blob: 883f7394dee6ff9451f6dd225bf102ceefbacdf3 [file] [log] [blame]
#include "headers.h"
static int BcmFileDownload(struct bcm_mini_adapter *Adapter, const char *path, unsigned int loc);
static void doPowerAutoCorrection(struct bcm_mini_adapter *psAdapter);
static void HandleShutDownModeRequest(struct bcm_mini_adapter *Adapter, PUCHAR pucBuffer);
static int bcm_parse_target_params(struct bcm_mini_adapter *Adapter);
static void beceem_protocol_reset(struct bcm_mini_adapter *Adapter);
static void default_wimax_protocol_initialize(struct bcm_mini_adapter *Adapter)
{
unsigned int uiLoopIndex;
for (uiLoopIndex = 0; uiLoopIndex < NO_OF_QUEUES-1; uiLoopIndex++) {
Adapter->PackInfo[uiLoopIndex].uiThreshold = TX_PACKET_THRESHOLD;
Adapter->PackInfo[uiLoopIndex].uiMaxAllowedRate = MAX_ALLOWED_RATE;
Adapter->PackInfo[uiLoopIndex].uiMaxBucketSize = 20*1024*1024;
}
Adapter->BEBucketSize = BE_BUCKET_SIZE;
Adapter->rtPSBucketSize = rtPS_BUCKET_SIZE;
Adapter->LinkStatus = SYNC_UP_REQUEST;
Adapter->TransferMode = IP_PACKET_ONLY_MODE;
Adapter->usBestEffortQueueIndex = -1;
}
int InitAdapter(struct bcm_mini_adapter *psAdapter)
{
int i = 0;
int Status = STATUS_SUCCESS;
BCM_DEBUG_PRINT(psAdapter, DBG_TYPE_INITEXIT, MP_INIT, DBG_LVL_ALL, "Initialising Adapter = %p", psAdapter);
if (psAdapter == NULL) {
BCM_DEBUG_PRINT(psAdapter, DBG_TYPE_INITEXIT, MP_INIT, DBG_LVL_ALL, "Adapter is NULL");
return -EINVAL;
}
sema_init(&psAdapter->NVMRdmWrmLock, 1);
sema_init(&psAdapter->rdmwrmsync, 1);
spin_lock_init(&psAdapter->control_queue_lock);
spin_lock_init(&psAdapter->txtransmitlock);
sema_init(&psAdapter->RxAppControlQueuelock, 1);
sema_init(&psAdapter->fw_download_sema, 1);
sema_init(&psAdapter->LowPowerModeSync, 1);
for (i = 0; i < NO_OF_QUEUES; i++)
spin_lock_init(&psAdapter->PackInfo[i].SFQueueLock);
i = 0;
init_waitqueue_head(&psAdapter->process_rx_cntrlpkt);
init_waitqueue_head(&psAdapter->tx_packet_wait_queue);
init_waitqueue_head(&psAdapter->process_read_wait_queue);
init_waitqueue_head(&psAdapter->ioctl_fw_dnld_wait_queue);
init_waitqueue_head(&psAdapter->lowpower_mode_wait_queue);
psAdapter->waiting_to_fw_download_done = TRUE;
psAdapter->fw_download_done = false;
default_wimax_protocol_initialize(psAdapter);
for (i = 0; i < MAX_CNTRL_PKTS; i++) {
psAdapter->txctlpacket[i] = kmalloc(MAX_CNTL_PKT_SIZE, GFP_KERNEL);
if (!psAdapter->txctlpacket[i]) {
BCM_DEBUG_PRINT(psAdapter, DBG_TYPE_INITEXIT, MP_INIT, DBG_LVL_ALL, "No More Cntl pkts got, max got is %d", i);
return -ENOMEM;
}
}
if (AllocAdapterDsxBuffer(psAdapter)) {
BCM_DEBUG_PRINT(psAdapter, DBG_TYPE_INITEXIT, MP_INIT, DBG_LVL_ALL, "Failed to allocate DSX buffers");
return -EINVAL;
}
/* Initialize PHS interface */
if (phs_init(&psAdapter->stBCMPhsContext, psAdapter) != 0) {
BCM_DEBUG_PRINT(psAdapter, DBG_TYPE_INITEXIT, MP_INIT, DBG_LVL_ALL, "%s:%s:%d:Error PHS Init Failed=====>\n", __FILE__, __func__, __LINE__);
return -ENOMEM;
}
Status = BcmAllocFlashCSStructure(psAdapter);
if (Status) {
BCM_DEBUG_PRINT(psAdapter, DBG_TYPE_INITEXIT, MP_INIT, DBG_LVL_ALL, "Memory Allocation for Flash structure failed");
return Status;
}
Status = vendorextnInit(psAdapter);
if (STATUS_SUCCESS != Status) {
BCM_DEBUG_PRINT(psAdapter, DBG_TYPE_INITEXIT, MP_INIT, DBG_LVL_ALL, "Vendor Init Failed");
return Status;
}
BCM_DEBUG_PRINT(psAdapter, DBG_TYPE_INITEXIT, MP_INIT, DBG_LVL_ALL, "Adapter initialised");
return STATUS_SUCCESS;
}
void AdapterFree(struct bcm_mini_adapter *Adapter)
{
int count;
beceem_protocol_reset(Adapter);
vendorextnExit(Adapter);
if (Adapter->control_packet_handler && !IS_ERR(Adapter->control_packet_handler))
kthread_stop(Adapter->control_packet_handler);
if (Adapter->transmit_packet_thread && !IS_ERR(Adapter->transmit_packet_thread))
kthread_stop(Adapter->transmit_packet_thread);
wake_up(&Adapter->process_read_wait_queue);
if (Adapter->LEDInfo.led_thread_running & (BCM_LED_THREAD_RUNNING_ACTIVELY | BCM_LED_THREAD_RUNNING_INACTIVELY))
kthread_stop(Adapter->LEDInfo.led_cntrl_threadid);
unregister_networkdev(Adapter);
/* FIXME: use proper wait_event and refcounting */
while (atomic_read(&Adapter->ApplicationRunning)) {
BCM_DEBUG_PRINT(Adapter, DBG_TYPE_INITEXIT, MP_INIT, DBG_LVL_ALL, "Waiting for Application to close.. %d\n", atomic_read(&Adapter->ApplicationRunning));
msleep(100);
}
unregister_control_device_interface(Adapter);
kfree(Adapter->pstargetparams);
for (count = 0; count < MAX_CNTRL_PKTS; count++)
kfree(Adapter->txctlpacket[count]);
FreeAdapterDsxBuffer(Adapter);
kfree(Adapter->pvInterfaceAdapter);
/* Free the PHS Interface */
PhsCleanup(&Adapter->stBCMPhsContext);
BcmDeAllocFlashCSStructure(Adapter);
free_netdev(Adapter->dev);
}
static int create_worker_threads(struct bcm_mini_adapter *psAdapter)
{
/* Rx Control Packets Processing */
psAdapter->control_packet_handler = kthread_run((int (*)(void *))
control_packet_handler, psAdapter, "%s-rx", DRV_NAME);
if (IS_ERR(psAdapter->control_packet_handler)) {
pr_notice(DRV_NAME ": could not create control thread\n");
return PTR_ERR(psAdapter->control_packet_handler);
}
/* Tx Thread */
psAdapter->transmit_packet_thread = kthread_run((int (*)(void *))
tx_pkt_handler, psAdapter, "%s-tx", DRV_NAME);
if (IS_ERR(psAdapter->transmit_packet_thread)) {
pr_notice(DRV_NAME ": could not creat transmit thread\n");
kthread_stop(psAdapter->control_packet_handler);
return PTR_ERR(psAdapter->transmit_packet_thread);
}
return 0;
}
static struct file *open_firmware_file(struct bcm_mini_adapter *Adapter, const char *path)
{
struct file *flp = filp_open(path, O_RDONLY, S_IRWXU);
if (IS_ERR(flp)) {
pr_err(DRV_NAME "Unable To Open File %s, err %ld", path, PTR_ERR(flp));
flp = NULL;
}
if (Adapter->device_removed)
flp = NULL;
return flp;
}
/* Arguments:
* Logical Adapter
* Path to image file
* Download Address on the chip
*/
static int BcmFileDownload(struct bcm_mini_adapter *Adapter, const char *path, unsigned int loc)
{
int errorno = 0;
struct file *flp = NULL;
struct timeval tv = {0};
flp = open_firmware_file(Adapter, path);
if (!flp) {
BCM_DEBUG_PRINT(Adapter, DBG_TYPE_INITEXIT, MP_INIT, DBG_LVL_ALL, "Unable to Open %s\n", path);
return -ENOENT;
}
BCM_DEBUG_PRINT(Adapter, DBG_TYPE_INITEXIT, MP_INIT, DBG_LVL_ALL, "Opened file is = %s and length =0x%lx to be downloaded at =0x%x", path, (unsigned long)file_inode(flp)->i_size, loc);
do_gettimeofday(&tv);
BCM_DEBUG_PRINT(Adapter, DBG_TYPE_INITEXIT, MP_INIT, DBG_LVL_ALL, "download start %lx", ((tv.tv_sec * 1000) + (tv.tv_usec / 1000)));
if (Adapter->bcm_file_download(Adapter->pvInterfaceAdapter, flp, loc)) {
BCM_DEBUG_PRINT(Adapter, DBG_TYPE_INITEXIT, MP_INIT, DBG_LVL_ALL, "Failed to download the firmware with error %x!!!", -EIO);
errorno = -EIO;
goto exit_download;
}
vfs_llseek(flp, 0, 0);
if (Adapter->bcm_file_readback_from_chip(Adapter->pvInterfaceAdapter, flp, loc)) {
BCM_DEBUG_PRINT(Adapter, DBG_TYPE_INITEXIT, MP_INIT, DBG_LVL_ALL, "Failed to read back firmware!");
errorno = -EIO;
goto exit_download;
}
exit_download:
filp_close(flp, NULL);
return errorno;
}
/**
* @ingroup ctrl_pkt_functions
* This function copies the contents of given buffer
* to the control packet and queues it for transmission.
* @note Do not acquire the spinlock, as it it already acquired.
* @return SUCCESS/FAILURE.
