| |
| /* |
| * ATI Mach64 CT/VT/GT/LT Support |
| */ |
| |
| #include <linux/fb.h> |
| #include <linux/delay.h> |
| #include <asm/io.h> |
| #include <video/mach64.h> |
| #include "atyfb.h" |
| |
| #undef DEBUG |
| |
| static int aty_valid_pll_ct (const struct fb_info *info, u32 vclk_per, struct pll_ct *pll); |
| static int aty_dsp_gt (const struct fb_info *info, u32 bpp, struct pll_ct *pll); |
| static int aty_var_to_pll_ct(const struct fb_info *info, u32 vclk_per, u32 bpp, union aty_pll *pll); |
| static u32 aty_pll_to_var_ct(const struct fb_info *info, const union aty_pll *pll); |
| |
| u8 aty_ld_pll_ct(int offset, const struct atyfb_par *par) |
| { |
| u8 res; |
| |
| /* write addr byte */ |
| aty_st_8(CLOCK_CNTL_ADDR, (offset << 2) & PLL_ADDR, par); |
| /* read the register value */ |
| res = aty_ld_8(CLOCK_CNTL_DATA, par); |
| return res; |
| } |
| |
| static void aty_st_pll_ct(int offset, u8 val, const struct atyfb_par *par) |
| { |
| /* write addr byte */ |
| aty_st_8(CLOCK_CNTL_ADDR, ((offset << 2) & PLL_ADDR) | PLL_WR_EN, par); |
| /* write the register value */ |
| aty_st_8(CLOCK_CNTL_DATA, val & PLL_DATA, par); |
| aty_st_8(CLOCK_CNTL_ADDR, ((offset << 2) & PLL_ADDR) & ~PLL_WR_EN, par); |
| } |
| |
| /* |
| * by Daniel Mantione |
| * <daniel.mantione@freepascal.org> |
| * |
| * |
| * ATI Mach64 CT clock synthesis description. |
| * |
| * All clocks on the Mach64 can be calculated using the same principle: |
| * |
| * XTALIN * x * FB_DIV |
| * CLK = ---------------------- |
| * PLL_REF_DIV * POST_DIV |
| * |
| * XTALIN is a fixed speed clock. Common speeds are 14.31 MHz and 29.50 MHz. |
| * PLL_REF_DIV can be set by the user, but is the same for all clocks. |
| * FB_DIV can be set by the user for each clock individually, it should be set |
| * between 128 and 255, the chip will generate a bad clock signal for too low |
| * values. |
| * x depends on the type of clock; usually it is 2, but for the MCLK it can also |
| * be set to 4. |
| * POST_DIV can be set by the user for each clock individually, Possible values |
| * are 1,2,4,8 and for some clocks other values are available too. |
| * CLK is of course the clock speed that is generated. |
| * |
| * The Mach64 has these clocks: |
| * |
| * MCLK The clock rate of the chip |
| * XCLK The clock rate of the on-chip memory |
| * VCLK0 First pixel clock of first CRT controller |
| * VCLK1 Second pixel clock of first CRT controller |
| * VCLK2 Third pixel clock of first CRT controller |
| * VCLK3 Fourth pixel clock of first CRT controller |
| * VCLK Selected pixel clock, one of VCLK0, VCLK1, VCLK2, VCLK3 |
| * V2CLK Pixel clock of the second CRT controller. |
| * SCLK Multi-purpose clock |
