| // SPDX-License-Identifier: GPL-2.0-only |
| /* |
| * thread-stack.c: Synthesize a thread's stack using call / return events |
| * Copyright (c) 2014, Intel Corporation. |
| */ |
| |
| #include <linux/rbtree.h> |
| #include <linux/list.h> |
| #include <linux/log2.h> |
| #include <linux/zalloc.h> |
| #include <errno.h> |
| #include <stdlib.h> |
| #include <string.h> |
| #include "thread.h" |
| #include "event.h" |
| #include "machine.h" |
| #include "env.h" |
| #include "debug.h" |
| #include "symbol.h" |
| #include "comm.h" |
| #include "call-path.h" |
| #include "thread-stack.h" |
| |
| #define STACK_GROWTH 2048 |
| |
| /* |
| * State of retpoline detection. |
| * |
| * RETPOLINE_NONE: no retpoline detection |
| * X86_RETPOLINE_POSSIBLE: x86 retpoline possible |
| * X86_RETPOLINE_DETECTED: x86 retpoline detected |
| */ |
| enum retpoline_state_t { |
| RETPOLINE_NONE, |
| X86_RETPOLINE_POSSIBLE, |
| X86_RETPOLINE_DETECTED, |
| }; |
| |
| /** |
| * struct thread_stack_entry - thread stack entry. |
| * @ret_addr: return address |
| * @timestamp: timestamp (if known) |
| * @ref: external reference (e.g. db_id of sample) |
| * @branch_count: the branch count when the entry was created |
| * @insn_count: the instruction count when the entry was created |
| * @cyc_count the cycle count when the entry was created |
| * @db_id: id used for db-export |
| * @cp: call path |
| * @no_call: a 'call' was not seen |
| * @trace_end: a 'call' but trace ended |
| * @non_call: a branch but not a 'call' to the start of a different symbol |
| */ |
| struct thread_stack_entry { |
| u64 ret_addr; |
| u64 timestamp; |
| u64 ref; |
| u64 branch_count; |
| u64 insn_count; |
| u64 cyc_count; |
| u64 db_id; |
| struct call_path *cp; |
| bool no_call; |
| bool trace_end; |
| bool non_call; |
| }; |
| |
| /** |
| * struct thread_stack - thread stack constructed from 'call' and 'return' |
| * branch samples. |
| * @stack: array that holds the stack |
| * @cnt: number of entries in the stack |
| * @sz: current maximum stack size |
| * @trace_nr: current trace number |
| * @branch_count: running branch count |
| * @insn_count: running instruction count |
| * @cyc_count running cycle count |
| * @kernel_start: kernel start address |
| * @last_time: last timestamp |
| * @crp: call/return processor |
| * @comm: current comm |
| * @arr_sz: size of array if this is the first element of an array |
| * @rstate: used to detect retpolines |
| * @br_stack_rb: branch stack (ring buffer) |
| * @br_stack_sz: maximum branch stack size |
| * @br_stack_pos: current position in @br_stack_rb |
| * @mispred_all: mark all branches as mispredicted |
| */ |
| struct thread_stack { |
| struct thread_stack_entry *stack; |
| size_t cnt; |
| size_t sz; |
| u64 trace_nr; |
| u64 branch_count; |
| u64 insn_count; |
| u64 cyc_count; |
| u64 kernel_start; |
| u64 last_time; |
| struct call_return_processor *crp; |
| struct comm *comm; |
| unsigned int arr_sz; |
| enum retpoline_state_t rstate; |
| struct branch_stack *br_stack_rb; |
| unsigned int br_stack_sz; |
| unsigned int br_stack_pos; |
| bool mispred_all; |
| }; |
| |
| /* |
| * Assume pid == tid == 0 identifies the idle task as defined by |
| * perf_session__register_idle_thread(). The idle task is really 1 task per cpu, |
| * and therefore requires a stack for each cpu. |
| */ |
| static inline bool thread_stack__per_cpu(struct thread *thread) |
| { |
| return !(thread->tid || thread->pid_); |
