blob: cb9fdff76a8a32c377376ae76c7182c9c802f046 [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0-only
/*
* rtmutex API
*/
#include <linux/spinlock.h>
#include <linux/export.h>
#define RT_MUTEX_BUILD_MUTEX
#include "rtmutex.c"
/*
* Max number of times we'll walk the boosting chain:
*/
int max_lock_depth = 1024;
/*
* Debug aware fast / slowpath lock,trylock,unlock
*
* The atomic acquire/release ops are compiled away, when either the
* architecture does not support cmpxchg or when debugging is enabled.
*/
static __always_inline int __rt_mutex_lock_common(struct rt_mutex *lock,
unsigned int state,
struct lockdep_map *nest_lock,
unsigned int subclass)
{
int ret;
might_sleep();
mutex_acquire_nest(&lock->dep_map, subclass, 0, nest_lock, _RET_IP_);
ret = __rt_mutex_lock(&lock->rtmutex, state);
if (ret)
mutex_release(&lock->dep_map, _RET_IP_);
return ret;
}
void rt_mutex_base_init(struct rt_mutex_base *rtb)
{
__rt_mutex_base_init(rtb);
}
EXPORT_SYMBOL(rt_mutex_base_init);
#ifdef CONFIG_DEBUG_LOCK_ALLOC
/**
* rt_mutex_lock_nested - lock a rt_mutex
*
* @lock: the rt_mutex to be locked
* @subclass: the lockdep subclass
*/
void __sched rt_mutex_lock_nested(struct rt_mutex *lock, unsigned int subclass)
{
__rt_mutex_lock_common(lock, TASK_UNINTERRUPTIBLE, NULL, subclass);
}
EXPORT_SYMBOL_GPL(rt_mutex_lock_nested);
void __sched _rt_mutex_lock_nest_lock(struct rt_mutex *lock, struct lockdep_map *nest_lock)
{
__rt_mutex_lock_common(lock, TASK_UNINTERRUPTIBLE, nest_lock, 0);
}
EXPORT_SYMBOL_GPL(_rt_mutex_lock_nest_lock);
#else /* !CONFIG_DEBUG_LOCK_ALLOC */
/**
* rt_mutex_lock - lock a rt_mutex
*
* @lock: the rt_mutex to be locked
*/
void __sched rt_mutex_lock(struct rt_mutex *lock)
{
__rt_mutex_lock_common(lock, TASK_UNINTERRUPTIBLE, NULL, 0);
}
EXPORT_SYMBOL_GPL(rt_mutex_lock);
#endif
/**
* rt_mutex_lock_interruptible - lock a rt_mutex interruptible
*
* @lock: the rt_mutex to be locked
*
* Returns:
* 0 on success
* -EINTR when interrupted by a signal
*/
int __sched rt_mutex_lock_interruptible(struct rt_mutex *lock)
{
return __rt_mutex_lock_common(lock, TASK_INTERRUPTIBLE, NULL, 0);
}
EXPORT_SYMBOL_GPL(rt_mutex_lock_interruptible);
/**
* rt_mutex_lock_killable - lock a rt_mutex killable
*
* @lock: the rt_mutex to be locked
*
* Returns:
* 0 on success
* -EINTR when interrupted by a signal
*/
int __sched rt_mutex_lock_killable(struct rt_mutex *lock)
{
return __rt_mutex_lock_common(lock, TASK_KILLABLE, NULL, 0);
}
EXPORT_SYMBOL_GPL(rt_mutex_lock_killable);
/**
* rt_mutex_trylock - try to lock a rt_mutex
*
* @lock: the rt_mutex to be locked
*
* This function can only be called in thread context. It's safe to call it
* from atomic regions, but not from hard or soft interrupt context.
