| // SPDX-License-Identifier: GPL-2.0 |
| /* |
| * fs/f2fs/recovery.c |
| * |
| * Copyright (c) 2012 Samsung Electronics Co., Ltd. |
| * http://www.samsung.com/ |
| */ |
| #include <asm/unaligned.h> |
| #include <linux/fs.h> |
| #include <linux/f2fs_fs.h> |
| #include <linux/sched/mm.h> |
| #include "f2fs.h" |
| #include "node.h" |
| #include "segment.h" |
| |
| /* |
| * Roll forward recovery scenarios. |
| * |
| * [Term] F: fsync_mark, D: dentry_mark |
| * |
| * 1. inode(x) | CP | inode(x) | dnode(F) |
| * -> Update the latest inode(x). |
| * |
| * 2. inode(x) | CP | inode(F) | dnode(F) |
| * -> No problem. |
| * |
| * 3. inode(x) | CP | dnode(F) | inode(x) |
| * -> Recover to the latest dnode(F), and drop the last inode(x) |
| * |
| * 4. inode(x) | CP | dnode(F) | inode(F) |
| * -> No problem. |
| * |
| * 5. CP | inode(x) | dnode(F) |
| * -> The inode(DF) was missing. Should drop this dnode(F). |
| * |
| * 6. CP | inode(DF) | dnode(F) |
| * -> No problem. |
| * |
| * 7. CP | dnode(F) | inode(DF) |
| * -> If f2fs_iget fails, then goto next to find inode(DF). |
| * |
| * 8. CP | dnode(F) | inode(x) |
| * -> If f2fs_iget fails, then goto next to find inode(DF). |
| * But it will fail due to no inode(DF). |
| */ |
| |
| static struct kmem_cache *fsync_entry_slab; |
| |
| #if IS_ENABLED(CONFIG_UNICODE) |
| extern struct kmem_cache *f2fs_cf_name_slab; |
| #endif |
| |
| bool f2fs_space_for_roll_forward(struct f2fs_sb_info *sbi) |
| { |
| s64 nalloc = percpu_counter_sum_positive(&sbi->alloc_valid_block_count); |
| |
| if (sbi->last_valid_block_count + nalloc > sbi->user_block_count) |
| return false; |
| if (NM_I(sbi)->max_rf_node_blocks && |
| percpu_counter_sum_positive(&sbi->rf_node_block_count) >= |
| NM_I(sbi)->max_rf_node_blocks) |
| return false; |
| return true; |
| } |
| |
| static struct fsync_inode_entry *get_fsync_inode(struct list_head *head, |
| nid_t ino) |
| { |
| struct fsync_inode_entry *entry; |
| |
| list_for_each_entry(entry, head, list) |
| if (entry->inode->i_ino == ino) |
| return entry; |
| |
| return NULL; |
| } |
| |
| static struct fsync_inode_entry *add_fsync_inode(struct f2fs_sb_info *sbi, |
| struct list_head *head, nid_t ino, bool quota_inode) |
| { |
| struct inode *inode; |
| struct fsync_inode_entry *entry; |
| int err; |
| |
| inode = f2fs_iget_retry(sbi->sb, ino); |
| if (IS_ERR(inode)) |
| return ERR_CAST(inode); |
| |
| err = f2fs_dquot_initialize(inode); |
| if (err) |
| goto err_out; |
| |
| if (quota_inode) { |
| err = dquot_alloc_inode(inode); |
| if (err) |
| goto err_out; |
| } |
| |
| entry = f2fs_kmem_cache_alloc(fsync_entry_slab, |
| GFP_F2FS_ZERO, true, NULL); |
| entry->inode = inode; |
| list_add_tail(&entry->list, head); |
| |
| return entry; |
| err_out: |
| iput(inode); |
| return ERR_PTR(err); |
| } |
| |
| static void del_fsync_inode(struct fsync_inode_entry *entry, int drop) |
| { |
| if (drop) { |
| /* inode should not be recovered, drop it */ |
| f2fs_inode_synced(entry->inode); |
| } |
| iput(entry->inode); |
| list_del(&entry->list); |
| kmem_cache_free(fsync_entry_slab, entry); |
| } |
| |
| static int init_recovered_filename(const struct inode *dir, |
