blob: ec626a37fef6014f403ecac7946f1eab583c246a [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0-only
/*
* TI K3 DSP Remote Processor(s) driver
*
* Copyright (C) 2018-2022 Texas Instruments Incorporated - https://www.ti.com/
* Suman Anna <s-anna@ti.com>
*/
#include <linux/io.h>
#include <linux/mailbox_client.h>
#include <linux/module.h>
#include <linux/of_device.h>
#include <linux/of_reserved_mem.h>
#include <linux/omap-mailbox.h>
#include <linux/platform_device.h>
#include <linux/remoteproc.h>
#include <linux/reset.h>
#include <linux/slab.h>
#include "omap_remoteproc.h"
#include "remoteproc_internal.h"
#include "ti_sci_proc.h"
#define KEYSTONE_RPROC_LOCAL_ADDRESS_MASK (SZ_16M - 1)
/**
* struct k3_dsp_mem - internal memory structure
* @cpu_addr: MPU virtual address of the memory region
* @bus_addr: Bus address used to access the memory region
* @dev_addr: Device address of the memory region from DSP view
* @size: Size of the memory region
*/
struct k3_dsp_mem {
void __iomem *cpu_addr;
phys_addr_t bus_addr;
u32 dev_addr;
size_t size;
};
/**
* struct k3_dsp_mem_data - memory definitions for a DSP
* @name: name for this memory entry
* @dev_addr: device address for the memory entry
*/
struct k3_dsp_mem_data {
const char *name;
const u32 dev_addr;
};
/**
* struct k3_dsp_dev_data - device data structure for a DSP
* @mems: pointer to memory definitions for a DSP
* @num_mems: number of memory regions in @mems
* @boot_align_addr: boot vector address alignment granularity
* @uses_lreset: flag to denote the need for local reset management
*/
struct k3_dsp_dev_data {
const struct k3_dsp_mem_data *mems;
u32 num_mems;
u32 boot_align_addr;
bool uses_lreset;
};
/**
* struct k3_dsp_rproc - k3 DSP remote processor driver structure
* @dev: cached device pointer
* @rproc: remoteproc device handle
* @mem: internal memory regions data
* @num_mems: number of internal memory regions
* @rmem: reserved memory regions data
* @num_rmems: number of reserved memory regions
* @reset: reset control handle
* @data: pointer to DSP-specific device data
* @tsp: TI-SCI processor control handle
* @ti_sci: TI-SCI handle
* @ti_sci_id: TI-SCI device identifier
* @mbox: mailbox channel handle
* @client: mailbox client to request the mailbox channel
*/
struct k3_dsp_rproc {
struct device *dev;
struct rproc *rproc;
struct k3_dsp_mem *mem;
int num_mems;
struct k3_dsp_mem *rmem;
int num_rmems;
struct reset_control *reset;
const struct k3_dsp_dev_data *data;
struct ti_sci_proc *tsp;
const struct ti_sci_handle *ti_sci;
u32 ti_sci_id;
struct mbox_chan *mbox;
struct mbox_client client;
};
/**
* k3_dsp_rproc_mbox_callback() - inbound mailbox message handler
* @client: mailbox client pointer used for requesting the mailbox channel
* @data: mailbox payload
*
* This handler is invoked by the OMAP mailbox driver whenever a mailbox
* message is received. Usually, the mailbox payload simply contains
* the index of the virtqueue that is kicked by the remote processor,
* and we let remoteproc core handle it.
*
* In addition to virtqueue indices, we also have some out-of-band values
* that indicate different events. Those values are deliberately very
* large so they don't coincide with virtqueue indices.
*/
static void k3_dsp_rproc_mbox_callback(struct mbox_client *client, void *data)
{
struct k3_dsp_rproc *kproc = container_of(client, struct k3_dsp_rproc,
client);
struct device *dev = kproc->rproc->dev.parent;
const char *name = kproc->rproc->name;
u32 msg = omap_mbox_message(data);
dev_dbg(dev, "mbox msg: 0x%x\n", msg);
switch (msg) {
case RP_MBOX_CRASH:
/*
* remoteproc detected an exception, but error recovery is not
* supported. So, just log this for now
*/
dev_err(dev, "K3 DSP rproc %s crashed\n", name);
break;
case RP_MBOX_ECHO_REPLY:
dev_info(dev, "received echo reply from %s\n", name);
break;
default:
/* silently handle all other valid messages */
if (msg >= RP_MBOX_READY && msg < RP_MBOX_END_MSG)
return;
if (msg > kproc->rproc->max_notifyid) {
dev_dbg(dev, "dropping unknown message 0x%x", msg);
return;
}
/* msg contains the index of the triggered vring */
if (rproc_vq_interrupt(kproc->rproc, msg) == IRQ_NONE)
dev_dbg(dev, "no message was found in vqid %d\n", msg);
}
}
/*
* Kick the remote processor to notify about pending unprocessed messages.