*
* Returns:
* 1 on success
* 0 on contention
*/
int __sched rt_mutex_trylock(struct rt_mutex *lock)
{
int ret;
if (IS_ENABLED(CONFIG_DEBUG_RT_MUTEXES) && WARN_ON_ONCE(!in_task()))
return 0;
ret = __rt_mutex_trylock(&lock->rtmutex);
if (ret)
mutex_acquire(&lock->dep_map, 0, 1, _RET_IP_);
return ret;
}
EXPORT_SYMBOL_GPL(rt_mutex_trylock);
/**
* rt_mutex_unlock - unlock a rt_mutex
*
* @lock: the rt_mutex to be unlocked
*/
void __sched rt_mutex_unlock(struct rt_mutex *lock)
{
mutex_release(&lock->dep_map, _RET_IP_);
__rt_mutex_unlock(&lock->rtmutex);
}
EXPORT_SYMBOL_GPL(rt_mutex_unlock);
/*
* Futex variants, must not use fastpath.
*/
int __sched rt_mutex_futex_trylock(struct rt_mutex_base *lock)
{
return rt_mutex_slowtrylock(lock);
}
int __sched __rt_mutex_futex_trylock(struct rt_mutex_base *lock)
{
return __rt_mutex_slowtrylock(lock);
}
/**
* __rt_mutex_futex_unlock - Futex variant, that since futex variants
* do not use the fast-path, can be simple and will not need to retry.
*
* @lock: The rt_mutex to be unlocked
* @wqh: The wake queue head from which to get the next lock waiter
*/
bool __sched __rt_mutex_futex_unlock(struct rt_mutex_base *lock,
struct rt_wake_q_head *wqh)
{
lockdep_assert_held(&lock->wait_lock);
debug_rt_mutex_unlock(lock);
if (!rt_mutex_has_waiters(lock)) {
lock->owner = NULL;
return false; /* done */
}
/*
* We've already deboosted, mark_wakeup_next_waiter() will
* retain preempt_disabled when we drop the wait_lock, to
* avoid inversion prior to the wakeup. preempt_disable()
* therein pairs with rt_mutex_postunlock().
*/
mark_wakeup_next_waiter(wqh, lock);
return true; /* call postunlock() */
}
void __sched rt_mutex_futex_unlock(struct rt_mutex_base *lock)
{
DEFINE_RT_WAKE_Q(wqh);
unsigned long flags;
bool postunlock;
raw_spin_lock_irqsave(&lock->wait_lock, flags);
postunlock = __rt_mutex_futex_unlock(lock, &wqh);
raw_spin_unlock_irqrestore(&lock->wait_lock, flags);
if (postunlock)
rt_mutex_postunlock(&wqh);
}
/**
* __rt_mutex_init - initialize the rt_mutex
*
* @lock: The rt_mutex to be initialized
* @name: The lock name used for debugging
* @key: The lock class key used for debugging
*
* Initialize the rt_mutex to unlocked state.
*
* Initializing of a locked rt_mutex is not allowed
*/
void __sched __rt_mutex_init(struct rt_mutex *lock, const char *name,
struct lock_class_key *key)
{
debug_check_no_locks_freed((void *)lock, sizeof(*lock));
__rt_mutex_base_init(&lock->rtmutex);
lockdep_init_map_wait(&lock->dep_map, name, key, 0, LD_WAIT_SLEEP);
}
EXPORT_SYMBOL_GPL(__rt_mutex_init);
/**
* rt_mutex_init_proxy_locked - initialize and lock a rt_mutex on behalf of a
* proxy owner
*
* @lock: the rt_mutex to be locked
* @proxy_owner:the task to set as owner
*
* No locking. Caller has to do serializing itself
*
* Special API call for PI-futex support. This initializes the rtmutex and
* assigns it to @proxy_owner. Concurrent operations on the rtmutex are not
* possible at this point because the pi_state which contains the rtmutex
* is not yet visible to other tasks.
*/
void __sched rt_mutex_init_proxy_locked(struct rt_mutex_base *lock,
struct task_struct *proxy_owner)
{
static struct lock_class_key pi_futex_key;
__rt_mutex_base_init(lock);
/*
* On PREEMPT_RT the futex hashbucket spinlock becomes 'sleeping'
* and rtmutex based. That causes a lockdep false positive, because
* some of the futex functions invoke spin_unlock(&hb->lock) with
* the wait_lock of the rtmutex associated to the pi_futex held.
* spin_unlock() in turn takes wait_lock of the rtmutex on which
* the spinlock is based, which makes lockdep notice a lock
* recursion. Give the futex/rtmutex wait_lock a separate key.