| struct f2fs_inode *raw_inode, |
| struct f2fs_filename *fname, |
| struct qstr *usr_fname) |
| { |
| int err; |
| |
| memset(fname, 0, sizeof(*fname)); |
| fname->disk_name.len = le32_to_cpu(raw_inode->i_namelen); |
| fname->disk_name.name = raw_inode->i_name; |
| |
| if (WARN_ON(fname->disk_name.len > F2FS_NAME_LEN)) |
| return -ENAMETOOLONG; |
| |
| if (!IS_ENCRYPTED(dir)) { |
| usr_fname->name = fname->disk_name.name; |
| usr_fname->len = fname->disk_name.len; |
| fname->usr_fname = usr_fname; |
| } |
| |
| /* Compute the hash of the filename */ |
| if (IS_ENCRYPTED(dir) && IS_CASEFOLDED(dir)) { |
| /* |
| * In this case the hash isn't computable without the key, so it |
| * was saved on-disk. |
| */ |
| if (fname->disk_name.len + sizeof(f2fs_hash_t) > F2FS_NAME_LEN) |
| return -EINVAL; |
| fname->hash = get_unaligned((f2fs_hash_t *) |
| &raw_inode->i_name[fname->disk_name.len]); |
| } else if (IS_CASEFOLDED(dir)) { |
| err = f2fs_init_casefolded_name(dir, fname); |
| if (err) |
| return err; |
| f2fs_hash_filename(dir, fname); |
| #if IS_ENABLED(CONFIG_UNICODE) |
| /* Case-sensitive match is fine for recovery */ |
| kmem_cache_free(f2fs_cf_name_slab, fname->cf_name.name); |
| fname->cf_name.name = NULL; |
| #endif |
| } else { |
| f2fs_hash_filename(dir, fname); |
| } |
| return 0; |
| } |
| |
| static int recover_dentry(struct inode *inode, struct page *ipage, |
| struct list_head *dir_list) |
| { |
| struct f2fs_inode *raw_inode = F2FS_INODE(ipage); |
| nid_t pino = le32_to_cpu(raw_inode->i_pino); |
| struct f2fs_dir_entry *de; |
| struct f2fs_filename fname; |
| struct qstr usr_fname; |
| struct page *page; |
| struct inode *dir, *einode; |
| struct fsync_inode_entry *entry; |
| int err = 0; |
| char *name; |
| |
| entry = get_fsync_inode(dir_list, pino); |
| if (!entry) { |
| entry = add_fsync_inode(F2FS_I_SB(inode), dir_list, |
| pino, false); |
| if (IS_ERR(entry)) { |
| dir = ERR_CAST(entry); |
| err = PTR_ERR(entry); |
| goto out; |
| } |
| } |
| |
| dir = entry->inode; |
| err = init_recovered_filename(dir, raw_inode, &fname, &usr_fname); |
| if (err) |
| goto out; |
| retry: |
| de = __f2fs_find_entry(dir, &fname, &page); |
| if (de && inode->i_ino == le32_to_cpu(de->ino)) |
| goto out_put; |
| |
| if (de) { |
| einode = f2fs_iget_retry(inode->i_sb, le32_to_cpu(de->ino)); |
| if (IS_ERR(einode)) { |
| WARN_ON(1); |
| err = PTR_ERR(einode); |
| if (err == -ENOENT) |
| err = -EEXIST; |
| goto out_put; |
| } |
| |
| err = f2fs_dquot_initialize(einode); |
| if (err) { |
| iput(einode); |
| goto out_put; |
| } |
| |
| err = f2fs_acquire_orphan_inode(F2FS_I_SB(inode)); |
| if (err) { |
| iput(einode); |
| goto out_put; |
| } |
| f2fs_delete_entry(de, page, dir, einode); |
| iput(einode); |
| goto retry; |
| } else if (IS_ERR(page)) { |
| err = PTR_ERR(page); |
| } else { |
| err = f2fs_add_dentry(dir, &fname, inode, |
| inode->i_ino, inode->i_mode); |
| } |
| if (err == -ENOMEM) |
| goto retry; |
| goto out; |
| |
| out_put: |
| f2fs_put_page(page, 0); |
| out: |
| if (file_enc_name(inode)) |
| name = "<encrypted>"; |
| else |
| name = raw_inode->i_name; |
| f2fs_notice(F2FS_I_SB(inode), "%s: ino = %x, name = %s, dir = %lx, err = %d", |