* Arguments:
* Logical Adapter
* Control Packet Buffer
*/
int CopyBufferToControlPacket(struct bcm_mini_adapter *Adapter, void *ioBuffer)
{
struct bcm_leader *pLeader = NULL;
int Status = 0;
unsigned char *ctrl_buff;
unsigned int pktlen = 0;
struct bcm_link_request *pLinkReq = NULL;
PUCHAR pucAddIndication = NULL;
BCM_DEBUG_PRINT(Adapter, DBG_TYPE_TX, TX_CONTROL, DBG_LVL_ALL, "======>");
if (!ioBuffer) {
BCM_DEBUG_PRINT(Adapter, DBG_TYPE_TX, TX_CONTROL, DBG_LVL_ALL, "Got Null Buffer\n");
return -EINVAL;
}
pLinkReq = (struct bcm_link_request *)ioBuffer;
pLeader = (struct bcm_leader *)ioBuffer; /* ioBuffer Contains sw_Status and Payload */
if (Adapter->bShutStatus == TRUE &&
pLinkReq->szData[0] == LINK_DOWN_REQ_PAYLOAD &&
pLinkReq->szData[1] == LINK_SYNC_UP_SUBTYPE) {
/* Got sync down in SHUTDOWN..we could not process this. */
BCM_DEBUG_PRINT(Adapter, DBG_TYPE_TX, TX_CONTROL, DBG_LVL_ALL, "SYNC DOWN Request in Shut Down Mode..\n");
return STATUS_FAILURE;
}
if ((pLeader->Status == LINK_UP_CONTROL_REQ) &&
((pLinkReq->szData[0] == LINK_UP_REQ_PAYLOAD &&
(pLinkReq->szData[1] == LINK_SYNC_UP_SUBTYPE)) || /* Sync Up Command */
pLinkReq->szData[0] == NETWORK_ENTRY_REQ_PAYLOAD)) /* Net Entry Command */ {
if (Adapter->LinkStatus > PHY_SYNC_ACHIVED) {
BCM_DEBUG_PRINT(Adapter, DBG_TYPE_TX, TX_CONTROL, DBG_LVL_ALL, "LinkStatus is Greater than PHY_SYN_ACHIEVED");
return STATUS_FAILURE;
}
if (Adapter->bShutStatus == TRUE) {
BCM_DEBUG_PRINT(Adapter, DBG_TYPE_TX, TX_CONTROL, DBG_LVL_ALL, "SYNC UP IN SHUTDOWN..Device WakeUp\n");
if (Adapter->bTriedToWakeUpFromlowPowerMode == false) {
BCM_DEBUG_PRINT(Adapter, DBG_TYPE_TX, TX_CONTROL, DBG_LVL_ALL, "Waking up for the First Time..\n");
Adapter->usIdleModePattern = ABORT_SHUTDOWN_MODE; /* change it to 1 for current support. */
Adapter->bWakeUpDevice = TRUE;
wake_up(&Adapter->process_rx_cntrlpkt);
Status = wait_event_interruptible_timeout(Adapter->lowpower_mode_wait_queue, !Adapter->bShutStatus, (5 * HZ));
if (Status == -ERESTARTSYS)
return Status;
if (Adapter->bShutStatus) {
BCM_DEBUG_PRINT(Adapter, DBG_TYPE_TX, TX_CONTROL, DBG_LVL_ALL, "Shutdown Mode Wake up Failed - No Wake Up Received\n");
return STATUS_FAILURE;
}
} else {
BCM_DEBUG_PRINT(Adapter, DBG_TYPE_TX, TX_CONTROL, DBG_LVL_ALL, "Wakeup has been tried already...\n");
}
}
}
if (Adapter->IdleMode == TRUE) {
/* BCM_DEBUG_PRINT(Adapter,DBG_TYPE_PRINTK, 0, 0,"Device is in Idle mode ... hence\n"); */
if (pLeader->Status == LINK_UP_CONTROL_REQ || pLeader->Status == 0x80 ||
pLeader->Status == CM_CONTROL_NEWDSX_MULTICLASSIFIER_REQ) {
if ((pLeader->Status == LINK_UP_CONTROL_REQ) && (pLinkReq->szData[0] == LINK_DOWN_REQ_PAYLOAD)) {
if (pLinkReq->szData[1] == LINK_SYNC_DOWN_SUBTYPE) {
BCM_DEBUG_PRINT(Adapter, DBG_TYPE_TX, TX_CONTROL, DBG_LVL_ALL, "Link Down Sent in Idle Mode\n");
Adapter->usIdleModePattern = ABORT_IDLE_SYNCDOWN; /* LINK DOWN sent in Idle Mode */
} else {
BCM_DEBUG_PRINT(Adapter, DBG_TYPE_TX, TX_CONTROL, DBG_LVL_ALL, "ABORT_IDLE_MODE pattern is being written\n");
Adapter->usIdleModePattern = ABORT_IDLE_REG;
}
} else {
BCM_DEBUG_PRINT(Adapter, DBG_TYPE_TX, TX_CONTROL, DBG_LVL_ALL, "ABORT_IDLE_MODE pattern is being written\n");
Adapter->usIdleModePattern = ABORT_IDLE_MODE;
}
/*Setting bIdleMode_tx_from_host to TRUE to indicate LED control thread to represent
* the wake up from idlemode is from host
*/
/* Adapter->LEDInfo.bIdleMode_tx_from_host = TRUE; */
Adapter->bWakeUpDevice = TRUE;
wake_up(&Adapter->process_rx_cntrlpkt);
/* We should not send DREG message down while in idlemode. */
if (LINK_DOWN_REQ_PAYLOAD == pLinkReq->szData[0])
return STATUS_SUCCESS;
Status = wait_event_interruptible_timeout(Adapter->lowpower_mode_wait_queue, !Adapter->IdleMode, (5 * HZ));
if (Status == -ERESTARTSYS)
return Status;
if (Adapter->IdleMode) {
BCM_DEBUG_PRINT(Adapter, DBG_TYPE_TX, TX_CONTROL, DBG_LVL_ALL, "Idle Mode Wake up Failed - No Wake Up Received\n");
return STATUS_FAILURE;
}
} else {
return STATUS_SUCCESS;
}
}
/* The Driver has to send control messages with a particular VCID */
pLeader->Vcid = VCID_CONTROL_PACKET; /* VCID for control packet. */
/* Allocate skb for Control Packet */
pktlen = pLeader->PLength;
ctrl_buff = (char *)Adapter->txctlpacket[atomic_read(&Adapter->index_wr_txcntrlpkt)%MAX_CNTRL_PKTS];
if (!ctrl_buff) {
BCM_DEBUG_PRINT(Adapter, DBG_TYPE_TX, TX_CONTROL, DBG_LVL_ALL, "mem allocation Failed");
return -ENOMEM;
}
BCM_DEBUG_PRINT(Adapter, DBG_TYPE_TX, TX_CONTROL, DBG_LVL_ALL, "Control packet to be taken =%d and address is =%pincoming address is =%p and packet len=%x",
atomic_read(&Adapter->index_wr_txcntrlpkt), ctrl_buff, ioBuffer, pktlen);
if (pLeader) {
if ((pLeader->Status == 0x80) ||
(pLeader->Status == CM_CONTROL_NEWDSX_MULTICLASSIFIER_REQ)) {
/*
* Restructure the DSX message to handle Multiple classifier Support
* Write the Service Flow param Structures directly to the target
* and embed the pointers in the DSX messages sent to target.
*/
/* Lets store the current length of the control packet we are transmitting */
pucAddIndication = (PUCHAR)ioBuffer + LEADER_SIZE;
pktlen = pLeader->PLength;
Status = StoreCmControlResponseMessage(Adapter, pucAddIndication, &pktlen);
if (Status != 1) {
ClearTargetDSXBuffer(Adapter, ((struct bcm_add_indication_alt *)pucAddIndication)->u16TID, false);
BCM_DEBUG_PRINT(Adapter, DBG_TYPE_TX, TX_CONTROL, DBG_LVL_ALL, " Error Restoring The DSX Control Packet. Dsx Buffers on Target may not be Setup Properly ");
return STATUS_FAILURE;
}
/*
* update the leader to use the new length
* The length of the control packet is length of message being sent + Leader length
*/
pLeader->PLength = pktlen;
}
}
if (pktlen + LEADER_SIZE > MAX_CNTL_PKT_SIZE)
return -EINVAL;
memset(ctrl_buff, 0, pktlen+LEADER_SIZE);
BCM_DEBUG_PRINT(Adapter, DBG_TYPE_TX, TX_CONTROL, DBG_LVL_ALL, "Copying the Control Packet Buffer with length=%d\n", pLeader->PLength);
*(struct bcm_leader *)ctrl_buff = *pLeader;
memcpy(ctrl_buff + LEADER_SIZE, ((PUCHAR)ioBuffer + LEADER_SIZE), pLeader->PLength);
BCM_DEBUG_PRINT(Adapter, DBG_TYPE_TX, TX_CONTROL, DBG_LVL_ALL, "Enqueuing the Control Packet");
/* Update the statistics counters */
spin_lock_bh(&Adapter->PackInfo[HiPriority].SFQueueLock);
Adapter->PackInfo[HiPriority].uiCurrentBytesOnHost += pLeader->PLength;
Adapter->PackInfo[HiPriority].uiCurrentPacketsOnHost++;
atomic_inc(&Adapter->TotalPacketCount);
spin_unlock_bh(&Adapter->PackInfo[HiPriority].SFQueueLock);
Adapter->PackInfo[HiPriority].bValid = TRUE;
BCM_DEBUG_PRINT(Adapter, DBG_TYPE_TX, TX_CONTROL, DBG_LVL_ALL, "CurrBytesOnHost: %x bValid: %x",
Adapter->PackInfo[HiPriority].uiCurrentBytesOnHost,
Adapter->PackInfo[HiPriority].bValid);
Status = STATUS_SUCCESS;
/*Queue the packet for transmission */
atomic_inc(&Adapter->index_wr_txcntrlpkt);
BCM_DEBUG_PRINT(Adapter, DBG_TYPE_TX, TX_CONTROL, DBG_LVL_ALL, "Calling transmit_packets");
atomic_set(&Adapter->TxPktAvail, 1);
wake_up(&Adapter->tx_packet_wait_queue);
BCM_DEBUG_PRINT(Adapter, DBG_TYPE_TX, TX_CONTROL, DBG_LVL_ALL, "<====");
return Status;
}
/******************************************************************
* Function - LinkMessage()
*
* Description - This function builds the Sync-up and Link-up request
* packet messages depending on the device Link status.
*
* Parameters - Adapter: Pointer to the Adapter structure.
*
* Returns - None.
*******************************************************************/
void LinkMessage(struct bcm_mini_adapter *Adapter)
{
struct bcm_link_request *pstLinkRequest = NULL;
BCM_DEBUG_PRINT(Adapter, DBG_TYPE_OTHERS, LINK_UP_MSG, DBG_LVL_ALL, "=====>");
if (Adapter->LinkStatus == SYNC_UP_REQUEST && Adapter->AutoSyncup) {
pstLinkRequest = kzalloc(sizeof(struct bcm_link_request), GFP_ATOMIC);
if (!pstLinkRequest) {
BCM_DEBUG_PRINT(Adapter, DBG_TYPE_OTHERS, LINK_UP_MSG, DBG_LVL_ALL, "Can not allocate memory for Link request!");
return;
}
/* sync up request... */
Adapter->LinkStatus = WAIT_FOR_SYNC; /* current link status */
BCM_DEBUG_PRINT(Adapter, DBG_TYPE_OTHERS, LINK_UP_MSG, DBG_LVL_ALL, "Requesting For SyncUp...");
pstLinkRequest->szData[0] = LINK_UP_REQ_PAYLOAD;
pstLinkRequest->szData[1] = LINK_SYNC_UP_SUBTYPE;
pstLinkRequest->Leader.Status = LINK_UP_CONTROL_REQ;
pstLinkRequest->Leader.PLength = sizeof(ULONG);
Adapter->bSyncUpRequestSent = TRUE;
} else if (Adapter->LinkStatus == PHY_SYNC_ACHIVED && Adapter->AutoLinkUp) {
pstLinkRequest = kzalloc(sizeof(struct bcm_link_request), GFP_ATOMIC);
if (!pstLinkRequest) {
BCM_DEBUG_PRINT(Adapter, DBG_TYPE_OTHERS, LINK_UP_MSG, DBG_LVL_ALL, "Can not allocate memory for Link request!");
return;
}
/* LINK_UP_REQUEST */
BCM_DEBUG_PRINT(Adapter, DBG_TYPE_OTHERS, LINK_UP_MSG, DBG_LVL_ALL, "Requesting For LinkUp...");
pstLinkRequest->szData[0] = LINK_UP_REQ_PAYLOAD;
pstLinkRequest->szData[1] = LINK_NET_ENTRY;
pstLinkRequest->Leader.Status = LINK_UP_CONTROL_REQ;
pstLinkRequest->Leader.PLength = sizeof(ULONG);
}
if (pstLinkRequest) {
BCM_DEBUG_PRINT(Adapter, DBG_TYPE_OTHERS, LINK_UP_MSG, DBG_LVL_ALL, "Calling CopyBufferToControlPacket");
CopyBufferToControlPacket(Adapter, pstLinkRequest);
kfree(pstLinkRequest);
}
BCM_DEBUG_PRINT(Adapter, DBG_TYPE_OTHERS, LINK_UP_MSG, DBG_LVL_ALL, "LinkMessage <=====");
return;
}
/**********************************************************************
* Function - StatisticsResponse()
*
* Description - This function handles the Statistics response packet.