| } |
| |
| static int thread_stack__grow(struct thread_stack *ts) |
| { |
| struct thread_stack_entry *new_stack; |
| size_t sz, new_sz; |
| |
| new_sz = ts->sz + STACK_GROWTH; |
| sz = new_sz * sizeof(struct thread_stack_entry); |
| |
| new_stack = realloc(ts->stack, sz); |
| if (!new_stack) |
| return -ENOMEM; |
| |
| ts->stack = new_stack; |
| ts->sz = new_sz; |
| |
| return 0; |
| } |
| |
| static int thread_stack__init(struct thread_stack *ts, struct thread *thread, |
| struct call_return_processor *crp, |
| bool callstack, unsigned int br_stack_sz) |
| { |
| int err; |
| |
| if (callstack) { |
| err = thread_stack__grow(ts); |
| if (err) |
| return err; |
| } |
| |
| if (br_stack_sz) { |
| size_t sz = sizeof(struct branch_stack); |
| |
| sz += br_stack_sz * sizeof(struct branch_entry); |
| ts->br_stack_rb = zalloc(sz); |
| if (!ts->br_stack_rb) |
| return -ENOMEM; |
| ts->br_stack_sz = br_stack_sz; |
| } |
| |
| if (thread->maps && maps__machine(thread->maps)) { |
| struct machine *machine = maps__machine(thread->maps); |
| const char *arch = perf_env__arch(machine->env); |
| |
| ts->kernel_start = machine__kernel_start(machine); |
| if (!strcmp(arch, "x86")) |
| ts->rstate = X86_RETPOLINE_POSSIBLE; |
| } else { |
| ts->kernel_start = 1ULL << 63; |
| } |
| ts->crp = crp; |
| |
| return 0; |
| } |
| |
| static struct thread_stack *thread_stack__new(struct thread *thread, int cpu, |
| struct call_return_processor *crp, |
| bool callstack, |
| unsigned int br_stack_sz) |
| { |
| struct thread_stack *ts = thread->ts, *new_ts; |
| unsigned int old_sz = ts ? ts->arr_sz : 0; |
| unsigned int new_sz = 1; |
| |
| if (thread_stack__per_cpu(thread) && cpu > 0) |
| new_sz = roundup_pow_of_two(cpu + 1); |
| |
| if (!ts || new_sz > old_sz) { |
| new_ts = calloc(new_sz, sizeof(*ts)); |
| if (!new_ts) |
| return NULL; |
| if (ts) |
| memcpy(new_ts, ts, old_sz * sizeof(*ts)); |
| new_ts->arr_sz = new_sz; |
| zfree(&thread->ts); |
| thread->ts = new_ts; |
| ts = new_ts; |
| } |
| |
| if (thread_stack__per_cpu(thread) && cpu > 0 && |
| (unsigned int)cpu < ts->arr_sz) |
| ts += cpu; |
| |
| if (!ts->stack && |
| thread_stack__init(ts, thread, crp, callstack, br_stack_sz)) |
| return NULL; |
| |
| return ts; |
| } |
| |
| static struct thread_stack *thread__cpu_stack(struct thread *thread, int cpu) |
| { |
| struct thread_stack *ts = thread->ts; |
| |
| if (cpu < 0) |
| cpu = 0; |
| |
| if (!ts || (unsigned int)cpu >= ts->arr_sz) |
| return NULL; |
| |
| ts += cpu; |
| |
| if (!ts->stack) |
| return NULL; |
| |
| return ts; |
| } |
| |
| static inline struct thread_stack *thread__stack(struct thread *thread, |
| int cpu) |
| { |
| if (!thread) |
| return NULL; |
| |
| if (thread_stack__per_cpu(thread)) |
| return thread__cpu_stack(thread, cpu); |
| |
| return thread->ts; |
| } |
| |
| static int thread_stack__push(struct thread_stack *ts, u64 ret_addr, |
| bool trace_end) |
| { |
| int err = 0; |
| |
| if (ts->cnt == ts->sz) { |
| err = thread_stack__grow(ts); |
| if (err) { |
| pr_warning("Out of memory: discarding thread stack\n"); |
| ts->cnt = 0; |
| } |
| } |
| |
| ts->stack[ts->cnt].trace_end = trace_end; |
| ts->stack[ts->cnt++].ret_addr = ret_addr; |
| |
| return err; |
| } |
| |
| static void thread_stack__pop(struct thread_stack *ts, u64 ret_addr) |
| { |
| size_t i; |
| |
| /* |
| * In some cases there may be functions which are not seen to return. |
