| // SPDX-License-Identifier: GPL-2.0-only |
| /* |
| * rtmutex API |
| */ |
| #include <linux/spinlock.h> |
| #include <linux/export.h> |
| |
| #define RT_MUTEX_BUILD_MUTEX |
| #include "rtmutex.c" |
| |
| /* |
| * Max number of times we'll walk the boosting chain: |
| */ |
| int max_lock_depth = 1024; |
| |
| /* |
| * Debug aware fast / slowpath lock,trylock,unlock |
| * |
| * The atomic acquire/release ops are compiled away, when either the |
| * architecture does not support cmpxchg or when debugging is enabled. |
| */ |
| static __always_inline int __rt_mutex_lock_common(struct rt_mutex *lock, |
| unsigned int state, |
| struct lockdep_map *nest_lock, |
| unsigned int subclass) |
| { |
| int ret; |
| |
| might_sleep(); |
| mutex_acquire_nest(&lock->dep_map, subclass, 0, nest_lock, _RET_IP_); |
| ret = __rt_mutex_lock(&lock->rtmutex, state); |
| if (ret) |
| mutex_release(&lock->dep_map, _RET_IP_); |
| return ret; |
| } |
| |
| void rt_mutex_base_init(struct rt_mutex_base *rtb) |
| { |
| __rt_mutex_base_init(rtb); |
| } |
| EXPORT_SYMBOL(rt_mutex_base_init); |
| |
| #ifdef CONFIG_DEBUG_LOCK_ALLOC |
| /** |
| * rt_mutex_lock_nested - lock a rt_mutex |
| * |
| * @lock: the rt_mutex to be locked |
| * @subclass: the lockdep subclass |
| */ |
| void __sched rt_mutex_lock_nested(struct rt_mutex *lock, unsigned int subclass) |
| { |
| __rt_mutex_lock_common(lock, TASK_UNINTERRUPTIBLE, NULL, subclass); |
| } |
| EXPORT_SYMBOL_GPL(rt_mutex_lock_nested); |
| |
| void __sched _rt_mutex_lock_nest_lock(struct rt_mutex *lock, struct lockdep_map *nest_lock) |
| { |
| __rt_mutex_lock_common(lock, TASK_UNINTERRUPTIBLE, nest_lock, 0); |
| } |
| EXPORT_SYMBOL_GPL(_rt_mutex_lock_nest_lock); |
| |
| #else /* !CONFIG_DEBUG_LOCK_ALLOC */ |
| |
| /** |
| * rt_mutex_lock - lock a rt_mutex |
| * |
| * @lock: the rt_mutex to be locked |
| */ |
| void __sched rt_mutex_lock(struct rt_mutex *lock) |
| { |
| __rt_mutex_lock_common(lock, TASK_UNINTERRUPTIBLE, NULL, 0); |
| } |
| EXPORT_SYMBOL_GPL(rt_mutex_lock); |
| #endif |
| |
| /** |
| * rt_mutex_lock_interruptible - lock a rt_mutex interruptible |
| * |
| * @lock: the rt_mutex to be locked |
| * |
| * Returns: |
| * 0 on success |
| * -EINTR when interrupted by a signal |
| */ |
| int __sched rt_mutex_lock_interruptible(struct rt_mutex *lock) |
| { |
| return __rt_mutex_lock_common(lock, TASK_INTERRUPTIBLE, NULL, 0); |
| } |
| EXPORT_SYMBOL_GPL(rt_mutex_lock_interruptible); |
| |
| /** |
| * rt_mutex_lock_killable - lock a rt_mutex killable |
| * |
| * @lock: the rt_mutex to be locked |
| * |
| * Returns: |
| * 0 on success |
| * -EINTR when interrupted by a signal |
| */ |
| int __sched rt_mutex_lock_killable(struct rt_mutex *lock) |
| { |
| return __rt_mutex_lock_common(lock, TASK_KILLABLE, NULL, 0); |
| } |
| EXPORT_SYMBOL_GPL(rt_mutex_lock_killable); |
| |
| /** |
| * rt_mutex_trylock - try to lock a rt_mutex |
| * |
| * @lock: the rt_mutex to be locked |
| * |
| * This function can only be called in thread context. It's safe to call it |
| * from atomic regions, but not from hard or soft interrupt context. |