*
* Parameters - Adapter : Pointer to the Adapter structure.
* - pvBuffer: Starting address of Statistic response data.
*
* Returns - None.
************************************************************************/
void StatisticsResponse(struct bcm_mini_adapter *Adapter, void *pvBuffer)
{
BCM_DEBUG_PRINT(Adapter, DBG_TYPE_OTHERS, DUMP_INFO, DBG_LVL_ALL, "%s====>", __func__);
Adapter->StatisticsPointer = ntohl(*(__be32 *)pvBuffer);
BCM_DEBUG_PRINT(Adapter, DBG_TYPE_OTHERS, DUMP_INFO, DBG_LVL_ALL, "Stats at %x", (unsigned int)Adapter->StatisticsPointer);
BCM_DEBUG_PRINT(Adapter, DBG_TYPE_OTHERS, DUMP_INFO, DBG_LVL_ALL, "%s <====", __func__);
}
/**********************************************************************
* Function - LinkControlResponseMessage()
*
* Description - This function handles the Link response packets.
*
* Parameters - Adapter : Pointer to the Adapter structure.
* - pucBuffer: Starting address of Link response data.
*
* Returns - None.
***********************************************************************/
void LinkControlResponseMessage(struct bcm_mini_adapter *Adapter, PUCHAR pucBuffer)
{
BCM_DEBUG_PRINT(Adapter, DBG_TYPE_RX, RX_DPC, DBG_LVL_ALL, "=====>");
if (*pucBuffer == LINK_UP_ACK) {
switch (*(pucBuffer+1)) {
case PHY_SYNC_ACHIVED: /* SYNCed UP */
BCM_DEBUG_PRINT(Adapter, DBG_TYPE_PRINTK, 0, 0, "PHY_SYNC_ACHIVED");
if (Adapter->LinkStatus == LINKUP_DONE)
beceem_protocol_reset(Adapter);
Adapter->usBestEffortQueueIndex = INVALID_QUEUE_INDEX;
Adapter->LinkStatus = PHY_SYNC_ACHIVED;
if (Adapter->LEDInfo.led_thread_running & BCM_LED_THREAD_RUNNING_ACTIVELY) {
Adapter->DriverState = NO_NETWORK_ENTRY;
wake_up(&Adapter->LEDInfo.notify_led_event);
}
LinkMessage(Adapter);
break;
case LINKUP_DONE:
BCM_DEBUG_PRINT(Adapter, DBG_TYPE_RX, RX_DPC, DBG_LVL_ALL, "LINKUP_DONE");
Adapter->LinkStatus = LINKUP_DONE;
Adapter->bPHSEnabled = *(pucBuffer+3);
Adapter->bETHCSEnabled = *(pucBuffer+4) & ETH_CS_MASK;
BCM_DEBUG_PRINT(Adapter, DBG_TYPE_PRINTK, 0, 0, "PHS Support Status Received In LinkUp Ack : %x\n", Adapter->bPHSEnabled);
if ((false == Adapter->bShutStatus) && (false == Adapter->IdleMode)) {
if (Adapter->LEDInfo.led_thread_running & BCM_LED_THREAD_RUNNING_ACTIVELY) {
Adapter->DriverState = NORMAL_OPERATION;
wake_up(&Adapter->LEDInfo.notify_led_event);
}
}
LinkMessage(Adapter);
break;
case WAIT_FOR_SYNC:
/*
* Driver to ignore the DREG_RECEIVED
* WiMAX Application should handle this Message
*/
/* Adapter->liTimeSinceLastNetEntry = 0; */
Adapter->LinkUpStatus = 0;
Adapter->LinkStatus = 0;
Adapter->usBestEffortQueueIndex = INVALID_QUEUE_INDEX;
Adapter->bTriedToWakeUpFromlowPowerMode = false;
Adapter->IdleMode = false;
beceem_protocol_reset(Adapter);
break;
case LINK_SHUTDOWN_REQ_FROM_FIRMWARE:
case COMPLETE_WAKE_UP_NOTIFICATION_FRM_FW:
{
HandleShutDownModeRequest(Adapter, pucBuffer);
}
break;
default:
BCM_DEBUG_PRINT(Adapter, DBG_TYPE_PRINTK, 0, 0, "default case:LinkResponse %x", *(pucBuffer + 1));
break;
}
} else if (SET_MAC_ADDRESS_RESPONSE == *pucBuffer) {
PUCHAR puMacAddr = (pucBuffer + 1);
Adapter->LinkStatus = SYNC_UP_REQUEST;
BCM_DEBUG_PRINT(Adapter, DBG_TYPE_RX, RX_DPC, DBG_LVL_ALL, "MAC address response, sending SYNC_UP");
LinkMessage(Adapter);
memcpy(Adapter->dev->dev_addr, puMacAddr, MAC_ADDRESS_SIZE);
}
BCM_DEBUG_PRINT(Adapter, DBG_TYPE_RX, RX_DPC, DBG_LVL_ALL, "%s <=====", __func__);
}
void SendIdleModeResponse(struct bcm_mini_adapter *Adapter)
{
int status = 0, NVMAccess = 0, lowPwrAbortMsg = 0;
struct timeval tv;
struct bcm_link_request stIdleResponse = {{0} };
memset(&tv, 0, sizeof(tv));
stIdleResponse.Leader.Status = IDLE_MESSAGE;
stIdleResponse.Leader.PLength = IDLE_MODE_PAYLOAD_LENGTH;
stIdleResponse.szData[0] = GO_TO_IDLE_MODE_PAYLOAD;
BCM_DEBUG_PRINT(Adapter, DBG_TYPE_RX, RX_DPC, DBG_LVL_ALL, " ============>");
/*********************************
*down_trylock -
* if [ semaphore is available ]
* acquire semaphone and return value 0 ;
* else
* return non-zero value ;
*
***********************************/
NVMAccess = down_trylock(&Adapter->NVMRdmWrmLock);
lowPwrAbortMsg = down_trylock(&Adapter->LowPowerModeSync);
if ((NVMAccess || lowPwrAbortMsg || atomic_read(&Adapter->TotalPacketCount)) &&
(Adapter->ulPowerSaveMode != DEVICE_POWERSAVE_MODE_AS_PROTOCOL_IDLE_MODE)) {
if (!NVMAccess)
up(&Adapter->NVMRdmWrmLock);
if (!lowPwrAbortMsg)
up(&Adapter->LowPowerModeSync);
stIdleResponse.szData[1] = TARGET_CAN_NOT_GO_TO_IDLE_MODE; /* NACK- device access is going on. */
BCM_DEBUG_PRINT(Adapter, DBG_TYPE_RX, RX_DPC, DBG_LVL_ALL, "HOST IS NACKING Idle mode To F/W!!!!!!!!");
Adapter->bPreparingForLowPowerMode = false;
} else {
stIdleResponse.szData[1] = TARGET_CAN_GO_TO_IDLE_MODE; /* 2; Idle ACK */
Adapter->StatisticsPointer = 0;
/* Wait for the LED to TURN OFF before sending ACK response */
if (Adapter->LEDInfo.led_thread_running & BCM_LED_THREAD_RUNNING_ACTIVELY) {
int iRetVal = 0;
/* Wake the LED Thread with IDLEMODE_ENTER State */
Adapter->DriverState = LOWPOWER_MODE_ENTER;
BCM_DEBUG_PRINT(Adapter, DBG_TYPE_RX, RX_DPC, DBG_LVL_ALL, "LED Thread is Running..Hence Setting LED Event as IDLEMODE_ENTER jiffies:%ld", jiffies);
wake_up(&Adapter->LEDInfo.notify_led_event);
/* Wait for 1 SEC for LED to OFF */
iRetVal = wait_event_timeout(Adapter->LEDInfo.idleModeSyncEvent, Adapter->LEDInfo.bIdle_led_off, msecs_to_jiffies(1000));
/* If Timed Out to Sync IDLE MODE Enter, do IDLE mode Exit and Send NACK to device */
if (iRetVal <= 0) {
stIdleResponse.szData[1] = TARGET_CAN_NOT_GO_TO_IDLE_MODE; /* NACK- device access is going on. */
Adapter->DriverState = NORMAL_OPERATION;
wake_up(&Adapter->LEDInfo.notify_led_event);
BCM_DEBUG_PRINT(Adapter, DBG_TYPE_RX, RX_DPC, DBG_LVL_ALL, "NACKING Idle mode as time out happen from LED side!!!!!!!!");
}
}
if (stIdleResponse.szData[1] == TARGET_CAN_GO_TO_IDLE_MODE) {
BCM_DEBUG_PRINT(Adapter, DBG_TYPE_RX, RX_DPC, DBG_LVL_ALL, "ACKING IDLE MODE !!!!!!!!!");
down(&Adapter->rdmwrmsync);
Adapter->bPreparingForLowPowerMode = TRUE;
up(&Adapter->rdmwrmsync);
/* Killing all URBS. */
if (Adapter->bDoSuspend == TRUE)
Bcm_kill_all_URBs((struct bcm_interface_adapter *)(Adapter->pvInterfaceAdapter));
} else {
Adapter->bPreparingForLowPowerMode = false;
}
if (!NVMAccess)
up(&Adapter->NVMRdmWrmLock);
if (!lowPwrAbortMsg)
up(&Adapter->LowPowerModeSync);
}
status = CopyBufferToControlPacket(Adapter, &stIdleResponse);
if (status != STATUS_SUCCESS) {
BCM_DEBUG_PRINT(Adapter, DBG_TYPE_PRINTK, 0, 0, "fail to send the Idle mode Request\n");
Adapter->bPreparingForLowPowerMode = false;
StartInterruptUrb((struct bcm_interface_adapter *)(Adapter->pvInterfaceAdapter));
}
do_gettimeofday(&tv);
BCM_DEBUG_PRINT(Adapter, DBG_TYPE_RX, RX_DPC, DBG_LVL_ALL, "IdleMode Msg submitter to Q :%ld ms", tv.tv_sec * 1000 + tv.tv_usec / 1000);
}
/******************************************************************
* Function - DumpPackInfo()
*
* Description - This function dumps the all Queue(PackInfo[]) details.
*
* Parameters - Adapter: Pointer to the Adapter structure.
*
* Returns - None.