* The vqid usage is not used and is inconsequential, as the kick is performed
* through a simulated GPIO (a bit in an IPC interrupt-triggering register),
* the remote processor is expected to process both its Tx and Rx virtqueues.
*/
static void k3_dsp_rproc_kick(struct rproc *rproc, int vqid)
{
struct k3_dsp_rproc *kproc = rproc->priv;
struct device *dev = rproc->dev.parent;
mbox_msg_t msg = (mbox_msg_t)vqid;
int ret;
/* send the index of the triggered virtqueue in the mailbox payload */
ret = mbox_send_message(kproc->mbox, (void *)msg);
if (ret < 0)
dev_err(dev, "failed to send mailbox message, status = %d\n",
ret);
}
/* Put the DSP processor into reset */
static int k3_dsp_rproc_reset(struct k3_dsp_rproc *kproc)
{
struct device *dev = kproc->dev;
int ret;
ret = reset_control_assert(kproc->reset);
if (ret) {
dev_err(dev, "local-reset assert failed, ret = %d\n", ret);
return ret;
}
if (kproc->data->uses_lreset)
return ret;
ret = kproc->ti_sci->ops.dev_ops.put_device(kproc->ti_sci,
kproc->ti_sci_id);
if (ret) {
dev_err(dev, "module-reset assert failed, ret = %d\n", ret);
if (reset_control_deassert(kproc->reset))
dev_warn(dev, "local-reset deassert back failed\n");
}
return ret;
}
/* Release the DSP processor from reset */
static int k3_dsp_rproc_release(struct k3_dsp_rproc *kproc)
{
struct device *dev = kproc->dev;
int ret;
if (kproc->data->uses_lreset)
goto lreset;
ret = kproc->ti_sci->ops.dev_ops.get_device(kproc->ti_sci,
kproc->ti_sci_id);
if (ret) {
dev_err(dev, "module-reset deassert failed, ret = %d\n", ret);
return ret;
}
lreset:
ret = reset_control_deassert(kproc->reset);
if (ret) {
dev_err(dev, "local-reset deassert failed, ret = %d\n", ret);
if (kproc->ti_sci->ops.dev_ops.put_device(kproc->ti_sci,
kproc->ti_sci_id))
dev_warn(dev, "module-reset assert back failed\n");
}
return ret;
}
static int k3_dsp_rproc_request_mbox(struct rproc *rproc)
{
struct k3_dsp_rproc *kproc = rproc->priv;
struct mbox_client *client = &kproc->client;
struct device *dev = kproc->dev;
int ret;
client->dev = dev;
client->tx_done = NULL;
client->rx_callback = k3_dsp_rproc_mbox_callback;
client->tx_block = false;
client->knows_txdone = false;
kproc->mbox = mbox_request_channel(client, 0);
if (IS_ERR(kproc->mbox)) {
ret = -EBUSY;
dev_err(dev, "mbox_request_channel failed: %ld\n",
PTR_ERR(kproc->mbox));
return ret;
}
/*
* Ping the remote processor, this is only for sanity-sake for now;
* there is no functional effect whatsoever.
*
* Note that the reply will _not_ arrive immediately: this message
* will wait in the mailbox fifo until the remote processor is booted.
*/
ret = mbox_send_message(kproc->mbox, (void *)RP_MBOX_ECHO_REQUEST);
if (ret < 0) {
dev_err(dev, "mbox_send_message failed: %d\n", ret);
mbox_free_channel(kproc->mbox);
return ret;
}
return 0;
}
/*
* The C66x DSP cores have a local reset that affects only the CPU, and a
* generic module reset that powers on the device and allows the DSP internal
* memories to be accessed while the local reset is asserted. This function is
* used to release the global reset on C66x DSPs to allow loading into the DSP
* internal RAMs. The .prepare() ops is invoked by remoteproc core before any
* firmware loading, and is followed by the .start() ops after loading to
* actually let the C66x DSP cores run. This callback is invoked only in
* remoteproc mode.