| __func__, ino_of_node(ipage), name, |
| IS_ERR(dir) ? 0 : dir->i_ino, err); |
| return err; |
| } |
| |
| static int recover_quota_data(struct inode *inode, struct page *page) |
| { |
| struct f2fs_inode *raw = F2FS_INODE(page); |
| struct iattr attr; |
| uid_t i_uid = le32_to_cpu(raw->i_uid); |
| gid_t i_gid = le32_to_cpu(raw->i_gid); |
| int err; |
| |
| memset(&attr, 0, sizeof(attr)); |
| |
| attr.ia_vfsuid = VFSUIDT_INIT(make_kuid(inode->i_sb->s_user_ns, i_uid)); |
| attr.ia_vfsgid = VFSGIDT_INIT(make_kgid(inode->i_sb->s_user_ns, i_gid)); |
| |
| if (!vfsuid_eq(attr.ia_vfsuid, i_uid_into_vfsuid(&nop_mnt_idmap, inode))) |
| attr.ia_valid |= ATTR_UID; |
| if (!vfsgid_eq(attr.ia_vfsgid, i_gid_into_vfsgid(&nop_mnt_idmap, inode))) |
| attr.ia_valid |= ATTR_GID; |
| |
| if (!attr.ia_valid) |
| return 0; |
| |
| err = dquot_transfer(&nop_mnt_idmap, inode, &attr); |
| if (err) |
| set_sbi_flag(F2FS_I_SB(inode), SBI_QUOTA_NEED_REPAIR); |
| return err; |
| } |
| |
| static void recover_inline_flags(struct inode *inode, struct f2fs_inode *ri) |
| { |
| if (ri->i_inline & F2FS_PIN_FILE) |
| set_inode_flag(inode, FI_PIN_FILE); |
| else |
| clear_inode_flag(inode, FI_PIN_FILE); |
| if (ri->i_inline & F2FS_DATA_EXIST) |
| set_inode_flag(inode, FI_DATA_EXIST); |
| else |
| clear_inode_flag(inode, FI_DATA_EXIST); |
| } |
| |
| static int recover_inode(struct inode *inode, struct page *page) |
| { |
| struct f2fs_inode *raw = F2FS_INODE(page); |
| char *name; |
| int err; |
| |
| inode->i_mode = le16_to_cpu(raw->i_mode); |
| |
| err = recover_quota_data(inode, page); |
| if (err) |
| return err; |
| |
| i_uid_write(inode, le32_to_cpu(raw->i_uid)); |
| i_gid_write(inode, le32_to_cpu(raw->i_gid)); |
| |
| if (raw->i_inline & F2FS_EXTRA_ATTR) { |
| if (f2fs_sb_has_project_quota(F2FS_I_SB(inode)) && |
| F2FS_FITS_IN_INODE(raw, le16_to_cpu(raw->i_extra_isize), |
| i_projid)) { |
| projid_t i_projid; |
| kprojid_t kprojid; |
| |
| i_projid = (projid_t)le32_to_cpu(raw->i_projid); |
| kprojid = make_kprojid(&init_user_ns, i_projid); |
| |
| if (!projid_eq(kprojid, F2FS_I(inode)->i_projid)) { |
| err = f2fs_transfer_project_quota(inode, |
| kprojid); |
| if (err) |
| return err; |
| F2FS_I(inode)->i_projid = kprojid; |
| } |
| } |
| } |
| |
| f2fs_i_size_write(inode, le64_to_cpu(raw->i_size)); |
| inode_set_atime(inode, le64_to_cpu(raw->i_atime), |
| le32_to_cpu(raw->i_atime_nsec)); |
| inode_set_ctime(inode, le64_to_cpu(raw->i_ctime), |
| le32_to_cpu(raw->i_ctime_nsec)); |
| inode_set_mtime(inode, le64_to_cpu(raw->i_mtime), |
| le32_to_cpu(raw->i_mtime_nsec)); |
| |
| F2FS_I(inode)->i_advise = raw->i_advise; |
| F2FS_I(inode)->i_flags = le32_to_cpu(raw->i_flags); |
| f2fs_set_inode_flags(inode); |
| F2FS_I(inode)->i_gc_failures[GC_FAILURE_PIN] = |
| le16_to_cpu(raw->i_gc_failures); |
| |
| recover_inline_flags(inode, raw); |
| |
| f2fs_mark_inode_dirty_sync(inode, true); |
| |
| if (file_enc_name(inode)) |
| name = "<encrypted>"; |
| else |
| name = F2FS_INODE(page)->i_name; |
| |
| f2fs_notice(F2FS_I_SB(inode), "recover_inode: ino = %x, name = %s, inline = %x", |
| ino_of_node(page), name, raw->i_inline); |
| return 0; |
| } |
| |