*******************************************************************/
void DumpPackInfo(struct bcm_mini_adapter *Adapter)
{
unsigned int uiLoopIndex = 0;
unsigned int uiIndex = 0;
unsigned int uiClsfrIndex = 0;
struct bcm_classifier_rule *pstClassifierEntry = NULL;
for (uiLoopIndex = 0; uiLoopIndex < NO_OF_QUEUES; uiLoopIndex++) {
BCM_DEBUG_PRINT(Adapter, DBG_TYPE_OTHERS, DUMP_INFO, DBG_LVL_ALL, "*********** Showing Details Of Queue %d***** ******", uiLoopIndex);
if (false == Adapter->PackInfo[uiLoopIndex].bValid) {
BCM_DEBUG_PRINT(Adapter, DBG_TYPE_OTHERS, DUMP_INFO, DBG_LVL_ALL, "bValid is false for %X index\n", uiLoopIndex);
continue;
}
BCM_DEBUG_PRINT(Adapter, DBG_TYPE_OTHERS, DUMP_INFO, DBG_LVL_ALL, " Dumping SF Rule Entry For SFID %lX\n", Adapter->PackInfo[uiLoopIndex].ulSFID);
BCM_DEBUG_PRINT(Adapter, DBG_TYPE_OTHERS, DUMP_INFO, DBG_LVL_ALL, " ucDirection %X\n", Adapter->PackInfo[uiLoopIndex].ucDirection);
if (Adapter->PackInfo[uiLoopIndex].ucIpVersion == IPV6)
BCM_DEBUG_PRINT(Adapter, DBG_TYPE_OTHERS, DUMP_INFO, DBG_LVL_ALL, "Ipv6 Service Flow\n");
else
BCM_DEBUG_PRINT(Adapter, DBG_TYPE_OTHERS, DUMP_INFO, DBG_LVL_ALL, "Ipv4 Service Flow\n");
BCM_DEBUG_PRINT(Adapter, DBG_TYPE_OTHERS, DUMP_INFO, DBG_LVL_ALL, "SF Traffic Priority %X\n", Adapter->PackInfo[uiLoopIndex].u8TrafficPriority);
for (uiClsfrIndex = 0; uiClsfrIndex < MAX_CLASSIFIERS; uiClsfrIndex++) {
pstClassifierEntry = &Adapter->astClassifierTable[uiClsfrIndex];
if (!pstClassifierEntry->bUsed)
continue;
if (pstClassifierEntry->ulSFID != Adapter->PackInfo[uiLoopIndex].ulSFID)
continue;
BCM_DEBUG_PRINT(Adapter, DBG_TYPE_OTHERS, DUMP_INFO, DBG_LVL_ALL, "\tDumping Classifier Rule Entry For Index: %X Classifier Rule ID : %X\n", uiClsfrIndex, pstClassifierEntry->uiClassifierRuleIndex);
BCM_DEBUG_PRINT(Adapter, DBG_TYPE_OTHERS, DUMP_INFO, DBG_LVL_ALL, "\tDumping Classifier Rule Entry For Index: %X usVCID_Value : %X\n", uiClsfrIndex, pstClassifierEntry->usVCID_Value);
BCM_DEBUG_PRINT(Adapter, DBG_TYPE_OTHERS, DUMP_INFO, DBG_LVL_ALL, "\tDumping Classifier Rule Entry For Index: %X bProtocolValid : %X\n", uiClsfrIndex, pstClassifierEntry->bProtocolValid);
BCM_DEBUG_PRINT(Adapter, DBG_TYPE_OTHERS, DUMP_INFO, DBG_LVL_ALL, "\tDumping Classifier Rule Entry For Index: %X bTOSValid : %X\n", uiClsfrIndex, pstClassifierEntry->bTOSValid);
BCM_DEBUG_PRINT(Adapter, DBG_TYPE_OTHERS, DUMP_INFO, DBG_LVL_ALL, "\tDumping Classifier Rule Entry For Index: %X bDestIpValid : %X\n", uiClsfrIndex, pstClassifierEntry->bDestIpValid);
BCM_DEBUG_PRINT(Adapter, DBG_TYPE_OTHERS, DUMP_INFO, DBG_LVL_ALL, "\tDumping Classifier Rule Entry For Index: %X bSrcIpValid : %X\n", uiClsfrIndex, pstClassifierEntry->bSrcIpValid);
for (uiIndex = 0; uiIndex < MAX_PORT_RANGE; uiIndex++) {
BCM_DEBUG_PRINT(Adapter, DBG_TYPE_OTHERS, DUMP_INFO, DBG_LVL_ALL, "\tusSrcPortRangeLo:%X\n", pstClassifierEntry->usSrcPortRangeLo[uiIndex]);
BCM_DEBUG_PRINT(Adapter, DBG_TYPE_OTHERS, DUMP_INFO, DBG_LVL_ALL, "\tusSrcPortRangeHi:%X\n", pstClassifierEntry->usSrcPortRangeHi[uiIndex]);
BCM_DEBUG_PRINT(Adapter, DBG_TYPE_OTHERS, DUMP_INFO, DBG_LVL_ALL, "\tusDestPortRangeLo:%X\n", pstClassifierEntry->usDestPortRangeLo[uiIndex]);
BCM_DEBUG_PRINT(Adapter, DBG_TYPE_OTHERS, DUMP_INFO, DBG_LVL_ALL, "\tusDestPortRangeHi:%X\n", pstClassifierEntry->usDestPortRangeHi[uiIndex]);
}
BCM_DEBUG_PRINT(Adapter, DBG_TYPE_OTHERS, DUMP_INFO, DBG_LVL_ALL, "\tucIPSourceAddressLength : 0x%x\n", pstClassifierEntry->ucIPSourceAddressLength);
BCM_DEBUG_PRINT(Adapter, DBG_TYPE_OTHERS, DUMP_INFO, DBG_LVL_ALL, "\tucIPDestinationAddressLength : 0x%x\n", pstClassifierEntry->ucIPDestinationAddressLength);
for (uiIndex = 0; uiIndex < pstClassifierEntry->ucIPSourceAddressLength; uiIndex++) {
if (Adapter->PackInfo[uiLoopIndex].ucIpVersion == IPV6) {
BCM_DEBUG_PRINT(Adapter, DBG_TYPE_OTHERS, DUMP_INFO, DBG_LVL_ALL, "\tIpv6 ulSrcIpAddr :\n");
DumpIpv6Address(pstClassifierEntry->stSrcIpAddress.ulIpv6Addr);
BCM_DEBUG_PRINT(Adapter, DBG_TYPE_OTHERS, DUMP_INFO, DBG_LVL_ALL, "\tIpv6 ulSrcIpMask :\n");
DumpIpv6Address(pstClassifierEntry->stSrcIpAddress.ulIpv6Mask);
} else {
BCM_DEBUG_PRINT(Adapter, DBG_TYPE_OTHERS, DUMP_INFO, DBG_LVL_ALL, "\tulSrcIpAddr:%lX\n", pstClassifierEntry->stSrcIpAddress.ulIpv4Addr[uiIndex]);
BCM_DEBUG_PRINT(Adapter, DBG_TYPE_OTHERS, DUMP_INFO, DBG_LVL_ALL, "\tulSrcIpMask:%lX\n", pstClassifierEntry->stSrcIpAddress.ulIpv4Mask[uiIndex]);
}
}
for (uiIndex = 0; uiIndex < pstClassifierEntry->ucIPDestinationAddressLength; uiIndex++) {
if (Adapter->PackInfo[uiLoopIndex].ucIpVersion == IPV6) {
BCM_DEBUG_PRINT(Adapter, DBG_TYPE_OTHERS, DUMP_INFO, DBG_LVL_ALL, "\tIpv6 ulDestIpAddr :\n");
DumpIpv6Address(pstClassifierEntry->stDestIpAddress.ulIpv6Addr);
BCM_DEBUG_PRINT(Adapter, DBG_TYPE_OTHERS, DUMP_INFO, DBG_LVL_ALL, "\tIpv6 ulDestIpMask :\n");
DumpIpv6Address(pstClassifierEntry->stDestIpAddress.ulIpv6Mask);
} else {
BCM_DEBUG_PRINT(Adapter, DBG_TYPE_OTHERS, DUMP_INFO, DBG_LVL_ALL, "\tulDestIpAddr:%lX\n", pstClassifierEntry->stDestIpAddress.ulIpv4Addr[uiIndex]);
BCM_DEBUG_PRINT(Adapter, DBG_TYPE_OTHERS, DUMP_INFO, DBG_LVL_ALL, "\tulDestIpMask:%lX\n", pstClassifierEntry->stDestIpAddress.ulIpv4Mask[uiIndex]);
}
}
BCM_DEBUG_PRINT(Adapter, DBG_TYPE_OTHERS, DUMP_INFO, DBG_LVL_ALL, "\tucProtocol:0x%X\n", pstClassifierEntry->ucProtocol[0]);
BCM_DEBUG_PRINT(Adapter, DBG_TYPE_OTHERS, DUMP_INFO, DBG_LVL_ALL, "\tu8ClassifierRulePriority:%X\n", pstClassifierEntry->u8ClassifierRulePriority);
}
BCM_DEBUG_PRINT(Adapter, DBG_TYPE_OTHERS, DUMP_INFO, DBG_LVL_ALL, "ulSFID:%lX\n", Adapter->PackInfo[uiLoopIndex].ulSFID);
BCM_DEBUG_PRINT(Adapter, DBG_TYPE_OTHERS, DUMP_INFO, DBG_LVL_ALL, "usVCID_Value:%X\n", Adapter->PackInfo[uiLoopIndex].usVCID_Value);
BCM_DEBUG_PRINT(Adapter, DBG_TYPE_OTHERS, DUMP_INFO, DBG_LVL_ALL, "PhsEnabled: 0x%X\n", Adapter->PackInfo[uiLoopIndex].bHeaderSuppressionEnabled);
BCM_DEBUG_PRINT(Adapter, DBG_TYPE_OTHERS, DUMP_INFO, DBG_LVL_ALL, "uiThreshold:%X\n", Adapter->PackInfo[uiLoopIndex].uiThreshold);
BCM_DEBUG_PRINT(Adapter, DBG_TYPE_OTHERS, DUMP_INFO, DBG_LVL_ALL, "bValid:%X\n", Adapter->PackInfo[uiLoopIndex].bValid);
BCM_DEBUG_PRINT(Adapter, DBG_TYPE_OTHERS, DUMP_INFO, DBG_LVL_ALL, "bActive:%X\n", Adapter->PackInfo[uiLoopIndex].bActive);
BCM_DEBUG_PRINT(Adapter, DBG_TYPE_OTHERS, DUMP_INFO, DBG_LVL_ALL, "ActivateReqSent: %x", Adapter->PackInfo[uiLoopIndex].bActivateRequestSent);
BCM_DEBUG_PRINT(Adapter, DBG_TYPE_OTHERS, DUMP_INFO, DBG_LVL_ALL, "u8QueueType:%X\n", Adapter->PackInfo[uiLoopIndex].u8QueueType);
BCM_DEBUG_PRINT(Adapter, DBG_TYPE_OTHERS, DUMP_INFO, DBG_LVL_ALL, "uiMaxBucketSize:%X\n", Adapter->PackInfo[uiLoopIndex].uiMaxBucketSize);
BCM_DEBUG_PRINT(Adapter, DBG_TYPE_OTHERS, DUMP_INFO, DBG_LVL_ALL, "uiPerSFTxResourceCount:%X\n", atomic_read(&Adapter->PackInfo[uiLoopIndex].uiPerSFTxResourceCount));
/* DumpDebug(DUMP_INFO,("bCSSupport:%X\n",Adapter->PackInfo[uiLoopIndex].bCSSupport)); */
BCM_DEBUG_PRINT(Adapter, DBG_TYPE_OTHERS, DUMP_INFO, DBG_LVL_ALL, "CurrQueueDepthOnTarget: %x\n", Adapter->PackInfo[uiLoopIndex].uiCurrentQueueDepthOnTarget);
BCM_DEBUG_PRINT(Adapter, DBG_TYPE_OTHERS, DUMP_INFO, DBG_LVL_ALL, "uiCurrentBytesOnHost:%X\n", Adapter->PackInfo[uiLoopIndex].uiCurrentBytesOnHost);
BCM_DEBUG_PRINT(Adapter, DBG_TYPE_OTHERS, DUMP_INFO, DBG_LVL_ALL, "uiCurrentPacketsOnHost:%X\n", Adapter->PackInfo[uiLoopIndex].uiCurrentPacketsOnHost);