*/
static int k3_dsp_rproc_prepare(struct rproc *rproc)
{
struct k3_dsp_rproc *kproc = rproc->priv;
struct device *dev = kproc->dev;
int ret;
ret = kproc->ti_sci->ops.dev_ops.get_device(kproc->ti_sci,
kproc->ti_sci_id);
if (ret)
dev_err(dev, "module-reset deassert failed, cannot enable internal RAM loading, ret = %d\n",
ret);
return ret;
}
/*
* This function implements the .unprepare() ops and performs the complimentary
* operations to that of the .prepare() ops. The function is used to assert the
* global reset on applicable C66x cores. This completes the second portion of
* powering down the C66x DSP cores. The cores themselves are only halted in the
* .stop() callback through the local reset, and the .unprepare() ops is invoked
* by the remoteproc core after the remoteproc is stopped to balance the global
* reset. This callback is invoked only in remoteproc mode.
*/
static int k3_dsp_rproc_unprepare(struct rproc *rproc)
{
struct k3_dsp_rproc *kproc = rproc->priv;
struct device *dev = kproc->dev;
int ret;
ret = kproc->ti_sci->ops.dev_ops.put_device(kproc->ti_sci,
kproc->ti_sci_id);
if (ret)
dev_err(dev, "module-reset assert failed, ret = %d\n", ret);
return ret;
}
/*
* Power up the DSP remote processor.
*
* This function will be invoked only after the firmware for this rproc
* was loaded, parsed successfully, and all of its resource requirements
* were met. This callback is invoked only in remoteproc mode.
*/
static int k3_dsp_rproc_start(struct rproc *rproc)
{
struct k3_dsp_rproc *kproc = rproc->priv;
struct device *dev = kproc->dev;
u32 boot_addr;
int ret;
ret = k3_dsp_rproc_request_mbox(rproc);
if (ret)
return ret;
boot_addr = rproc->bootaddr;
if (boot_addr & (kproc->data->boot_align_addr - 1)) {
dev_err(dev, "invalid boot address 0x%x, must be aligned on a 0x%x boundary\n",
boot_addr, kproc->data->boot_align_addr);
ret = -EINVAL;
goto put_mbox;
}
dev_err(dev, "booting DSP core using boot addr = 0x%x\n", boot_addr);
ret = ti_sci_proc_set_config(kproc->tsp, boot_addr, 0, 0);
if (ret)
goto put_mbox;
ret = k3_dsp_rproc_release(kproc);
if (ret)
goto put_mbox;
return 0;
put_mbox:
mbox_free_channel(kproc->mbox);
return ret;
}
/*
* Stop the DSP remote processor.
*
* This function puts the DSP processor into reset, and finishes processing
* of any pending messages. This callback is invoked only in remoteproc mode.
*/
static int k3_dsp_rproc_stop(struct rproc *rproc)
{
struct k3_dsp_rproc *kproc = rproc->priv;
mbox_free_channel(kproc->mbox);
k3_dsp_rproc_reset(kproc);
return 0;
}
/*
* Attach to a running DSP remote processor (IPC-only mode)
*
* This rproc attach callback only needs to request the mailbox, the remote
* processor is already booted, so there is no need to issue any TI-SCI
* commands to boot the DSP core. This callback is invoked only in IPC-only
* mode.
*/
static int k3_dsp_rproc_attach(struct rproc *rproc)
{
struct k3_dsp_rproc *kproc = rproc->priv;
struct device *dev = kproc->dev;
int ret;
ret = k3_dsp_rproc_request_mbox(rproc);
if (ret)
return ret;
dev_info(dev, "DSP initialized in IPC-only mode\n");
return 0;
}
/*
* Detach from a running DSP remote processor (IPC-only mode)
*
* This rproc detach callback performs the opposite operation to attach callback
* and only needs to release the mailbox, the DSP core is not stopped and will
* be left to continue to run its booted firmware. This callback is invoked only
* in IPC-only mode.
*/
static int k3_dsp_rproc_detach(struct rproc *rproc)
{
struct k3_dsp_rproc *kproc = rproc->priv;
struct device *dev = kproc->dev;
mbox_free_channel(kproc->mbox);
dev_info(dev, "DSP deinitialized in IPC-only mode\n");
return 0;
}
/*
* This function implements the .get_loaded_rsc_table() callback and is used
* to provide the resource table for a booted DSP in IPC-only mode. The K3 DSP
* firmwares follow a design-by-contract approach and are expected to have the
* resource table at the base of the DDR region reserved for firmware usage.