| static unsigned int adjust_por_ra_blocks(struct f2fs_sb_info *sbi, |
| unsigned int ra_blocks, unsigned int blkaddr, |
| unsigned int next_blkaddr) |
| { |
| if (blkaddr + 1 == next_blkaddr) |
| ra_blocks = min_t(unsigned int, RECOVERY_MAX_RA_BLOCKS, |
| ra_blocks * 2); |
| else if (next_blkaddr % BLKS_PER_SEG(sbi)) |
| ra_blocks = max_t(unsigned int, RECOVERY_MIN_RA_BLOCKS, |
| ra_blocks / 2); |
| return ra_blocks; |
| } |
| |
| /* Detect looped node chain with Floyd's cycle detection algorithm. */ |
| static int sanity_check_node_chain(struct f2fs_sb_info *sbi, block_t blkaddr, |
| block_t *blkaddr_fast, bool *is_detecting) |
| { |
| unsigned int ra_blocks = RECOVERY_MAX_RA_BLOCKS; |
| struct page *page = NULL; |
| int i; |
| |
| if (!*is_detecting) |
| return 0; |
| |
| for (i = 0; i < 2; i++) { |
| if (!f2fs_is_valid_blkaddr(sbi, *blkaddr_fast, META_POR)) { |
| *is_detecting = false; |
| return 0; |
| } |
| |
| page = f2fs_get_tmp_page(sbi, *blkaddr_fast); |
| if (IS_ERR(page)) |
| return PTR_ERR(page); |
| |
| if (!is_recoverable_dnode(page)) { |
| f2fs_put_page(page, 1); |
| *is_detecting = false; |
| return 0; |
| } |
| |
| ra_blocks = adjust_por_ra_blocks(sbi, ra_blocks, *blkaddr_fast, |
| next_blkaddr_of_node(page)); |
| |
| *blkaddr_fast = next_blkaddr_of_node(page); |
| f2fs_put_page(page, 1); |
| |
| f2fs_ra_meta_pages_cond(sbi, *blkaddr_fast, ra_blocks); |
| } |
| |
| if (*blkaddr_fast == blkaddr) { |
| f2fs_notice(sbi, "%s: Detect looped node chain on blkaddr:%u." |
| " Run fsck to fix it.", __func__, blkaddr); |
| return -EINVAL; |
| } |
| return 0; |
| } |
| |
| static int find_fsync_dnodes(struct f2fs_sb_info *sbi, struct list_head *head, |
| bool check_only) |
| { |
| struct curseg_info *curseg; |
| struct page *page = NULL; |
| block_t blkaddr, blkaddr_fast; |
| bool is_detecting = true; |
| int err = 0; |
| |
| /* get node pages in the current segment */ |
| curseg = CURSEG_I(sbi, CURSEG_WARM_NODE); |
| blkaddr = NEXT_FREE_BLKADDR(sbi, curseg); |
| blkaddr_fast = blkaddr; |
| |
| while (1) { |
| struct fsync_inode_entry *entry; |
| |
| if (!f2fs_is_valid_blkaddr(sbi, blkaddr, META_POR)) |
| return 0; |
| |
| page = f2fs_get_tmp_page(sbi, blkaddr); |
| if (IS_ERR(page)) { |
| err = PTR_ERR(page); |
| break; |
| } |
| |
| if (!is_recoverable_dnode(page)) { |
| f2fs_put_page(page, 1); |
| break; |
| } |
| |
| if (!is_fsync_dnode(page)) |
| goto next; |
| |
| entry = get_fsync_inode(head, ino_of_node(page)); |
| if (!entry) { |
| bool quota_inode = false; |
| |
| if (!check_only && |
| IS_INODE(page) && is_dent_dnode(page)) { |
| err = f2fs_recover_inode_page(sbi, page); |
| if (err) { |
| f2fs_put_page(page, 1); |
| break; |
| } |
| quota_inode = true; |
| } |
| |
| /* |
| * CP | dnode(F) | inode(DF) |
| * For this case, we should not give up now. |
| */ |
| entry = add_fsync_inode(sbi, head, ino_of_node(page), |
| quota_inode); |
| if (IS_ERR(entry)) { |
| err = PTR_ERR(entry); |
| if (err == -ENOENT) |
| goto next; |
| f2fs_put_page(page, 1); |
| break; |
| } |
| } |
| entry->blkaddr = blkaddr; |
| |
| if (IS_INODE(page) && is_dent_dnode(page)) |
| entry->last_dentry = blkaddr; |
| next: |
| /* check next segment */ |