*/
lockdep_set_class(&lock->wait_lock, &pi_futex_key);
rt_mutex_set_owner(lock, proxy_owner);
}
/**
* rt_mutex_proxy_unlock - release a lock on behalf of owner
*
* @lock: the rt_mutex to be locked
*
* No locking. Caller has to do serializing itself
*
* Special API call for PI-futex support. This just cleans up the rtmutex
* (debugging) state. Concurrent operations on this rt_mutex are not
* possible because it belongs to the pi_state which is about to be freed
* and it is not longer visible to other tasks.
*/
void __sched rt_mutex_proxy_unlock(struct rt_mutex_base *lock)
{
debug_rt_mutex_proxy_unlock(lock);
rt_mutex_clear_owner(lock);
}
/**
* __rt_mutex_start_proxy_lock() - Start lock acquisition for another task
* @lock: the rt_mutex to take
* @waiter: the pre-initialized rt_mutex_waiter
* @task: the task to prepare
*
* Starts the rt_mutex acquire; it enqueues the @waiter and does deadlock
* detection. It does not wait, see rt_mutex_wait_proxy_lock() for that.
*
* NOTE: does _NOT_ remove the @waiter on failure; must either call
* rt_mutex_wait_proxy_lock() or rt_mutex_cleanup_proxy_lock() after this.
*
* Returns:
* 0 - task blocked on lock
* 1 - acquired the lock for task, caller should wake it up
* <0 - error
*
* Special API call for PI-futex support.
*/
int __sched __rt_mutex_start_proxy_lock(struct rt_mutex_base *lock,
struct rt_mutex_waiter *waiter,
struct task_struct *task)
{
int ret;
lockdep_assert_held(&lock->wait_lock);
if (try_to_take_rt_mutex(lock, task, NULL))
return 1;
/* We enforce deadlock detection for futexes */
ret = task_blocks_on_rt_mutex(lock, waiter, task, NULL,
RT_MUTEX_FULL_CHAINWALK);
if (ret && !rt_mutex_owner(lock)) {
/*
* Reset the return value. We might have
* returned with -EDEADLK and the owner
* released the lock while we were walking the
* pi chain. Let the waiter sort it out.
*/
ret = 0;
}
return ret;
}
/**
* rt_mutex_start_proxy_lock() - Start lock acquisition for another task
* @lock: the rt_mutex to take
* @waiter: the pre-initialized rt_mutex_waiter
* @task: the task to prepare
*
* Starts the rt_mutex acquire; it enqueues the @waiter and does deadlock
* detection. It does not wait, see rt_mutex_wait_proxy_lock() for that.
*
* NOTE: unlike __rt_mutex_start_proxy_lock this _DOES_ remove the @waiter
* on failure.
*
* Returns:
* 0 - task blocked on lock
* 1 - acquired the lock for task, caller should wake it up
* <0 - error
*
* Special API call for PI-futex support.
*/
int __sched rt_mutex_start_proxy_lock(struct rt_mutex_base *lock,
struct rt_mutex_waiter *waiter,
struct task_struct *task)
{
int ret;
raw_spin_lock_irq(&lock->wait_lock);
ret = __rt_mutex_start_proxy_lock(lock, waiter, task);
if (unlikely(ret))
remove_waiter(lock, waiter);
raw_spin_unlock_irq(&lock->wait_lock);
return ret;
}
/**
* rt_mutex_wait_proxy_lock() - Wait for lock acquisition
* @lock: the rt_mutex we were woken on
* @to: the timeout, null if none. hrtimer should already have
* been started.
* @waiter: the pre-initialized rt_mutex_waiter
*
* Wait for the lock acquisition started on our behalf by
* rt_mutex_start_proxy_lock(). Upon failure, the caller must call
* rt_mutex_cleanup_proxy_lock().
*
* Returns:
* 0 - success
* <0 - error, one of -EINTR, -ETIMEDOUT
*
* Special API call for PI-futex support
*/
int __sched rt_mutex_wait_proxy_lock(struct rt_mutex_base *lock,
struct hrtimer_sleeper *to,
struct rt_mutex_waiter *waiter)
{
int ret;
raw_spin_lock_irq(&lock->wait_lock);
/* sleep on the mutex */
set_current_state(TASK_INTERRUPTIBLE);
ret = rt_mutex_slowlock_block(lock, NULL, TASK_INTERRUPTIBLE, to, waiter);
/*
* try_to_take_rt_mutex() sets the waiter bit unconditionally. We might
* have to fix that up.
