| // SPDX-License-Identifier: GPL-2.0-only |
| /* |
| * Copyright 2017 Benjamin Herrenschmidt, IBM Corporation. |
| */ |
| |
| #define pr_fmt(fmt) "xive-kvm: " fmt |
| |
| #include <linux/kernel.h> |
| #include <linux/kvm_host.h> |
| #include <linux/err.h> |
| #include <linux/gfp.h> |
| #include <linux/spinlock.h> |
| #include <linux/delay.h> |
| #include <linux/percpu.h> |
| #include <linux/cpumask.h> |
| #include <linux/uaccess.h> |
| #include <linux/irqdomain.h> |
| #include <asm/kvm_book3s.h> |
| #include <asm/kvm_ppc.h> |
| #include <asm/hvcall.h> |
| #include <asm/xics.h> |
| #include <asm/xive.h> |
| #include <asm/xive-regs.h> |
| #include <asm/debug.h> |
| #include <asm/time.h> |
| #include <asm/opal.h> |
| |
| #include <linux/debugfs.h> |
| #include <linux/seq_file.h> |
| |
| #include "book3s_xive.h" |
| |
| #define __x_eoi_page(xd) ((void __iomem *)((xd)->eoi_mmio)) |
| #define __x_trig_page(xd) ((void __iomem *)((xd)->trig_mmio)) |
| |
| /* Dummy interrupt used when taking interrupts out of a queue in H_CPPR */ |
| #define XICS_DUMMY 1 |
| |
| static void xive_vm_ack_pending(struct kvmppc_xive_vcpu *xc) |
| { |
| u8 cppr; |
| u16 ack; |
| |
| /* |
| * Ensure any previous store to CPPR is ordered vs. |
| * the subsequent loads from PIPR or ACK. |
| */ |
| eieio(); |
| |
| /* Perform the acknowledge OS to register cycle. */ |
| ack = be16_to_cpu(__raw_readw(xive_tima + TM_SPC_ACK_OS_REG)); |
| |
| /* Synchronize subsequent queue accesses */ |
| mb(); |
| |
| /* XXX Check grouping level */ |
| |
| /* Anything ? */ |
| if (!((ack >> 8) & TM_QW1_NSR_EO)) |
| return; |
| |
| /* Grab CPPR of the most favored pending interrupt */ |
| cppr = ack & 0xff; |
| if (cppr < 8) |
| xc->pending |= 1 << cppr; |
| |
| /* Check consistency */ |
| if (cppr >= xc->hw_cppr) |
| pr_warn("KVM-XIVE: CPU %d odd ack CPPR, got %d at %d\n", |
| smp_processor_id(), cppr, xc->hw_cppr); |
| |
| /* |
| * Update our image of the HW CPPR. We don't yet modify |
| * xc->cppr, this will be done as we scan for interrupts |
| * in the queues. |
| */ |
| xc->hw_cppr = cppr; |
| } |
| |
| static u8 xive_vm_esb_load(struct xive_irq_data *xd, u32 offset) |
| { |
| u64 val; |
| |
| if (offset == XIVE_ESB_SET_PQ_10 && xd->flags & XIVE_IRQ_FLAG_STORE_EOI) |
| offset |= XIVE_ESB_LD_ST_MO; |
| |
| val = __raw_readq(__x_eoi_page(xd) + offset); |
| #ifdef __LITTLE_ENDIAN__ |
| val >>= 64-8; |
| #endif |
| return (u8)val; |
| } |
| |
| |
| static void xive_vm_source_eoi(u32 hw_irq, struct xive_irq_data *xd) |
| { |
| /* If the XIVE supports the new "store EOI facility, use it */ |
| if (xd->flags & XIVE_IRQ_FLAG_STORE_EOI) |
| __raw_writeq(0, __x_eoi_page(xd) + XIVE_ESB_STORE_EOI); |
| else if (xd->flags & XIVE_IRQ_FLAG_LSI) { |
| /* |
| * For LSIs the HW EOI cycle is used rather than PQ bits, |
| * as they are automatically re-triggred in HW when still |
| * pending. |
| */ |
| __raw_readq(__x_eoi_page(xd) + XIVE_ESB_LOAD_EOI); |
| } else { |
| uint64_t eoi_val; |
| |
| /* |
| * Otherwise for EOI, we use the special MMIO that does |
| * a clear of both P and Q and returns the old Q, |
| * except for LSIs where we use the "EOI cycle" special |
| * load. |
| * |
| * This allows us to then do a re-trigger if Q was set |
| * rather than synthetizing an interrupt in software |
| */ |
| eoi_val = xive_vm_esb_load(xd, XIVE_ESB_SET_PQ_00); |
| |
| /* Re-trigger if needed */ |
| if ((eoi_val & 1) && __x_trig_page(xd)) |
| __raw_writeq(0, __x_trig_page(xd)); |
| } |
| } |
| |
| enum { |
| scan_fetch, |
| scan_poll, |
| scan_eoi, |
| }; |
| |
| static u32 xive_vm_scan_interrupts(struct kvmppc_xive_vcpu *xc, |
| u8 pending, int scan_type) |
| { |
| u32 hirq = 0; |
| u8 prio = 0xff; |
| |
| /* Find highest pending priority */ |
| while ((xc->mfrr != 0xff || pending != 0) && hirq == 0) { |
| struct xive_q *q; |
| u32 idx, toggle; |
| __be32 *qpage; |
| |
| /* |
| * If pending is 0 this will return 0xff which is what |
| * we want |
| */ |
| prio = ffs(pending) - 1; |
| |
| /* Don't scan past the guest cppr */ |
| if (prio >= xc->cppr || prio > 7) { |
| if (xc->mfrr < xc->cppr) { |
| prio = xc->mfrr; |
| hirq = XICS_IPI; |
| } |
| break; |
| } |
| |
| /* Grab queue and pointers */ |
| q = &xc->queues[prio]; |
| idx = q->idx; |
| toggle = q->toggle; |
| |
| /* |
| * Snapshot the queue page. The test further down for EOI |
| * must use the same "copy" that was used by __xive_read_eq |
| * since qpage can be set concurrently and we don't want |
| * to miss an EOI. |
| */ |
| qpage = READ_ONCE(q->qpage); |
| |
| skip_ipi: |
| /* |
| * Try to fetch from the queue. Will return 0 for a |
| * non-queueing priority (ie, qpage = 0). |
| */ |
| hirq = __xive_read_eq(qpage, q->msk, &idx, &toggle); |
| |
| /* |
| * If this was a signal for an MFFR change done by |
| * H_IPI we skip it. Additionally, if we were fetching |
| * we EOI it now, thus re-enabling reception of a new |
| * such signal. |
| * |
| * We also need to do that if prio is 0 and we had no |
| * page for the queue. In this case, we have non-queued |
| * IPI that needs to be EOId. |
| * |
| * This is safe because if we have another pending MFRR |
| * change that wasn't observed above, the Q bit will have |
| * been set and another occurrence of the IPI will trigger. |
| */ |
| if (hirq == XICS_IPI || (prio == 0 && !qpage)) { |
| if (scan_type == scan_fetch) { |
| xive_vm_source_eoi(xc->vp_ipi, |
| &xc->vp_ipi_data); |
| q->idx = idx; |
| q->toggle = toggle; |
| } |
| /* Loop back on same queue with updated idx/toggle */ |
| WARN_ON(hirq && hirq != XICS_IPI); |
| if (hirq) |
| goto skip_ipi; |
| } |
| |
| /* If it's the dummy interrupt, continue searching */ |
| if (hirq == XICS_DUMMY) |
| goto skip_ipi; |
| |
| /* Clear the pending bit if the queue is now empty */ |
| if (!hirq) { |
| pending &= ~(1 << prio); |
| |
| /* |
| * Check if the queue count needs adjusting due to |
| * interrupts being moved away. |
| */ |
| if (atomic_read(&q->pending_count)) { |
| int p = atomic_xchg(&q->pending_count, 0); |
| |
| if (p) { |
| WARN_ON(p > atomic_read(&q->count)); |
| atomic_sub(p, &q->count); |
| } |
| } |
| } |
| |
| /* |
| * If the most favoured prio we found pending is less |
| * favored (or equal) than a pending IPI, we return |
| * the IPI instead. |
| */ |
| if (prio >= xc->mfrr && xc->mfrr < xc->cppr) { |
| prio = xc->mfrr; |
| hirq = XICS_IPI; |
| break; |
| } |
| |
| /* If fetching, update queue pointers */ |
| if (scan_type == scan_fetch) { |
| q->idx = idx; |
| q->toggle = toggle; |
| } |
| } |
| |
| /* If we are just taking a "peek", do nothing else */ |
| if (scan_type == scan_poll) |
| return hirq; |
| |
| /* Update the pending bits */ |
| xc->pending = pending; |
| |
| /* |
| * If this is an EOI that's it, no CPPR adjustment done here, |
| * all we needed was cleanup the stale pending bits and check |
| * if there's anything left. |
| */ |
| if (scan_type == scan_eoi) |
| return hirq; |
| |
| /* |
| * If we found an interrupt, adjust what the guest CPPR should |
| * be as if we had just fetched that interrupt from HW. |
| * |
| * Note: This can only make xc->cppr smaller as the previous |
| * loop will only exit with hirq != 0 if prio is lower than |
| * the current xc->cppr. Thus we don't need to re-check xc->mfrr |
| * for pending IPIs. |
| */ |
| if (hirq) |
| xc->cppr = prio; |
| /* |
| * If it was an IPI the HW CPPR might have been lowered too much |
| * as the HW interrupt we use for IPIs is routed to priority 0. |
| * |
| * We re-sync it here. |
| */ |
| if (xc->cppr != xc->hw_cppr) { |
| xc->hw_cppr = xc->cppr; |
| __raw_writeb(xc->cppr, xive_tima + TM_QW1_OS + TM_CPPR); |
| } |
| |
| return hirq; |
| } |
| |
| static unsigned long xive_vm_h_xirr(struct kvm_vcpu *vcpu) |
| { |
| struct kvmppc_xive_vcpu *xc = vcpu->arch.xive_vcpu; |
| u8 old_cppr; |
| u32 hirq; |
| |
| pr_devel("H_XIRR\n"); |
| |
| xc->stat_vm_h_xirr++; |
| |
| /* First collect pending bits from HW */ |
| xive_vm_ack_pending(xc); |
| |
| pr_devel(" new pending=0x%02x hw_cppr=%d cppr=%d\n", |
| xc->pending, xc->hw_cppr, xc->cppr); |
| |
| /* Grab previous CPPR and reverse map it */ |
| old_cppr = xive_prio_to_guest(xc->cppr); |
| |
| /* Scan for actual interrupts */ |
| hirq = xive_vm_scan_interrupts(xc, xc->pending, scan_fetch); |
| |
| pr_devel(" got hirq=0x%x hw_cppr=%d cppr=%d\n", |
| hirq, xc->hw_cppr, xc->cppr); |
| |
| /* That should never hit */ |
| if (hirq & 0xff000000) |
| pr_warn("XIVE: Weird guest interrupt number 0x%08x\n", hirq); |
| |
| /* |
| * XXX We could check if the interrupt is masked here and |
| * filter it. If we chose to do so, we would need to do: |
| * |
| * if (masked) { |
| * lock(); |
| * if (masked) { |
| * old_Q = true; |
| * hirq = 0; |
| * } |
| * unlock(); |
| * } |
| */ |
| |
| /* Return interrupt and old CPPR in GPR4 */ |
| vcpu->arch.regs.gpr[4] = hirq | (old_cppr << 24); |
| |
| return H_SUCCESS; |
| } |
| |
| static unsigned long xive_vm_h_ipoll(struct kvm_vcpu *vcpu, unsigned long server) |
| { |
| struct kvmppc_xive_vcpu *xc = vcpu->arch.xive_vcpu; |
| u8 pending = xc->pending; |
| u32 hirq; |
| |
| pr_devel("H_IPOLL(server=%ld)\n", server); |
| |
| xc->stat_vm_h_ipoll++; |
| |
| /* Grab the target VCPU if not the current one */ |
| if (xc->server_num != server) { |
| vcpu = kvmppc_xive_find_server(vcpu->kvm, server); |
| if (!vcpu) |
| return H_PARAMETER; |
| xc = vcpu->arch.xive_vcpu; |
| |
| /* Scan all priorities */ |
| pending = 0xff; |
| } else { |
| /* Grab pending interrupt if any */ |
| __be64 qw1 = __raw_readq(xive_tima + TM_QW1_OS); |
| u8 pipr = be64_to_cpu(qw1) & 0xff; |
| |
| if (pipr < 8) |
| pending |= 1 << pipr; |
| } |
| |
| hirq = xive_vm_scan_interrupts(xc, pending, scan_poll); |
| |
| /* Return interrupt and old CPPR in GPR4 */ |
| vcpu->arch.regs.gpr[4] = hirq | (xc->cppr << 24); |
| |
| return H_SUCCESS; |
| } |
| |
| static void xive_vm_push_pending_to_hw(struct kvmppc_xive_vcpu *xc) |
| { |
| u8 pending, prio; |
| |
| pending = xc->pending; |
| if (xc->mfrr != 0xff) { |
| if (xc->mfrr < 8) |
| pending |= 1 << xc->mfrr; |
| else |
| pending |= 0x80; |
| } |
| if (!pending) |
| return; |
| prio = ffs(pending) - 1; |
| |
| __raw_writeb(prio, xive_tima + TM_SPC_SET_OS_PENDING); |
| } |
| |
| static void xive_vm_scan_for_rerouted_irqs(struct kvmppc_xive *xive, |
| struct kvmppc_xive_vcpu *xc) |
| { |
| unsigned int prio; |
| |
| /* For each priority that is now masked */ |
| for (prio = xc->cppr; prio < KVMPPC_XIVE_Q_COUNT; prio++) { |
| struct xive_q *q = &xc->queues[prio]; |
| struct kvmppc_xive_irq_state *state; |
| struct kvmppc_xive_src_block *sb; |
| u32 idx, toggle, entry, irq, hw_num; |