* This provides flexibility for the remote processor to be booted by different
* bootloaders that may or may not have the ability to publish the resource table
* address and size through a DT property. This callback is invoked only in
* IPC-only mode.
*/
static struct resource_table *k3_dsp_get_loaded_rsc_table(struct rproc *rproc,
size_t *rsc_table_sz)
{
struct k3_dsp_rproc *kproc = rproc->priv;
struct device *dev = kproc->dev;
if (!kproc->rmem[0].cpu_addr) {
dev_err(dev, "memory-region #1 does not exist, loaded rsc table can't be found");
return ERR_PTR(-ENOMEM);
}
/*
* NOTE: The resource table size is currently hard-coded to a maximum
* of 256 bytes. The most common resource table usage for K3 firmwares
* is to only have the vdev resource entry and an optional trace entry.
* The exact size could be computed based on resource table address, but
* the hard-coded value suffices to support the IPC-only mode.
*/
*rsc_table_sz = 256;
return (struct resource_table *)kproc->rmem[0].cpu_addr;
}
/*
* Custom function to translate a DSP device address (internal RAMs only) to a
* kernel virtual address. The DSPs can access their RAMs at either an internal
* address visible only from a DSP, or at the SoC-level bus address. Both these
* addresses need to be looked through for translation. The translated addresses
* can be used either by the remoteproc core for loading (when using kernel
* remoteproc loader), or by any rpmsg bus drivers.
*/
static void *k3_dsp_rproc_da_to_va(struct rproc *rproc, u64 da, size_t len, bool *is_iomem)
{
struct k3_dsp_rproc *kproc = rproc->priv;
void __iomem *va = NULL;
phys_addr_t bus_addr;
u32 dev_addr, offset;
size_t size;
int i;
if (len == 0)
return NULL;
for (i = 0; i < kproc->num_mems; i++) {
bus_addr = kproc->mem[i].bus_addr;
dev_addr = kproc->mem[i].dev_addr;
size = kproc->mem[i].size;
if (da < KEYSTONE_RPROC_LOCAL_ADDRESS_MASK) {
/* handle DSP-view addresses */
if (da >= dev_addr &&
((da + len) <= (dev_addr + size))) {
offset = da - dev_addr;
va = kproc->mem[i].cpu_addr + offset;
return (__force void *)va;
}
} else {
/* handle SoC-view addresses */
if (da >= bus_addr &&
(da + len) <= (bus_addr + size)) {
offset = da - bus_addr;
va = kproc->mem[i].cpu_addr + offset;
return (__force void *)va;
}
}
}
/* handle static DDR reserved memory regions */
for (i = 0; i < kproc->num_rmems; i++) {
dev_addr = kproc->rmem[i].dev_addr;
size = kproc->rmem[i].size;
if (da >= dev_addr && ((da + len) <= (dev_addr + size))) {
offset = da - dev_addr;
va = kproc->rmem[i].cpu_addr + offset;
return (__force void *)va;
}
}
return NULL;
}
static const struct rproc_ops k3_dsp_rproc_ops = {
.start = k3_dsp_rproc_start,
.stop = k3_dsp_rproc_stop,
.kick = k3_dsp_rproc_kick,
.da_to_va = k3_dsp_rproc_da_to_va,
};
static int k3_dsp_rproc_of_get_memories(struct platform_device *pdev,
struct k3_dsp_rproc *kproc)
{
const struct k3_dsp_dev_data *data = kproc->data;
struct device *dev = &pdev->dev;
struct resource *res;
int num_mems = 0;
int i;
num_mems = kproc->data->num_mems;
kproc->mem = devm_kcalloc(kproc->dev, num_mems,
sizeof(*kproc->mem), GFP_KERNEL);
if (!kproc->mem)
return -ENOMEM;
for (i = 0; i < num_mems; i++) {
res = platform_get_resource_byname(pdev, IORESOURCE_MEM,