*/
fixup_rt_mutex_waiters(lock, true);
raw_spin_unlock_irq(&lock->wait_lock);
return ret;
}
/**
* rt_mutex_cleanup_proxy_lock() - Cleanup failed lock acquisition
* @lock: the rt_mutex we were woken on
* @waiter: the pre-initialized rt_mutex_waiter
*
* Attempt to clean up after a failed __rt_mutex_start_proxy_lock() or
* rt_mutex_wait_proxy_lock().
*
* Unless we acquired the lock; we're still enqueued on the wait-list and can
* in fact still be granted ownership until we're removed. Therefore we can
* find we are in fact the owner and must disregard the
* rt_mutex_wait_proxy_lock() failure.
*
* Returns:
* true - did the cleanup, we done.
* false - we acquired the lock after rt_mutex_wait_proxy_lock() returned,
* caller should disregards its return value.
*
* Special API call for PI-futex support
*/
bool __sched rt_mutex_cleanup_proxy_lock(struct rt_mutex_base *lock,
struct rt_mutex_waiter *waiter)
{
bool cleanup = false;
raw_spin_lock_irq(&lock->wait_lock);
/*
* Do an unconditional try-lock, this deals with the lock stealing
* state where __rt_mutex_futex_unlock() -> mark_wakeup_next_waiter()
* sets a NULL owner.
*
* We're not interested in the return value, because the subsequent
* test on rt_mutex_owner() will infer that. If the trylock succeeded,
* we will own the lock and it will have removed the waiter. If we
* failed the trylock, we're still not owner and we need to remove
* ourselves.
*/
try_to_take_rt_mutex(lock, current, waiter);
/*
* Unless we're the owner; we're still enqueued on the wait_list.
* So check if we became owner, if not, take us off the wait_list.
*/
if (rt_mutex_owner(lock) != current) {
remove_waiter(lock, waiter);
cleanup = true;
}
/*
* try_to_take_rt_mutex() sets the waiter bit unconditionally. We might
* have to fix that up.
*/
fixup_rt_mutex_waiters(lock, false);
raw_spin_unlock_irq(&lock->wait_lock);
return cleanup;
}
/*
* Recheck the pi chain, in case we got a priority setting
*
* Called from sched_setscheduler
*/
void __sched rt_mutex_adjust_pi(struct task_struct *task)
{
struct rt_mutex_waiter *waiter;
struct rt_mutex_base *next_lock;
unsigned long flags;
raw_spin_lock_irqsave(&task->pi_lock, flags);
waiter = task->pi_blocked_on;
if (!waiter || rt_mutex_waiter_equal(waiter, task_to_waiter(task))) {
raw_spin_unlock_irqrestore(&task->pi_lock, flags);
return;
}
next_lock = waiter->lock;
raw_spin_unlock_irqrestore(&task->pi_lock, flags);
/* gets dropped in rt_mutex_adjust_prio_chain()! */
get_task_struct(task);
rt_mutex_adjust_prio_chain(task, RT_MUTEX_MIN_CHAINWALK, NULL,
next_lock, NULL, task);
}
/*
* Performs the wakeup of the top-waiter and re-enables preemption.