| * |
| * - MCLK and XCLK use the same FB_DIV |
| * - VCLK0 .. VCLK3 use the same FB_DIV |
| * - V2CLK is needed when the second CRTC is used (can be used for dualhead); |
| * i.e. CRT monitor connected to laptop has different resolution than built |
| * in LCD monitor. |
| * - SCLK is not available on all cards; it is know to exist on the Rage LT-PRO, |
| * Rage XL and Rage Mobility. It is know not to exist on the Mach64 VT. |
| * - V2CLK is not available on all cards, most likely only the Rage LT-PRO, |
| * the Rage XL and the Rage Mobility |
| * |
| * SCLK can be used to: |
| * - Clock the chip instead of MCLK |
| * - Replace XTALIN with a user defined frequency |
| * - Generate the pixel clock for the LCD monitor (instead of VCLK) |
| */ |
| |
| /* |
| * It can be quite hard to calculate XCLK and MCLK if they don't run at the |
| * same frequency. Luckily, until now all cards that need asynchrone clock |
| * speeds seem to have SCLK. |
| * So this driver uses SCLK to clock the chip and XCLK to clock the memory. |
| */ |
| |
| /* ------------------------------------------------------------------------- */ |
| |
| /* |
| * PLL programming (Mach64 CT family) |
| * |
| * |
| * This procedure sets the display fifo. The display fifo is a buffer that |
| * contains data read from the video memory that waits to be processed by |
| * the CRT controller. |
| * |
| * On the more modern Mach64 variants, the chip doesn't calculate the |
| * interval after which the display fifo has to be reloaded from memory |
| * automatically, the driver has to do it instead. |
| */ |
| |
| #define Maximum_DSP_PRECISION 7 |
| static u8 postdividers[] = {1,2,4,8,3}; |
| |
| static int aty_dsp_gt(const struct fb_info *info, u32 bpp, struct pll_ct *pll) |
| { |
| u32 dsp_off, dsp_on, dsp_xclks; |
| u32 multiplier, divider, ras_multiplier, ras_divider, tmp; |
| u8 vshift, xshift; |
| s8 dsp_precision; |
| |
| multiplier = ((u32)pll->mclk_fb_div) * pll->vclk_post_div_real; |
| divider = ((u32)pll->vclk_fb_div) * pll->xclk_ref_div; |
| |
| ras_multiplier = pll->xclkmaxrasdelay; |
| ras_divider = 1; |
| |
| if (bpp>=8) |
| divider = divider * (bpp >> 2); |
| |
| vshift = (6 - 2) - pll->xclk_post_div; /* FIFO is 64 bits wide in accelerator mode ... */ |
| |
| if (bpp == 0) |
| vshift--; /* ... but only 32 bits in VGA mode. */ |
| |
| #ifdef CONFIG_FB_ATY_GENERIC_LCD |
| if (pll->xres != 0) { |
| struct atyfb_par *par = (struct atyfb_par *) info->par; |
| |
| multiplier = multiplier * par->lcd_width; |
| divider = divider * pll->xres & ~7; |
| |
| ras_multiplier = ras_multiplier * par->lcd_width; |
| ras_divider = ras_divider * pll->xres & ~7; |
| } |