| struct xive_irq_data *xd; |
| __be32 *qpage; |
| u16 src; |
| |
| idx = q->idx; |
| toggle = q->toggle; |
| qpage = READ_ONCE(q->qpage); |
| if (!qpage) |
| continue; |
| |
| /* For each interrupt in the queue */ |
| for (;;) { |
| entry = be32_to_cpup(qpage + idx); |
| |
| /* No more ? */ |
| if ((entry >> 31) == toggle) |
| break; |
| irq = entry & 0x7fffffff; |
| |
| /* Skip dummies and IPIs */ |
| if (irq == XICS_DUMMY || irq == XICS_IPI) |
| goto next; |
| sb = kvmppc_xive_find_source(xive, irq, &src); |
| if (!sb) |
| goto next; |
| state = &sb->irq_state[src]; |
| |
| /* Has it been rerouted ? */ |
| if (xc->server_num == state->act_server) |
| goto next; |
| |
| /* |
| * Allright, it *has* been re-routed, kill it from |
| * the queue. |
| */ |
| qpage[idx] = cpu_to_be32((entry & 0x80000000) | XICS_DUMMY); |
| |
| /* Find the HW interrupt */ |
| kvmppc_xive_select_irq(state, &hw_num, &xd); |
| |
| /* If it's not an LSI, set PQ to 11 the EOI will force a resend */ |
| if (!(xd->flags & XIVE_IRQ_FLAG_LSI)) |
| xive_vm_esb_load(xd, XIVE_ESB_SET_PQ_11); |
| |
| /* EOI the source */ |
| xive_vm_source_eoi(hw_num, xd); |
| |
| next: |
| idx = (idx + 1) & q->msk; |
| if (idx == 0) |
| toggle ^= 1; |
| } |
| } |
| } |
| |
| static int xive_vm_h_cppr(struct kvm_vcpu *vcpu, unsigned long cppr) |
| { |
| struct kvmppc_xive_vcpu *xc = vcpu->arch.xive_vcpu; |
| struct kvmppc_xive *xive = vcpu->kvm->arch.xive; |
| u8 old_cppr; |
| |
| pr_devel("H_CPPR(cppr=%ld)\n", cppr); |
| |
| xc->stat_vm_h_cppr++; |
| |
| /* Map CPPR */ |
| cppr = xive_prio_from_guest(cppr); |
| |
| /* Remember old and update SW state */ |
| old_cppr = xc->cppr; |
| xc->cppr = cppr; |
| |
| /* |
| * Order the above update of xc->cppr with the subsequent |
| * read of xc->mfrr inside push_pending_to_hw() |
| */ |
| smp_mb(); |
| |
| if (cppr > old_cppr) { |
| /* |
| * We are masking less, we need to look for pending things |
| * to deliver and set VP pending bits accordingly to trigger |
| * a new interrupt otherwise we might miss MFRR changes for |
| * which we have optimized out sending an IPI signal. |
| */ |
| xive_vm_push_pending_to_hw(xc); |
| } else { |
| /* |
| * We are masking more, we need to check the queue for any |
| * interrupt that has been routed to another CPU, take |
| * it out (replace it with the dummy) and retrigger it. |
| * |
| * This is necessary since those interrupts may otherwise |
| * never be processed, at least not until this CPU restores |
| * its CPPR. |
| * |
| * This is in theory racy vs. HW adding new interrupts to |
| * the queue. In practice this works because the interesting |
| * cases are when the guest has done a set_xive() to move the |
| * interrupt away, which flushes the xive, followed by the |
| * target CPU doing a H_CPPR. So any new interrupt coming into |
| * the queue must still be routed to us and isn't a source |
| * of concern. |
| */ |
| xive_vm_scan_for_rerouted_irqs(xive, xc); |
| } |
| |
| /* Apply new CPPR */ |
| xc->hw_cppr = cppr; |
| __raw_writeb(cppr, xive_tima + TM_QW1_OS + TM_CPPR); |
| |
| return H_SUCCESS; |
| } |
| |
| static int xive_vm_h_eoi(struct kvm_vcpu *vcpu, unsigned long xirr) |
| { |
| struct kvmppc_xive *xive = vcpu->kvm->arch.xive; |
| struct kvmppc_xive_src_block *sb; |
| struct kvmppc_xive_irq_state *state; |
| struct kvmppc_xive_vcpu *xc = vcpu->arch.xive_vcpu; |
| struct xive_irq_data *xd; |
| u8 new_cppr = xirr >> 24; |
| u32 irq = xirr & 0x00ffffff, hw_num; |
| u16 src; |
| int rc = 0; |
| |
| pr_devel("H_EOI(xirr=%08lx)\n", xirr); |
| |
| xc->stat_vm_h_eoi++; |
| |
| xc->cppr = xive_prio_from_guest(new_cppr); |
| |
| /* |
| * IPIs are synthetized from MFRR and thus don't need |
| * any special EOI handling. The underlying interrupt |
| * used to signal MFRR changes is EOId when fetched from |
| * the queue. |
| */ |
| if (irq == XICS_IPI || irq == 0) { |
| /* |
| * This barrier orders the setting of xc->cppr vs. |
| * subsequent test of xc->mfrr done inside |
| * scan_interrupts and push_pending_to_hw |
| */ |
| smp_mb(); |
| goto bail; |
| } |
| |
| /* Find interrupt source */ |
| sb = kvmppc_xive_find_source(xive, irq, &src); |
| if (!sb) { |
| pr_devel(" source not found !\n"); |
| rc = H_PARAMETER; |
| /* Same as above */ |
| smp_mb(); |
| goto bail; |
| } |
| state = &sb->irq_state[src]; |
| kvmppc_xive_select_irq(state, &hw_num, &xd); |
| |
| state->in_eoi = true; |
| |
| /* |
| * This barrier orders both setting of in_eoi above vs, |
| * subsequent test of guest_priority, and the setting |
| * of xc->cppr vs. subsequent test of xc->mfrr done inside |
| * scan_interrupts and push_pending_to_hw |
| */ |
| smp_mb(); |
| |
| again: |
| if (state->guest_priority == MASKED) { |
| arch_spin_lock(&sb->lock); |
| if (state->guest_priority != MASKED) { |
| arch_spin_unlock(&sb->lock); |
| goto again; |
| } |
| pr_devel(" EOI on saved P...\n"); |
| |
| /* Clear old_p, that will cause unmask to perform an EOI */ |
| state->old_p = false; |
| |
| arch_spin_unlock(&sb->lock); |
| } else { |
| pr_devel(" EOI on source...\n"); |
| |
| /* Perform EOI on the source */ |
| xive_vm_source_eoi(hw_num, xd); |
| |
| /* If it's an emulated LSI, check level and resend */ |
| if (state->lsi && state->asserted) |
| __raw_writeq(0, __x_trig_page(xd)); |
| |
| } |
| |
| /* |
| * This barrier orders the above guest_priority check |
| * and spin_lock/unlock with clearing in_eoi below. |
| * |
| * It also has to be a full mb() as it must ensure |
| * the MMIOs done in source_eoi() are completed before |
| * state->in_eoi is visible. |
| */ |
| mb(); |
| state->in_eoi = false; |
| bail: |
| |
| /* Re-evaluate pending IRQs and update HW */ |
| xive_vm_scan_interrupts(xc, xc->pending, scan_eoi); |
| xive_vm_push_pending_to_hw(xc); |
| pr_devel(" after scan pending=%02x\n", xc->pending); |
| |
| /* Apply new CPPR */ |
| xc->hw_cppr = xc->cppr; |
| __raw_writeb(xc->cppr, xive_tima + TM_QW1_OS + TM_CPPR); |
| |
| return rc; |
| } |
| |
| static int xive_vm_h_ipi(struct kvm_vcpu *vcpu, unsigned long server, |
| unsigned long mfrr) |
| { |
| struct kvmppc_xive_vcpu *xc = vcpu->arch.xive_vcpu; |
| |
| pr_devel("H_IPI(server=%08lx,mfrr=%ld)\n", server, mfrr); |
| |
| xc->stat_vm_h_ipi++; |
| |
| /* Find target */ |
| vcpu = kvmppc_xive_find_server(vcpu->kvm, server); |
| if (!vcpu) |
| return H_PARAMETER; |
| xc = vcpu->arch.xive_vcpu; |
| |
| /* Locklessly write over MFRR */ |
| xc->mfrr = mfrr; |
| |
| /* |
| * The load of xc->cppr below and the subsequent MMIO store |
| * to the IPI must happen after the above mfrr update is |
| * globally visible so that: |
| * |
| * - Synchronize with another CPU doing an H_EOI or a H_CPPR |
| * updating xc->cppr then reading xc->mfrr. |
| * |
| * - The target of the IPI sees the xc->mfrr update |
| */ |
| mb(); |
| |
| /* Shoot the IPI if most favored than target cppr */ |
| if (mfrr < xc->cppr) |
| __raw_writeq(0, __x_trig_page(&xc->vp_ipi_data)); |
| |
| return H_SUCCESS; |
| } |
| |
| /* |
| * We leave a gap of a couple of interrupts in the queue to |
| * account for the IPI and additional safety guard. |
| */ |
| #define XIVE_Q_GAP 2 |
| |
| static bool kvmppc_xive_vcpu_has_save_restore(struct kvm_vcpu *vcpu) |
| { |
| struct kvmppc_xive_vcpu *xc = vcpu->arch.xive_vcpu; |
| |
| /* Check enablement at VP level */ |
| return xc->vp_cam & TM_QW1W2_HO; |
| } |
| |
| bool kvmppc_xive_check_save_restore(struct kvm_vcpu *vcpu) |
| { |
| struct kvmppc_xive_vcpu *xc = vcpu->arch.xive_vcpu; |
| struct kvmppc_xive *xive = xc->xive; |
| |
| if (xive->flags & KVMPPC_XIVE_FLAG_SAVE_RESTORE) |
| return kvmppc_xive_vcpu_has_save_restore(vcpu); |
| |
| return true; |
| } |
| |
| /* |
| * Push a vcpu's context to the XIVE on guest entry. |
| * This assumes we are in virtual mode (MMU on) |
| */ |
| void kvmppc_xive_push_vcpu(struct kvm_vcpu *vcpu) |
| { |
| void __iomem *tima = local_paca->kvm_hstate.xive_tima_virt; |
| u64 pq; |
| |
| /* |
| * Nothing to do if the platform doesn't have a XIVE |
| * or this vCPU doesn't have its own XIVE context |
| * (e.g. because it's not using an in-kernel interrupt controller). |
| */ |
| if (!tima || !vcpu->arch.xive_cam_word) |
| return; |
| |
| eieio(); |
| if (!kvmppc_xive_vcpu_has_save_restore(vcpu)) |
| __raw_writeq(vcpu->arch.xive_saved_state.w01, tima + TM_QW1_OS); |
| __raw_writel(vcpu->arch.xive_cam_word, tima + TM_QW1_OS + TM_WORD2); |
| vcpu->arch.xive_pushed = 1; |
| eieio(); |
| |
| /* |
| * We clear the irq_pending flag. There is a small chance of a |
| * race vs. the escalation interrupt happening on another |
| * processor setting it again, but the only consequence is to |
| * cause a spurious wakeup on the next H_CEDE, which is not an |
| * issue. |
| */ |
| vcpu->arch.irq_pending = 0; |
| |
| /* |
| * In single escalation mode, if the escalation interrupt is |
| * on, we mask it. |
| */ |
| if (vcpu->arch.xive_esc_on) { |
| pq = __raw_readq((void __iomem *)(vcpu->arch.xive_esc_vaddr + |
| XIVE_ESB_SET_PQ_01)); |
| mb(); |
| |
| /* |
| * We have a possible subtle race here: The escalation |
| * interrupt might have fired and be on its way to the |
| * host queue while we mask it, and if we unmask it |
| * early enough (re-cede right away), there is a |
| * theoretical possibility that it fires again, thus |
| * landing in the target queue more than once which is |
| * a big no-no. |
| * |
| * Fortunately, solving this is rather easy. If the |
| * above load setting PQ to 01 returns a previous |
| * value where P is set, then we know the escalation |
| * interrupt is somewhere on its way to the host. In |
| * that case we simply don't clear the xive_esc_on |
| * flag below. It will be eventually cleared by the |
| * handler for the escalation interrupt. |
| * |
| * Then, when doing a cede, we check that flag again |
| * before re-enabling the escalation interrupt, and if |
| * set, we abort the cede. |
| */ |
| if (!(pq & XIVE_ESB_VAL_P)) |
| /* Now P is 0, we can clear the flag */ |
| vcpu->arch.xive_esc_on = 0; |
| } |
| } |
| EXPORT_SYMBOL_GPL(kvmppc_xive_push_vcpu); |
| |
| /* |
| * Pull a vcpu's context from the XIVE on guest exit. |
| * This assumes we are in virtual mode (MMU on) |
| */ |
| void kvmppc_xive_pull_vcpu(struct kvm_vcpu *vcpu) |
| { |
| void __iomem *tima = local_paca->kvm_hstate.xive_tima_virt; |
| |
| if (!vcpu->arch.xive_pushed) |
| return; |
| |
| /* |
| * Should not have been pushed if there is no tima |
| */ |
| if (WARN_ON(!tima)) |
| return; |
| |
| eieio(); |
| /* First load to pull the context, we ignore the value */ |
| __raw_readl(tima + TM_SPC_PULL_OS_CTX); |