| blkaddr = next_blkaddr_of_node(page); |
| f2fs_put_page(page, 1); |
| |
| err = sanity_check_node_chain(sbi, blkaddr, &blkaddr_fast, |
| &is_detecting); |
| if (err) |
| break; |
| } |
| return err; |
| } |
| |
| static void destroy_fsync_dnodes(struct list_head *head, int drop) |
| { |
| struct fsync_inode_entry *entry, *tmp; |
| |
| list_for_each_entry_safe(entry, tmp, head, list) |
| del_fsync_inode(entry, drop); |
| } |
| |
| static int check_index_in_prev_nodes(struct f2fs_sb_info *sbi, |
| block_t blkaddr, struct dnode_of_data *dn) |
| { |
| struct seg_entry *sentry; |
| unsigned int segno = GET_SEGNO(sbi, blkaddr); |
| unsigned short blkoff = GET_BLKOFF_FROM_SEG0(sbi, blkaddr); |
| struct f2fs_summary_block *sum_node; |
| struct f2fs_summary sum; |
| struct page *sum_page, *node_page; |
| struct dnode_of_data tdn = *dn; |
| nid_t ino, nid; |
| struct inode *inode; |
| unsigned int offset, ofs_in_node, max_addrs; |
| block_t bidx; |
| int i; |
| |
| sentry = get_seg_entry(sbi, segno); |
| if (!f2fs_test_bit(blkoff, sentry->cur_valid_map)) |
| return 0; |
| |
| /* Get the previous summary */ |
| for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) { |
| struct curseg_info *curseg = CURSEG_I(sbi, i); |
| |
| if (curseg->segno == segno) { |
| sum = curseg->sum_blk->entries[blkoff]; |
| goto got_it; |
| } |
| } |
| |
| sum_page = f2fs_get_sum_page(sbi, segno); |
| if (IS_ERR(sum_page)) |
| return PTR_ERR(sum_page); |
| sum_node = (struct f2fs_summary_block *)page_address(sum_page); |
| sum = sum_node->entries[blkoff]; |
| f2fs_put_page(sum_page, 1); |
| got_it: |
| /* Use the locked dnode page and inode */ |
| nid = le32_to_cpu(sum.nid); |
| ofs_in_node = le16_to_cpu(sum.ofs_in_node); |
| |
| max_addrs = ADDRS_PER_PAGE(dn->node_page, dn->inode); |
| if (ofs_in_node >= max_addrs) { |
| f2fs_err(sbi, "Inconsistent ofs_in_node:%u in summary, ino:%lu, nid:%u, max:%u", |
| ofs_in_node, dn->inode->i_ino, nid, max_addrs); |
| f2fs_handle_error(sbi, ERROR_INCONSISTENT_SUMMARY); |
| return -EFSCORRUPTED; |
| } |
| |
| if (dn->inode->i_ino == nid) { |
| tdn.nid = nid; |
| if (!dn->inode_page_locked) |
| lock_page(dn->inode_page); |
| tdn.node_page = dn->inode_page; |
| tdn.ofs_in_node = ofs_in_node; |
| goto truncate_out; |
| } else if (dn->nid == nid) { |
| tdn.ofs_in_node = ofs_in_node; |
| goto truncate_out; |
| } |
| |
| /* Get the node page */ |
| node_page = f2fs_get_node_page(sbi, nid); |
| if (IS_ERR(node_page)) |
| return PTR_ERR(node_page); |
| |
| offset = ofs_of_node(node_page); |
| ino = ino_of_node(node_page); |
| f2fs_put_page(node_page, 1); |
| |
| if (ino != dn->inode->i_ino) { |
| int ret; |
| |
| /* Deallocate previous index in the node page */ |
| inode = f2fs_iget_retry(sbi->sb, ino); |
| if (IS_ERR(inode)) |
| return PTR_ERR(inode); |
| |
| ret = f2fs_dquot_initialize(inode); |
| if (ret) { |
| iput(inode); |
| return ret; |
| } |
| } else { |
| inode = dn->inode; |
| } |
| |
| bidx = f2fs_start_bidx_of_node(offset, inode) + |
| le16_to_cpu(sum.ofs_in_node); |
| |
| /* |
| * if inode page is locked, unlock temporarily, but its reference |
| * count keeps alive. |
| */ |