| #endif |
| /* If we don't do this, 32 bits for multiplier & divider won't be |
| enough in certain situations! */ |
| while (((multiplier | divider) & 1) == 0) { |
| multiplier = multiplier >> 1; |
| divider = divider >> 1; |
| } |
| |
| /* Determine DSP precision first */ |
| tmp = ((multiplier * pll->fifo_size) << vshift) / divider; |
| |
| for (dsp_precision = -5; tmp; dsp_precision++) |
| tmp >>= 1; |
| if (dsp_precision < 0) |
| dsp_precision = 0; |
| else if (dsp_precision > Maximum_DSP_PRECISION) |
| dsp_precision = Maximum_DSP_PRECISION; |
| |
| xshift = 6 - dsp_precision; |
| vshift += xshift; |
| |
| /* Move on to dsp_off */ |
| dsp_off = ((multiplier * (pll->fifo_size - 1)) << vshift) / divider - |
| (1 << (vshift - xshift)); |
| |
| /* if (bpp == 0) |
| dsp_on = ((multiplier * 20 << vshift) + divider) / divider; |
| else */ |
| { |
| dsp_on = ((multiplier << vshift) + divider) / divider; |
| tmp = ((ras_multiplier << xshift) + ras_divider) / ras_divider; |
| if (dsp_on < tmp) |
| dsp_on = tmp; |
| dsp_on = dsp_on + (tmp * 2) + (pll->xclkpagefaultdelay << xshift); |
| } |
| |
| /* Calculate rounding factor and apply it to dsp_on */ |
| tmp = ((1 << (Maximum_DSP_PRECISION - dsp_precision)) - 1) >> 1; |
| dsp_on = ((dsp_on + tmp) / (tmp + 1)) * (tmp + 1); |
| |
| if (dsp_on >= ((dsp_off / (tmp + 1)) * (tmp + 1))) { |
| dsp_on = dsp_off - (multiplier << vshift) / divider; |
| dsp_on = (dsp_on / (tmp + 1)) * (tmp + 1); |
| } |
| |
| /* Last but not least: dsp_xclks */ |
| dsp_xclks = ((multiplier << (vshift + 5)) + divider) / divider; |
| |
| /* Get register values. */ |
| pll->dsp_on_off = (dsp_on << 16) + dsp_off; |
| pll->dsp_config = (dsp_precision << 20) | (pll->dsp_loop_latency << 16) | dsp_xclks; |
| #ifdef DEBUG |
| printk("atyfb(%s): dsp_config 0x%08x, dsp_on_off 0x%08x\n", |
| __FUNCTION__, pll->dsp_config, pll->dsp_on_off); |
| #endif |
| return 0; |
| } |
| |
| static int aty_valid_pll_ct(const struct fb_info *info, u32 vclk_per, struct pll_ct *pll) |
| { |
| u32 q; |
| struct atyfb_par *par = (struct atyfb_par *) info->par; |
| int pllvclk; |
| |
| /* FIXME: use the VTB/GTB /{3,6,12} post dividers if they're better suited */ |
| q = par->ref_clk_per * pll->pll_ref_div * 4 / vclk_per; |
| if (q < 16*8 || q > 255*8) { |
| printk(KERN_CRIT "atyfb: vclk out of range\n"); |
| return -EINVAL; |
| } else { |
| pll->vclk_post_div = (q < 128*8); |
| pll->vclk_post_div += (q < 64*8); |
| pll->vclk_post_div += (q < 32*8); |
| } |
| pll->vclk_post_div_real = postdividers[pll->vclk_post_div]; |
| // pll->vclk_post_div <<= 6; |
| pll->vclk_fb_div = q * pll->vclk_post_div_real / 8; |
| pllvclk = (1000000 * 2 * pll->vclk_fb_div) / |