*/
void __sched rt_mutex_postunlock(struct rt_wake_q_head *wqh)
{
rt_mutex_wake_up_q(wqh);
}
#ifdef CONFIG_DEBUG_RT_MUTEXES
void rt_mutex_debug_task_free(struct task_struct *task)
{
DEBUG_LOCKS_WARN_ON(!RB_EMPTY_ROOT(&task->pi_waiters.rb_root));
DEBUG_LOCKS_WARN_ON(task->pi_blocked_on);
}
#endif
#ifdef CONFIG_PREEMPT_RT
/* Mutexes */
void __mutex_rt_init(struct mutex *mutex, const char *name,
struct lock_class_key *key)
{
debug_check_no_locks_freed((void *)mutex, sizeof(*mutex));
lockdep_init_map_wait(&mutex->dep_map, name, key, 0, LD_WAIT_SLEEP);
}
EXPORT_SYMBOL(__mutex_rt_init);
static __always_inline int __mutex_lock_common(struct mutex *lock,
unsigned int state,
unsigned int subclass,
struct lockdep_map *nest_lock,
unsigned long ip)
{
int ret;
might_sleep();
mutex_acquire_nest(&lock->dep_map, subclass, 0, nest_lock, ip);
ret = __rt_mutex_lock(&lock->rtmutex, state);
if (ret)
mutex_release(&lock->dep_map, ip);
else
lock_acquired(&lock->dep_map, ip);
return ret;
}
#ifdef CONFIG_DEBUG_LOCK_ALLOC
void __sched mutex_lock_nested(struct mutex *lock, unsigned int subclass)
{
__mutex_lock_common(lock, TASK_UNINTERRUPTIBLE, subclass, NULL, _RET_IP_);
}
EXPORT_SYMBOL_GPL(mutex_lock_nested);
void __sched _mutex_lock_nest_lock(struct mutex *lock,
struct lockdep_map *nest_lock)
{
__mutex_lock_common(lock, TASK_UNINTERRUPTIBLE, 0, nest_lock, _RET_IP_);
}
EXPORT_SYMBOL_GPL(_mutex_lock_nest_lock);
int __sched mutex_lock_interruptible_nested(struct mutex *lock,
unsigned int subclass)
{
return __mutex_lock_common(lock, TASK_INTERRUPTIBLE, subclass, NULL, _RET_IP_);
}
EXPORT_SYMBOL_GPL(mutex_lock_interruptible_nested);
int __sched mutex_lock_killable_nested(struct mutex *lock,
unsigned int subclass)
{
return __mutex_lock_common(lock, TASK_KILLABLE, subclass, NULL, _RET_IP_);
}
EXPORT_SYMBOL_GPL(mutex_lock_killable_nested);
void __sched mutex_lock_io_nested(struct mutex *lock, unsigned int subclass)
{
int token;
might_sleep();
token = io_schedule_prepare();
__mutex_lock_common(lock, TASK_UNINTERRUPTIBLE, subclass, NULL, _RET_IP_);
io_schedule_finish(token);
}
EXPORT_SYMBOL_GPL(mutex_lock_io_nested);
#else /* CONFIG_DEBUG_LOCK_ALLOC */
void __sched mutex_lock(struct mutex *lock)
{
__mutex_lock_common(lock, TASK_UNINTERRUPTIBLE, 0, NULL, _RET_IP_);
}
EXPORT_SYMBOL(mutex_lock);
int __sched mutex_lock_interruptible(struct mutex *lock)
{
return __mutex_lock_common(lock, TASK_INTERRUPTIBLE, 0, NULL, _RET_IP_);
}
EXPORT_SYMBOL(mutex_lock_interruptible);
int __sched mutex_lock_killable(struct mutex *lock)
{
return __mutex_lock_common(lock, TASK_KILLABLE, 0, NULL, _RET_IP_);
}
EXPORT_SYMBOL(mutex_lock_killable);
void __sched mutex_lock_io(struct mutex *lock)
{
int token = io_schedule_prepare();
__mutex_lock_common(lock, TASK_UNINTERRUPTIBLE, 0, NULL, _RET_IP_);
io_schedule_finish(token);
}
EXPORT_SYMBOL(mutex_lock_io);
#endif /* !CONFIG_DEBUG_LOCK_ALLOC */
int __sched mutex_trylock(struct mutex *lock)
{
int ret;
if (IS_ENABLED(CONFIG_DEBUG_RT_MUTEXES) && WARN_ON_ONCE(!in_task()))
return 0;
ret = __rt_mutex_trylock(&lock->rtmutex);
if (ret)
mutex_acquire(&lock->dep_map, 0, 1, _RET_IP_);
return ret;
}
EXPORT_SYMBOL(mutex_trylock);
void __sched mutex_unlock(struct mutex *lock)
{
mutex_release(&lock->dep_map, _RET_IP_);
__rt_mutex_unlock(&lock->rtmutex);
}
EXPORT_SYMBOL(mutex_unlock);
#endif /* CONFIG_PREEMPT_RT */