| * For example when setjmp / longjmp has been used. Or the perf context |
| * switch in the kernel which doesn't stop and start tracing in exactly |
| * the same code path. When that happens the return address will be |
| * further down the stack. If the return address is not found at all, |
| * we assume the opposite (i.e. this is a return for a call that wasn't |
| * seen for some reason) and leave the stack alone. |
| */ |
| for (i = ts->cnt; i; ) { |
| if (ts->stack[--i].ret_addr == ret_addr) { |
| ts->cnt = i; |
| return; |
| } |
| } |
| } |
| |
| static void thread_stack__pop_trace_end(struct thread_stack *ts) |
| { |
| size_t i; |
| |
| for (i = ts->cnt; i; ) { |
| if (ts->stack[--i].trace_end) |
| ts->cnt = i; |
| else |
| return; |
| } |
| } |
| |
| static bool thread_stack__in_kernel(struct thread_stack *ts) |
| { |
| if (!ts->cnt) |
| return false; |
| |
| return ts->stack[ts->cnt - 1].cp->in_kernel; |
| } |
| |
| static int thread_stack__call_return(struct thread *thread, |
| struct thread_stack *ts, size_t idx, |
| u64 timestamp, u64 ref, bool no_return) |
| { |
| struct call_return_processor *crp = ts->crp; |
| struct thread_stack_entry *tse; |
| struct call_return cr = { |
| .thread = thread, |
| .comm = ts->comm, |
| .db_id = 0, |
| }; |
| u64 *parent_db_id; |
| |
| tse = &ts->stack[idx]; |
| cr.cp = tse->cp; |
| cr.call_time = tse->timestamp; |
| cr.return_time = timestamp; |
| cr.branch_count = ts->branch_count - tse->branch_count; |
| cr.insn_count = ts->insn_count - tse->insn_count; |
| cr.cyc_count = ts->cyc_count - tse->cyc_count; |
| cr.db_id = tse->db_id; |
| cr.call_ref = tse->ref; |
| cr.return_ref = ref; |
| if (tse->no_call) |
| cr.flags |= CALL_RETURN_NO_CALL; |
| if (no_return) |
| cr.flags |= CALL_RETURN_NO_RETURN; |
| if (tse->non_call) |
| cr.flags |= CALL_RETURN_NON_CALL; |
| |
| /* |
| * The parent db_id must be assigned before exporting the child. Note |
| * it is not possible to export the parent first because its information |
| * is not yet complete because its 'return' has not yet been processed. |
| */ |
| parent_db_id = idx ? &(tse - 1)->db_id : NULL; |
| |
| return crp->process(&cr, parent_db_id, crp->data); |
| } |
| |
| static int __thread_stack__flush(struct thread *thread, struct thread_stack *ts) |
| { |
| struct call_return_processor *crp = ts->crp; |
| int err; |
| |
| if (!crp) { |
| ts->cnt = 0; |
| ts->br_stack_pos = 0; |
| if (ts->br_stack_rb) |
| ts->br_stack_rb->nr = 0; |
| return 0; |
| } |
| |
| while (ts->cnt) { |
| err = thread_stack__call_return(thread, ts, --ts->cnt, |
| ts->last_time, 0, true); |
| if (err) { |
| pr_err("Error flushing thread stack!\n"); |
| ts->cnt = 0; |
| return err; |
| } |
| } |
| |
| return 0; |
| } |
| |
| int thread_stack__flush(struct thread *thread) |
| { |
| struct thread_stack *ts = thread->ts; |
| unsigned int pos; |
| int err = 0; |
| |
| if (ts) { |
| for (pos = 0; pos < ts->arr_sz; pos++) { |
| int ret = __thread_stack__flush(thread, ts + pos); |
| |
| if (ret) |
| err = ret; |
| } |
| } |
| |
| return err; |
| } |
| |
| static void thread_stack__update_br_stack(struct thread_stack *ts, u32 flags, |
| u64 from_ip, u64 to_ip) |
| { |
| struct branch_stack *bs = ts->br_stack_rb; |
| struct branch_entry *be; |
| |
| if (!ts->br_stack_pos) |
| ts->br_stack_pos = ts->br_stack_sz; |
| |
| ts->br_stack_pos -= 1; |
| |
| be = &bs->entries[ts->br_stack_pos]; |
| be->from = from_ip; |
| be->to = to_ip; |