| * |
| * Returns: |
| * 1 on success |
| * 0 on contention |
| */ |
| int __sched rt_mutex_trylock(struct rt_mutex *lock) |
| { |
| int ret; |
| |
| if (IS_ENABLED(CONFIG_DEBUG_RT_MUTEXES) && WARN_ON_ONCE(!in_task())) |
| return 0; |
| |
| ret = __rt_mutex_trylock(&lock->rtmutex); |
| if (ret) |
| mutex_acquire(&lock->dep_map, 0, 1, _RET_IP_); |
| |
| return ret; |
| } |
| EXPORT_SYMBOL_GPL(rt_mutex_trylock); |
| |
| /** |
| * rt_mutex_unlock - unlock a rt_mutex |
| * |
| * @lock: the rt_mutex to be unlocked |
| */ |
| void __sched rt_mutex_unlock(struct rt_mutex *lock) |
| { |
| mutex_release(&lock->dep_map, _RET_IP_); |
| __rt_mutex_unlock(&lock->rtmutex); |
| } |
| EXPORT_SYMBOL_GPL(rt_mutex_unlock); |
| |
| /* |
| * Futex variants, must not use fastpath. |
| */ |
| int __sched rt_mutex_futex_trylock(struct rt_mutex_base *lock) |
| { |
| return rt_mutex_slowtrylock(lock); |
| } |
| |
| int __sched __rt_mutex_futex_trylock(struct rt_mutex_base *lock) |
| { |
| return __rt_mutex_slowtrylock(lock); |
| } |
| |
| /** |
| * __rt_mutex_futex_unlock - Futex variant, that since futex variants |
| * do not use the fast-path, can be simple and will not need to retry. |
| * |
| * @lock: The rt_mutex to be unlocked |
| * @wqh: The wake queue head from which to get the next lock waiter |
| */ |
| bool __sched __rt_mutex_futex_unlock(struct rt_mutex_base *lock, |
| struct rt_wake_q_head *wqh) |
| { |
| lockdep_assert_held(&lock->wait_lock); |
| |
| debug_rt_mutex_unlock(lock); |
| |
| if (!rt_mutex_has_waiters(lock)) { |
| lock->owner = NULL; |
| return false; /* done */ |
| } |
| |
| /* |
| * We've already deboosted, mark_wakeup_next_waiter() will |
| * retain preempt_disabled when we drop the wait_lock, to |
| * avoid inversion prior to the wakeup. preempt_disable() |
| * therein pairs with rt_mutex_postunlock(). |
| */ |
| mark_wakeup_next_waiter(wqh, lock); |
| |
| return true; /* call postunlock() */ |
| } |
| |
| void __sched rt_mutex_futex_unlock(struct rt_mutex_base *lock) |
| { |
| DEFINE_RT_WAKE_Q(wqh); |
| unsigned long flags; |
| bool postunlock; |
| |
| raw_spin_lock_irqsave(&lock->wait_lock, flags); |
| postunlock = __rt_mutex_futex_unlock(lock, &wqh); |
| raw_spin_unlock_irqrestore(&lock->wait_lock, flags); |
| |
| if (postunlock) |
| rt_mutex_postunlock(&wqh); |
| } |
| |
| /** |
| * __rt_mutex_init - initialize the rt_mutex |
| * |
| * @lock: The rt_mutex to be initialized |
| * @name: The lock name used for debugging |
| * @key: The lock class key used for debugging |
| * |
| * Initialize the rt_mutex to unlocked state. |
| * |
| * Initializing of a locked rt_mutex is not allowed |
| */ |
| void __sched __rt_mutex_init(struct rt_mutex *lock, const char *name, |
| struct lock_class_key *key) |
| { |
| debug_check_no_locks_freed((void *)lock, sizeof(*lock)); |
| __rt_mutex_base_init(&lock->rtmutex); |
| lockdep_init_map_wait(&lock->dep_map, name, key, 0, LD_WAIT_SLEEP); |
| } |
| EXPORT_SYMBOL_GPL(__rt_mutex_init); |
| |
| /** |
| * rt_mutex_init_proxy_locked - initialize and lock a rt_mutex on behalf of a |