| /* Second load to recover the context state (Words 0 and 1) */ |
| if (!kvmppc_xive_vcpu_has_save_restore(vcpu)) |
| vcpu->arch.xive_saved_state.w01 = __raw_readq(tima + TM_QW1_OS); |
| |
| /* Fixup some of the state for the next load */ |
| vcpu->arch.xive_saved_state.lsmfb = 0; |
| vcpu->arch.xive_saved_state.ack = 0xff; |
| vcpu->arch.xive_pushed = 0; |
| eieio(); |
| } |
| EXPORT_SYMBOL_GPL(kvmppc_xive_pull_vcpu); |
| |
| bool kvmppc_xive_rearm_escalation(struct kvm_vcpu *vcpu) |
| { |
| void __iomem *esc_vaddr = (void __iomem *)vcpu->arch.xive_esc_vaddr; |
| bool ret = true; |
| |
| if (!esc_vaddr) |
| return ret; |
| |
| /* we are using XIVE with single escalation */ |
| |
| if (vcpu->arch.xive_esc_on) { |
| /* |
| * If we still have a pending escalation, abort the cede, |
| * and we must set PQ to 10 rather than 00 so that we don't |
| * potentially end up with two entries for the escalation |
| * interrupt in the XIVE interrupt queue. In that case |
| * we also don't want to set xive_esc_on to 1 here in |
| * case we race with xive_esc_irq(). |
| */ |
| ret = false; |
| /* |
| * The escalation interrupts are special as we don't EOI them. |
| * There is no need to use the load-after-store ordering offset |
| * to set PQ to 10 as we won't use StoreEOI. |
| */ |
| __raw_readq(esc_vaddr + XIVE_ESB_SET_PQ_10); |
| } else { |
| vcpu->arch.xive_esc_on = true; |
| mb(); |
| __raw_readq(esc_vaddr + XIVE_ESB_SET_PQ_00); |
| } |
| mb(); |
| |
| return ret; |
| } |
| EXPORT_SYMBOL_GPL(kvmppc_xive_rearm_escalation); |
| |
| /* |
| * This is a simple trigger for a generic XIVE IRQ. This must |
| * only be called for interrupts that support a trigger page |
| */ |
| static bool xive_irq_trigger(struct xive_irq_data *xd) |
| { |
| /* This should be only for MSIs */ |
| if (WARN_ON(xd->flags & XIVE_IRQ_FLAG_LSI)) |
| return false; |
| |
| /* Those interrupts should always have a trigger page */ |
| if (WARN_ON(!xd->trig_mmio)) |
| return false; |
| |
| out_be64(xd->trig_mmio, 0); |
| |
| return true; |
| } |
| |
| static irqreturn_t xive_esc_irq(int irq, void *data) |
| { |
| struct kvm_vcpu *vcpu = data; |
| |
| vcpu->arch.irq_pending = 1; |
| smp_mb(); |
| if (vcpu->arch.ceded || vcpu->arch.nested) |
| kvmppc_fast_vcpu_kick(vcpu); |
| |
| /* Since we have the no-EOI flag, the interrupt is effectively |
| * disabled now. Clearing xive_esc_on means we won't bother |
| * doing so on the next entry. |
| * |
| * This also allows the entry code to know that if a PQ combination |
| * of 10 is observed while xive_esc_on is true, it means the queue |
| * contains an unprocessed escalation interrupt. We don't make use of |
| * that knowledge today but might (see comment in book3s_hv_rmhandler.S) |
| */ |
| vcpu->arch.xive_esc_on = false; |
| |
| /* This orders xive_esc_on = false vs. subsequent stale_p = true */ |
| smp_wmb(); /* goes with smp_mb() in cleanup_single_escalation */ |
| |
| return IRQ_HANDLED; |
| } |
| |
| int kvmppc_xive_attach_escalation(struct kvm_vcpu *vcpu, u8 prio, |
| bool single_escalation) |
| { |
| struct kvmppc_xive_vcpu *xc = vcpu->arch.xive_vcpu; |
| struct xive_q *q = &xc->queues[prio]; |
| char *name = NULL; |
| int rc; |
| |
| /* Already there ? */ |
| if (xc->esc_virq[prio]) |
| return 0; |
| |
| /* Hook up the escalation interrupt */ |
| xc->esc_virq[prio] = irq_create_mapping(NULL, q->esc_irq); |
| if (!xc->esc_virq[prio]) { |
| pr_err("Failed to map escalation interrupt for queue %d of VCPU %d\n", |
| prio, xc->server_num); |
| return -EIO; |
| } |
| |
| if (single_escalation) |
| name = kasprintf(GFP_KERNEL, "kvm-%d-%d", |
| vcpu->kvm->arch.lpid, xc->server_num); |
| else |
| name = kasprintf(GFP_KERNEL, "kvm-%d-%d-%d", |
| vcpu->kvm->arch.lpid, xc->server_num, prio); |
| if (!name) { |
| pr_err("Failed to allocate escalation irq name for queue %d of VCPU %d\n", |
| prio, xc->server_num); |
| rc = -ENOMEM; |
| goto error; |
| } |
| |
| pr_devel("Escalation %s irq %d (prio %d)\n", name, xc->esc_virq[prio], prio); |
| |
| rc = request_irq(xc->esc_virq[prio], xive_esc_irq, |
| IRQF_NO_THREAD, name, vcpu); |
| if (rc) { |
| pr_err("Failed to request escalation interrupt for queue %d of VCPU %d\n", |
| prio, xc->server_num); |
| goto error; |
| } |
| xc->esc_virq_names[prio] = name; |
| |
| /* In single escalation mode, we grab the ESB MMIO of the |
| * interrupt and mask it. Also populate the VCPU v/raddr |
| * of the ESB page for use by asm entry/exit code. Finally |
| * set the XIVE_IRQ_FLAG_NO_EOI flag which will prevent the |
| * core code from performing an EOI on the escalation |
| * interrupt, thus leaving it effectively masked after |
| * it fires once. |
| */ |
| if (single_escalation) { |
| struct irq_data *d = irq_get_irq_data(xc->esc_virq[prio]); |
| struct xive_irq_data *xd = irq_data_get_irq_handler_data(d); |
| |
| xive_vm_esb_load(xd, XIVE_ESB_SET_PQ_01); |
| vcpu->arch.xive_esc_raddr = xd->eoi_page; |
| vcpu->arch.xive_esc_vaddr = (__force u64)xd->eoi_mmio; |
| xd->flags |= XIVE_IRQ_FLAG_NO_EOI; |
| } |
| |
| return 0; |
| error: |
| irq_dispose_mapping(xc->esc_virq[prio]); |
| xc->esc_virq[prio] = 0; |
| kfree(name); |
| return rc; |
| } |
| |
| static int xive_provision_queue(struct kvm_vcpu *vcpu, u8 prio) |
| { |
| struct kvmppc_xive_vcpu *xc = vcpu->arch.xive_vcpu; |
| struct kvmppc_xive *xive = xc->xive; |
| struct xive_q *q = &xc->queues[prio]; |
| void *qpage; |
| int rc; |
| |
| if (WARN_ON(q->qpage)) |
| return 0; |
| |
| /* Allocate the queue and retrieve infos on current node for now */ |
| qpage = (__be32 *)__get_free_pages(GFP_KERNEL, xive->q_page_order); |
| if (!qpage) { |
| pr_err("Failed to allocate queue %d for VCPU %d\n", |
| prio, xc->server_num); |
| return -ENOMEM; |
| } |
| memset(qpage, 0, 1 << xive->q_order); |
| |
| /* |
| * Reconfigure the queue. This will set q->qpage only once the |
| * queue is fully configured. This is a requirement for prio 0 |
| * as we will stop doing EOIs for every IPI as soon as we observe |
| * qpage being non-NULL, and instead will only EOI when we receive |
| * corresponding queue 0 entries |
| */ |
| rc = xive_native_configure_queue(xc->vp_id, q, prio, qpage, |
| xive->q_order, true); |
| if (rc) |
| pr_err("Failed to configure queue %d for VCPU %d\n", |
| prio, xc->server_num); |
| return rc; |
| } |
| |
| /* Called with xive->lock held */ |
| static int xive_check_provisioning(struct kvm *kvm, u8 prio) |
| { |
| struct kvmppc_xive *xive = kvm->arch.xive; |
| struct kvm_vcpu *vcpu; |
| unsigned long i; |
| int rc; |
| |
| lockdep_assert_held(&xive->lock); |
| |
| /* Already provisioned ? */ |
| if (xive->qmap & (1 << prio)) |
| return 0; |
| |
| pr_devel("Provisioning prio... %d\n", prio); |
| |
| /* Provision each VCPU and enable escalations if needed */ |
| kvm_for_each_vcpu(i, vcpu, kvm) { |
| if (!vcpu->arch.xive_vcpu) |
| continue; |
| rc = xive_provision_queue(vcpu, prio); |
| if (rc == 0 && !kvmppc_xive_has_single_escalation(xive)) |
| kvmppc_xive_attach_escalation(vcpu, prio, |
| kvmppc_xive_has_single_escalation(xive)); |
| if (rc) |
| return rc; |
| } |
| |
| /* Order previous stores and mark it as provisioned */ |
| mb(); |
| xive->qmap |= (1 << prio); |
| return 0; |
| } |
| |
| static void xive_inc_q_pending(struct kvm *kvm, u32 server, u8 prio) |
| { |
| struct kvm_vcpu *vcpu; |
| struct kvmppc_xive_vcpu *xc; |
| struct xive_q *q; |
| |
| /* Locate target server */ |
| vcpu = kvmppc_xive_find_server(kvm, server); |
| if (!vcpu) { |
| pr_warn("%s: Can't find server %d\n", __func__, server); |
| return; |
| } |
| xc = vcpu->arch.xive_vcpu; |
| if (WARN_ON(!xc)) |
| return; |
| |
| q = &xc->queues[prio]; |
| atomic_inc(&q->pending_count); |
| } |
| |
| static int xive_try_pick_queue(struct kvm_vcpu *vcpu, u8 prio) |
| { |
| struct kvmppc_xive_vcpu *xc = vcpu->arch.xive_vcpu; |
| struct xive_q *q; |
| u32 max; |
| |
| if (WARN_ON(!xc)) |
| return -ENXIO; |
| if (!xc->valid) |
| return -ENXIO; |
| |
| q = &xc->queues[prio]; |
| if (WARN_ON(!q->qpage)) |
| return -ENXIO; |
| |
| /* Calculate max number of interrupts in that queue. */ |
| max = (q->msk + 1) - XIVE_Q_GAP; |
| return atomic_add_unless(&q->count, 1, max) ? 0 : -EBUSY; |
| } |
| |
| int kvmppc_xive_select_target(struct kvm *kvm, u32 *server, u8 prio) |
| { |
| struct kvm_vcpu *vcpu; |
| unsigned long i; |
| int rc; |
| |
| /* Locate target server */ |
| vcpu = kvmppc_xive_find_server(kvm, *server); |
| if (!vcpu) { |
| pr_devel("Can't find server %d\n", *server); |
| return -EINVAL; |
| } |
| |
| pr_devel("Finding irq target on 0x%x/%d...\n", *server, prio); |
| |
| /* Try pick it */ |
| rc = xive_try_pick_queue(vcpu, prio); |
| if (rc == 0) |
| return rc; |
| |
| pr_devel(" .. failed, looking up candidate...\n"); |
| |
| /* Failed, pick another VCPU */ |
| kvm_for_each_vcpu(i, vcpu, kvm) { |
| if (!vcpu->arch.xive_vcpu) |
| continue; |
| rc = xive_try_pick_queue(vcpu, prio); |
| if (rc == 0) { |
| *server = vcpu->arch.xive_vcpu->server_num; |
| pr_devel(" found on 0x%x/%d\n", *server, prio); |
| return rc; |
| } |
| } |
| pr_devel(" no available target !\n"); |
| |
| /* No available target ! */ |
| return -EBUSY; |
| } |
| |
| static u8 xive_lock_and_mask(struct kvmppc_xive *xive, |
| struct kvmppc_xive_src_block *sb, |
| struct kvmppc_xive_irq_state *state) |
| { |
| struct xive_irq_data *xd; |
| u32 hw_num; |
| u8 old_prio; |
| u64 val; |
| |
| /* |
| * Take the lock, set masked, try again if racing |
| * with H_EOI |
| */ |
| for (;;) { |
| arch_spin_lock(&sb->lock); |
| old_prio = state->guest_priority; |
| state->guest_priority = MASKED; |
| mb(); |
| if (!state->in_eoi) |
| break; |
| state->guest_priority = old_prio; |
| arch_spin_unlock(&sb->lock); |
| } |
| |
| /* No change ? Bail */ |
| if (old_prio == MASKED) |
| return old_prio; |
| |
| /* Get the right irq */ |
| kvmppc_xive_select_irq(state, &hw_num, &xd); |
| |
| /* Set PQ to 10, return old P and old Q and remember them */ |
| val = xive_vm_esb_load(xd, XIVE_ESB_SET_PQ_10); |
| state->old_p = !!(val & 2); |
| state->old_q = !!(val & 1); |
| |
| /* |
| * Synchronize hardware to sensure the queues are updated when |
| * masking |
| */ |
| xive_native_sync_source(hw_num); |
| |
| return old_prio; |
| } |
| |
| static void xive_lock_for_unmask(struct kvmppc_xive_src_block *sb, |
| struct kvmppc_xive_irq_state *state) |
| { |
| /* |
| * Take the lock try again if racing with H_EOI |
| */ |
| for (;;) { |
| arch_spin_lock(&sb->lock); |
| if (!state->in_eoi) |
| break; |
| arch_spin_unlock(&sb->lock); |
| } |
| } |
| |
| static void xive_finish_unmask(struct kvmppc_xive *xive, |
| struct kvmppc_xive_src_block *sb, |