| (par->ref_clk_per * pll->pll_ref_div); |
| #ifdef DEBUG |
| printk("atyfb(%s): pllvclk=%d MHz, vclk=%d MHz\n", |
| __FUNCTION__, pllvclk, pllvclk / pll->vclk_post_div_real); |
| #endif |
| pll->pll_vclk_cntl = 0x03; /* VCLK = PLL_VCLK/VCLKx_POST */ |
| |
| /* Set ECP (scaler/overlay clock) divider */ |
| if (par->pll_limits.ecp_max) { |
| int ecp = pllvclk / pll->vclk_post_div_real; |
| int ecp_div = 0; |
| |
| while (ecp > par->pll_limits.ecp_max && ecp_div < 2) { |
| ecp >>= 1; |
| ecp_div++; |
| } |
| pll->pll_vclk_cntl |= ecp_div << 4; |
| } |
| |
| return 0; |
| } |
| |
| static int aty_var_to_pll_ct(const struct fb_info *info, u32 vclk_per, u32 bpp, union aty_pll *pll) |
| { |
| struct atyfb_par *par = (struct atyfb_par *) info->par; |
| int err; |
| |
| if ((err = aty_valid_pll_ct(info, vclk_per, &pll->ct))) |
| return err; |
| if (M64_HAS(GTB_DSP) && (err = aty_dsp_gt(info, bpp, &pll->ct))) |
| return err; |
| /*aty_calc_pll_ct(info, &pll->ct);*/ |
| return 0; |
| } |
| |
| static u32 aty_pll_to_var_ct(const struct fb_info *info, const union aty_pll *pll) |
| { |
| struct atyfb_par *par = (struct atyfb_par *) info->par; |
| u32 ret; |
| ret = par->ref_clk_per * pll->ct.pll_ref_div * pll->ct.vclk_post_div_real / pll->ct.vclk_fb_div / 2; |
| #ifdef CONFIG_FB_ATY_GENERIC_LCD |
| if(pll->ct.xres > 0) { |
| ret *= par->lcd_width; |
| ret /= pll->ct.xres; |
| } |
| #endif |
| #ifdef DEBUG |
| printk("atyfb(%s): calculated 0x%08X(%i)\n", __FUNCTION__, ret, ret); |
| #endif |
| return ret; |
| } |
| |
| void aty_set_pll_ct(const struct fb_info *info, const union aty_pll *pll) |
| { |
| struct atyfb_par *par = (struct atyfb_par *) info->par; |
| u32 crtc_gen_cntl, lcd_gen_cntrl; |
| u8 tmp, tmp2; |
| |
| lcd_gen_cntrl = 0; |
| #ifdef DEBUG |
| printk("atyfb(%s): about to program:\n" |
| "pll_ext_cntl=0x%02x pll_gen_cntl=0x%02x pll_vclk_cntl=0x%02x\n", |
| __FUNCTION__, |
| pll->ct.pll_ext_cntl, pll->ct.pll_gen_cntl, pll->ct.pll_vclk_cntl); |
| |
| printk("atyfb(%s): setting clock %lu for FeedBackDivider %i, ReferenceDivider %i, PostDivider %i(%i)\n", |
| __FUNCTION__, |
| par->clk_wr_offset, pll->ct.vclk_fb_div, |
| pll->ct.pll_ref_div, pll->ct.vclk_post_div, pll->ct.vclk_post_div_real); |
| #endif |
| #ifdef CONFIG_FB_ATY_GENERIC_LCD |
| if (par->lcd_table != 0) { |
| /* turn off LCD */ |
| lcd_gen_cntrl = aty_ld_lcd(LCD_GEN_CNTL, par); |
| aty_st_lcd(LCD_GEN_CNTL, lcd_gen_cntrl & ~LCD_ON, par); |
| } |
| #endif |
| aty_st_8(CLOCK_CNTL, par->clk_wr_offset | CLOCK_STROBE, par); |
| |
| /* Temporarily switch to accelerator mode */ |
| crtc_gen_cntl = aty_ld_le32(CRTC_GEN_CNTL, par); |
| if (!(crtc_gen_cntl & CRTC_EXT_DISP_EN)) |