data->mems[i].name);
if (!res) {
dev_err(dev, "found no memory resource for %s\n",
data->mems[i].name);
return -EINVAL;
}
if (!devm_request_mem_region(dev, res->start,
resource_size(res),
dev_name(dev))) {
dev_err(dev, "could not request %s region for resource\n",
data->mems[i].name);
return -EBUSY;
}
kproc->mem[i].cpu_addr = devm_ioremap_wc(dev, res->start,
resource_size(res));
if (!kproc->mem[i].cpu_addr) {
dev_err(dev, "failed to map %s memory\n",
data->mems[i].name);
return -ENOMEM;
}
kproc->mem[i].bus_addr = res->start;
kproc->mem[i].dev_addr = data->mems[i].dev_addr;
kproc->mem[i].size = resource_size(res);
dev_dbg(dev, "memory %8s: bus addr %pa size 0x%zx va %pK da 0x%x\n",
data->mems[i].name, &kproc->mem[i].bus_addr,
kproc->mem[i].size, kproc->mem[i].cpu_addr,
kproc->mem[i].dev_addr);
}
kproc->num_mems = num_mems;
return 0;
}
static int k3_dsp_reserved_mem_init(struct k3_dsp_rproc *kproc)
{
struct device *dev = kproc->dev;
struct device_node *np = dev->of_node;
struct device_node *rmem_np;
struct reserved_mem *rmem;
int num_rmems;
int ret, i;
num_rmems = of_property_count_elems_of_size(np, "memory-region",
sizeof(phandle));
if (num_rmems <= 0) {
dev_err(dev, "device does not reserved memory regions, ret = %d\n",
num_rmems);
return -EINVAL;
}
if (num_rmems < 2) {
dev_err(dev, "device needs at least two memory regions to be defined, num = %d\n",
num_rmems);
return -EINVAL;
}
/* use reserved memory region 0 for vring DMA allocations */
ret = of_reserved_mem_device_init_by_idx(dev, np, 0);
if (ret) {
dev_err(dev, "device cannot initialize DMA pool, ret = %d\n",
ret);
return ret;
}
num_rmems--;
kproc->rmem = kcalloc(num_rmems, sizeof(*kproc->rmem), GFP_KERNEL);
if (!kproc->rmem) {
ret = -ENOMEM;
goto release_rmem;
}
/* use remaining reserved memory regions for static carveouts */
for (i = 0; i < num_rmems; i++) {
rmem_np = of_parse_phandle(np, "memory-region", i + 1);
if (!rmem_np) {
ret = -EINVAL;
goto unmap_rmem;
}
rmem = of_reserved_mem_lookup(rmem_np);
if (!rmem) {
of_node_put(rmem_np);
ret = -EINVAL;
goto unmap_rmem;
}
of_node_put(rmem_np);
kproc->rmem[i].bus_addr = rmem->base;
/* 64-bit address regions currently not supported */
kproc->rmem[i].dev_addr = (u32)rmem->base;
kproc->rmem[i].size = rmem->size;
kproc->rmem[i].cpu_addr = ioremap_wc(rmem->base, rmem->size);
if (!kproc->rmem[i].cpu_addr) {
dev_err(dev, "failed to map reserved memory#%d at %pa of size %pa\n",
i + 1, &rmem->base, &rmem->size);
ret = -ENOMEM;
goto unmap_rmem;
}
dev_dbg(dev, "reserved memory%d: bus addr %pa size 0x%zx va %pK da 0x%x\n",
i + 1, &kproc->rmem[i].bus_addr,
kproc->rmem[i].size, kproc->rmem[i].cpu_addr,
kproc->rmem[i].dev_addr);
}
kproc->num_rmems = num_rmems;
return 0;
unmap_rmem:
for (i--; i >= 0; i--)
iounmap(kproc->rmem[i].cpu_addr);
kfree(kproc->rmem);
release_rmem:
of_reserved_mem_device_release(kproc->dev);
return ret;
}
static void k3_dsp_reserved_mem_exit(struct k3_dsp_rproc *kproc)
{
int i;
for (i = 0; i < kproc->num_rmems; i++)
iounmap(kproc->rmem[i].cpu_addr);
kfree(kproc->rmem);
of_reserved_mem_device_release(kproc->dev);
}
static
struct ti_sci_proc *k3_dsp_rproc_of_get_tsp(struct device *dev,
const struct ti_sci_handle *sci)
{
struct ti_sci_proc *tsp;