| struct kvmppc_xive_irq_state *state, |
| u8 prio) |
| { |
| struct xive_irq_data *xd; |
| u32 hw_num; |
| |
| /* If we aren't changing a thing, move on */ |
| if (state->guest_priority != MASKED) |
| goto bail; |
| |
| /* Get the right irq */ |
| kvmppc_xive_select_irq(state, &hw_num, &xd); |
| |
| /* Old Q set, set PQ to 11 */ |
| if (state->old_q) |
| xive_vm_esb_load(xd, XIVE_ESB_SET_PQ_11); |
| |
| /* |
| * If not old P, then perform an "effective" EOI, |
| * on the source. This will handle the cases where |
| * FW EOI is needed. |
| */ |
| if (!state->old_p) |
| xive_vm_source_eoi(hw_num, xd); |
| |
| /* Synchronize ordering and mark unmasked */ |
| mb(); |
| bail: |
| state->guest_priority = prio; |
| } |
| |
| /* |
| * Target an interrupt to a given server/prio, this will fallback |
| * to another server if necessary and perform the HW targetting |
| * updates as needed |
| * |
| * NOTE: Must be called with the state lock held |
| */ |
| static int xive_target_interrupt(struct kvm *kvm, |
| struct kvmppc_xive_irq_state *state, |
| u32 server, u8 prio) |
| { |
| struct kvmppc_xive *xive = kvm->arch.xive; |
| u32 hw_num; |
| int rc; |
| |
| /* |
| * This will return a tentative server and actual |
| * priority. The count for that new target will have |
| * already been incremented. |
| */ |
| rc = kvmppc_xive_select_target(kvm, &server, prio); |
| |
| /* |
| * We failed to find a target ? Not much we can do |
| * at least until we support the GIQ. |
| */ |
| if (rc) |
| return rc; |
| |
| /* |
| * Increment the old queue pending count if there |
| * was one so that the old queue count gets adjusted later |
| * when observed to be empty. |
| */ |
| if (state->act_priority != MASKED) |
| xive_inc_q_pending(kvm, |
| state->act_server, |
| state->act_priority); |
| /* |
| * Update state and HW |
| */ |
| state->act_priority = prio; |
| state->act_server = server; |
| |
| /* Get the right irq */ |
| kvmppc_xive_select_irq(state, &hw_num, NULL); |
| |
| return xive_native_configure_irq(hw_num, |
| kvmppc_xive_vp(xive, server), |
| prio, state->number); |
| } |
| |
| /* |
| * Targetting rules: In order to avoid losing track of |
| * pending interrupts across mask and unmask, which would |
| * allow queue overflows, we implement the following rules: |
| * |
| * - Unless it was never enabled (or we run out of capacity) |
| * an interrupt is always targetted at a valid server/queue |
| * pair even when "masked" by the guest. This pair tends to |
| * be the last one used but it can be changed under some |
| * circumstances. That allows us to separate targetting |
| * from masking, we only handle accounting during (re)targetting, |
| * this also allows us to let an interrupt drain into its target |
| * queue after masking, avoiding complex schemes to remove |
| * interrupts out of remote processor queues. |
| * |
| * - When masking, we set PQ to 10 and save the previous value |
| * of P and Q. |
| * |
| * - When unmasking, if saved Q was set, we set PQ to 11 |
| * otherwise we leave PQ to the HW state which will be either |
| * 10 if nothing happened or 11 if the interrupt fired while |
| * masked. Effectively we are OR'ing the previous Q into the |
| * HW Q. |
| * |
| * Then if saved P is clear, we do an effective EOI (Q->P->Trigger) |
| * which will unmask the interrupt and shoot a new one if Q was |
| * set. |
| * |
| * Otherwise (saved P is set) we leave PQ unchanged (so 10 or 11, |
| * effectively meaning an H_EOI from the guest is still expected |
| * for that interrupt). |
| * |
| * - If H_EOI occurs while masked, we clear the saved P. |
| * |
| * - When changing target, we account on the new target and |
| * increment a separate "pending" counter on the old one. |
| * This pending counter will be used to decrement the old |
| * target's count when its queue has been observed empty. |
| */ |
| |
| int kvmppc_xive_set_xive(struct kvm *kvm, u32 irq, u32 server, |
| u32 priority) |
| { |
| struct kvmppc_xive *xive = kvm->arch.xive; |
| struct kvmppc_xive_src_block *sb; |
| struct kvmppc_xive_irq_state *state; |
| u8 new_act_prio; |
| int rc = 0; |
| u16 idx; |
| |
| if (!xive) |
| return -ENODEV; |
| |
| pr_devel("set_xive ! irq 0x%x server 0x%x prio %d\n", |
| irq, server, priority); |
| |
| /* First, check provisioning of queues */ |
| if (priority != MASKED) { |
| mutex_lock(&xive->lock); |
| rc = xive_check_provisioning(xive->kvm, |
| xive_prio_from_guest(priority)); |
| mutex_unlock(&xive->lock); |
| } |
| if (rc) { |
| pr_devel(" provisioning failure %d !\n", rc); |
| return rc; |
| } |
| |
| sb = kvmppc_xive_find_source(xive, irq, &idx); |
| if (!sb) |
| return -EINVAL; |
| state = &sb->irq_state[idx]; |
| |
| /* |
| * We first handle masking/unmasking since the locking |
| * might need to be retried due to EOIs, we'll handle |
| * targetting changes later. These functions will return |
| * with the SB lock held. |
| * |
| * xive_lock_and_mask() will also set state->guest_priority |
| * but won't otherwise change other fields of the state. |
| * |
| * xive_lock_for_unmask will not actually unmask, this will |
| * be done later by xive_finish_unmask() once the targetting |
| * has been done, so we don't try to unmask an interrupt |
| * that hasn't yet been targetted. |
| */ |
| if (priority == MASKED) |
| xive_lock_and_mask(xive, sb, state); |
| else |
| xive_lock_for_unmask(sb, state); |
| |
| |
| /* |
| * Then we handle targetting. |
| * |
| * First calculate a new "actual priority" |
| */ |
| new_act_prio = state->act_priority; |
| if (priority != MASKED) |
| new_act_prio = xive_prio_from_guest(priority); |
| |
| pr_devel(" new_act_prio=%x act_server=%x act_prio=%x\n", |
| new_act_prio, state->act_server, state->act_priority); |
| |
| /* |
| * Then check if we actually need to change anything, |
| * |
| * The condition for re-targetting the interrupt is that |
| * we have a valid new priority (new_act_prio is not 0xff) |
| * and either the server or the priority changed. |
| * |
| * Note: If act_priority was ff and the new priority is |
| * also ff, we don't do anything and leave the interrupt |
| * untargetted. An attempt of doing an int_on on an |
| * untargetted interrupt will fail. If that is a problem |
| * we could initialize interrupts with valid default |
| */ |
| |
| if (new_act_prio != MASKED && |
| (state->act_server != server || |
| state->act_priority != new_act_prio)) |
| rc = xive_target_interrupt(kvm, state, server, new_act_prio); |
| |
| /* |
| * Perform the final unmasking of the interrupt source |
| * if necessary |
| */ |
| if (priority != MASKED) |
| xive_finish_unmask(xive, sb, state, priority); |
| |
| /* |
| * Finally Update saved_priority to match. Only int_on/off |
| * set this field to a different value. |
| */ |
| state->saved_priority = priority; |
| |
| arch_spin_unlock(&sb->lock); |
| return rc; |
| } |
| |
| int kvmppc_xive_get_xive(struct kvm *kvm, u32 irq, u32 *server, |
| u32 *priority) |
| { |
| struct kvmppc_xive *xive = kvm->arch.xive; |
| struct kvmppc_xive_src_block *sb; |
| struct kvmppc_xive_irq_state *state; |
| u16 idx; |
| |
| if (!xive) |
| return -ENODEV; |
| |
| sb = kvmppc_xive_find_source(xive, irq, &idx); |
| if (!sb) |
| return -EINVAL; |
| state = &sb->irq_state[idx]; |
| arch_spin_lock(&sb->lock); |
| *server = state->act_server; |
| *priority = state->guest_priority; |
| arch_spin_unlock(&sb->lock); |
| |
| return 0; |
| } |
| |
| int kvmppc_xive_int_on(struct kvm *kvm, u32 irq) |
| { |
| struct kvmppc_xive *xive = kvm->arch.xive; |
| struct kvmppc_xive_src_block *sb; |
| struct kvmppc_xive_irq_state *state; |
| u16 idx; |
| |
| if (!xive) |
| return -ENODEV; |
| |
| sb = kvmppc_xive_find_source(xive, irq, &idx); |
| if (!sb) |
| return -EINVAL; |
| state = &sb->irq_state[idx]; |
| |
| pr_devel("int_on(irq=0x%x)\n", irq); |
| |
| /* |
| * Check if interrupt was not targetted |
| */ |
| if (state->act_priority == MASKED) { |
| pr_devel("int_on on untargetted interrupt\n"); |
| return -EINVAL; |
| } |
| |
| /* If saved_priority is 0xff, do nothing */ |
| if (state->saved_priority == MASKED) |
| return 0; |
| |
| /* |
| * Lock and unmask it. |
| */ |
| xive_lock_for_unmask(sb, state); |
| xive_finish_unmask(xive, sb, state, state->saved_priority); |
| arch_spin_unlock(&sb->lock); |
| |
| return 0; |
| } |
| |
| int kvmppc_xive_int_off(struct kvm *kvm, u32 irq) |
| { |
| struct kvmppc_xive *xive = kvm->arch.xive; |
| struct kvmppc_xive_src_block *sb; |
| struct kvmppc_xive_irq_state *state; |
| u16 idx; |
| |
| if (!xive) |
| return -ENODEV; |
| |
| sb = kvmppc_xive_find_source(xive, irq, &idx); |
| if (!sb) |
| return -EINVAL; |
| state = &sb->irq_state[idx]; |
| |
| pr_devel("int_off(irq=0x%x)\n", irq); |
| |
| /* |
| * Lock and mask |
| */ |
| state->saved_priority = xive_lock_and_mask(xive, sb, state); |
| arch_spin_unlock(&sb->lock); |
| |
| return 0; |
| } |
| |
| static bool xive_restore_pending_irq(struct kvmppc_xive *xive, u32 irq) |
| { |
| struct kvmppc_xive_src_block *sb; |
| struct kvmppc_xive_irq_state *state; |
| u16 idx; |
| |
| sb = kvmppc_xive_find_source(xive, irq, &idx); |
| if (!sb) |
| return false; |
| state = &sb->irq_state[idx]; |
| if (!state->valid) |
| return false; |
| |
| /* |
| * Trigger the IPI. This assumes we never restore a pass-through |
| * interrupt which should be safe enough |
| */ |
| xive_irq_trigger(&state->ipi_data); |
| |
| return true; |
| } |
| |
| u64 kvmppc_xive_get_icp(struct kvm_vcpu *vcpu) |
| { |
| struct kvmppc_xive_vcpu *xc = vcpu->arch.xive_vcpu; |
| |
| if (!xc) |
| return 0; |
| |
| /* Return the per-cpu state for state saving/migration */ |
| return (u64)xc->cppr << KVM_REG_PPC_ICP_CPPR_SHIFT | |
| (u64)xc->mfrr << KVM_REG_PPC_ICP_MFRR_SHIFT | |
| (u64)0xff << KVM_REG_PPC_ICP_PPRI_SHIFT; |
| } |
| |
| int kvmppc_xive_set_icp(struct kvm_vcpu *vcpu, u64 icpval) |
| { |
| struct kvmppc_xive_vcpu *xc = vcpu->arch.xive_vcpu; |
| struct kvmppc_xive *xive = vcpu->kvm->arch.xive; |
| u8 cppr, mfrr; |
| u32 xisr; |
| |
| if (!xc || !xive) |
| return -ENOENT; |
| |
| /* Grab individual state fields. We don't use pending_pri */ |
| cppr = icpval >> KVM_REG_PPC_ICP_CPPR_SHIFT; |
| xisr = (icpval >> KVM_REG_PPC_ICP_XISR_SHIFT) & |
| KVM_REG_PPC_ICP_XISR_MASK; |
| mfrr = icpval >> KVM_REG_PPC_ICP_MFRR_SHIFT; |
| |
| pr_devel("set_icp vcpu %d cppr=0x%x mfrr=0x%x xisr=0x%x\n", |
| xc->server_num, cppr, mfrr, xisr); |
| |
| /* |
| * We can't update the state of a "pushed" VCPU, but that |
| * shouldn't happen because the vcpu->mutex makes running a |
| * vcpu mutually exclusive with doing one_reg get/set on it. |
| */ |