| aty_st_le32(CRTC_GEN_CNTL, crtc_gen_cntl | CRTC_EXT_DISP_EN, par); |
| |
| /* Reset VCLK generator */ |
| aty_st_pll_ct(PLL_VCLK_CNTL, pll->ct.pll_vclk_cntl, par); |
| |
| /* Set post-divider */ |
| tmp2 = par->clk_wr_offset << 1; |
| tmp = aty_ld_pll_ct(VCLK_POST_DIV, par); |
| tmp &= ~(0x03U << tmp2); |
| tmp |= ((pll->ct.vclk_post_div & 0x03U) << tmp2); |
| aty_st_pll_ct(VCLK_POST_DIV, tmp, par); |
| |
| /* Set extended post-divider */ |
| tmp = aty_ld_pll_ct(PLL_EXT_CNTL, par); |
| tmp &= ~(0x10U << par->clk_wr_offset); |
| tmp &= 0xF0U; |
| tmp |= pll->ct.pll_ext_cntl; |
| aty_st_pll_ct(PLL_EXT_CNTL, tmp, par); |
| |
| /* Set feedback divider */ |
| tmp = VCLK0_FB_DIV + par->clk_wr_offset; |
| aty_st_pll_ct(tmp, (pll->ct.vclk_fb_div & 0xFFU), par); |
| |
| aty_st_pll_ct(PLL_GEN_CNTL, (pll->ct.pll_gen_cntl & (~(PLL_OVERRIDE | PLL_MCLK_RST))) | OSC_EN, par); |
| |
| /* End VCLK generator reset */ |
| aty_st_pll_ct(PLL_VCLK_CNTL, pll->ct.pll_vclk_cntl & ~(PLL_VCLK_RST), par); |
| mdelay(5); |
| |
| aty_st_pll_ct(PLL_GEN_CNTL, pll->ct.pll_gen_cntl, par); |
| aty_st_pll_ct(PLL_VCLK_CNTL, pll->ct.pll_vclk_cntl, par); |
| mdelay(1); |
| |
| /* Restore mode register */ |
| if (!(crtc_gen_cntl & CRTC_EXT_DISP_EN)) |
| aty_st_le32(CRTC_GEN_CNTL, crtc_gen_cntl, par); |
| |
| if (M64_HAS(GTB_DSP)) { |
| u8 dll_cntl; |
| |
| if (M64_HAS(XL_DLL)) |
| dll_cntl = 0x80; |
| else if (par->ram_type >= SDRAM) |
| dll_cntl = 0xa6; |
| else |
| dll_cntl = 0xa0; |
| aty_st_pll_ct(DLL_CNTL, dll_cntl, par); |
| aty_st_pll_ct(VFC_CNTL, 0x1b, par); |
| aty_st_le32(DSP_CONFIG, pll->ct.dsp_config, par); |
| aty_st_le32(DSP_ON_OFF, pll->ct.dsp_on_off, par); |
| |
| mdelay(10); |
| aty_st_pll_ct(DLL_CNTL, dll_cntl, par); |
| mdelay(10); |
| aty_st_pll_ct(DLL_CNTL, dll_cntl | 0x40, par); |
| mdelay(10); |
| aty_st_pll_ct(DLL_CNTL, dll_cntl & ~0x40, par); |
| } |
| #ifdef CONFIG_FB_ATY_GENERIC_LCD |
| if (par->lcd_table != 0) { |
| /* restore LCD */ |
| aty_st_lcd(LCD_GEN_CNTL, lcd_gen_cntrl, par); |
| } |
| #endif |
| } |
| |
| static void __devinit aty_get_pll_ct(const struct fb_info *info, |
| union aty_pll *pll) |
| { |
| struct atyfb_par *par = (struct atyfb_par *) info->par; |
| u8 tmp, clock; |
| |
| clock = aty_ld_8(CLOCK_CNTL, par) & 0x03U; |
| tmp = clock << 1; |
| pll->ct.vclk_post_div = (aty_ld_pll_ct(VCLK_POST_DIV, par) >> tmp) & 0x03U; |
| |
| pll->ct.pll_ext_cntl = aty_ld_pll_ct(PLL_EXT_CNTL, par) & 0x0FU; |
| pll->ct.vclk_fb_div = aty_ld_pll_ct(VCLK0_FB_DIV + clock, par) & 0xFFU; |
| pll->ct.pll_ref_div = aty_ld_pll_ct(PLL_REF_DIV, par); |
| pll->ct.mclk_fb_div = aty_ld_pll_ct(MCLK_FB_DIV, par); |
| |
| pll->ct.pll_gen_cntl = aty_ld_pll_ct(PLL_GEN_CNTL, par); |