| if (ino == dn->inode->i_ino && dn->inode_page_locked) |
| unlock_page(dn->inode_page); |
| |
| set_new_dnode(&tdn, inode, NULL, NULL, 0); |
| if (f2fs_get_dnode_of_data(&tdn, bidx, LOOKUP_NODE)) |
| goto out; |
| |
| if (tdn.data_blkaddr == blkaddr) |
| f2fs_truncate_data_blocks_range(&tdn, 1); |
| |
| f2fs_put_dnode(&tdn); |
| out: |
| if (ino != dn->inode->i_ino) |
| iput(inode); |
| else if (dn->inode_page_locked) |
| lock_page(dn->inode_page); |
| return 0; |
| |
| truncate_out: |
| if (f2fs_data_blkaddr(&tdn) == blkaddr) |
| f2fs_truncate_data_blocks_range(&tdn, 1); |
| if (dn->inode->i_ino == nid && !dn->inode_page_locked) |
| unlock_page(dn->inode_page); |
| return 0; |
| } |
| |
| static int f2fs_reserve_new_block_retry(struct dnode_of_data *dn) |
| { |
| int i, err = 0; |
| |
| for (i = DEFAULT_FAILURE_RETRY_COUNT; i > 0; i--) { |
| err = f2fs_reserve_new_block(dn); |
| if (!err) |
| break; |
| } |
| |
| return err; |
| } |
| |
| static int do_recover_data(struct f2fs_sb_info *sbi, struct inode *inode, |
| struct page *page) |
| { |
| struct dnode_of_data dn; |
| struct node_info ni; |
| unsigned int start, end; |
| int err = 0, recovered = 0; |
| |
| /* step 1: recover xattr */ |
| if (IS_INODE(page)) { |
| err = f2fs_recover_inline_xattr(inode, page); |
| if (err) |
| goto out; |
| } else if (f2fs_has_xattr_block(ofs_of_node(page))) { |
| err = f2fs_recover_xattr_data(inode, page); |
| if (!err) |
| recovered++; |
| goto out; |
| } |
| |
| /* step 2: recover inline data */ |
| err = f2fs_recover_inline_data(inode, page); |
| if (err) { |
| if (err == 1) |
| err = 0; |
| goto out; |
| } |
| |
| /* step 3: recover data indices */ |
| start = f2fs_start_bidx_of_node(ofs_of_node(page), inode); |
| end = start + ADDRS_PER_PAGE(page, inode); |
| |
| set_new_dnode(&dn, inode, NULL, NULL, 0); |
| retry_dn: |
| err = f2fs_get_dnode_of_data(&dn, start, ALLOC_NODE); |
| if (err) { |
| if (err == -ENOMEM) { |
| memalloc_retry_wait(GFP_NOFS); |
| goto retry_dn; |
| } |
| goto out; |
| } |
| |
| f2fs_wait_on_page_writeback(dn.node_page, NODE, true, true); |
| |
| err = f2fs_get_node_info(sbi, dn.nid, &ni, false); |
| if (err) |
| goto err; |
| |
| f2fs_bug_on(sbi, ni.ino != ino_of_node(page)); |
| |
| if (ofs_of_node(dn.node_page) != ofs_of_node(page)) { |
| f2fs_warn(sbi, "Inconsistent ofs_of_node, ino:%lu, ofs:%u, %u", |
| inode->i_ino, ofs_of_node(dn.node_page), |
| ofs_of_node(page)); |
| err = -EFSCORRUPTED; |
| f2fs_handle_error(sbi, ERROR_INCONSISTENT_FOOTER); |
| goto err; |
| } |
| |
| for (; start < end; start++, dn.ofs_in_node++) { |
| block_t src, dest; |
| |
| src = f2fs_data_blkaddr(&dn); |
| dest = data_blkaddr(dn.inode, page, dn.ofs_in_node); |
| |
| if (__is_valid_data_blkaddr(src) && |
| !f2fs_is_valid_blkaddr(sbi, src, META_POR)) { |
| err = -EFSCORRUPTED; |
| goto err; |
| } |
| |
| if (__is_valid_data_blkaddr(dest) && |
| !f2fs_is_valid_blkaddr(sbi, dest, META_POR)) { |
| err = -EFSCORRUPTED; |
| goto err; |
| } |
| |
| /* skip recovering if dest is the same as src */ |
| if (src == dest) |
| continue; |
| |
| /* dest is invalid, just invalidate src block */ |
| if (dest == NULL_ADDR) { |
| f2fs_truncate_data_blocks_range(&dn, 1); |