BCM_DEBUG_PRINT(Adapter, DBG_TYPE_OTHERS, DUMP_INFO, DBG_LVL_ALL, "uiDroppedCountBytes:%X\n", Adapter->PackInfo[uiLoopIndex].uiDroppedCountBytes);
BCM_DEBUG_PRINT(Adapter, DBG_TYPE_OTHERS, DUMP_INFO, DBG_LVL_ALL, "uiDroppedCountPackets:%X\n", Adapter->PackInfo[uiLoopIndex].uiDroppedCountPackets);
BCM_DEBUG_PRINT(Adapter, DBG_TYPE_OTHERS, DUMP_INFO, DBG_LVL_ALL, "uiSentBytes:%X\n", Adapter->PackInfo[uiLoopIndex].uiSentBytes);
BCM_DEBUG_PRINT(Adapter, DBG_TYPE_OTHERS, DUMP_INFO, DBG_LVL_ALL, "uiSentPackets:%X\n", Adapter->PackInfo[uiLoopIndex].uiSentPackets);
BCM_DEBUG_PRINT(Adapter, DBG_TYPE_OTHERS, DUMP_INFO, DBG_LVL_ALL, "uiCurrentDrainRate:%X\n", Adapter->PackInfo[uiLoopIndex].uiCurrentDrainRate);
BCM_DEBUG_PRINT(Adapter, DBG_TYPE_OTHERS, DUMP_INFO, DBG_LVL_ALL, "uiThisPeriodSentBytes:%X\n", Adapter->PackInfo[uiLoopIndex].uiThisPeriodSentBytes);
BCM_DEBUG_PRINT(Adapter, DBG_TYPE_OTHERS, DUMP_INFO, DBG_LVL_ALL, "liDrainCalculated:%llX\n", Adapter->PackInfo[uiLoopIndex].liDrainCalculated);
BCM_DEBUG_PRINT(Adapter, DBG_TYPE_OTHERS, DUMP_INFO, DBG_LVL_ALL, "uiCurrentTokenCount:%X\n", Adapter->PackInfo[uiLoopIndex].uiCurrentTokenCount);
BCM_DEBUG_PRINT(Adapter, DBG_TYPE_OTHERS, DUMP_INFO, DBG_LVL_ALL, "liLastUpdateTokenAt:%llX\n", Adapter->PackInfo[uiLoopIndex].liLastUpdateTokenAt);
BCM_DEBUG_PRINT(Adapter, DBG_TYPE_OTHERS, DUMP_INFO, DBG_LVL_ALL, "uiMaxAllowedRate:%X\n", Adapter->PackInfo[uiLoopIndex].uiMaxAllowedRate);
BCM_DEBUG_PRINT(Adapter, DBG_TYPE_OTHERS, DUMP_INFO, DBG_LVL_ALL, "uiPendedLast:%X\n", Adapter->PackInfo[uiLoopIndex].uiPendedLast);
BCM_DEBUG_PRINT(Adapter, DBG_TYPE_OTHERS, DUMP_INFO, DBG_LVL_ALL, "NumOfPacketsSent:%X\n", Adapter->PackInfo[uiLoopIndex].NumOfPacketsSent);
BCM_DEBUG_PRINT(Adapter, DBG_TYPE_OTHERS, DUMP_INFO, DBG_LVL_ALL, "Direction: %x\n", Adapter->PackInfo[uiLoopIndex].ucDirection);
BCM_DEBUG_PRINT(Adapter, DBG_TYPE_OTHERS, DUMP_INFO, DBG_LVL_ALL, "CID: %x\n", Adapter->PackInfo[uiLoopIndex].usCID);
BCM_DEBUG_PRINT(Adapter, DBG_TYPE_OTHERS, DUMP_INFO, DBG_LVL_ALL, "ProtocolValid: %x\n", Adapter->PackInfo[uiLoopIndex].bProtocolValid);
BCM_DEBUG_PRINT(Adapter, DBG_TYPE_OTHERS, DUMP_INFO, DBG_LVL_ALL, "TOSValid: %x\n", Adapter->PackInfo[uiLoopIndex].bTOSValid);
BCM_DEBUG_PRINT(Adapter, DBG_TYPE_OTHERS, DUMP_INFO, DBG_LVL_ALL, "DestIpValid: %x\n", Adapter->PackInfo[uiLoopIndex].bDestIpValid);
BCM_DEBUG_PRINT(Adapter, DBG_TYPE_OTHERS, DUMP_INFO, DBG_LVL_ALL, "SrcIpValid: %x\n", Adapter->PackInfo[uiLoopIndex].bSrcIpValid);
BCM_DEBUG_PRINT(Adapter, DBG_TYPE_OTHERS, DUMP_INFO, DBG_LVL_ALL, "ActiveSet: %x\n", Adapter->PackInfo[uiLoopIndex].bActiveSet);
BCM_DEBUG_PRINT(Adapter, DBG_TYPE_OTHERS, DUMP_INFO, DBG_LVL_ALL, "AdmittedSet: %x\n", Adapter->PackInfo[uiLoopIndex].bAdmittedSet);
BCM_DEBUG_PRINT(Adapter, DBG_TYPE_OTHERS, DUMP_INFO, DBG_LVL_ALL, "AuthzSet: %x\n", Adapter->PackInfo[uiLoopIndex].bAuthorizedSet);
BCM_DEBUG_PRINT(Adapter, DBG_TYPE_OTHERS, DUMP_INFO, DBG_LVL_ALL, "ClassifyPrority: %x\n", Adapter->PackInfo[uiLoopIndex].bClassifierPriority);
BCM_DEBUG_PRINT(Adapter, DBG_TYPE_OTHERS, DUMP_INFO, DBG_LVL_ALL, "uiMaxLatency: %x\n", Adapter->PackInfo[uiLoopIndex].uiMaxLatency);
BCM_DEBUG_PRINT(Adapter, DBG_TYPE_OTHERS, DUMP_INFO,
DBG_LVL_ALL, "ServiceClassName: %*ph\n",
4, Adapter->PackInfo[uiLoopIndex].
ucServiceClassName);
/* BCM_DEBUG_PRINT (Adapter, DBG_TYPE_OTHERS, DUMP_INFO, DBG_LVL_ALL, "bHeaderSuppressionEnabled :%X\n", Adapter->PackInfo[uiLoopIndex].bHeaderSuppressionEnabled);
* BCM_DEBUG_PRINT (Adapter, DBG_TYPE_OTHERS, DUMP_INFO, DBG_LVL_ALL, "uiTotalTxBytes:%X\n", Adapter->PackInfo[uiLoopIndex].uiTotalTxBytes);
* BCM_DEBUG_PRINT (Adapter, DBG_TYPE_OTHERS, DUMP_INFO, DBG_LVL_ALL, "uiTotalRxBytes:%X\n", Adapter->PackInfo[uiLoopIndex].uiTotalRxBytes);
* DumpDebug(DUMP_INFO,(" uiRanOutOfResCount:%X\n",Adapter->PackInfo[uiLoopIndex].uiRanOutOfResCount));
*/
}
for (uiLoopIndex = 0; uiLoopIndex < MIBS_MAX_HIST_ENTRIES; uiLoopIndex++)
BCM_DEBUG_PRINT(Adapter, DBG_TYPE_OTHERS, DUMP_INFO, DBG_LVL_ALL, "Adapter->aRxPktSizeHist[%x] = %x\n", uiLoopIndex, Adapter->aRxPktSizeHist[uiLoopIndex]);
for (uiLoopIndex = 0; uiLoopIndex < MIBS_MAX_HIST_ENTRIES; uiLoopIndex++)
BCM_DEBUG_PRINT(Adapter, DBG_TYPE_OTHERS, DUMP_INFO, DBG_LVL_ALL, "Adapter->aTxPktSizeHist[%x] = %x\n", uiLoopIndex, Adapter->aTxPktSizeHist[uiLoopIndex]);
}
int reset_card_proc(struct bcm_mini_adapter *ps_adapter)
{
int retval = STATUS_SUCCESS;
struct bcm_mini_adapter *Adapter = GET_BCM_ADAPTER(gblpnetdev);
struct bcm_interface_adapter *psIntfAdapter = NULL;
unsigned int value = 0, uiResetValue = 0;
int bytes;
psIntfAdapter = ((struct bcm_interface_adapter *)(ps_adapter->pvInterfaceAdapter));
ps_adapter->bDDRInitDone = false;
if (ps_adapter->chip_id >= T3LPB) {
/* SYS_CFG register is write protected hence for modifying this reg value, it should be read twice before */
rdmalt(ps_adapter, SYS_CFG, &value, sizeof(value));
rdmalt(ps_adapter, SYS_CFG, &value, sizeof(value));
/* making bit[6...5] same as was before f/w download. this setting force the h/w to */
/* re-populated the SP RAM area with the string descriptor. */
value = value | (ps_adapter->syscfgBefFwDld & 0x00000060);
wrmalt(ps_adapter, SYS_CFG, &value, sizeof(value));
}
/* killing all submitted URBs. */
psIntfAdapter->psAdapter->StopAllXaction = TRUE;
Bcm_kill_all_URBs(psIntfAdapter);
/* Reset the UMA-B Device */
if (ps_adapter->chip_id >= T3LPB) {
BCM_DEBUG_PRINT(Adapter, DBG_TYPE_PRINTK, 0, 0, "Resetting UMA-B\n");
retval = usb_reset_device(psIntfAdapter->udev);
psIntfAdapter->psAdapter->StopAllXaction = false;
if (retval != STATUS_SUCCESS) {
BCM_DEBUG_PRINT(Adapter, DBG_TYPE_PRINTK, 0, 0, "Reset failed with ret value :%d", retval);
goto err_exit;
}
if (ps_adapter->chip_id == BCS220_2 ||
ps_adapter->chip_id == BCS220_2BC ||
ps_adapter->chip_id == BCS250_BC ||
ps_adapter->chip_id == BCS220_3) {
bytes = rdmalt(ps_adapter, HPM_CONFIG_LDO145, &value, sizeof(value));
if (bytes < 0) {
retval = bytes;
BCM_DEBUG_PRINT(Adapter, DBG_TYPE_PRINTK, 0, 0, "read failed with status :%d", retval);
goto err_exit;
}
/* setting 0th bit */
value |= (1<<0);
retval = wrmalt(ps_adapter, HPM_CONFIG_LDO145, &value, sizeof(value));
if (retval < 0) {
BCM_DEBUG_PRINT(Adapter, DBG_TYPE_PRINTK, 0, 0, "write failed with status :%d", retval);
goto err_exit;
}
}
} else {
bytes = rdmalt(ps_adapter, 0x0f007018, &value, sizeof(value));
if (bytes < 0) {
retval = bytes;
BCM_DEBUG_PRINT(Adapter, DBG_TYPE_PRINTK, 0, 0, "read failed with status :%d", retval);
goto err_exit;
}
value &= (~(1<<16));
retval = wrmalt(ps_adapter, 0x0f007018, &value, sizeof(value));
if (retval < 0) {
BCM_DEBUG_PRINT(Adapter, DBG_TYPE_PRINTK, 0, 0, "write failed with status :%d", retval);
goto err_exit;
}
/* Toggling the GPIO 8, 9 */
value = 0;
retval = wrmalt(ps_adapter, GPIO_OUTPUT_REGISTER, &value, sizeof(value));
if (retval < 0) {
BCM_DEBUG_PRINT(Adapter, DBG_TYPE_PRINTK, 0, 0, "write failed with status :%d", retval);
goto err_exit;
}
value = 0x300;
retval = wrmalt(ps_adapter, GPIO_MODE_REGISTER, &value, sizeof(value));
if (retval < 0) {
BCM_DEBUG_PRINT(Adapter, DBG_TYPE_PRINTK, 0, 0, "write failed with status :%d", retval);
goto err_exit;
}
mdelay(50);
}
/* ps_adapter->downloadDDR = false; */
if (ps_adapter->bFlashBoot) {
/* In flash boot mode MIPS state register has reverse polarity.