| if (WARN_ON(vcpu->arch.xive_pushed)) |
| return -EIO; |
| |
| /* Update VCPU HW saved state */ |
| vcpu->arch.xive_saved_state.cppr = cppr; |
| xc->hw_cppr = xc->cppr = cppr; |
| |
| /* |
| * Update MFRR state. If it's not 0xff, we mark the VCPU as |
| * having a pending MFRR change, which will re-evaluate the |
| * target. The VCPU will thus potentially get a spurious |
| * interrupt but that's not a big deal. |
| */ |
| xc->mfrr = mfrr; |
| if (mfrr < cppr) |
| xive_irq_trigger(&xc->vp_ipi_data); |
| |
| /* |
| * Now saved XIRR is "interesting". It means there's something in |
| * the legacy "1 element" queue... for an IPI we simply ignore it, |
| * as the MFRR restore will handle that. For anything else we need |
| * to force a resend of the source. |
| * However the source may not have been setup yet. If that's the |
| * case, we keep that info and increment a counter in the xive to |
| * tell subsequent xive_set_source() to go look. |
| */ |
| if (xisr > XICS_IPI && !xive_restore_pending_irq(xive, xisr)) { |
| xc->delayed_irq = xisr; |
| xive->delayed_irqs++; |
| pr_devel(" xisr restore delayed\n"); |
| } |
| |
| return 0; |
| } |
| |
| int kvmppc_xive_set_mapped(struct kvm *kvm, unsigned long guest_irq, |
| unsigned long host_irq) |
| { |
| struct kvmppc_xive *xive = kvm->arch.xive; |
| struct kvmppc_xive_src_block *sb; |
| struct kvmppc_xive_irq_state *state; |
| struct irq_data *host_data = |
| irq_domain_get_irq_data(irq_get_default_host(), host_irq); |
| unsigned int hw_irq = (unsigned int)irqd_to_hwirq(host_data); |
| u16 idx; |
| u8 prio; |
| int rc; |
| |
| if (!xive) |
| return -ENODEV; |
| |
| pr_debug("%s: GIRQ 0x%lx host IRQ %ld XIVE HW IRQ 0x%x\n", |
| __func__, guest_irq, host_irq, hw_irq); |
| |
| sb = kvmppc_xive_find_source(xive, guest_irq, &idx); |
| if (!sb) |
| return -EINVAL; |
| state = &sb->irq_state[idx]; |
| |
| /* |
| * Mark the passed-through interrupt as going to a VCPU, |
| * this will prevent further EOIs and similar operations |
| * from the XIVE code. It will also mask the interrupt |
| * to either PQ=10 or 11 state, the latter if the interrupt |
| * is pending. This will allow us to unmask or retrigger it |
| * after routing it to the guest with a simple EOI. |
| * |
| * The "state" argument is a "token", all it needs is to be |
| * non-NULL to switch to passed-through or NULL for the |
| * other way around. We may not yet have an actual VCPU |
| * target here and we don't really care. |
| */ |
| rc = irq_set_vcpu_affinity(host_irq, state); |
| if (rc) { |
| pr_err("Failed to set VCPU affinity for host IRQ %ld\n", host_irq); |
| return rc; |
| } |
| |
| /* |
| * Mask and read state of IPI. We need to know if its P bit |
| * is set as that means it's potentially already using a |
| * queue entry in the target |
| */ |
| prio = xive_lock_and_mask(xive, sb, state); |
| pr_devel(" old IPI prio %02x P:%d Q:%d\n", prio, |
| state->old_p, state->old_q); |
| |
| /* Turn the IPI hard off */ |
| xive_vm_esb_load(&state->ipi_data, XIVE_ESB_SET_PQ_01); |
| |
| /* |
| * Reset ESB guest mapping. Needed when ESB pages are exposed |
| * to the guest in XIVE native mode |
| */ |
| if (xive->ops && xive->ops->reset_mapped) |
| xive->ops->reset_mapped(kvm, guest_irq); |
| |
| /* Grab info about irq */ |
| state->pt_number = hw_irq; |
| state->pt_data = irq_data_get_irq_handler_data(host_data); |
| |
| /* |
| * Configure the IRQ to match the existing configuration of |
| * the IPI if it was already targetted. Otherwise this will |
| * mask the interrupt in a lossy way (act_priority is 0xff) |
| * which is fine for a never started interrupt. |
| */ |
| xive_native_configure_irq(hw_irq, |
| kvmppc_xive_vp(xive, state->act_server), |
| state->act_priority, state->number); |
| |
| /* |
| * We do an EOI to enable the interrupt (and retrigger if needed) |
| * if the guest has the interrupt unmasked and the P bit was *not* |
| * set in the IPI. If it was set, we know a slot may still be in |
| * use in the target queue thus we have to wait for a guest |
| * originated EOI |
| */ |
| if (prio != MASKED && !state->old_p) |
| xive_vm_source_eoi(hw_irq, state->pt_data); |
| |
| /* Clear old_p/old_q as they are no longer relevant */ |
| state->old_p = state->old_q = false; |
| |
| /* Restore guest prio (unlocks EOI) */ |
| mb(); |
| state->guest_priority = prio; |
| arch_spin_unlock(&sb->lock); |
| |
| return 0; |
| } |
| EXPORT_SYMBOL_GPL(kvmppc_xive_set_mapped); |
| |
| int kvmppc_xive_clr_mapped(struct kvm *kvm, unsigned long guest_irq, |
| unsigned long host_irq) |
| { |
| struct kvmppc_xive *xive = kvm->arch.xive; |
| struct kvmppc_xive_src_block *sb; |
| struct kvmppc_xive_irq_state *state; |
| u16 idx; |
| u8 prio; |
| int rc; |
| |
| if (!xive) |
| return -ENODEV; |
| |
| pr_debug("%s: GIRQ 0x%lx host IRQ %ld\n", __func__, guest_irq, host_irq); |
| |
| sb = kvmppc_xive_find_source(xive, guest_irq, &idx); |
| if (!sb) |
| return -EINVAL; |
| state = &sb->irq_state[idx]; |
| |
| /* |
| * Mask and read state of IRQ. We need to know if its P bit |
| * is set as that means it's potentially already using a |
| * queue entry in the target |
| */ |
| prio = xive_lock_and_mask(xive, sb, state); |
| pr_devel(" old IRQ prio %02x P:%d Q:%d\n", prio, |
| state->old_p, state->old_q); |
| |
| /* |
| * If old_p is set, the interrupt is pending, we switch it to |
| * PQ=11. This will force a resend in the host so the interrupt |
| * isn't lost to whatever host driver may pick it up |
| */ |
| if (state->old_p) |
| xive_vm_esb_load(state->pt_data, XIVE_ESB_SET_PQ_11); |
| |
| /* Release the passed-through interrupt to the host */ |
| rc = irq_set_vcpu_affinity(host_irq, NULL); |
| if (rc) { |
| pr_err("Failed to clr VCPU affinity for host IRQ %ld\n", host_irq); |
| return rc; |
| } |
| |
| /* Forget about the IRQ */ |
| state->pt_number = 0; |
| state->pt_data = NULL; |
| |
| /* |
| * Reset ESB guest mapping. Needed when ESB pages are exposed |
| * to the guest in XIVE native mode |
| */ |
| if (xive->ops && xive->ops->reset_mapped) { |
| xive->ops->reset_mapped(kvm, guest_irq); |
| } |
| |
| /* Reconfigure the IPI */ |
| xive_native_configure_irq(state->ipi_number, |
| kvmppc_xive_vp(xive, state->act_server), |
| state->act_priority, state->number); |
| |
| /* |
| * If old_p is set (we have a queue entry potentially |
| * occupied) or the interrupt is masked, we set the IPI |
| * to PQ=10 state. Otherwise we just re-enable it (PQ=00). |
| */ |
| if (prio == MASKED || state->old_p) |
| xive_vm_esb_load(&state->ipi_data, XIVE_ESB_SET_PQ_10); |
| else |
| xive_vm_esb_load(&state->ipi_data, XIVE_ESB_SET_PQ_00); |
| |
| /* Restore guest prio (unlocks EOI) */ |
| mb(); |
| state->guest_priority = prio; |
| arch_spin_unlock(&sb->lock); |
| |
| return 0; |
| } |
| EXPORT_SYMBOL_GPL(kvmppc_xive_clr_mapped); |
| |
| void kvmppc_xive_disable_vcpu_interrupts(struct kvm_vcpu *vcpu) |
| { |
| struct kvmppc_xive_vcpu *xc = vcpu->arch.xive_vcpu; |
| struct kvm *kvm = vcpu->kvm; |
| struct kvmppc_xive *xive = kvm->arch.xive; |
| int i, j; |
| |
| for (i = 0; i <= xive->max_sbid; i++) { |
| struct kvmppc_xive_src_block *sb = xive->src_blocks[i]; |
| |
| if (!sb) |
| continue; |
| for (j = 0; j < KVMPPC_XICS_IRQ_PER_ICS; j++) { |
| struct kvmppc_xive_irq_state *state = &sb->irq_state[j]; |
| |
| if (!state->valid) |
| continue; |
| if (state->act_priority == MASKED) |
| continue; |
| if (state->act_server != xc->server_num) |
| continue; |
| |
| /* Clean it up */ |
| arch_spin_lock(&sb->lock); |
| state->act_priority = MASKED; |
| xive_vm_esb_load(&state->ipi_data, XIVE_ESB_SET_PQ_01); |
| xive_native_configure_irq(state->ipi_number, 0, MASKED, 0); |
| if (state->pt_number) { |
| xive_vm_esb_load(state->pt_data, XIVE_ESB_SET_PQ_01); |
| xive_native_configure_irq(state->pt_number, 0, MASKED, 0); |
| } |
| arch_spin_unlock(&sb->lock); |
| } |
| } |
| |
| /* Disable vcpu's escalation interrupt */ |
| if (vcpu->arch.xive_esc_on) { |
| __raw_readq((void __iomem *)(vcpu->arch.xive_esc_vaddr + |
| XIVE_ESB_SET_PQ_01)); |
| vcpu->arch.xive_esc_on = false; |
| } |
| |
| /* |
| * Clear pointers to escalation interrupt ESB. |
| * This is safe because the vcpu->mutex is held, preventing |
| * any other CPU from concurrently executing a KVM_RUN ioctl. |
| */ |
| vcpu->arch.xive_esc_vaddr = 0; |
| vcpu->arch.xive_esc_raddr = 0; |
| } |
| |
| /* |
| * In single escalation mode, the escalation interrupt is marked so |
| * that EOI doesn't re-enable it, but just sets the stale_p flag to |
| * indicate that the P bit has already been dealt with. However, the |
| * assembly code that enters the guest sets PQ to 00 without clearing |
| * stale_p (because it has no easy way to address it). Hence we have |
| * to adjust stale_p before shutting down the interrupt. |
| */ |
| void xive_cleanup_single_escalation(struct kvm_vcpu *vcpu, int irq) |
| { |
| struct irq_data *d = irq_get_irq_data(irq); |
| struct xive_irq_data *xd = irq_data_get_irq_handler_data(d); |
| |
| /* |
| * This slightly odd sequence gives the right result |
| * (i.e. stale_p set if xive_esc_on is false) even if |
| * we race with xive_esc_irq() and xive_irq_eoi(). |
| */ |
| xd->stale_p = false; |
| smp_mb(); /* paired with smb_wmb in xive_esc_irq */ |
| if (!vcpu->arch.xive_esc_on) |
| xd->stale_p = true; |
| } |
| |
| void kvmppc_xive_cleanup_vcpu(struct kvm_vcpu *vcpu) |
| { |
| struct kvmppc_xive_vcpu *xc = vcpu->arch.xive_vcpu; |
| struct kvmppc_xive *xive = vcpu->kvm->arch.xive; |
| int i; |
| |
| if (!kvmppc_xics_enabled(vcpu)) |
| return; |
| |
| if (!xc) |
| return; |
| |
| pr_devel("cleanup_vcpu(cpu=%d)\n", xc->server_num); |
| |
| /* Ensure no interrupt is still routed to that VP */ |
| xc->valid = false; |
| kvmppc_xive_disable_vcpu_interrupts(vcpu); |
| |
| /* Mask the VP IPI */ |
| xive_vm_esb_load(&xc->vp_ipi_data, XIVE_ESB_SET_PQ_01); |
| |
| /* Free escalations */ |
| for (i = 0; i < KVMPPC_XIVE_Q_COUNT; i++) { |
| if (xc->esc_virq[i]) { |
| if (kvmppc_xive_has_single_escalation(xc->xive)) |
| xive_cleanup_single_escalation(vcpu, xc->esc_virq[i]); |
| free_irq(xc->esc_virq[i], vcpu); |
| irq_dispose_mapping(xc->esc_virq[i]); |
| kfree(xc->esc_virq_names[i]); |
| } |
| } |
| |
| /* Disable the VP */ |
| xive_native_disable_vp(xc->vp_id); |
| |
| /* Clear the cam word so guest entry won't try to push context */ |
| vcpu->arch.xive_cam_word = 0; |
| |
| /* Free the queues */ |
| for (i = 0; i < KVMPPC_XIVE_Q_COUNT; i++) { |
| struct xive_q *q = &xc->queues[i]; |
| |
| xive_native_disable_queue(xc->vp_id, q, i); |
| if (q->qpage) { |
| free_pages((unsigned long)q->qpage, |
| xive->q_page_order); |