| continue; |
| } |
| |
| if (!file_keep_isize(inode) && |
| (i_size_read(inode) <= ((loff_t)start << PAGE_SHIFT))) |
| f2fs_i_size_write(inode, |
| (loff_t)(start + 1) << PAGE_SHIFT); |
| |
| /* |
| * dest is reserved block, invalidate src block |
| * and then reserve one new block in dnode page. |
| */ |
| if (dest == NEW_ADDR) { |
| f2fs_truncate_data_blocks_range(&dn, 1); |
| |
| err = f2fs_reserve_new_block_retry(&dn); |
| if (err) |
| goto err; |
| continue; |
| } |
| |
| /* dest is valid block, try to recover from src to dest */ |
| if (f2fs_is_valid_blkaddr(sbi, dest, META_POR)) { |
| if (src == NULL_ADDR) { |
| err = f2fs_reserve_new_block_retry(&dn); |
| if (err) |
| goto err; |
| } |
| retry_prev: |
| /* Check the previous node page having this index */ |
| err = check_index_in_prev_nodes(sbi, dest, &dn); |
| if (err) { |
| if (err == -ENOMEM) { |
| memalloc_retry_wait(GFP_NOFS); |
| goto retry_prev; |
| } |
| goto err; |
| } |
| |
| if (f2fs_is_valid_blkaddr(sbi, dest, |
| DATA_GENERIC_ENHANCE_UPDATE)) { |
| f2fs_err(sbi, "Inconsistent dest blkaddr:%u, ino:%lu, ofs:%u", |
| dest, inode->i_ino, dn.ofs_in_node); |
| err = -EFSCORRUPTED; |
| goto err; |
| } |
| |
| /* write dummy data page */ |
| f2fs_replace_block(sbi, &dn, src, dest, |
| ni.version, false, false); |
| recovered++; |
| } |
| } |
| |
| copy_node_footer(dn.node_page, page); |
| fill_node_footer(dn.node_page, dn.nid, ni.ino, |
| ofs_of_node(page), false); |
| set_page_dirty(dn.node_page); |
| err: |
| f2fs_put_dnode(&dn); |
| out: |
| f2fs_notice(sbi, "recover_data: ino = %lx (i_size: %s) recovered = %d, err = %d", |
| inode->i_ino, file_keep_isize(inode) ? "keep" : "recover", |
| recovered, err); |
| return err; |
| } |
| |
| static int recover_data(struct f2fs_sb_info *sbi, struct list_head *inode_list, |
| struct list_head *tmp_inode_list, struct list_head *dir_list) |
| { |
| struct curseg_info *curseg; |
| struct page *page = NULL; |
| int err = 0; |
| block_t blkaddr; |
| unsigned int ra_blocks = RECOVERY_MAX_RA_BLOCKS; |
| |
| /* get node pages in the current segment */ |
| curseg = CURSEG_I(sbi, CURSEG_WARM_NODE); |
| blkaddr = NEXT_FREE_BLKADDR(sbi, curseg); |
| |
| while (1) { |
| struct fsync_inode_entry *entry; |
| |
| if (!f2fs_is_valid_blkaddr(sbi, blkaddr, META_POR)) |
| break; |
| |
| page = f2fs_get_tmp_page(sbi, blkaddr); |
| if (IS_ERR(page)) { |
| err = PTR_ERR(page); |
| break; |
| } |
| |
| if (!is_recoverable_dnode(page)) { |
| f2fs_put_page(page, 1); |
| break; |
| } |
| |
| entry = get_fsync_inode(inode_list, ino_of_node(page)); |
| if (!entry) |
| goto next; |
| /* |
| * inode(x) | CP | inode(x) | dnode(F) |
| * In this case, we can lose the latest inode(x). |
| * So, call recover_inode for the inode update. |
| */ |
| if (IS_INODE(page)) { |
| err = recover_inode(entry->inode, page); |
| if (err) { |
| f2fs_put_page(page, 1); |
| break; |
| } |
| } |
| if (entry->last_dentry == blkaddr) { |
| err = recover_dentry(entry->inode, page, dir_list); |
| if (err) { |
| f2fs_put_page(page, 1); |
| break; |
| } |
| } |
| err = do_recover_data(sbi, entry->inode, page); |
| if (err) { |
| f2fs_put_page(page, 1); |
| break; |
| } |