| * proxy owner |
| * |
| * @lock: the rt_mutex to be locked |
| * @proxy_owner:the task to set as owner |
| * |
| * No locking. Caller has to do serializing itself |
| * |
| * Special API call for PI-futex support. This initializes the rtmutex and |
| * assigns it to @proxy_owner. Concurrent operations on the rtmutex are not |
| * possible at this point because the pi_state which contains the rtmutex |
| * is not yet visible to other tasks. |
| */ |
| void __sched rt_mutex_init_proxy_locked(struct rt_mutex_base *lock, |
| struct task_struct *proxy_owner) |
| { |
| static struct lock_class_key pi_futex_key; |
| |
| __rt_mutex_base_init(lock); |
| /* |
| * On PREEMPT_RT the futex hashbucket spinlock becomes 'sleeping' |
| * and rtmutex based. That causes a lockdep false positive, because |
| * some of the futex functions invoke spin_unlock(&hb->lock) with |
| * the wait_lock of the rtmutex associated to the pi_futex held. |
| * spin_unlock() in turn takes wait_lock of the rtmutex on which |
| * the spinlock is based, which makes lockdep notice a lock |
| * recursion. Give the futex/rtmutex wait_lock a separate key. |
| */ |
| lockdep_set_class(&lock->wait_lock, &pi_futex_key); |
| rt_mutex_set_owner(lock, proxy_owner); |
| } |
| |
| /** |
| * rt_mutex_proxy_unlock - release a lock on behalf of owner |
| * |
| * @lock: the rt_mutex to be locked |
| * |
| * No locking. Caller has to do serializing itself |
| * |
| * Special API call for PI-futex support. This just cleans up the rtmutex |
| * (debugging) state. Concurrent operations on this rt_mutex are not |
| * possible because it belongs to the pi_state which is about to be freed |
| * and it is not longer visible to other tasks. |
| */ |
| void __sched rt_mutex_proxy_unlock(struct rt_mutex_base *lock) |
| { |
| debug_rt_mutex_proxy_unlock(lock); |
| rt_mutex_clear_owner(lock); |
| } |
| |
| /** |
| * __rt_mutex_start_proxy_lock() - Start lock acquisition for another task |
| * @lock: the rt_mutex to take |
| * @waiter: the pre-initialized rt_mutex_waiter |
| * @task: the task to prepare |
| * |
| * Starts the rt_mutex acquire; it enqueues the @waiter and does deadlock |
| * detection. It does not wait, see rt_mutex_wait_proxy_lock() for that. |
| * |
| * NOTE: does _NOT_ remove the @waiter on failure; must either call |
| * rt_mutex_wait_proxy_lock() or rt_mutex_cleanup_proxy_lock() after this. |
| * |
| * Returns: |
| * 0 - task blocked on lock |
| * 1 - acquired the lock for task, caller should wake it up |
| * <0 - error |
| * |
| * Special API call for PI-futex support. |
| */ |
| int __sched __rt_mutex_start_proxy_lock(struct rt_mutex_base *lock, |
| struct rt_mutex_waiter *waiter, |
| struct task_struct *task) |
| { |
| int ret; |
| |
| lockdep_assert_held(&lock->wait_lock); |
| |
| if (try_to_take_rt_mutex(lock, task, NULL)) |
| return 1; |
| |
| /* We enforce deadlock detection for futexes */ |
| ret = task_blocks_on_rt_mutex(lock, waiter, task, NULL, |
| RT_MUTEX_FULL_CHAINWALK); |
| |
| if (ret && !rt_mutex_owner(lock)) { |