| q->qpage = NULL; |
| } |
| } |
| |
| /* Free the IPI */ |
| if (xc->vp_ipi) { |
| xive_cleanup_irq_data(&xc->vp_ipi_data); |
| xive_native_free_irq(xc->vp_ipi); |
| } |
| /* Free the VP */ |
| kfree(xc); |
| |
| /* Cleanup the vcpu */ |
| vcpu->arch.irq_type = KVMPPC_IRQ_DEFAULT; |
| vcpu->arch.xive_vcpu = NULL; |
| } |
| |
| static bool kvmppc_xive_vcpu_id_valid(struct kvmppc_xive *xive, u32 cpu) |
| { |
| /* We have a block of xive->nr_servers VPs. We just need to check |
| * packed vCPU ids are below that. |
| */ |
| return kvmppc_pack_vcpu_id(xive->kvm, cpu) < xive->nr_servers; |
| } |
| |
| int kvmppc_xive_compute_vp_id(struct kvmppc_xive *xive, u32 cpu, u32 *vp) |
| { |
| u32 vp_id; |
| |
| if (!kvmppc_xive_vcpu_id_valid(xive, cpu)) { |
| pr_devel("Out of bounds !\n"); |
| return -EINVAL; |
| } |
| |
| if (xive->vp_base == XIVE_INVALID_VP) { |
| xive->vp_base = xive_native_alloc_vp_block(xive->nr_servers); |
| pr_devel("VP_Base=%x nr_servers=%d\n", xive->vp_base, xive->nr_servers); |
| |
| if (xive->vp_base == XIVE_INVALID_VP) |
| return -ENOSPC; |
| } |
| |
| vp_id = kvmppc_xive_vp(xive, cpu); |
| if (kvmppc_xive_vp_in_use(xive->kvm, vp_id)) { |
| pr_devel("Duplicate !\n"); |
| return -EEXIST; |
| } |
| |
| *vp = vp_id; |
| |
| return 0; |
| } |
| |
| int kvmppc_xive_connect_vcpu(struct kvm_device *dev, |
| struct kvm_vcpu *vcpu, u32 cpu) |
| { |
| struct kvmppc_xive *xive = dev->private; |
| struct kvmppc_xive_vcpu *xc; |
| int i, r = -EBUSY; |
| u32 vp_id; |
| |
| pr_devel("connect_vcpu(cpu=%d)\n", cpu); |
| |
| if (dev->ops != &kvm_xive_ops) { |
| pr_devel("Wrong ops !\n"); |
| return -EPERM; |
| } |
| if (xive->kvm != vcpu->kvm) |
| return -EPERM; |
| if (vcpu->arch.irq_type != KVMPPC_IRQ_DEFAULT) |
| return -EBUSY; |
| |
| /* We need to synchronize with queue provisioning */ |
| mutex_lock(&xive->lock); |
| |
| r = kvmppc_xive_compute_vp_id(xive, cpu, &vp_id); |
| if (r) |
| goto bail; |
| |
| xc = kzalloc(sizeof(*xc), GFP_KERNEL); |
| if (!xc) { |
| r = -ENOMEM; |
| goto bail; |
| } |
| |
| vcpu->arch.xive_vcpu = xc; |
| xc->xive = xive; |
| xc->vcpu = vcpu; |
| xc->server_num = cpu; |
| xc->vp_id = vp_id; |
| xc->mfrr = 0xff; |
| xc->valid = true; |
| |
| r = xive_native_get_vp_info(xc->vp_id, &xc->vp_cam, &xc->vp_chip_id); |
| if (r) |
| goto bail; |
| |
| if (!kvmppc_xive_check_save_restore(vcpu)) { |
| pr_err("inconsistent save-restore setup for VCPU %d\n", cpu); |
| r = -EIO; |
| goto bail; |
| } |
| |
| /* Configure VCPU fields for use by assembly push/pull */ |
| vcpu->arch.xive_saved_state.w01 = cpu_to_be64(0xff000000); |
| vcpu->arch.xive_cam_word = cpu_to_be32(xc->vp_cam | TM_QW1W2_VO); |
| |
| /* Allocate IPI */ |
| xc->vp_ipi = xive_native_alloc_irq(); |
| if (!xc->vp_ipi) { |
| pr_err("Failed to allocate xive irq for VCPU IPI\n"); |
| r = -EIO; |
| goto bail; |
| } |
| pr_devel(" IPI=0x%x\n", xc->vp_ipi); |
| |
| r = xive_native_populate_irq_data(xc->vp_ipi, &xc->vp_ipi_data); |
| if (r) |
| goto bail; |
| |
| /* |
| * Enable the VP first as the single escalation mode will |
| * affect escalation interrupts numbering |
| */ |
| r = xive_native_enable_vp(xc->vp_id, kvmppc_xive_has_single_escalation(xive)); |
| if (r) { |
| pr_err("Failed to enable VP in OPAL, err %d\n", r); |
| goto bail; |
| } |
| |
| /* |
| * Initialize queues. Initially we set them all for no queueing |
| * and we enable escalation for queue 0 only which we'll use for |
| * our mfrr change notifications. If the VCPU is hot-plugged, we |
| * do handle provisioning however based on the existing "map" |
| * of enabled queues. |
| */ |
| for (i = 0; i < KVMPPC_XIVE_Q_COUNT; i++) { |
| struct xive_q *q = &xc->queues[i]; |
| |
| /* Single escalation, no queue 7 */ |
| if (i == 7 && kvmppc_xive_has_single_escalation(xive)) |
| break; |
| |
| /* Is queue already enabled ? Provision it */ |
| if (xive->qmap & (1 << i)) { |
| r = xive_provision_queue(vcpu, i); |
| if (r == 0 && !kvmppc_xive_has_single_escalation(xive)) |
| kvmppc_xive_attach_escalation( |
| vcpu, i, kvmppc_xive_has_single_escalation(xive)); |
| if (r) |
| goto bail; |
| } else { |
| r = xive_native_configure_queue(xc->vp_id, |
| q, i, NULL, 0, true); |
| if (r) { |
| pr_err("Failed to configure queue %d for VCPU %d\n", |
| i, cpu); |
| goto bail; |
| } |
| } |
| } |
| |
| /* If not done above, attach priority 0 escalation */ |
| r = kvmppc_xive_attach_escalation(vcpu, 0, kvmppc_xive_has_single_escalation(xive)); |
| if (r) |
| goto bail; |
| |
| /* Route the IPI */ |
| r = xive_native_configure_irq(xc->vp_ipi, xc->vp_id, 0, XICS_IPI); |
| if (!r) |
| xive_vm_esb_load(&xc->vp_ipi_data, XIVE_ESB_SET_PQ_00); |
| |
| bail: |
| mutex_unlock(&xive->lock); |
| if (r) { |
| kvmppc_xive_cleanup_vcpu(vcpu); |
| return r; |
| } |
| |
| vcpu->arch.irq_type = KVMPPC_IRQ_XICS; |
| return 0; |
| } |
| |
| /* |
| * Scanning of queues before/after migration save |
| */ |
| static void xive_pre_save_set_queued(struct kvmppc_xive *xive, u32 irq) |
| { |
| struct kvmppc_xive_src_block *sb; |
| struct kvmppc_xive_irq_state *state; |
| u16 idx; |
| |
| sb = kvmppc_xive_find_source(xive, irq, &idx); |
| if (!sb) |
| return; |
| |
| state = &sb->irq_state[idx]; |
| |
| /* Some sanity checking */ |
| if (!state->valid) { |
| pr_err("invalid irq 0x%x in cpu queue!\n", irq); |
| return; |
| } |
| |
| /* |
| * If the interrupt is in a queue it should have P set. |
| * We warn so that gets reported. A backtrace isn't useful |
| * so no need to use a WARN_ON. |
| */ |
| if (!state->saved_p) |
| pr_err("Interrupt 0x%x is marked in a queue but P not set !\n", irq); |
| |
| /* Set flag */ |
| state->in_queue = true; |
| } |
| |
| static void xive_pre_save_mask_irq(struct kvmppc_xive *xive, |
| struct kvmppc_xive_src_block *sb, |
| u32 irq) |
| { |
| struct kvmppc_xive_irq_state *state = &sb->irq_state[irq]; |
| |
| if (!state->valid) |
| return; |
| |
| /* Mask and save state, this will also sync HW queues */ |
| state->saved_scan_prio = xive_lock_and_mask(xive, sb, state); |
| |
| /* Transfer P and Q */ |
| state->saved_p = state->old_p; |
| state->saved_q = state->old_q; |
| |
| /* Unlock */ |
| arch_spin_unlock(&sb->lock); |
| } |
| |
| static void xive_pre_save_unmask_irq(struct kvmppc_xive *xive, |
| struct kvmppc_xive_src_block *sb, |
| u32 irq) |
| { |
| struct kvmppc_xive_irq_state *state = &sb->irq_state[irq]; |
| |
| if (!state->valid) |
| return; |
| |
| /* |
| * Lock / exclude EOI (not technically necessary if the |
| * guest isn't running concurrently. If this becomes a |
| * performance issue we can probably remove the lock. |
| */ |
| xive_lock_for_unmask(sb, state); |
| |
| /* Restore mask/prio if it wasn't masked */ |
| if (state->saved_scan_prio != MASKED) |
| xive_finish_unmask(xive, sb, state, state->saved_scan_prio); |
| |
| /* Unlock */ |
| arch_spin_unlock(&sb->lock); |
| } |
| |
| static void xive_pre_save_queue(struct kvmppc_xive *xive, struct xive_q *q) |
| { |
| u32 idx = q->idx; |
| u32 toggle = q->toggle; |
| u32 irq; |
| |
| do { |
| irq = __xive_read_eq(q->qpage, q->msk, &idx, &toggle); |
| if (irq > XICS_IPI) |
| xive_pre_save_set_queued(xive, irq); |
| } while(irq); |
| } |
| |
| static void xive_pre_save_scan(struct kvmppc_xive *xive) |
| { |
| struct kvm_vcpu *vcpu = NULL; |
| unsigned long i; |
| int j; |
| |
| /* |
| * See comment in xive_get_source() about how this |
| * work. Collect a stable state for all interrupts |
| */ |
| for (i = 0; i <= xive->max_sbid; i++) { |
| struct kvmppc_xive_src_block *sb = xive->src_blocks[i]; |
| if (!sb) |
| continue; |
| for (j = 0; j < KVMPPC_XICS_IRQ_PER_ICS; j++) |
| xive_pre_save_mask_irq(xive, sb, j); |
| } |
| |
| /* Then scan the queues and update the "in_queue" flag */ |
| kvm_for_each_vcpu(i, vcpu, xive->kvm) { |
| struct kvmppc_xive_vcpu *xc = vcpu->arch.xive_vcpu; |
| if (!xc) |
| continue; |
| for (j = 0; j < KVMPPC_XIVE_Q_COUNT; j++) { |
| if (xc->queues[j].qpage) |
| xive_pre_save_queue(xive, &xc->queues[j]); |
| } |
| } |
| |
| /* Finally restore interrupt states */ |
| for (i = 0; i <= xive->max_sbid; i++) { |
| struct kvmppc_xive_src_block *sb = xive->src_blocks[i]; |
| if (!sb) |
| continue; |
| for (j = 0; j < KVMPPC_XICS_IRQ_PER_ICS; j++) |
| xive_pre_save_unmask_irq(xive, sb, j); |
| } |
| } |
| |
| static void xive_post_save_scan(struct kvmppc_xive *xive) |
| { |
| u32 i, j; |
| |
| /* Clear all the in_queue flags */ |
| for (i = 0; i <= xive->max_sbid; i++) { |
| struct kvmppc_xive_src_block *sb = xive->src_blocks[i]; |
| if (!sb) |
| continue; |
| for (j = 0; j < KVMPPC_XICS_IRQ_PER_ICS; j++) |
| sb->irq_state[j].in_queue = false; |
| } |
| |
| /* Next get_source() will do a new scan */ |
| xive->saved_src_count = 0; |
| } |
| |
| /* |
| * This returns the source configuration and state to user space. |
| */ |
| static int xive_get_source(struct kvmppc_xive *xive, long irq, u64 addr) |
| { |
| struct kvmppc_xive_src_block *sb; |
| struct kvmppc_xive_irq_state *state; |
| u64 __user *ubufp = (u64 __user *) addr; |
| u64 val, prio; |
| u16 idx; |
| |
| sb = kvmppc_xive_find_source(xive, irq, &idx); |
| if (!sb) |
| return -ENOENT; |
| |
| state = &sb->irq_state[idx]; |
| |
| if (!state->valid) |
| return -ENOENT; |
| |
| pr_devel("get_source(%ld)...\n", irq); |
| |
| /* |
| * So to properly save the state into something that looks like a |
| * XICS migration stream we cannot treat interrupts individually. |
| * |
| * We need, instead, mask them all (& save their previous PQ state) |
| * to get a stable state in the HW, then sync them to ensure that |
| * any interrupt that had already fired hits its queue, and finally |
| * scan all the queues to collect which interrupts are still present |
| * in the queues, so we can set the "pending" flag on them and |
| * they can be resent on restore. |
| * |
| * So we do it all when the "first" interrupt gets saved, all the |
| * state is collected at that point, the rest of xive_get_source() |
| * will merely collect and convert that state to the expected |
| * userspace bit mask. |
| */ |
| if (xive->saved_src_count == 0) |
| xive_pre_save_scan(xive); |
| xive->saved_src_count++; |
| |
| /* Convert saved state into something compatible with xics */ |
| val = state->act_server; |
| prio = state->saved_scan_prio; |
| |
| if (prio == MASKED) { |
| val |= KVM_XICS_MASKED; |
| prio = state->saved_priority; |
| } |
| val |= prio << KVM_XICS_PRIORITY_SHIFT; |
| if (state->lsi) { |
| val |= KVM_XICS_LEVEL_SENSITIVE; |
| if (state->saved_p) |
| val |= KVM_XICS_PENDING; |
| } else { |
| if (state->saved_p) |
| val |= KVM_XICS_PRESENTED; |
| |
| if (state->saved_q) |