* So just or with setting bit 30.
* Make the MIPS in Reset state.
*/
rdmalt(ps_adapter, CLOCK_RESET_CNTRL_REG_1, &uiResetValue, sizeof(uiResetValue));
uiResetValue |= (1<<30);
wrmalt(ps_adapter, CLOCK_RESET_CNTRL_REG_1, &uiResetValue, sizeof(uiResetValue));
}
if (ps_adapter->chip_id >= T3LPB) {
uiResetValue = 0;
/*
* WA for SYSConfig Issue.
* Read SYSCFG Twice to make it writable.
*/
rdmalt(ps_adapter, SYS_CFG, &uiResetValue, sizeof(uiResetValue));
if (uiResetValue & (1<<4)) {
uiResetValue = 0;
rdmalt(ps_adapter, SYS_CFG, &uiResetValue, sizeof(uiResetValue)); /* 2nd read to make it writable. */
uiResetValue &= (~(1<<4));
wrmalt(ps_adapter, SYS_CFG, &uiResetValue, sizeof(uiResetValue));
}
}
uiResetValue = 0;
wrmalt(ps_adapter, 0x0f01186c, &uiResetValue, sizeof(uiResetValue));
err_exit:
psIntfAdapter->psAdapter->StopAllXaction = false;
return retval;
}
int run_card_proc(struct bcm_mini_adapter *ps_adapter)
{
int status = STATUS_SUCCESS;
int bytes;
unsigned int value = 0;
{
bytes = rdmalt(ps_adapter, CLOCK_RESET_CNTRL_REG_1, &value, sizeof(value));
if (bytes < 0) {
status = bytes;
BCM_DEBUG_PRINT(ps_adapter, DBG_TYPE_INITEXIT, MP_INIT, DBG_LVL_ALL, "%s:%d\n", __func__, __LINE__);
return status;
}
if (ps_adapter->bFlashBoot)
value &= (~(1<<30));
else
value |= (1<<30);
if (wrmalt(ps_adapter, CLOCK_RESET_CNTRL_REG_1, &value, sizeof(value)) < 0) {
BCM_DEBUG_PRINT(ps_adapter, DBG_TYPE_INITEXIT, MP_INIT, DBG_LVL_ALL, "%s:%d\n", __func__, __LINE__);
return STATUS_FAILURE;
}
}
return status;
}
int InitCardAndDownloadFirmware(struct bcm_mini_adapter *ps_adapter)
{
int status;
unsigned int value = 0;
/*
* Create the threads first and then download the
* Firm/DDR Settings..
*/
status = create_worker_threads(ps_adapter);
if (status < 0)
return status;
status = bcm_parse_target_params(ps_adapter);
if (status)
return status;
if (ps_adapter->chip_id >= T3LPB) {
rdmalt(ps_adapter, SYS_CFG, &value, sizeof(value));
ps_adapter->syscfgBefFwDld = value;
if ((value & 0x60) == 0)
ps_adapter->bFlashBoot = TRUE;
}
reset_card_proc(ps_adapter);
/* Initializing the NVM. */
BcmInitNVM(ps_adapter);
status = ddr_init(ps_adapter);
if (status) {
pr_err(DRV_NAME "ddr_init Failed\n");
return status;
}
/* Download cfg file */
status = buffDnldVerify(ps_adapter,
(PUCHAR)ps_adapter->pstargetparams,
sizeof(struct bcm_target_params),
CONFIG_BEGIN_ADDR);
if (status) {
BCM_DEBUG_PRINT(ps_adapter, DBG_TYPE_INITEXIT, MP_INIT, DBG_LVL_ALL, "Error downloading CFG file");
goto OUT;
}
if (register_networkdev(ps_adapter)) {
BCM_DEBUG_PRINT(ps_adapter, DBG_TYPE_INITEXIT, MP_INIT, DBG_LVL_ALL, "Register Netdevice failed. Cleanup needs to be performed.");
return -EIO;
}
if (false == ps_adapter->AutoFirmDld) {
BCM_DEBUG_PRINT(ps_adapter, DBG_TYPE_INITEXIT, MP_INIT, DBG_LVL_ALL, "AutoFirmDld Disabled in CFG File..\n");
/* If Auto f/w download is disable, register the control interface, */
/* register the control interface after the mailbox. */
if (register_control_device_interface(ps_adapter) < 0) {
BCM_DEBUG_PRINT(ps_adapter, DBG_TYPE_INITEXIT, MP_INIT, DBG_LVL_ALL, "Register Control Device failed. Cleanup needs to be performed.");
return -EIO;
}
return STATUS_SUCCESS;
}
/*
* Do the LED Settings here. It will be used by the Firmware Download
* Thread.
*/
/*
* 1. If the LED Settings fails, do not stop and do the Firmware download.
* 2. This init would happened only if the cfg file is present, else
* call from the ioctl context.
*/
status = InitLedSettings(ps_adapter);
if (status) {
BCM_DEBUG_PRINT(ps_adapter, DBG_TYPE_PRINTK, 0, 0, "INIT LED FAILED\n");
return status;
}
if (ps_adapter->LEDInfo.led_thread_running & BCM_LED_THREAD_RUNNING_ACTIVELY) {
ps_adapter->DriverState = DRIVER_INIT;
wake_up(&ps_adapter->LEDInfo.notify_led_event);
}
if (ps_adapter->LEDInfo.led_thread_running & BCM_LED_THREAD_RUNNING_ACTIVELY) {
ps_adapter->DriverState = FW_DOWNLOAD;
wake_up(&ps_adapter->LEDInfo.notify_led_event);
}
value = 0;
wrmalt(ps_adapter, EEPROM_CAL_DATA_INTERNAL_LOC - 4, &value, sizeof(value));
wrmalt(ps_adapter, EEPROM_CAL_DATA_INTERNAL_LOC - 8, &value, sizeof(value));
if (ps_adapter->eNVMType == NVM_FLASH) {
status = PropagateCalParamsFromFlashToMemory(ps_adapter);
if (status) {
BCM_DEBUG_PRINT(ps_adapter, DBG_TYPE_INITEXIT, MP_INIT, DBG_LVL_ALL, "Propagation of Cal param failed ..");
goto OUT;
}
}
/* Download Firmare */
status = BcmFileDownload(ps_adapter, BIN_FILE, FIRMWARE_BEGIN_ADDR);
if (status != 0) {
BCM_DEBUG_PRINT(ps_adapter, DBG_TYPE_INITEXIT, MP_INIT, DBG_LVL_ALL, "No Firmware File is present...\n");
goto OUT;
}
status = run_card_proc(ps_adapter);
if (status) {
BCM_DEBUG_PRINT(ps_adapter, DBG_TYPE_INITEXIT, MP_INIT, DBG_LVL_ALL, "run_card_proc Failed\n");
goto OUT;
}
ps_adapter->fw_download_done = TRUE;
mdelay(10);
OUT:
if (ps_adapter->LEDInfo.led_thread_running & BCM_LED_THREAD_RUNNING_ACTIVELY) {
ps_adapter->DriverState = FW_DOWNLOAD_DONE;
wake_up(&ps_adapter->LEDInfo.notify_led_event);
}
return status;
}
static int bcm_parse_target_params(struct bcm_mini_adapter *Adapter)
{
struct file *flp = NULL;
char *buff;
int len = 0;
buff = kmalloc(BUFFER_1K, GFP_KERNEL);
if (!buff)
return -ENOMEM;
Adapter->pstargetparams = kmalloc(sizeof(struct bcm_target_params), GFP_KERNEL);
if (Adapter->pstargetparams == NULL) {
kfree(buff);
return -ENOMEM;
}
flp = open_firmware_file(Adapter, CFG_FILE);
if (!flp) {
BCM_DEBUG_PRINT(Adapter, DBG_TYPE_INITEXIT, MP_INIT, DBG_LVL_ALL, "NOT ABLE TO OPEN THE %s FILE\n", CFG_FILE);
kfree(buff);
kfree(Adapter->pstargetparams);
Adapter->pstargetparams = NULL;
return -ENOENT;
}
len = kernel_read(flp, 0, buff, BUFFER_1K);
filp_close(flp, NULL);
if (len != sizeof(struct bcm_target_params)) {
BCM_DEBUG_PRINT(Adapter, DBG_TYPE_INITEXIT, MP_INIT, DBG_LVL_ALL, "Mismatch in Target Param Structure!\n");
kfree(buff);
kfree(Adapter->pstargetparams);
Adapter->pstargetparams = NULL;
return -ENOENT;
}
/* Check for autolink in config params */
/*
* Values in Adapter->pstargetparams are in network byte order
*/
memcpy(Adapter->pstargetparams, buff, sizeof(struct bcm_target_params));
kfree(buff);
beceem_parse_target_struct(Adapter);
return STATUS_SUCCESS;
}
void beceem_parse_target_struct(struct bcm_mini_adapter *Adapter)
{
unsigned int uiHostDrvrCfg6 = 0, uiEEPROMFlag = 0;
if (ntohl(Adapter->pstargetparams->m_u32PhyParameter2) & AUTO_SYNC_DISABLE) {
pr_info(DRV_NAME ": AutoSyncup is Disabled\n");
Adapter->AutoSyncup = false;
} else {
pr_info(DRV_NAME ": AutoSyncup is Enabled\n");
Adapter->AutoSyncup = TRUE;
}
if (ntohl(Adapter->pstargetparams->HostDrvrConfig6) & AUTO_LINKUP_ENABLE) {
pr_info(DRV_NAME ": Enabling autolink up");
Adapter->AutoLinkUp = TRUE;
} else {
pr_info(DRV_NAME ": Disabling autolink up");
Adapter->AutoLinkUp = false;
}
/* Setting the DDR Setting.. */
Adapter->DDRSetting = (ntohl(Adapter->pstargetparams->HostDrvrConfig6) >> 8)&0x0F;
Adapter->ulPowerSaveMode = (ntohl(Adapter->pstargetparams->HostDrvrConfig6)>>12)&0x0F;
pr_info(DRV_NAME ": DDR Setting: %x\n", Adapter->DDRSetting);
pr_info(DRV_NAME ": Power Save Mode: %lx\n", Adapter->ulPowerSaveMode);
if (ntohl(Adapter->pstargetparams->HostDrvrConfig6) & AUTO_FIRM_DOWNLOAD) {
pr_info(DRV_NAME ": Enabling Auto Firmware Download\n");
Adapter->AutoFirmDld = TRUE;
} else {
pr_info(DRV_NAME ": Disabling Auto Firmware Download\n");
Adapter->AutoFirmDld = false;
}
uiHostDrvrCfg6 = ntohl(Adapter->pstargetparams->HostDrvrConfig6);
Adapter->bMipsConfig = (uiHostDrvrCfg6>>20)&0x01;
pr_info(DRV_NAME ": MIPSConfig : 0x%X\n", Adapter->bMipsConfig);
/* used for backward compatibility. */
Adapter->bDPLLConfig = (uiHostDrvrCfg6>>19)&0x01;
Adapter->PmuMode = (uiHostDrvrCfg6 >> 24) & 0x03;