| pll->ct.pll_vclk_cntl = aty_ld_pll_ct(PLL_VCLK_CNTL, par); |
| |
| if (M64_HAS(GTB_DSP)) { |
| pll->ct.dsp_config = aty_ld_le32(DSP_CONFIG, par); |
| pll->ct.dsp_on_off = aty_ld_le32(DSP_ON_OFF, par); |
| } |
| } |
| |
| static int __devinit aty_init_pll_ct(const struct fb_info *info, |
| union aty_pll *pll) |
| { |
| struct atyfb_par *par = (struct atyfb_par *) info->par; |
| u8 mpost_div, xpost_div, sclk_post_div_real; |
| u32 q, memcntl, trp; |
| u32 dsp_config, dsp_on_off, vga_dsp_config, vga_dsp_on_off; |
| #ifdef DEBUG |
| int pllmclk, pllsclk; |
| #endif |
| pll->ct.pll_ext_cntl = aty_ld_pll_ct(PLL_EXT_CNTL, par); |
| pll->ct.xclk_post_div = pll->ct.pll_ext_cntl & 0x07; |
| pll->ct.xclk_ref_div = 1; |
| switch (pll->ct.xclk_post_div) { |
| case 0: case 1: case 2: case 3: |
| break; |
| |
| case 4: |
| pll->ct.xclk_ref_div = 3; |
| pll->ct.xclk_post_div = 0; |
| break; |
| |
| default: |
| printk(KERN_CRIT "atyfb: Unsupported xclk source: %d.\n", pll->ct.xclk_post_div); |
| return -EINVAL; |
| } |
| pll->ct.mclk_fb_mult = 2; |
| if(pll->ct.pll_ext_cntl & PLL_MFB_TIMES_4_2B) { |
| pll->ct.mclk_fb_mult = 4; |
| pll->ct.xclk_post_div -= 1; |
| } |
| |
| #ifdef DEBUG |
| printk("atyfb(%s): mclk_fb_mult=%d, xclk_post_div=%d\n", |
| __FUNCTION__, pll->ct.mclk_fb_mult, pll->ct.xclk_post_div); |
| #endif |
| |
| memcntl = aty_ld_le32(MEM_CNTL, par); |
| trp = (memcntl & 0x300) >> 8; |
| |
| pll->ct.xclkpagefaultdelay = ((memcntl & 0xc00) >> 10) + ((memcntl & 0x1000) >> 12) + trp + 2; |
| pll->ct.xclkmaxrasdelay = ((memcntl & 0x70000) >> 16) + trp + 2; |
| |
| if (M64_HAS(FIFO_32)) { |
| pll->ct.fifo_size = 32; |
| } else { |
| pll->ct.fifo_size = 24; |
| pll->ct.xclkpagefaultdelay += 2; |
| pll->ct.xclkmaxrasdelay += 3; |
| } |
| |
| switch (par->ram_type) { |
| case DRAM: |
| if (info->fix.smem_len<=ONE_MB) { |
| pll->ct.dsp_loop_latency = 10; |
| } else { |
| pll->ct.dsp_loop_latency = 8; |
| pll->ct.xclkpagefaultdelay += 2; |
| } |
| break; |
| case EDO: |
| case PSEUDO_EDO: |
| if (info->fix.smem_len<=ONE_MB) { |
| pll->ct.dsp_loop_latency = 9; |
| } else { |
| pll->ct.dsp_loop_latency = 8; |
| pll->ct.xclkpagefaultdelay += 1; |
| } |
| break; |
| case SDRAM: |
| if (info->fix.smem_len<=ONE_MB) { |
| pll->ct.dsp_loop_latency = 11; |
| } else { |
| pll->ct.dsp_loop_latency = 10; |
| pll->ct.xclkpagefaultdelay += 1; |
| } |
| break; |
| case SGRAM: |
| pll->ct.dsp_loop_latency = 8; |
| pll->ct.xclkpagefaultdelay += 3; |
| break; |
| default: |
| pll->ct.dsp_loop_latency = 11; |
| pll->ct.xclkpagefaultdelay += 3; |
| break; |
| } |
| |
| if (pll->ct.xclkmaxrasdelay <= pll->ct.xclkpagefaultdelay) |