| val |= KVM_XICS_QUEUED; |
| |
| /* |
| * We mark it pending (which will attempt a re-delivery) |
| * if we are in a queue *or* we were masked and had |
| * Q set which is equivalent to the XICS "masked pending" |
| * state |
| */ |
| if (state->in_queue || (prio == MASKED && state->saved_q)) |
| val |= KVM_XICS_PENDING; |
| } |
| |
| /* |
| * If that was the last interrupt saved, reset the |
| * in_queue flags |
| */ |
| if (xive->saved_src_count == xive->src_count) |
| xive_post_save_scan(xive); |
| |
| /* Copy the result to userspace */ |
| if (put_user(val, ubufp)) |
| return -EFAULT; |
| |
| return 0; |
| } |
| |
| struct kvmppc_xive_src_block *kvmppc_xive_create_src_block( |
| struct kvmppc_xive *xive, int irq) |
| { |
| struct kvmppc_xive_src_block *sb; |
| int i, bid; |
| |
| bid = irq >> KVMPPC_XICS_ICS_SHIFT; |
| |
| mutex_lock(&xive->lock); |
| |
| /* block already exists - somebody else got here first */ |
| if (xive->src_blocks[bid]) |
| goto out; |
| |
| /* Create the ICS */ |
| sb = kzalloc(sizeof(*sb), GFP_KERNEL); |
| if (!sb) |
| goto out; |
| |
| sb->id = bid; |
| |
| for (i = 0; i < KVMPPC_XICS_IRQ_PER_ICS; i++) { |
| sb->irq_state[i].number = (bid << KVMPPC_XICS_ICS_SHIFT) | i; |
| sb->irq_state[i].eisn = 0; |
| sb->irq_state[i].guest_priority = MASKED; |
| sb->irq_state[i].saved_priority = MASKED; |
| sb->irq_state[i].act_priority = MASKED; |
| } |
| smp_wmb(); |
| xive->src_blocks[bid] = sb; |
| |
| if (bid > xive->max_sbid) |
| xive->max_sbid = bid; |
| |
| out: |
| mutex_unlock(&xive->lock); |
| return xive->src_blocks[bid]; |
| } |
| |
| static bool xive_check_delayed_irq(struct kvmppc_xive *xive, u32 irq) |
| { |
| struct kvm *kvm = xive->kvm; |
| struct kvm_vcpu *vcpu = NULL; |
| unsigned long i; |
| |
| kvm_for_each_vcpu(i, vcpu, kvm) { |
| struct kvmppc_xive_vcpu *xc = vcpu->arch.xive_vcpu; |
| |
| if (!xc) |
| continue; |
| |
| if (xc->delayed_irq == irq) { |
| xc->delayed_irq = 0; |
| xive->delayed_irqs--; |
| return true; |
| } |
| } |
| return false; |
| } |
| |
| static int xive_set_source(struct kvmppc_xive *xive, long irq, u64 addr) |
| { |
| struct kvmppc_xive_src_block *sb; |
| struct kvmppc_xive_irq_state *state; |
| u64 __user *ubufp = (u64 __user *) addr; |
| u16 idx; |
| u64 val; |
| u8 act_prio, guest_prio; |
| u32 server; |
| int rc = 0; |
| |
| if (irq < KVMPPC_XICS_FIRST_IRQ || irq >= KVMPPC_XICS_NR_IRQS) |
| return -ENOENT; |
| |
| pr_devel("set_source(irq=0x%lx)\n", irq); |
| |
| /* Find the source */ |
| sb = kvmppc_xive_find_source(xive, irq, &idx); |
| if (!sb) { |
| pr_devel("No source, creating source block...\n"); |
| sb = kvmppc_xive_create_src_block(xive, irq); |
| if (!sb) { |
| pr_devel("Failed to create block...\n"); |
| return -ENOMEM; |
| } |
| } |
| state = &sb->irq_state[idx]; |
| |
| /* Read user passed data */ |
| if (get_user(val, ubufp)) { |
| pr_devel("fault getting user info !\n"); |
| return -EFAULT; |
| } |
| |
| server = val & KVM_XICS_DESTINATION_MASK; |
| guest_prio = val >> KVM_XICS_PRIORITY_SHIFT; |
| |
| pr_devel(" val=0x016%llx (server=0x%x, guest_prio=%d)\n", |
| val, server, guest_prio); |
| |
| /* |
| * If the source doesn't already have an IPI, allocate |
| * one and get the corresponding data |
| */ |
| if (!state->ipi_number) { |
| state->ipi_number = xive_native_alloc_irq(); |
| if (state->ipi_number == 0) { |
| pr_devel("Failed to allocate IPI !\n"); |
| return -ENOMEM; |
| } |
| xive_native_populate_irq_data(state->ipi_number, &state->ipi_data); |
| pr_devel(" src_ipi=0x%x\n", state->ipi_number); |
| } |
| |
| /* |
| * We use lock_and_mask() to set us in the right masked |
| * state. We will override that state from the saved state |
| * further down, but this will handle the cases of interrupts |
| * that need FW masking. We set the initial guest_priority to |
| * 0 before calling it to ensure it actually performs the masking. |
| */ |
| state->guest_priority = 0; |
| xive_lock_and_mask(xive, sb, state); |
| |
| /* |
| * Now, we select a target if we have one. If we don't we |
| * leave the interrupt untargetted. It means that an interrupt |
| * can become "untargetted" across migration if it was masked |
| * by set_xive() but there is little we can do about it. |
| */ |
| |
| /* First convert prio and mark interrupt as untargetted */ |
| act_prio = xive_prio_from_guest(guest_prio); |
| state->act_priority = MASKED; |
| |
| /* |
| * We need to drop the lock due to the mutex below. Hopefully |
| * nothing is touching that interrupt yet since it hasn't been |
| * advertized to a running guest yet |
| */ |
| arch_spin_unlock(&sb->lock); |
| |
| /* If we have a priority target the interrupt */ |
| if (act_prio != MASKED) { |
| /* First, check provisioning of queues */ |
| mutex_lock(&xive->lock); |
| rc = xive_check_provisioning(xive->kvm, act_prio); |
| mutex_unlock(&xive->lock); |
| |
| /* Target interrupt */ |
| if (rc == 0) |
| rc = xive_target_interrupt(xive->kvm, state, |
| server, act_prio); |
| /* |
| * If provisioning or targetting failed, leave it |
| * alone and masked. It will remain disabled until |
| * the guest re-targets it. |
| */ |
| } |
| |
| /* |
| * Find out if this was a delayed irq stashed in an ICP, |
| * in which case, treat it as pending |
| */ |
| if (xive->delayed_irqs && xive_check_delayed_irq(xive, irq)) { |
| val |= KVM_XICS_PENDING; |
| pr_devel(" Found delayed ! forcing PENDING !\n"); |
| } |
| |
| /* Cleanup the SW state */ |
| state->old_p = false; |
| state->old_q = false; |
| state->lsi = false; |
| state->asserted = false; |
| |
| /* Restore LSI state */ |
| if (val & KVM_XICS_LEVEL_SENSITIVE) { |
| state->lsi = true; |
| if (val & KVM_XICS_PENDING) |
| state->asserted = true; |
| pr_devel(" LSI ! Asserted=%d\n", state->asserted); |
| } |
| |
| /* |
| * Restore P and Q. If the interrupt was pending, we |
| * force Q and !P, which will trigger a resend. |
| * |
| * That means that a guest that had both an interrupt |
| * pending (queued) and Q set will restore with only |
| * one instance of that interrupt instead of 2, but that |
| * is perfectly fine as coalescing interrupts that haven't |
| * been presented yet is always allowed. |
| */ |
| if (val & KVM_XICS_PRESENTED && !(val & KVM_XICS_PENDING)) |
| state->old_p = true; |
| if (val & KVM_XICS_QUEUED || val & KVM_XICS_PENDING) |
| state->old_q = true; |
| |
| pr_devel(" P=%d, Q=%d\n", state->old_p, state->old_q); |
| |
| /* |
| * If the interrupt was unmasked, update guest priority and |
| * perform the appropriate state transition and do a |
| * re-trigger if necessary. |
| */ |
| if (val & KVM_XICS_MASKED) { |
| pr_devel(" masked, saving prio\n"); |
| state->guest_priority = MASKED; |
| state->saved_priority = guest_prio; |
| } else { |
| pr_devel(" unmasked, restoring to prio %d\n", guest_prio); |
| xive_finish_unmask(xive, sb, state, guest_prio); |
| state->saved_priority = guest_prio; |
| } |
| |
| /* Increment the number of valid sources and mark this one valid */ |
| if (!state->valid) |
| xive->src_count++; |
| state->valid = true; |
| |
| return 0; |
| } |
| |
| int kvmppc_xive_set_irq(struct kvm *kvm, int irq_source_id, u32 irq, int level, |
| bool line_status) |
| { |
| struct kvmppc_xive *xive = kvm->arch.xive; |
| struct kvmppc_xive_src_block *sb; |
| struct kvmppc_xive_irq_state *state; |
| u16 idx; |
| |
| if (!xive) |
| return -ENODEV; |
| |
| sb = kvmppc_xive_find_source(xive, irq, &idx); |
| if (!sb) |
| return -EINVAL; |
| |
| /* Perform locklessly .... (we need to do some RCUisms here...) */ |
| state = &sb->irq_state[idx]; |
| if (!state->valid) |
| return -EINVAL; |
| |
| /* We don't allow a trigger on a passed-through interrupt */ |
| if (state->pt_number) |
| return -EINVAL; |
| |
| if ((level == 1 && state->lsi) || level == KVM_INTERRUPT_SET_LEVEL) |
| state->asserted = true; |
| else if (level == 0 || level == KVM_INTERRUPT_UNSET) { |
| state->asserted = false; |
| return 0; |
| } |
| |
| /* Trigger the IPI */ |
| xive_irq_trigger(&state->ipi_data); |
| |
| return 0; |
| } |
| |
| int kvmppc_xive_set_nr_servers(struct kvmppc_xive *xive, u64 addr) |
| { |
| u32 __user *ubufp = (u32 __user *) addr; |
| u32 nr_servers; |
| int rc = 0; |
| |
| if (get_user(nr_servers, ubufp)) |
| return -EFAULT; |
| |
| pr_devel("%s nr_servers=%u\n", __func__, nr_servers); |
| |
| if (!nr_servers || nr_servers > KVM_MAX_VCPU_IDS) |
| return -EINVAL; |
| |
| mutex_lock(&xive->lock); |
| if (xive->vp_base != XIVE_INVALID_VP) |
| /* The VP block is allocated once and freed when the device |
| * is released. Better not allow to change its size since its |
| * used by connect_vcpu to validate vCPU ids are valid (eg, |
| * setting it back to a higher value could allow connect_vcpu |
| * to come up with a VP id that goes beyond the VP block, which |
| * is likely to cause a crash in OPAL). |
| */ |
| rc = -EBUSY; |
| else if (nr_servers > KVM_MAX_VCPUS) |
| /* We don't need more servers. Higher vCPU ids get packed |
| * down below KVM_MAX_VCPUS by kvmppc_pack_vcpu_id(). |
| */ |
| xive->nr_servers = KVM_MAX_VCPUS; |
| else |
| xive->nr_servers = nr_servers; |
| |
| mutex_unlock(&xive->lock); |
| |
| return rc; |
| } |
| |
| static int xive_set_attr(struct kvm_device *dev, struct kvm_device_attr *attr) |
| { |
| struct kvmppc_xive *xive = dev->private; |
| |
| /* We honor the existing XICS ioctl */ |
| switch (attr->group) { |
| case KVM_DEV_XICS_GRP_SOURCES: |
| return xive_set_source(xive, attr->attr, attr->addr); |
| case KVM_DEV_XICS_GRP_CTRL: |
| switch (attr->attr) { |
| case KVM_DEV_XICS_NR_SERVERS: |
| return kvmppc_xive_set_nr_servers(xive, attr->addr); |
| } |
| } |
| return -ENXIO; |
| } |
| |
| static int xive_get_attr(struct kvm_device *dev, struct kvm_device_attr *attr) |
| { |
| struct kvmppc_xive *xive = dev->private; |
| |
| /* We honor the existing XICS ioctl */ |
| switch (attr->group) { |
| case KVM_DEV_XICS_GRP_SOURCES: |
| return xive_get_source(xive, attr->attr, attr->addr); |
| } |
| return -ENXIO; |
| } |
| |
| static int xive_has_attr(struct kvm_device *dev, struct kvm_device_attr *attr) |
| { |
| /* We honor the same limits as XICS, at least for now */ |
| switch (attr->group) { |
| case KVM_DEV_XICS_GRP_SOURCES: |
| if (attr->attr >= KVMPPC_XICS_FIRST_IRQ && |
| attr->attr < KVMPPC_XICS_NR_IRQS) |
| return 0; |
| break; |
| case KVM_DEV_XICS_GRP_CTRL: |
| switch (attr->attr) { |
| case KVM_DEV_XICS_NR_SERVERS: |
| return 0; |
| } |
| } |
| return -ENXIO; |
| } |
| |
| static void kvmppc_xive_cleanup_irq(u32 hw_num, struct xive_irq_data *xd) |
| { |
| xive_vm_esb_load(xd, XIVE_ESB_SET_PQ_01); |
| xive_native_configure_irq(hw_num, 0, MASKED, 0); |