| /* |
| * Reset the return value. We might have |
| * returned with -EDEADLK and the owner |
| * released the lock while we were walking the |
| * pi chain. Let the waiter sort it out. |
| */ |
| ret = 0; |
| } |
| |
| return ret; |
| } |
| |
| /** |
| * rt_mutex_start_proxy_lock() - Start lock acquisition for another task |
| * @lock: the rt_mutex to take |
| * @waiter: the pre-initialized rt_mutex_waiter |
| * @task: the task to prepare |
| * |
| * Starts the rt_mutex acquire; it enqueues the @waiter and does deadlock |
| * detection. It does not wait, see rt_mutex_wait_proxy_lock() for that. |
| * |
| * NOTE: unlike __rt_mutex_start_proxy_lock this _DOES_ remove the @waiter |
| * on failure. |
| * |
| * Returns: |
| * 0 - task blocked on lock |
| * 1 - acquired the lock for task, caller should wake it up |
| * <0 - error |
| * |
| * Special API call for PI-futex support. |
| */ |
| int __sched rt_mutex_start_proxy_lock(struct rt_mutex_base *lock, |
| struct rt_mutex_waiter *waiter, |
| struct task_struct *task) |
| { |
| int ret; |
| |
| raw_spin_lock_irq(&lock->wait_lock); |
| ret = __rt_mutex_start_proxy_lock(lock, waiter, task); |
| if (unlikely(ret)) |
| remove_waiter(lock, waiter); |
| raw_spin_unlock_irq(&lock->wait_lock); |
| |
| return ret; |
| } |
| |
| /** |
| * rt_mutex_wait_proxy_lock() - Wait for lock acquisition |
| * @lock: the rt_mutex we were woken on |
| * @to: the timeout, null if none. hrtimer should already have |
| * been started. |
| * @waiter: the pre-initialized rt_mutex_waiter |
| * |
| * Wait for the lock acquisition started on our behalf by |
| * rt_mutex_start_proxy_lock(). Upon failure, the caller must call |
| * rt_mutex_cleanup_proxy_lock(). |
| * |
| * Returns: |
| * 0 - success |
| * <0 - error, one of -EINTR, -ETIMEDOUT |
| * |
| * Special API call for PI-futex support |
| */ |
| int __sched rt_mutex_wait_proxy_lock(struct rt_mutex_base *lock, |
| struct hrtimer_sleeper *to, |
| struct rt_mutex_waiter *waiter) |
| { |
| int ret; |
| |
| raw_spin_lock_irq(&lock->wait_lock); |
| /* sleep on the mutex */ |
| set_current_state(TASK_INTERRUPTIBLE); |
| ret = rt_mutex_slowlock_block(lock, NULL, TASK_INTERRUPTIBLE, to, waiter); |
| /* |
| * try_to_take_rt_mutex() sets the waiter bit unconditionally. We might |
| * have to fix that up. |
| */ |
| fixup_rt_mutex_waiters(lock, true); |
| raw_spin_unlock_irq(&lock->wait_lock); |
| |
| return ret; |
| } |
| |
| /** |
| * rt_mutex_cleanup_proxy_lock() - Cleanup failed lock acquisition |
| * @lock: the rt_mutex we were woken on |
| * @waiter: the pre-initialized rt_mutex_waiter |
| * |
| * Attempt to clean up after a failed __rt_mutex_start_proxy_lock() or |
| * rt_mutex_wait_proxy_lock(). |
| * |
| * Unless we acquired the lock; we're still enqueued on the wait-list and can |
| * in fact still be granted ownership until we're removed. Therefore we can |
| * find we are in fact the owner and must disregard the |
| * rt_mutex_wait_proxy_lock() failure. |
| * |
| * Returns: |
| * true - did the cleanup, we done. |