u32 temp[2];
int ret;
ret = of_property_read_u32_array(dev->of_node, "ti,sci-proc-ids",
temp, 2);
if (ret < 0)
return ERR_PTR(ret);
tsp = kzalloc(sizeof(*tsp), GFP_KERNEL);
if (!tsp)
return ERR_PTR(-ENOMEM);
tsp->dev = dev;
tsp->sci = sci;
tsp->ops = &sci->ops.proc_ops;
tsp->proc_id = temp[0];
tsp->host_id = temp[1];
return tsp;
}
static int k3_dsp_rproc_probe(struct platform_device *pdev)
{
struct device *dev = &pdev->dev;
struct device_node *np = dev->of_node;
const struct k3_dsp_dev_data *data;
struct k3_dsp_rproc *kproc;
struct rproc *rproc;
const char *fw_name;
bool p_state = false;
int ret = 0;
int ret1;
data = of_device_get_match_data(dev);
if (!data)
return -ENODEV;
ret = rproc_of_parse_firmware(dev, 0, &fw_name);
if (ret) {
dev_err(dev, "failed to parse firmware-name property, ret = %d\n",
ret);
return ret;
}
rproc = rproc_alloc(dev, dev_name(dev), &k3_dsp_rproc_ops, fw_name,
sizeof(*kproc));
if (!rproc)
return -ENOMEM;
rproc->has_iommu = false;
rproc->recovery_disabled = true;
if (data->uses_lreset) {
rproc->ops->prepare = k3_dsp_rproc_prepare;
rproc->ops->unprepare = k3_dsp_rproc_unprepare;
}
kproc = rproc->priv;
kproc->rproc = rproc;
kproc->dev = dev;
kproc->data = data;
kproc->ti_sci = ti_sci_get_by_phandle(np, "ti,sci");
if (IS_ERR(kproc->ti_sci)) {
ret = PTR_ERR(kproc->ti_sci);
if (ret != -EPROBE_DEFER) {
dev_err(dev, "failed to get ti-sci handle, ret = %d\n",
ret);
}
kproc->ti_sci = NULL;
goto free_rproc;
}
ret = of_property_read_u32(np, "ti,sci-dev-id", &kproc->ti_sci_id);
if (ret) {
dev_err(dev, "missing 'ti,sci-dev-id' property\n");
goto put_sci;
}
kproc->reset = devm_reset_control_get_exclusive(dev, NULL);
if (IS_ERR(kproc->reset)) {
ret = PTR_ERR(kproc->reset);
dev_err(dev, "failed to get reset, status = %d\n", ret);
goto put_sci;
}
kproc->tsp = k3_dsp_rproc_of_get_tsp(dev, kproc->ti_sci);
if (IS_ERR(kproc->tsp)) {
dev_err(dev, "failed to construct ti-sci proc control, ret = %d\n",
ret);
ret = PTR_ERR(kproc->tsp);
goto put_sci;
}
ret = ti_sci_proc_request(kproc->tsp);
if (ret < 0) {
dev_err(dev, "ti_sci_proc_request failed, ret = %d\n", ret);
goto free_tsp;
}
ret = k3_dsp_rproc_of_get_memories(pdev, kproc);
if (ret)
goto release_tsp;
ret = k3_dsp_reserved_mem_init(kproc);
if (ret) {
dev_err(dev, "reserved memory init failed, ret = %d\n", ret);
goto release_tsp;
}
ret = kproc->ti_sci->ops.dev_ops.is_on(kproc->ti_sci, kproc->ti_sci_id,
NULL, &p_state);
if (ret) {
dev_err(dev, "failed to get initial state, mode cannot be determined, ret = %d\n",
ret);
goto release_mem;
}
/* configure J721E devices for either remoteproc or IPC-only mode */
if (p_state) {
dev_info(dev, "configured DSP for IPC-only mode\n");
rproc->state = RPROC_DETACHED;
/* override rproc ops with only required IPC-only mode ops */
rproc->ops->prepare = NULL;
rproc->ops->unprepare = NULL;
rproc->ops->start = NULL;
rproc->ops->stop = NULL;
rproc->ops->attach = k3_dsp_rproc_attach;
rproc->ops->detach = k3_dsp_rproc_detach;
rproc->ops->get_loaded_rsc_table = k3_dsp_get_loaded_rsc_table;
} else {
dev_info(dev, "configured DSP for remoteproc mode\n");
/*
* ensure the DSP local reset is asserted to ensure the DSP
* doesn't execute bogus code in .prepare() when the module
* reset is released.
