)
{
struct xfs_scrub *sc = rb->sc;
int error;
/* Compute how many blocks we'll need. */
error = xfs_btree_bload_compute_geometry(bmap_cur,
&rb->new_bmapbt.bload, rb->real_mappings);
if (error)
return error;
/* Last chance to abort before we start committing fixes. */
if (xchk_should_terminate(sc, &error))
return error;
/*
* Guess how many blocks we're going to need to rebuild an entire bmap
* from the number of extents we found, and pump up our transaction to
* have sufficient block reservation. We're allowed to exceed file
* quota to repair inconsistent metadata.
*/
error = xfs_trans_reserve_more_inode(sc->tp, sc->ip,
rb->new_bmapbt.bload.nr_blocks, 0, true);
if (error)
return error;
/* Reserve the space we'll need for the new btree. */
error = xrep_newbt_alloc_blocks(&rb->new_bmapbt,
rb->new_bmapbt.bload.nr_blocks);
if (error)
return error;
/* Add all observed bmap records. */
rb->array_cur = XFARRAY_CURSOR_INIT;
error = xfs_btree_bload(bmap_cur, &rb->new_bmapbt.bload, rb);
if (error)
return error;
/*
* Load the new bmap records into the new incore extent tree to
* preserve delalloc reservations for regular files. The directory
* code loads the extent tree during xfs_dir_open and assumes
* thereafter that it remains loaded, so we must not violate that
* assumption.
*/
return xrep_bmap_extents_load(rb);
}
/*
* Use the collected bmap information to stage a new bmap fork. If this is
* successful we'll return with the new fork information logged to the repair
* transaction but not yet committed. The caller must ensure that the inode
* is joined to the transaction; the inode will be joined to a clean
* transaction when the function returns.
*/
STATIC int
xrep_bmap_build_new_fork(
struct xrep_bmap *rb)
{
struct xfs_owner_info oinfo;
struct xfs_scrub *sc = rb->sc;
struct xfs_btree_cur *bmap_cur;
struct xbtree_ifakeroot *ifake = &rb->new_bmapbt.ifake;
int error;
error = xrep_bmap_sort_records(rb);
if (error)
return error;
/*
* Prepare to construct the new fork by initializing the new btree
* structure and creating a fake ifork in the ifakeroot structure.
*/
xfs_rmap_ino_bmbt_owner(&oinfo, sc->ip->i_ino, rb->whichfork);
error = xrep_newbt_init_inode(&rb->new_bmapbt, sc, rb->whichfork,
&oinfo);
if (error)
return error;
rb->new_bmapbt.bload.get_records = xrep_bmap_get_records;
rb->new_bmapbt.bload.claim_block = xrep_bmap_claim_block;
rb->new_bmapbt.bload.iroot_size = xrep_bmap_iroot_size;
bmap_cur = xfs_bmbt_stage_cursor(sc->mp, sc->ip, ifake);
/*
* Figure out the size and format of the new fork, then fill it with
* all the bmap records we've found. Join the inode to the transaction
* so that we can roll the transaction while holding the inode locked.
*/
if (rb->real_mappings <= XFS_IFORK_MAXEXT(sc->ip, rb->whichfork)) {
ifake->if_fork->if_format = XFS_DINODE_FMT_EXTENTS;
error = xrep_bmap_extents_load(rb);
} else {
ifake->if_fork->if_format = XFS_DINODE_FMT_BTREE;
error = xrep_bmap_btree_load(rb, bmap_cur);
}
if (error)
goto err_cur;
/*
* Install the new fork in the inode. After this point the old mapping
* data are no longer accessible and the new tree is live. We delete
* the cursor immediately after committing the staged root because the
* staged fork might be in extents format.
*/
xfs_bmbt_commit_staged_btree(bmap_cur, sc->tp, rb->whichfork);
xfs_btree_del_cursor(bmap_cur, 0);
/* Reset the inode counters now that we've changed the fork. */
error = xrep_bmap_reset_counters(rb);
if (error)
goto err_newbt;
/* Dispose of any unused blocks and the accounting information. */
error = xrep_newbt_commit(&rb->new_bmapbt);
if (error)
return error;
return xrep_roll_trans(sc);
err_cur:
if (bmap_cur)
xfs_btree_del_cursor(bmap_cur, error);
err_newbt:
xrep_newbt_cancel(&rb->new_bmapbt);
return error;
}
/*
* Now that we've logged the new inode btree, invalidate all of the old blocks
* and free them, if there were any.