| * false - we acquired the lock after rt_mutex_wait_proxy_lock() returned, |
| * caller should disregards its return value. |
| * |
| * Special API call for PI-futex support |
| */ |
| bool __sched rt_mutex_cleanup_proxy_lock(struct rt_mutex_base *lock, |
| struct rt_mutex_waiter *waiter) |
| { |
| bool cleanup = false; |
| |
| raw_spin_lock_irq(&lock->wait_lock); |
| /* |
| * Do an unconditional try-lock, this deals with the lock stealing |
| * state where __rt_mutex_futex_unlock() -> mark_wakeup_next_waiter() |
| * sets a NULL owner. |
| * |
| * We're not interested in the return value, because the subsequent |
| * test on rt_mutex_owner() will infer that. If the trylock succeeded, |
| * we will own the lock and it will have removed the waiter. If we |
| * failed the trylock, we're still not owner and we need to remove |
| * ourselves. |
| */ |
| try_to_take_rt_mutex(lock, current, waiter); |
| /* |
| * Unless we're the owner; we're still enqueued on the wait_list. |
| * So check if we became owner, if not, take us off the wait_list. |
| */ |
| if (rt_mutex_owner(lock) != current) { |
| remove_waiter(lock, waiter); |
| cleanup = true; |
| } |
| /* |
| * try_to_take_rt_mutex() sets the waiter bit unconditionally. We might |
| * have to fix that up. |
| */ |
| fixup_rt_mutex_waiters(lock, false); |
| |
| raw_spin_unlock_irq(&lock->wait_lock); |
| |
| return cleanup; |
| } |
| |
| /* |
| * Recheck the pi chain, in case we got a priority setting |
| * |
| * Called from sched_setscheduler |
| */ |
| void __sched rt_mutex_adjust_pi(struct task_struct *task) |
| { |
| struct rt_mutex_waiter *waiter; |
| struct rt_mutex_base *next_lock; |
| unsigned long flags; |
| |
| raw_spin_lock_irqsave(&task->pi_lock, flags); |
| |
| waiter = task->pi_blocked_on; |
| if (!waiter || rt_mutex_waiter_equal(waiter, task_to_waiter(task))) { |
| raw_spin_unlock_irqrestore(&task->pi_lock, flags); |
| return; |
| } |
| next_lock = waiter->lock; |
| raw_spin_unlock_irqrestore(&task->pi_lock, flags); |
| |
| /* gets dropped in rt_mutex_adjust_prio_chain()! */ |
| get_task_struct(task); |
| |
| rt_mutex_adjust_prio_chain(task, RT_MUTEX_MIN_CHAINWALK, NULL, |
| next_lock, NULL, task); |
| } |
| |
| /* |
| * Performs the wakeup of the top-waiter and re-enables preemption. |
| */ |
| void __sched rt_mutex_postunlock(struct rt_wake_q_head *wqh) |
| { |
| rt_mutex_wake_up_q(wqh); |
| } |
| |
| #ifdef CONFIG_DEBUG_RT_MUTEXES |
| void rt_mutex_debug_task_free(struct task_struct *task) |
| { |
| DEBUG_LOCKS_WARN_ON(!RB_EMPTY_ROOT(&task->pi_waiters.rb_root)); |
| DEBUG_LOCKS_WARN_ON(task->pi_blocked_on); |
| } |
| #endif |
| |
| #ifdef CONFIG_PREEMPT_RT |
| /* Mutexes */ |
| void __mutex_rt_init(struct mutex *mutex, const char *name, |
| struct lock_class_key *key) |
| { |
| debug_check_no_locks_freed((void *)mutex, sizeof(*mutex)); |
| lockdep_init_map_wait(&mutex->dep_map, name, key, 0, LD_WAIT_SLEEP); |
| } |
| EXPORT_SYMBOL(__mutex_rt_init); |
| |
| static __always_inline int __mutex_lock_common(struct mutex *lock, |
| unsigned int state, |
| unsigned int subclass, |