pr_info(DRV_NAME ": PMU MODE: %x", Adapter->PmuMode);
if ((uiHostDrvrCfg6 >> HOST_BUS_SUSPEND_BIT) & (0x01)) {
Adapter->bDoSuspend = TRUE;
pr_info(DRV_NAME ": Making DoSuspend TRUE as per configFile");
}
uiEEPROMFlag = ntohl(Adapter->pstargetparams->m_u32EEPROMFlag);
pr_info(DRV_NAME ": uiEEPROMFlag : 0x%X\n", uiEEPROMFlag);
Adapter->eNVMType = (enum bcm_nvm_type)((uiEEPROMFlag>>4)&0x3);
Adapter->bStatusWrite = (uiEEPROMFlag>>6)&0x1;
Adapter->uiSectorSizeInCFG = 1024*(0xFFFF & ntohl(Adapter->pstargetparams->HostDrvrConfig4));
Adapter->bSectorSizeOverride = (bool) ((ntohl(Adapter->pstargetparams->HostDrvrConfig4))>>16)&0x1;
if (ntohl(Adapter->pstargetparams->m_u32PowerSavingModeOptions) & 0x01)
Adapter->ulPowerSaveMode = DEVICE_POWERSAVE_MODE_AS_PROTOCOL_IDLE_MODE;
if (Adapter->ulPowerSaveMode != DEVICE_POWERSAVE_MODE_AS_PROTOCOL_IDLE_MODE)
doPowerAutoCorrection(Adapter);
}
static void doPowerAutoCorrection(struct bcm_mini_adapter *psAdapter)
{
unsigned int reporting_mode;
reporting_mode = ntohl(psAdapter->pstargetparams->m_u32PowerSavingModeOptions) & 0x02;
psAdapter->bIsAutoCorrectEnabled = !((char)(psAdapter->ulPowerSaveMode >> 3) & 0x1);
if (reporting_mode) {
BCM_DEBUG_PRINT(psAdapter, DBG_TYPE_INITEXIT, MP_INIT, DBG_LVL_ALL, "can't do suspen/resume as reporting mode is enable");
psAdapter->bDoSuspend = false;
}
if (psAdapter->bIsAutoCorrectEnabled && (psAdapter->chip_id >= T3LPB)) {
/* If reporting mode is enable, switch PMU to PMC */
{
psAdapter->ulPowerSaveMode = DEVICE_POWERSAVE_MODE_AS_PMU_CLOCK_GATING;
psAdapter->bDoSuspend = false;
}
/* clearing space bit[15..12] */
psAdapter->pstargetparams->HostDrvrConfig6 &= ~(htonl((0xF << 12)));
/* placing the power save mode option */
psAdapter->pstargetparams->HostDrvrConfig6 |= htonl((psAdapter->ulPowerSaveMode << 12));
} else if (psAdapter->bIsAutoCorrectEnabled == false) {
/* remove the autocorrect disable bit set before dumping. */
psAdapter->ulPowerSaveMode &= ~(1 << 3);
psAdapter->pstargetparams->HostDrvrConfig6 &= ~(htonl(1 << 15));
BCM_DEBUG_PRINT(psAdapter, DBG_TYPE_INITEXIT, MP_INIT, DBG_LVL_ALL, "Using Forced User Choice: %lx\n", psAdapter->ulPowerSaveMode);
}
}
static void convertEndian(unsigned char rwFlag, unsigned int *puiBuffer, unsigned int uiByteCount)
{
unsigned int uiIndex = 0;
if (RWM_WRITE == rwFlag) {
for (uiIndex = 0; uiIndex < (uiByteCount/sizeof(unsigned int)); uiIndex++)
puiBuffer[uiIndex] = htonl(puiBuffer[uiIndex]);
} else {
for (uiIndex = 0; uiIndex < (uiByteCount/sizeof(unsigned int)); uiIndex++)
puiBuffer[uiIndex] = ntohl(puiBuffer[uiIndex]);
}
}
int rdm(struct bcm_mini_adapter *Adapter, unsigned int uiAddress, PCHAR pucBuff, size_t sSize)
{
return Adapter->interface_rdm(Adapter->pvInterfaceAdapter,
uiAddress, pucBuff, sSize);
}
int wrm(struct bcm_mini_adapter *Adapter, unsigned int uiAddress, PCHAR pucBuff, size_t sSize)
{
int iRetVal;
iRetVal = Adapter->interface_wrm(Adapter->pvInterfaceAdapter,
uiAddress, pucBuff, sSize);
return iRetVal;
}
int wrmalt(struct bcm_mini_adapter *Adapter, unsigned int uiAddress, unsigned int *pucBuff, size_t size)
{
convertEndian(RWM_WRITE, pucBuff, size);
return wrm(Adapter, uiAddress, (PUCHAR)pucBuff, size);
}
int rdmalt(struct bcm_mini_adapter *Adapter, unsigned int uiAddress, unsigned int *pucBuff, size_t size)
{
int uiRetVal = 0;
uiRetVal = rdm(Adapter, uiAddress, (PUCHAR)pucBuff, size);
convertEndian(RWM_READ, (unsigned int *)pucBuff, size);
return uiRetVal;
}
int wrmWithLock(struct bcm_mini_adapter *Adapter, unsigned int uiAddress, PCHAR pucBuff, size_t sSize)
{
int status = STATUS_SUCCESS;
down(&Adapter->rdmwrmsync);
if ((Adapter->IdleMode == TRUE) ||
(Adapter->bShutStatus == TRUE) ||
(Adapter->bPreparingForLowPowerMode == TRUE)) {
status = -EACCES;
goto exit;
}
status = wrm(Adapter, uiAddress, pucBuff, sSize);
exit:
up(&Adapter->rdmwrmsync);
return status;
}
int wrmaltWithLock(struct bcm_mini_adapter *Adapter, unsigned int uiAddress, unsigned int *pucBuff, size_t size)
{
int iRetVal = STATUS_SUCCESS;
down(&Adapter->rdmwrmsync);
if ((Adapter->IdleMode == TRUE) ||
(Adapter->bShutStatus == TRUE) ||
(Adapter->bPreparingForLowPowerMode == TRUE)) {
iRetVal = -EACCES;
goto exit;
}
iRetVal = wrmalt(Adapter, uiAddress, pucBuff, size);
exit:
up(&Adapter->rdmwrmsync);
return iRetVal;
}
int rdmaltWithLock(struct bcm_mini_adapter *Adapter, unsigned int uiAddress, unsigned int *pucBuff, size_t size)
{
int uiRetVal = STATUS_SUCCESS;
down(&Adapter->rdmwrmsync);
if ((Adapter->IdleMode == TRUE) ||
(Adapter->bShutStatus == TRUE) ||
(Adapter->bPreparingForLowPowerMode == TRUE)) {
uiRetVal = -EACCES;
goto exit;
}
uiRetVal = rdmalt(Adapter, uiAddress, pucBuff, size);
exit:
up(&Adapter->rdmwrmsync);
return uiRetVal;
}
static void HandleShutDownModeWakeup(struct bcm_mini_adapter *Adapter)
{
int clear_abort_pattern = 0, Status = 0;
BCM_DEBUG_PRINT(Adapter, DBG_TYPE_OTHERS, MP_SHUTDOWN, DBG_LVL_ALL, "====>\n");
/* target has woken up From Shut Down */
BCM_DEBUG_PRINT(Adapter, DBG_TYPE_OTHERS, MP_SHUTDOWN, DBG_LVL_ALL, "Clearing Shut Down Software abort pattern\n");
Status = wrmalt(Adapter, SW_ABORT_IDLEMODE_LOC, (unsigned int *)&clear_abort_pattern, sizeof(clear_abort_pattern));
if (Status) {
BCM_DEBUG_PRINT(Adapter, DBG_TYPE_OTHERS, MP_SHUTDOWN, DBG_LVL_ALL, "WRM to SW_ABORT_IDLEMODE_LOC failed with err:%d", Status);
return;
}
if (Adapter->ulPowerSaveMode != DEVICE_POWERSAVE_MODE_AS_PROTOCOL_IDLE_MODE) {
msleep(100);
InterfaceHandleShutdownModeWakeup(Adapter);
msleep(100);
}
if (Adapter->LEDInfo.led_thread_running & BCM_LED_THREAD_RUNNING_ACTIVELY) {
Adapter->DriverState = NO_NETWORK_ENTRY;
wake_up(&Adapter->LEDInfo.notify_led_event);
}
Adapter->bTriedToWakeUpFromlowPowerMode = false;
Adapter->bShutStatus = false;
wake_up(&Adapter->lowpower_mode_wait_queue);
BCM_DEBUG_PRINT(Adapter, DBG_TYPE_OTHERS, MP_SHUTDOWN, DBG_LVL_ALL, "<====\n");
}
static void SendShutModeResponse(struct bcm_mini_adapter *Adapter)
{
struct bcm_link_request stShutdownResponse;
unsigned int NVMAccess = 0, lowPwrAbortMsg = 0;
unsigned int Status = 0;
memset(&stShutdownResponse, 0, sizeof(struct bcm_link_request));
stShutdownResponse.Leader.Status = LINK_UP_CONTROL_REQ;
stShutdownResponse.Leader.PLength = 8; /* 8 bytes; */
stShutdownResponse.szData[0] = LINK_UP_ACK;
stShutdownResponse.szData[1] = LINK_SHUTDOWN_REQ_FROM_FIRMWARE;
/*********************************
* down_trylock -
* if [ semaphore is available ]
* acquire semaphone and return value 0 ;
* else
* return non-zero value ;
*
***********************************/
NVMAccess = down_trylock(&Adapter->NVMRdmWrmLock);
lowPwrAbortMsg = down_trylock(&Adapter->LowPowerModeSync);
if (NVMAccess || lowPwrAbortMsg || atomic_read(&Adapter->TotalPacketCount)) {
if (!NVMAccess)
up(&Adapter->NVMRdmWrmLock);
if (!lowPwrAbortMsg)
up(&Adapter->LowPowerModeSync);
BCM_DEBUG_PRINT(Adapter, DBG_TYPE_OTHERS, MP_SHUTDOWN, DBG_LVL_ALL, "Device Access is going on NACK the Shut Down MODE\n");
stShutdownResponse.szData[2] = SHUTDOWN_NACK_FROM_DRIVER; /* NACK- device access is going on. */
Adapter->bPreparingForLowPowerMode = false;
} else {
BCM_DEBUG_PRINT(Adapter, DBG_TYPE_OTHERS, MP_SHUTDOWN, DBG_LVL_ALL, "Sending SHUTDOWN MODE ACK\n");
stShutdownResponse.szData[2] = SHUTDOWN_ACK_FROM_DRIVER; /* ShutDown ACK */
/* Wait for the LED to TURN OFF before sending ACK response */
if (Adapter->LEDInfo.led_thread_running & BCM_LED_THREAD_RUNNING_ACTIVELY) {
int iRetVal = 0;
/* Wake the LED Thread with LOWPOWER_MODE_ENTER State */
Adapter->DriverState = LOWPOWER_MODE_ENTER;
wake_up(&Adapter->LEDInfo.notify_led_event);
/* Wait for 1 SEC for LED to OFF */
iRetVal = wait_event_timeout(Adapter->LEDInfo.idleModeSyncEvent, Adapter->LEDInfo.bIdle_led_off, msecs_to_jiffies(1000));