*/
if (data->uses_lreset) {
ret = reset_control_status(kproc->reset);
if (ret < 0) {
dev_err(dev, "failed to get reset status, status = %d\n",
ret);
goto release_mem;
} else if (ret == 0) {
dev_warn(dev, "local reset is deasserted for device\n");
k3_dsp_rproc_reset(kproc);
}
}
}
ret = rproc_add(rproc);
if (ret) {
dev_err(dev, "failed to add register device with remoteproc core, status = %d\n",
ret);
goto release_mem;
}
platform_set_drvdata(pdev, kproc);
return 0;
release_mem:
k3_dsp_reserved_mem_exit(kproc);
release_tsp:
ret1 = ti_sci_proc_release(kproc->tsp);
if (ret1)
dev_err(dev, "failed to release proc, ret = %d\n", ret1);
free_tsp:
kfree(kproc->tsp);
put_sci:
ret1 = ti_sci_put_handle(kproc->ti_sci);
if (ret1)
dev_err(dev, "failed to put ti_sci handle, ret = %d\n", ret1);
free_rproc:
rproc_free(rproc);
return ret;
}
static int k3_dsp_rproc_remove(struct platform_device *pdev)
{
struct k3_dsp_rproc *kproc = platform_get_drvdata(pdev);
struct rproc *rproc = kproc->rproc;
struct device *dev = &pdev->dev;
int ret;
if (rproc->state == RPROC_ATTACHED) {
ret = rproc_detach(rproc);
if (ret) {
dev_err(dev, "failed to detach proc, ret = %d\n", ret);
return ret;
}
}
rproc_del(kproc->rproc);
ret = ti_sci_proc_release(kproc->tsp);
if (ret)
dev_err(dev, "failed to release proc, ret = %d\n", ret);
kfree(kproc->tsp);
ret = ti_sci_put_handle(kproc->ti_sci);
if (ret)
dev_err(dev, "failed to put ti_sci handle, ret = %d\n", ret);
k3_dsp_reserved_mem_exit(kproc);
rproc_free(kproc->rproc);
return 0;
}
static const struct k3_dsp_mem_data c66_mems[] = {
{ .name = "l2sram", .dev_addr = 0x800000 },
{ .name = "l1pram", .dev_addr = 0xe00000 },
{ .name = "l1dram", .dev_addr = 0xf00000 },
};
/* C71x cores only have a L1P Cache, there are no L1P SRAMs */
static const struct k3_dsp_mem_data c71_mems[] = {
{ .name = "l2sram", .dev_addr = 0x800000 },
{ .name = "l1dram", .dev_addr = 0xe00000 },
};
static const struct k3_dsp_mem_data c7xv_mems[] = {
{ .name = "l2sram", .dev_addr = 0x800000 },
};
static const struct k3_dsp_dev_data c66_data = {
.mems = c66_mems,
.num_mems = ARRAY_SIZE(c66_mems),
.boot_align_addr = SZ_1K,
.uses_lreset = true,
};
static const struct k3_dsp_dev_data c71_data = {
.mems = c71_mems,
.num_mems = ARRAY_SIZE(c71_mems),
.boot_align_addr = SZ_2M,
.uses_lreset = false,
};
static const struct k3_dsp_dev_data c7xv_data = {
.mems = c7xv_mems,
.num_mems = ARRAY_SIZE(c7xv_mems),
.boot_align_addr = SZ_2M,
.uses_lreset = false,
};
static const struct of_device_id k3_dsp_of_match[] = {
{ .compatible = "ti,j721e-c66-dsp", .data = &c66_data, },
{ .compatible = "ti,j721e-c71-dsp", .data = &c71_data, },
{ .compatible = "ti,j721s2-c71-dsp", .data = &c71_data, },
{ .compatible = "ti,am62a-c7xv-dsp", .data = &c7xv_data, },
{ /* sentinel */ },
};
MODULE_DEVICE_TABLE(of, k3_dsp_of_match);
static struct platform_driver k3_dsp_rproc_driver = {
.probe = k3_dsp_rproc_probe,
.remove = k3_dsp_rproc_remove,
.driver = {
.name = "k3-dsp-rproc",
.of_match_table = k3_dsp_of_match,
},
};
module_platform_driver(k3_dsp_rproc_driver);
MODULE_AUTHOR("Suman Anna <s-anna@ti.com>");
MODULE_LICENSE("GPL v2");
MODULE_DESCRIPTION("TI K3 DSP Remoteproc driver");