| struct lockdep_map *nest_lock, |
| unsigned long ip) |
| { |
| int ret; |
| |
| might_sleep(); |
| mutex_acquire_nest(&lock->dep_map, subclass, 0, nest_lock, ip); |
| ret = __rt_mutex_lock(&lock->rtmutex, state); |
| if (ret) |
| mutex_release(&lock->dep_map, ip); |
| else |
| lock_acquired(&lock->dep_map, ip); |
| return ret; |
| } |
| |
| #ifdef CONFIG_DEBUG_LOCK_ALLOC |
| void __sched mutex_lock_nested(struct mutex *lock, unsigned int subclass) |
| { |
| __mutex_lock_common(lock, TASK_UNINTERRUPTIBLE, subclass, NULL, _RET_IP_); |
| } |
| EXPORT_SYMBOL_GPL(mutex_lock_nested); |
| |
| void __sched _mutex_lock_nest_lock(struct mutex *lock, |
| struct lockdep_map *nest_lock) |
| { |
| __mutex_lock_common(lock, TASK_UNINTERRUPTIBLE, 0, nest_lock, _RET_IP_); |
| } |
| EXPORT_SYMBOL_GPL(_mutex_lock_nest_lock); |
| |
| int __sched mutex_lock_interruptible_nested(struct mutex *lock, |
| unsigned int subclass) |
| { |
| return __mutex_lock_common(lock, TASK_INTERRUPTIBLE, subclass, NULL, _RET_IP_); |
| } |
| EXPORT_SYMBOL_GPL(mutex_lock_interruptible_nested); |
| |
| int __sched mutex_lock_killable_nested(struct mutex *lock, |
| unsigned int subclass) |
| { |
| return __mutex_lock_common(lock, TASK_KILLABLE, subclass, NULL, _RET_IP_); |
| } |
| EXPORT_SYMBOL_GPL(mutex_lock_killable_nested); |
| |
| void __sched mutex_lock_io_nested(struct mutex *lock, unsigned int subclass) |
| { |
| int token; |
| |
| might_sleep(); |
| |
| token = io_schedule_prepare(); |
| __mutex_lock_common(lock, TASK_UNINTERRUPTIBLE, subclass, NULL, _RET_IP_); |
| io_schedule_finish(token); |
| } |
| EXPORT_SYMBOL_GPL(mutex_lock_io_nested); |
| |
| #else /* CONFIG_DEBUG_LOCK_ALLOC */ |
| |
| void __sched mutex_lock(struct mutex *lock) |
| { |
| __mutex_lock_common(lock, TASK_UNINTERRUPTIBLE, 0, NULL, _RET_IP_); |
| } |
| EXPORT_SYMBOL(mutex_lock); |
| |
| int __sched mutex_lock_interruptible(struct mutex *lock) |
| { |
| return __mutex_lock_common(lock, TASK_INTERRUPTIBLE, 0, NULL, _RET_IP_); |
| } |
| EXPORT_SYMBOL(mutex_lock_interruptible); |
| |
| int __sched mutex_lock_killable(struct mutex *lock) |
| { |
| return __mutex_lock_common(lock, TASK_KILLABLE, 0, NULL, _RET_IP_); |
| } |
| EXPORT_SYMBOL(mutex_lock_killable); |
| |
| void __sched mutex_lock_io(struct mutex *lock) |
| { |
| int token = io_schedule_prepare(); |
| |
| __mutex_lock_common(lock, TASK_UNINTERRUPTIBLE, 0, NULL, _RET_IP_); |
| io_schedule_finish(token); |
| } |
| EXPORT_SYMBOL(mutex_lock_io); |
| #endif /* !CONFIG_DEBUG_LOCK_ALLOC */ |
| |
| int __sched mutex_trylock(struct mutex *lock) |
| { |
| int ret; |
| |
| if (IS_ENABLED(CONFIG_DEBUG_RT_MUTEXES) && WARN_ON_ONCE(!in_task())) |
| return 0; |
| |
| ret = __rt_mutex_trylock(&lock->rtmutex); |
| if (ret) |
| mutex_acquire(&lock->dep_map, 0, 1, _RET_IP_); |
| |
| return ret; |
| } |
| EXPORT_SYMBOL(mutex_trylock); |
| |
| void __sched mutex_unlock(struct mutex *lock) |
| { |
| mutex_release(&lock->dep_map, _RET_IP_); |
| __rt_mutex_unlock(&lock->rtmutex); |
| } |
| EXPORT_SYMBOL(mutex_unlock); |
| |
| #endif /* CONFIG_PREEMPT_RT */ |