| pll->ct.xclkmaxrasdelay = pll->ct.xclkpagefaultdelay + 1; |
| |
| /* Allow BIOS to override */ |
| dsp_config = aty_ld_le32(DSP_CONFIG, par); |
| dsp_on_off = aty_ld_le32(DSP_ON_OFF, par); |
| vga_dsp_config = aty_ld_le32(VGA_DSP_CONFIG, par); |
| vga_dsp_on_off = aty_ld_le32(VGA_DSP_ON_OFF, par); |
| |
| if (dsp_config) |
| pll->ct.dsp_loop_latency = (dsp_config & DSP_LOOP_LATENCY) >> 16; |
| #if 0 |
| FIXME: is it relevant for us? |
| if ((!dsp_on_off && !M64_HAS(RESET_3D)) || |
| ((dsp_on_off == vga_dsp_on_off) && |
| (!dsp_config || !((dsp_config ^ vga_dsp_config) & DSP_XCLKS_PER_QW)))) { |
| vga_dsp_on_off &= VGA_DSP_OFF; |
| vga_dsp_config &= VGA_DSP_XCLKS_PER_QW; |
| if (ATIDivide(vga_dsp_on_off, vga_dsp_config, 5, 1) > 24) |
| pll->ct.fifo_size = 32; |
| else |
| pll->ct.fifo_size = 24; |
| } |
| #endif |
| /* Exit if the user does not want us to tamper with the clock |
| rates of her chip. */ |
| if (par->mclk_per == 0) { |
| u8 mclk_fb_div, pll_ext_cntl; |
| pll->ct.pll_ref_div = aty_ld_pll_ct(PLL_REF_DIV, par); |
| pll_ext_cntl = aty_ld_pll_ct(PLL_EXT_CNTL, par); |
| pll->ct.xclk_post_div_real = postdividers[pll_ext_cntl & 0x07]; |
| mclk_fb_div = aty_ld_pll_ct(MCLK_FB_DIV, par); |
| if (pll_ext_cntl & PLL_MFB_TIMES_4_2B) |
| mclk_fb_div <<= 1; |
| pll->ct.mclk_fb_div = mclk_fb_div; |
| return 0; |
| } |
| |
| pll->ct.pll_ref_div = par->pll_per * 2 * 255 / par->ref_clk_per; |
| |
| /* FIXME: use the VTB/GTB /3 post divider if it's better suited */ |
| q = par->ref_clk_per * pll->ct.pll_ref_div * 8 / |
| (pll->ct.mclk_fb_mult * par->xclk_per); |
| |
| if (q < 16*8 || q > 255*8) { |
| printk(KERN_CRIT "atxfb: xclk out of range\n"); |
| return -EINVAL; |
| } else { |
| xpost_div = (q < 128*8); |
| xpost_div += (q < 64*8); |
| xpost_div += (q < 32*8); |
| } |
| pll->ct.xclk_post_div_real = postdividers[xpost_div]; |
| pll->ct.mclk_fb_div = q * pll->ct.xclk_post_div_real / 8; |
| |
| #ifdef DEBUG |
| pllmclk = (1000000 * pll->ct.mclk_fb_mult * pll->ct.mclk_fb_div) / |
| (par->ref_clk_per * pll->ct.pll_ref_div); |
| printk("atyfb(%s): pllmclk=%d MHz, xclk=%d MHz\n", |
| __FUNCTION__, pllmclk, pllmclk / pll->ct.xclk_post_div_real); |
| #endif |
| |
| if (M64_HAS(SDRAM_MAGIC_PLL) && (par->ram_type >= SDRAM)) |
| pll->ct.pll_gen_cntl = OSC_EN; |
| else |
| pll->ct.pll_gen_cntl = OSC_EN | DLL_PWDN /* | FORCE_DCLK_TRI_STATE */; |
| |
| if (M64_HAS(MAGIC_POSTDIV)) |
| pll->ct.pll_ext_cntl = 0; |
| else |
| pll->ct.pll_ext_cntl = xpost_div; |
| |
| if (pll->ct.mclk_fb_mult == 4) |
| pll->ct.pll_ext_cntl |= PLL_MFB_TIMES_4_2B; |
| |
| if (par->mclk_per == par->xclk_per) { |
| pll->ct.pll_gen_cntl |= (xpost_div << 4); /* mclk == xclk */ |
| } else { |
| /* |