| |
| if (entry->blkaddr == blkaddr) |
| list_move_tail(&entry->list, tmp_inode_list); |
| next: |
| ra_blocks = adjust_por_ra_blocks(sbi, ra_blocks, blkaddr, |
| next_blkaddr_of_node(page)); |
| |
| /* check next segment */ |
| blkaddr = next_blkaddr_of_node(page); |
| f2fs_put_page(page, 1); |
| |
| f2fs_ra_meta_pages_cond(sbi, blkaddr, ra_blocks); |
| } |
| if (!err) |
| err = f2fs_allocate_new_segments(sbi); |
| return err; |
| } |
| |
| int f2fs_recover_fsync_data(struct f2fs_sb_info *sbi, bool check_only) |
| { |
| struct list_head inode_list, tmp_inode_list; |
| struct list_head dir_list; |
| int err; |
| int ret = 0; |
| unsigned long s_flags = sbi->sb->s_flags; |
| bool need_writecp = false; |
| |
| if (is_sbi_flag_set(sbi, SBI_IS_WRITABLE)) |
| f2fs_info(sbi, "recover fsync data on readonly fs"); |
| |
| INIT_LIST_HEAD(&inode_list); |
| INIT_LIST_HEAD(&tmp_inode_list); |
| INIT_LIST_HEAD(&dir_list); |
| |
| /* prevent checkpoint */ |
| f2fs_down_write(&sbi->cp_global_sem); |
| |
| /* step #1: find fsynced inode numbers */ |
| err = find_fsync_dnodes(sbi, &inode_list, check_only); |
| if (err || list_empty(&inode_list)) |
| goto skip; |
| |
| if (check_only) { |
| ret = 1; |
| goto skip; |
| } |
| |
| need_writecp = true; |
| |
| /* step #2: recover data */ |
| err = recover_data(sbi, &inode_list, &tmp_inode_list, &dir_list); |
| if (!err) |
| f2fs_bug_on(sbi, !list_empty(&inode_list)); |
| else |
| f2fs_bug_on(sbi, sbi->sb->s_flags & SB_ACTIVE); |
| skip: |
| destroy_fsync_dnodes(&inode_list, err); |
| destroy_fsync_dnodes(&tmp_inode_list, err); |
| |
| /* truncate meta pages to be used by the recovery */ |
| truncate_inode_pages_range(META_MAPPING(sbi), |
| (loff_t)MAIN_BLKADDR(sbi) << PAGE_SHIFT, -1); |
| |
| if (err) { |
| truncate_inode_pages_final(NODE_MAPPING(sbi)); |
| truncate_inode_pages_final(META_MAPPING(sbi)); |
| } |
| |
| /* |
| * If fsync data succeeds or there is no fsync data to recover, |
| * and the f2fs is not read only, check and fix zoned block devices' |
| * write pointer consistency. |
| */ |
| if (f2fs_sb_has_blkzoned(sbi) && !f2fs_readonly(sbi->sb)) { |
| int err2 = f2fs_fix_curseg_write_pointer(sbi); |
| |
| if (!err2) |
| err2 = f2fs_check_write_pointer(sbi); |
| if (err2) |
| err = err2; |
| ret = err; |
| } |
| |
| if (!err) |
| clear_sbi_flag(sbi, SBI_POR_DOING); |
| |
| f2fs_up_write(&sbi->cp_global_sem); |
| |
| /* let's drop all the directory inodes for clean checkpoint */ |
| destroy_fsync_dnodes(&dir_list, err); |
| |
| if (need_writecp) { |
| set_sbi_flag(sbi, SBI_IS_RECOVERED); |
| |
| if (!err) { |
| struct cp_control cpc = { |
| .reason = CP_RECOVERY, |
| }; |
| stat_inc_cp_call_count(sbi, TOTAL_CALL); |
| err = f2fs_write_checkpoint(sbi, &cpc); |
| } |
| } |
| |
| sbi->sb->s_flags = s_flags; /* Restore SB_RDONLY status */ |
| |
| return ret ? ret : err; |
| } |
| |
| int __init f2fs_create_recovery_cache(void) |
| { |
| fsync_entry_slab = f2fs_kmem_cache_create("f2fs_fsync_inode_entry", |
| sizeof(struct fsync_inode_entry)); |
| return fsync_entry_slab ? 0 : -ENOMEM; |
| } |
| |
| void f2fs_destroy_recovery_cache(void) |
| { |
| kmem_cache_destroy(fsync_entry_slab); |
| } |