| } |
| |
| void kvmppc_xive_free_sources(struct kvmppc_xive_src_block *sb) |
| { |
| int i; |
| |
| for (i = 0; i < KVMPPC_XICS_IRQ_PER_ICS; i++) { |
| struct kvmppc_xive_irq_state *state = &sb->irq_state[i]; |
| |
| if (!state->valid) |
| continue; |
| |
| kvmppc_xive_cleanup_irq(state->ipi_number, &state->ipi_data); |
| xive_cleanup_irq_data(&state->ipi_data); |
| xive_native_free_irq(state->ipi_number); |
| |
| /* Pass-through, cleanup too but keep IRQ hw data */ |
| if (state->pt_number) |
| kvmppc_xive_cleanup_irq(state->pt_number, state->pt_data); |
| |
| state->valid = false; |
| } |
| } |
| |
| /* |
| * Called when device fd is closed. kvm->lock is held. |
| */ |
| static void kvmppc_xive_release(struct kvm_device *dev) |
| { |
| struct kvmppc_xive *xive = dev->private; |
| struct kvm *kvm = xive->kvm; |
| struct kvm_vcpu *vcpu; |
| unsigned long i; |
| |
| pr_devel("Releasing xive device\n"); |
| |
| /* |
| * Since this is the device release function, we know that |
| * userspace does not have any open fd referring to the |
| * device. Therefore there can not be any of the device |
| * attribute set/get functions being executed concurrently, |
| * and similarly, the connect_vcpu and set/clr_mapped |
| * functions also cannot be being executed. |
| */ |
| |
| debugfs_remove(xive->dentry); |
| |
| /* |
| * We should clean up the vCPU interrupt presenters first. |
| */ |
| kvm_for_each_vcpu(i, vcpu, kvm) { |
| /* |
| * Take vcpu->mutex to ensure that no one_reg get/set ioctl |
| * (i.e. kvmppc_xive_[gs]et_icp) can be done concurrently. |
| * Holding the vcpu->mutex also means that the vcpu cannot |
| * be executing the KVM_RUN ioctl, and therefore it cannot |
| * be executing the XIVE push or pull code or accessing |
| * the XIVE MMIO regions. |
| */ |
| mutex_lock(&vcpu->mutex); |
| kvmppc_xive_cleanup_vcpu(vcpu); |
| mutex_unlock(&vcpu->mutex); |
| } |
| |
| /* |
| * Now that we have cleared vcpu->arch.xive_vcpu, vcpu->arch.irq_type |
| * and vcpu->arch.xive_esc_[vr]addr on each vcpu, we are safe |
| * against xive code getting called during vcpu execution or |
| * set/get one_reg operations. |
| */ |
| kvm->arch.xive = NULL; |
| |
| /* Mask and free interrupts */ |
| for (i = 0; i <= xive->max_sbid; i++) { |
| if (xive->src_blocks[i]) |
| kvmppc_xive_free_sources(xive->src_blocks[i]); |
| kfree(xive->src_blocks[i]); |
| xive->src_blocks[i] = NULL; |
| } |
| |
| if (xive->vp_base != XIVE_INVALID_VP) |
| xive_native_free_vp_block(xive->vp_base); |
| |
| /* |
| * A reference of the kvmppc_xive pointer is now kept under |
| * the xive_devices struct of the machine for reuse. It is |
| * freed when the VM is destroyed for now until we fix all the |
| * execution paths. |
| */ |
| |
| kfree(dev); |
| } |
| |
| /* |
| * When the guest chooses the interrupt mode (XICS legacy or XIVE |
| * native), the VM will switch of KVM device. The previous device will |
| * be "released" before the new one is created. |
| * |
| * Until we are sure all execution paths are well protected, provide a |
| * fail safe (transitional) method for device destruction, in which |
| * the XIVE device pointer is recycled and not directly freed. |
| */ |
| struct kvmppc_xive *kvmppc_xive_get_device(struct kvm *kvm, u32 type) |
| { |
| struct kvmppc_xive **kvm_xive_device = type == KVM_DEV_TYPE_XIVE ? |
| &kvm->arch.xive_devices.native : |
| &kvm->arch.xive_devices.xics_on_xive; |
| struct kvmppc_xive *xive = *kvm_xive_device; |
| |
| if (!xive) { |
| xive = kzalloc(sizeof(*xive), GFP_KERNEL); |
| *kvm_xive_device = xive; |
| } else { |
| memset(xive, 0, sizeof(*xive)); |
| } |
| |
| return xive; |
| } |
| |
| /* |
| * Create a XICS device with XIVE backend. kvm->lock is held. |
| */ |
| static int kvmppc_xive_create(struct kvm_device *dev, u32 type) |
| { |
| struct kvmppc_xive *xive; |
| struct kvm *kvm = dev->kvm; |
| |
| pr_devel("Creating xive for partition\n"); |
| |
| /* Already there ? */ |
| if (kvm->arch.xive) |
| return -EEXIST; |
| |
| xive = kvmppc_xive_get_device(kvm, type); |
| if (!xive) |
| return -ENOMEM; |
| |
| dev->private = xive; |
| xive->dev = dev; |
| xive->kvm = kvm; |
| mutex_init(&xive->lock); |
| |
| /* We use the default queue size set by the host */ |
| xive->q_order = xive_native_default_eq_shift(); |
| if (xive->q_order < PAGE_SHIFT) |
| xive->q_page_order = 0; |
| else |
| xive->q_page_order = xive->q_order - PAGE_SHIFT; |
| |
| /* VP allocation is delayed to the first call to connect_vcpu */ |
| xive->vp_base = XIVE_INVALID_VP; |
| /* KVM_MAX_VCPUS limits the number of VMs to roughly 64 per sockets |
| * on a POWER9 system. |
| */ |
| xive->nr_servers = KVM_MAX_VCPUS; |
| |
| if (xive_native_has_single_escalation()) |
| xive->flags |= KVMPPC_XIVE_FLAG_SINGLE_ESCALATION; |
| |
| if (xive_native_has_save_restore()) |
| xive->flags |= KVMPPC_XIVE_FLAG_SAVE_RESTORE; |
| |
| kvm->arch.xive = xive; |
| return 0; |
| } |
| |
| int kvmppc_xive_xics_hcall(struct kvm_vcpu *vcpu, u32 req) |
| { |
| struct kvmppc_vcore *vc = vcpu->arch.vcore; |
| |
| /* The VM should have configured XICS mode before doing XICS hcalls. */ |
| if (!kvmppc_xics_enabled(vcpu)) |
| return H_TOO_HARD; |
| |
| switch (req) { |
| case H_XIRR: |
| return xive_vm_h_xirr(vcpu); |
| case H_CPPR: |
| return xive_vm_h_cppr(vcpu, kvmppc_get_gpr(vcpu, 4)); |
| case H_EOI: |
| return xive_vm_h_eoi(vcpu, kvmppc_get_gpr(vcpu, 4)); |
| case H_IPI: |
| return xive_vm_h_ipi(vcpu, kvmppc_get_gpr(vcpu, 4), |
| kvmppc_get_gpr(vcpu, 5)); |
| case H_IPOLL: |
| return xive_vm_h_ipoll(vcpu, kvmppc_get_gpr(vcpu, 4)); |
| case H_XIRR_X: |
| xive_vm_h_xirr(vcpu); |
| kvmppc_set_gpr(vcpu, 5, get_tb() + vc->tb_offset); |
| return H_SUCCESS; |
| } |
| |
| return H_UNSUPPORTED; |
| } |
| EXPORT_SYMBOL_GPL(kvmppc_xive_xics_hcall); |
| |
| int kvmppc_xive_debug_show_queues(struct seq_file *m, struct kvm_vcpu *vcpu) |
| { |
| struct kvmppc_xive_vcpu *xc = vcpu->arch.xive_vcpu; |
| unsigned int i; |
| |
| for (i = 0; i < KVMPPC_XIVE_Q_COUNT; i++) { |
| struct xive_q *q = &xc->queues[i]; |
| u32 i0, i1, idx; |
| |
| if (!q->qpage && !xc->esc_virq[i]) |
| continue; |
| |
| if (q->qpage) { |
| seq_printf(m, " q[%d]: ", i); |
| idx = q->idx; |
| i0 = be32_to_cpup(q->qpage + idx); |
| idx = (idx + 1) & q->msk; |
| i1 = be32_to_cpup(q->qpage + idx); |
| seq_printf(m, "T=%d %08x %08x...\n", q->toggle, |
| i0, i1); |
| } |
| if (xc->esc_virq[i]) { |
| struct irq_data *d = irq_get_irq_data(xc->esc_virq[i]); |
| struct xive_irq_data *xd = |
| irq_data_get_irq_handler_data(d); |
| u64 pq = xive_vm_esb_load(xd, XIVE_ESB_GET); |
| |
| seq_printf(m, " ESC %d %c%c EOI @%llx", |
| xc->esc_virq[i], |
| (pq & XIVE_ESB_VAL_P) ? 'P' : '-', |
| (pq & XIVE_ESB_VAL_Q) ? 'Q' : '-', |
| xd->eoi_page); |
| seq_puts(m, "\n"); |
| } |
| } |
| return 0; |
| } |
| |
| void kvmppc_xive_debug_show_sources(struct seq_file *m, |
| struct kvmppc_xive_src_block *sb) |
| { |
| int i; |
| |
| seq_puts(m, " LISN HW/CHIP TYPE PQ EISN CPU/PRIO\n"); |
| for (i = 0; i < KVMPPC_XICS_IRQ_PER_ICS; i++) { |
| struct kvmppc_xive_irq_state *state = &sb->irq_state[i]; |
| struct xive_irq_data *xd; |
| u64 pq; |
| u32 hw_num; |
| |
| if (!state->valid) |
| continue; |
| |
| kvmppc_xive_select_irq(state, &hw_num, &xd); |
| |
| pq = xive_vm_esb_load(xd, XIVE_ESB_GET); |
| |
| seq_printf(m, "%08x %08x/%02x", state->number, hw_num, |
| xd->src_chip); |
| if (state->lsi) |
| seq_printf(m, " %cLSI", state->asserted ? '^' : ' '); |
| else |
| seq_puts(m, " MSI"); |
| |
| seq_printf(m, " %s %c%c %08x % 4d/%d", |
| state->ipi_number == hw_num ? "IPI" : " PT", |
| pq & XIVE_ESB_VAL_P ? 'P' : '-', |
| pq & XIVE_ESB_VAL_Q ? 'Q' : '-', |
| state->eisn, state->act_server, |
| state->act_priority); |
| |
| seq_puts(m, "\n"); |
| } |
| } |
| |
| static int xive_debug_show(struct seq_file *m, void *private) |
| { |
| struct kvmppc_xive *xive = m->private; |
| struct kvm *kvm = xive->kvm; |
| struct kvm_vcpu *vcpu; |
| u64 t_rm_h_xirr = 0; |
| u64 t_rm_h_ipoll = 0; |
| u64 t_rm_h_cppr = 0; |
| u64 t_rm_h_eoi = 0; |
| u64 t_rm_h_ipi = 0; |
| u64 t_vm_h_xirr = 0; |
| u64 t_vm_h_ipoll = 0; |
| u64 t_vm_h_cppr = 0; |
| u64 t_vm_h_eoi = 0; |
| u64 t_vm_h_ipi = 0; |
| unsigned long i; |
| |
| if (!kvm) |
| return 0; |
| |
| seq_puts(m, "=========\nVCPU state\n=========\n"); |
| |
| kvm_for_each_vcpu(i, vcpu, kvm) { |
| struct kvmppc_xive_vcpu *xc = vcpu->arch.xive_vcpu; |
| |
| if (!xc) |
| continue; |
| |
| seq_printf(m, "VCPU %d: VP:%#x/%02x\n" |
| " CPPR:%#x HWCPPR:%#x MFRR:%#x PEND:%#x h_xirr: R=%lld V=%lld\n", |
| xc->server_num, xc->vp_id, xc->vp_chip_id, |
| xc->cppr, xc->hw_cppr, |
| xc->mfrr, xc->pending, |
| xc->stat_rm_h_xirr, xc->stat_vm_h_xirr); |
| |
| kvmppc_xive_debug_show_queues(m, vcpu); |
| |
| t_rm_h_xirr += xc->stat_rm_h_xirr; |
| t_rm_h_ipoll += xc->stat_rm_h_ipoll; |
| t_rm_h_cppr += xc->stat_rm_h_cppr; |
| t_rm_h_eoi += xc->stat_rm_h_eoi; |
| t_rm_h_ipi += xc->stat_rm_h_ipi; |
| t_vm_h_xirr += xc->stat_vm_h_xirr; |
| t_vm_h_ipoll += xc->stat_vm_h_ipoll; |
| t_vm_h_cppr += xc->stat_vm_h_cppr; |
| t_vm_h_eoi += xc->stat_vm_h_eoi; |
| t_vm_h_ipi += xc->stat_vm_h_ipi; |
| } |
| |
| seq_puts(m, "Hcalls totals\n"); |
| seq_printf(m, " H_XIRR R=%10lld V=%10lld\n", t_rm_h_xirr, t_vm_h_xirr); |
| seq_printf(m, " H_IPOLL R=%10lld V=%10lld\n", t_rm_h_ipoll, t_vm_h_ipoll); |
| seq_printf(m, " H_CPPR R=%10lld V=%10lld\n", t_rm_h_cppr, t_vm_h_cppr); |
| seq_printf(m, " H_EOI R=%10lld V=%10lld\n", t_rm_h_eoi, t_vm_h_eoi); |
| seq_printf(m, " H_IPI R=%10lld V=%10lld\n", t_rm_h_ipi, t_vm_h_ipi); |
| |
| seq_puts(m, "=========\nSources\n=========\n"); |
| |
| for (i = 0; i <= xive->max_sbid; i++) { |
| struct kvmppc_xive_src_block *sb = xive->src_blocks[i]; |
| |
| if (sb) { |
| arch_spin_lock(&sb->lock); |
| kvmppc_xive_debug_show_sources(m, sb); |
| arch_spin_unlock(&sb->lock); |
| } |
| } |
| |
| return 0; |
| } |
| |
| DEFINE_SHOW_ATTRIBUTE(xive_debug); |
| |
| static void xive_debugfs_init(struct kvmppc_xive *xive) |
| { |
| xive->dentry = debugfs_create_file("xive", S_IRUGO, xive->kvm->debugfs_dentry, |
| xive, &xive_debug_fops); |
| |
| pr_debug("%s: created\n", __func__); |
| } |
| |
| static void kvmppc_xive_init(struct kvm_device *dev) |
| { |
| struct kvmppc_xive *xive = dev->private; |
| |
| /* Register some debug interfaces */ |
| xive_debugfs_init(xive); |
| } |
| |
| struct kvm_device_ops kvm_xive_ops = { |
| .name = "kvm-xive", |
| .create = kvmppc_xive_create, |
| .init = kvmppc_xive_init, |
| .release = kvmppc_xive_release, |
| .set_attr = xive_set_attr, |
| .get_attr = xive_get_attr, |
| .has_attr = xive_has_attr, |
| }; |