| * The chip clock is not equal to the memory clock. |
| * Therefore we will use sclk to clock the chip. |
| */ |
| pll->ct.pll_gen_cntl |= (6 << 4); /* mclk == sclk */ |
| |
| q = par->ref_clk_per * pll->ct.pll_ref_div * 4 / par->mclk_per; |
| if (q < 16*8 || q > 255*8) { |
| printk(KERN_CRIT "atyfb: mclk out of range\n"); |
| return -EINVAL; |
| } else { |
| mpost_div = (q < 128*8); |
| mpost_div += (q < 64*8); |
| mpost_div += (q < 32*8); |
| } |
| sclk_post_div_real = postdividers[mpost_div]; |
| pll->ct.sclk_fb_div = q * sclk_post_div_real / 8; |
| pll->ct.spll_cntl2 = mpost_div << 4; |
| #ifdef DEBUG |
| pllsclk = (1000000 * 2 * pll->ct.sclk_fb_div) / |
| (par->ref_clk_per * pll->ct.pll_ref_div); |
| printk("atyfb(%s): use sclk, pllsclk=%d MHz, sclk=mclk=%d MHz\n", |
| __FUNCTION__, pllsclk, pllsclk / sclk_post_div_real); |
| #endif |
| } |
| |
| /* Disable the extra precision pixel clock controls since we do not use them. */ |
| pll->ct.ext_vpll_cntl = aty_ld_pll_ct(EXT_VPLL_CNTL, par); |
| pll->ct.ext_vpll_cntl &= ~(EXT_VPLL_EN | EXT_VPLL_VGA_EN | EXT_VPLL_INSYNC); |
| |
| return 0; |
| } |
| |
| static void aty_resume_pll_ct(const struct fb_info *info, |
| union aty_pll *pll) |
| { |
| struct atyfb_par *par = info->par; |
| |
| if (par->mclk_per != par->xclk_per) { |
| int i; |
| /* |
| * This disables the sclk, crashes the computer as reported: |
| * aty_st_pll_ct(SPLL_CNTL2, 3, info); |
| * |
| * So it seems the sclk must be enabled before it is used; |
| * so PLL_GEN_CNTL must be programmed *after* the sclk. |
| */ |
| aty_st_pll_ct(SCLK_FB_DIV, pll->ct.sclk_fb_div, par); |
| aty_st_pll_ct(SPLL_CNTL2, pll->ct.spll_cntl2, par); |
| /* |
| * The sclk has been started. However, I believe the first clock |
| * ticks it generates are not very stable. Hope this primitive loop |
| * helps for Rage Mobilities that sometimes crash when |
| * we switch to sclk. (Daniel Mantione, 13-05-2003) |
| */ |
| for (i=0;i<=0x1ffff;i++); |
| } |
| |
| aty_st_pll_ct(PLL_REF_DIV, pll->ct.pll_ref_div, par); |
| aty_st_pll_ct(PLL_GEN_CNTL, pll->ct.pll_gen_cntl, par); |
| aty_st_pll_ct(MCLK_FB_DIV, pll->ct.mclk_fb_div, par); |
| aty_st_pll_ct(PLL_EXT_CNTL, pll->ct.pll_ext_cntl, par); |
| aty_st_pll_ct(EXT_VPLL_CNTL, pll->ct.ext_vpll_cntl, par); |
| } |
| |
| static int dummy(void) |
| { |
| return 0; |
| } |
| |
| const struct aty_dac_ops aty_dac_ct = { |
| .set_dac = (void *) dummy, |
| }; |
| |
| const struct aty_pll_ops aty_pll_ct = { |
| .var_to_pll = aty_var_to_pll_ct, |
| .pll_to_var = aty_pll_to_var_ct, |
| .set_pll = aty_set_pll_ct, |
| .get_pll = aty_get_pll_ct, |
| .init_pll = aty_init_pll_ct, |
| .resume_pll = aty_resume_pll_ct, |
| }; |