*/
STATIC int
xrep_bmap_remove_old_tree(
struct xrep_bmap *rb)
{
struct xfs_scrub *sc = rb->sc;
struct xfs_owner_info oinfo;
/* Free the old bmbt blocks if they're not in use. */
xfs_rmap_ino_bmbt_owner(&oinfo, sc->ip->i_ino, rb->whichfork);
return xrep_reap_fsblocks(sc, &rb->old_bmbt_blocks, &oinfo);
}
/* Check for garbage inputs. Returns -ECANCELED if there's nothing to do. */
STATIC int
xrep_bmap_check_inputs(
struct xfs_scrub *sc,
int whichfork)
{
struct xfs_ifork *ifp = xfs_ifork_ptr(sc->ip, whichfork);
ASSERT(whichfork == XFS_DATA_FORK || whichfork == XFS_ATTR_FORK);
if (!xfs_has_rmapbt(sc->mp))
return -EOPNOTSUPP;
/* No fork means nothing to rebuild. */
if (!ifp)
return -ECANCELED;
/*
* We only know how to repair extent mappings, which is to say that we
* only support extents and btree fork format. Repairs to a local
* format fork require a higher level repair function, so we do not
* have any work to do here.
*/
switch (ifp->if_format) {
case XFS_DINODE_FMT_DEV:
case XFS_DINODE_FMT_LOCAL:
case XFS_DINODE_FMT_UUID:
return -ECANCELED;
case XFS_DINODE_FMT_EXTENTS:
case XFS_DINODE_FMT_BTREE:
break;
default:
return -EFSCORRUPTED;
}
if (whichfork == XFS_ATTR_FORK)
return 0;
/* Only files, symlinks, and directories get to have data forks. */
switch (VFS_I(sc->ip)->i_mode & S_IFMT) {
case S_IFREG:
case S_IFDIR:
case S_IFLNK:
/* ok */
break;
default:
return -EINVAL;
}
/* Don't know how to rebuild realtime data forks. */
if (XFS_IS_REALTIME_INODE(sc->ip))
return -EOPNOTSUPP;
return 0;
}
/* Set up the initial state of the reflink scan. */
static inline enum reflink_scan_state
xrep_bmap_init_reflink_scan(
struct xfs_scrub *sc,
int whichfork)
{
/* cannot share on non-reflink filesystem */
if (!xfs_has_reflink(sc->mp))
return RLS_IRRELEVANT;
/* preserve flag if it's already set */
if (xfs_is_reflink_inode(sc->ip))
return RLS_SET_IFLAG;
/* can only share regular files */
if (!S_ISREG(VFS_I(sc->ip)->i_mode))
return RLS_IRRELEVANT;
/* cannot share attr fork extents */
if (whichfork != XFS_DATA_FORK)
return RLS_IRRELEVANT;
/* cannot share realtime extents */
if (XFS_IS_REALTIME_INODE(sc->ip))
return RLS_IRRELEVANT;
return RLS_UNKNOWN;
}
/* Repair an inode fork. */
int
xrep_bmap(
struct xfs_scrub *sc,
int whichfork,
bool allow_unwritten)
{
struct xrep_bmap *rb;
char *descr;
unsigned int max_bmbt_recs;
bool large_extcount;
int error = 0;
error = xrep_bmap_check_inputs(sc, whichfork);
if (error == -ECANCELED)
return 0;
if (error)
return error;
rb = kzalloc(sizeof(struct xrep_bmap), XCHK_GFP_FLAGS);
if (!rb)
return -ENOMEM;
rb->sc = sc;
rb->whichfork = whichfork;
rb->reflink_scan = xrep_bmap_init_reflink_scan(sc, whichfork);
rb->allow_unwritten = allow_unwritten;
/* Set up enough storage to handle the max records for this fork. */
large_extcount = xfs_has_large_extent_counts(sc->mp);
max_bmbt_recs = xfs_iext_max_nextents(large_extcount, whichfork);
descr = xchk_xfile_ino_descr(sc, "%s fork mapping records",
whichfork == XFS_DATA_FORK ? "data" : "attr");
error = xfarray_create(descr, max_bmbt_recs,
sizeof(struct xfs_bmbt_rec), &rb->bmap_records);
kfree(descr);
if (error)
goto out_rb;
/* Collect all reverse mappings for this fork's extents. */
xfsb_bitmap_init(&rb->old_bmbt_blocks);
error = xrep_bmap_find_mappings(rb);
if (error)
goto out_bitmap;
xfs_trans_ijoin(sc->tp, sc->ip, 0);
/* Rebuild the bmap information. */
error = xrep_bmap_build_new_fork(rb);
if (error)
goto out_bitmap;
/* Kill the old tree. */
error = xrep_bmap_remove_old_tree(rb);
if (error)
goto out_bitmap;
out_bitmap:
xfsb_bitmap_destroy(&rb->old_bmbt_blocks);
xfarray_destroy(rb->bmap_records);
out_rb:
kfree(rb);
return error;
}
/* Repair an inode's data fork. */
int
xrep_bmap_data(
struct xfs_scrub *sc)
{
return xrep_bmap(sc, XFS_DATA_FORK, true);
}
/* Repair an inode's attr fork. */
int
xrep_bmap_attr(
struct xfs_scrub *sc)
{
return xrep_bmap(sc, XFS_ATTR_FORK, false);
}