/* If Timed Out to Sync IDLE MODE Enter, do IDLE mode Exit and Send NACK to device */
if (iRetVal <= 0) {
stShutdownResponse.szData[1] = SHUTDOWN_NACK_FROM_DRIVER; /* NACK- device access is going on. */
Adapter->DriverState = NO_NETWORK_ENTRY;
wake_up(&Adapter->LEDInfo.notify_led_event);
}
}
if (stShutdownResponse.szData[2] == SHUTDOWN_ACK_FROM_DRIVER) {
BCM_DEBUG_PRINT(Adapter, DBG_TYPE_OTHERS, MP_SHUTDOWN, DBG_LVL_ALL, "ACKING SHUTDOWN MODE !!!!!!!!!");
down(&Adapter->rdmwrmsync);
Adapter->bPreparingForLowPowerMode = TRUE;
up(&Adapter->rdmwrmsync);
/* Killing all URBS. */
if (Adapter->bDoSuspend == TRUE)
Bcm_kill_all_URBs((struct bcm_interface_adapter *)(Adapter->pvInterfaceAdapter));
} else {
Adapter->bPreparingForLowPowerMode = false;
}
if (!NVMAccess)
up(&Adapter->NVMRdmWrmLock);
if (!lowPwrAbortMsg)
up(&Adapter->LowPowerModeSync);
}
Status = CopyBufferToControlPacket(Adapter, &stShutdownResponse);
if (Status != STATUS_SUCCESS) {
BCM_DEBUG_PRINT(Adapter, DBG_TYPE_OTHERS, MP_SHUTDOWN, DBG_LVL_ALL, "fail to send the Idle mode Request\n");
Adapter->bPreparingForLowPowerMode = false;
StartInterruptUrb((struct bcm_interface_adapter *)(Adapter->pvInterfaceAdapter));
}
}
static void HandleShutDownModeRequest(struct bcm_mini_adapter *Adapter, PUCHAR pucBuffer)
{
unsigned int uiResetValue = 0;
BCM_DEBUG_PRINT(Adapter, DBG_TYPE_OTHERS, MP_SHUTDOWN, DBG_LVL_ALL, "====>\n");
if (*(pucBuffer+1) == COMPLETE_WAKE_UP_NOTIFICATION_FRM_FW) {
HandleShutDownModeWakeup(Adapter);
} else if (*(pucBuffer+1) == LINK_SHUTDOWN_REQ_FROM_FIRMWARE) {
/* Target wants to go to Shut Down Mode */
/* InterfacePrepareForShutdown(Adapter); */
if (Adapter->chip_id == BCS220_2 ||
Adapter->chip_id == BCS220_2BC ||
Adapter->chip_id == BCS250_BC ||
Adapter->chip_id == BCS220_3) {
rdmalt(Adapter, HPM_CONFIG_MSW, &uiResetValue, 4);
uiResetValue |= (1<<17);
wrmalt(Adapter, HPM_CONFIG_MSW, &uiResetValue, 4);
}
SendShutModeResponse(Adapter);
BCM_DEBUG_PRINT(Adapter, DBG_TYPE_OTHERS, MP_SHUTDOWN, DBG_LVL_ALL, "ShutDownModeResponse:Notification received: Sending the response(Ack/Nack)\n");
}
BCM_DEBUG_PRINT(Adapter, DBG_TYPE_OTHERS, MP_SHUTDOWN, DBG_LVL_ALL, "<====\n");
}
void ResetCounters(struct bcm_mini_adapter *Adapter)
{
beceem_protocol_reset(Adapter);
Adapter->CurrNumRecvDescs = 0;
Adapter->PrevNumRecvDescs = 0;
Adapter->LinkUpStatus = 0;
Adapter->LinkStatus = 0;
atomic_set(&Adapter->cntrlpktCnt, 0);
atomic_set(&Adapter->TotalPacketCount, 0);
Adapter->fw_download_done = false;
Adapter->LinkStatus = 0;
Adapter->AutoLinkUp = false;
Adapter->IdleMode = false;
Adapter->bShutStatus = false;
}
struct bcm_classifier_rule *GetFragIPClsEntry(struct bcm_mini_adapter *Adapter, USHORT usIpIdentification, ULONG SrcIP)
{
unsigned int uiIndex = 0;
for (uiIndex = 0; uiIndex < MAX_FRAGMENTEDIP_CLASSIFICATION_ENTRIES; uiIndex++) {
if ((Adapter->astFragmentedPktClassifierTable[uiIndex].bUsed) &&
(Adapter->astFragmentedPktClassifierTable[uiIndex].usIpIdentification == usIpIdentification) &&
(Adapter->astFragmentedPktClassifierTable[uiIndex].ulSrcIpAddress == SrcIP) &&
!Adapter->astFragmentedPktClassifierTable[uiIndex].bOutOfOrderFragment)
return Adapter->astFragmentedPktClassifierTable[uiIndex].pstMatchedClassifierEntry;
}
return NULL;
}
void AddFragIPClsEntry(struct bcm_mini_adapter *Adapter, struct bcm_fragmented_packet_info *psFragPktInfo)
{
unsigned int uiIndex = 0;
for (uiIndex = 0; uiIndex < MAX_FRAGMENTEDIP_CLASSIFICATION_ENTRIES; uiIndex++) {
if (!Adapter->astFragmentedPktClassifierTable[uiIndex].bUsed) {
memcpy(&Adapter->astFragmentedPktClassifierTable[uiIndex], psFragPktInfo, sizeof(struct bcm_fragmented_packet_info));
break;
}
}
}
void DelFragIPClsEntry(struct bcm_mini_adapter *Adapter, USHORT usIpIdentification, ULONG SrcIp)
{
unsigned int uiIndex = 0;
for (uiIndex = 0; uiIndex < MAX_FRAGMENTEDIP_CLASSIFICATION_ENTRIES; uiIndex++) {
if ((Adapter->astFragmentedPktClassifierTable[uiIndex].bUsed) &&
(Adapter->astFragmentedPktClassifierTable[uiIndex].usIpIdentification == usIpIdentification) &&
(Adapter->astFragmentedPktClassifierTable[uiIndex].ulSrcIpAddress == SrcIp))
memset(&Adapter->astFragmentedPktClassifierTable[uiIndex], 0, sizeof(struct bcm_fragmented_packet_info));
}
}
void update_per_cid_rx(struct bcm_mini_adapter *Adapter)
{
unsigned int qindex = 0;
if ((jiffies - Adapter->liDrainCalculated) < XSECONDS)
return;
for (qindex = 0; qindex < HiPriority; qindex++) {
if (Adapter->PackInfo[qindex].ucDirection == 0) {
Adapter->PackInfo[qindex].uiCurrentRxRate =
(Adapter->PackInfo[qindex].uiCurrentRxRate +
Adapter->PackInfo[qindex].uiThisPeriodRxBytes) / 2;
Adapter->PackInfo[qindex].uiThisPeriodRxBytes = 0;
} else {
Adapter->PackInfo[qindex].uiCurrentDrainRate =
(Adapter->PackInfo[qindex].uiCurrentDrainRate +
Adapter->PackInfo[qindex].uiThisPeriodSentBytes) / 2;
Adapter->PackInfo[qindex].uiThisPeriodSentBytes = 0;
}
}
Adapter->liDrainCalculated = jiffies;
}
void update_per_sf_desc_cnts(struct bcm_mini_adapter *Adapter)
{
int iIndex = 0;
u32 uibuff[MAX_TARGET_DSX_BUFFERS];
int bytes;
if (!atomic_read(&Adapter->uiMBupdate))
return;
bytes = rdmaltWithLock(Adapter, TARGET_SFID_TXDESC_MAP_LOC, (unsigned int *)uibuff, sizeof(unsigned int) * MAX_TARGET_DSX_BUFFERS);
if (bytes < 0) {
BCM_DEBUG_PRINT(Adapter, DBG_TYPE_PRINTK, 0, 0, "rdm failed\n");
return;
}
for (iIndex = 0; iIndex < HiPriority; iIndex++) {
if (Adapter->PackInfo[iIndex].bValid && Adapter->PackInfo[iIndex].ucDirection) {
if (Adapter->PackInfo[iIndex].usVCID_Value < MAX_TARGET_DSX_BUFFERS)
atomic_set(&Adapter->PackInfo[iIndex].uiPerSFTxResourceCount, uibuff[Adapter->PackInfo[iIndex].usVCID_Value]);
else
BCM_DEBUG_PRINT(Adapter, DBG_TYPE_PRINTK, 0, 0, "Invalid VCID : %x\n", Adapter->PackInfo[iIndex].usVCID_Value);
}
}
atomic_set(&Adapter->uiMBupdate, false);
}
void flush_queue(struct bcm_mini_adapter *Adapter, unsigned int iQIndex)
{
struct sk_buff *PacketToDrop = NULL;
struct net_device_stats *netstats = &Adapter->dev->stats;
spin_lock_bh(&Adapter->PackInfo[iQIndex].SFQueueLock);
while (Adapter->PackInfo[iQIndex].FirstTxQueue && atomic_read(&Adapter->TotalPacketCount)) {
PacketToDrop = Adapter->PackInfo[iQIndex].FirstTxQueue;
if (PacketToDrop && PacketToDrop->len) {
netstats->tx_dropped++;
DEQUEUEPACKET(Adapter->PackInfo[iQIndex].FirstTxQueue, Adapter->PackInfo[iQIndex].LastTxQueue);
Adapter->PackInfo[iQIndex].uiCurrentPacketsOnHost--;
Adapter->PackInfo[iQIndex].uiCurrentBytesOnHost -= PacketToDrop->len;
/* Adding dropped statistics */
Adapter->PackInfo[iQIndex].uiDroppedCountBytes += PacketToDrop->len;
Adapter->PackInfo[iQIndex].uiDroppedCountPackets++;
dev_kfree_skb(PacketToDrop);
atomic_dec(&Adapter->TotalPacketCount);
}
}
spin_unlock_bh(&Adapter->PackInfo[iQIndex].SFQueueLock);
}
static void beceem_protocol_reset(struct bcm_mini_adapter *Adapter)
{
int i;
if (netif_msg_link(Adapter))
pr_notice(PFX "%s: protocol reset\n", Adapter->dev->name);
netif_carrier_off(Adapter->dev);
netif_stop_queue(Adapter->dev);
Adapter->IdleMode = false;
Adapter->LinkUpStatus = false;
ClearTargetDSXBuffer(Adapter, 0, TRUE);
/* Delete All Classifier Rules */
for (i = 0; i < HiPriority; i++)
DeleteAllClassifiersForSF(Adapter, i);
flush_all_queues(Adapter);
if (Adapter->TimerActive == TRUE)
Adapter->TimerActive = false;
memset(Adapter->astFragmentedPktClassifierTable, 0, sizeof(struct bcm_fragmented_packet_info) * MAX_FRAGMENTEDIP_CLASSIFICATION_ENTRIES);
for (i = 0; i < HiPriority; i++) {
/* resetting only the first size (S_MIBS_SERVICEFLOW_TABLE) for the SF. */
/* It is same between MIBs and SF. */
memset(&Adapter->PackInfo[i].stMibsExtServiceFlowTable, 0, sizeof(struct bcm_mibs_parameters));
}
}