| be->flags.value = 0; |
| be->flags.abort = !!(flags & PERF_IP_FLAG_TX_ABORT); |
| be->flags.in_tx = !!(flags & PERF_IP_FLAG_IN_TX); |
| /* No support for mispredict */ |
| be->flags.mispred = ts->mispred_all; |
| |
| if (bs->nr < ts->br_stack_sz) |
| bs->nr += 1; |
| } |
| |
| int thread_stack__event(struct thread *thread, int cpu, u32 flags, u64 from_ip, |
| u64 to_ip, u16 insn_len, u64 trace_nr, bool callstack, |
| unsigned int br_stack_sz, bool mispred_all) |
| { |
| struct thread_stack *ts = thread__stack(thread, cpu); |
| |
| if (!thread) |
| return -EINVAL; |
| |
| if (!ts) { |
| ts = thread_stack__new(thread, cpu, NULL, callstack, br_stack_sz); |
| if (!ts) { |
| pr_warning("Out of memory: no thread stack\n"); |
| return -ENOMEM; |
| } |
| ts->trace_nr = trace_nr; |
| ts->mispred_all = mispred_all; |
| } |
| |
| /* |
| * When the trace is discontinuous, the trace_nr changes. In that case |
| * the stack might be completely invalid. Better to report nothing than |
| * to report something misleading, so flush the stack. |
| */ |
| if (trace_nr != ts->trace_nr) { |
| if (ts->trace_nr) |
| __thread_stack__flush(thread, ts); |
| ts->trace_nr = trace_nr; |
| } |
| |
| if (br_stack_sz) |
| thread_stack__update_br_stack(ts, flags, from_ip, to_ip); |
| |
| /* |
| * Stop here if thread_stack__process() is in use, or not recording call |
| * stack. |
| */ |
| if (ts->crp || !callstack) |
| return 0; |
| |
| if (flags & PERF_IP_FLAG_CALL) { |
| u64 ret_addr; |
| |
| if (!to_ip) |
| return 0; |
| ret_addr = from_ip + insn_len; |
| if (ret_addr == to_ip) |
| return 0; /* Zero-length calls are excluded */ |
| return thread_stack__push(ts, ret_addr, |
| flags & PERF_IP_FLAG_TRACE_END); |
| } else if (flags & PERF_IP_FLAG_TRACE_BEGIN) { |
| /* |
| * If the caller did not change the trace number (which would |
| * have flushed the stack) then try to make sense of the stack. |
| * Possibly, tracing began after returning to the current |
| * address, so try to pop that. Also, do not expect a call made |
| * when the trace ended, to return, so pop that. |
| */ |
| thread_stack__pop(ts, to_ip); |
| thread_stack__pop_trace_end(ts); |
| } else if ((flags & PERF_IP_FLAG_RETURN) && from_ip) { |
| thread_stack__pop(ts, to_ip); |
| } |
| |
| return 0; |
| } |
| |
| void thread_stack__set_trace_nr(struct thread *thread, int cpu, u64 trace_nr) |
| { |
| struct thread_stack *ts = thread__stack(thread, cpu); |
| |
| if (!ts) |
| return; |
| |
| if (trace_nr != ts->trace_nr) { |
| if (ts->trace_nr) |
| __thread_stack__flush(thread, ts); |
| ts->trace_nr = trace_nr; |
| } |
| } |
| |
| static void __thread_stack__free(struct thread *thread, struct thread_stack *ts) |
| { |
| __thread_stack__flush(thread, ts); |
| zfree(&ts->stack); |
| zfree(&ts->br_stack_rb); |
| } |
| |
| static void thread_stack__reset(struct thread *thread, struct thread_stack *ts) |
| { |
| unsigned int arr_sz = ts->arr_sz; |
| |
| __thread_stack__free(thread, ts); |
| memset(ts, 0, sizeof(*ts)); |
| ts->arr_sz = arr_sz; |
| } |
| |
| void thread_stack__free(struct thread *thread) |
| { |
| struct thread_stack *ts = thread->ts; |
| unsigned int pos; |
| |
| if (ts) { |
| for (pos = 0; pos < ts->arr_sz; pos++) |
| __thread_stack__free(thread, ts + pos); |
| zfree(&thread->ts); |
| } |
| } |
| |
| static inline u64 callchain_context(u64 ip, u64 kernel_start) |
| { |
| return ip < kernel_start ? PERF_CONTEXT_USER : PERF_CONTEXT_KERNEL; |
| } |
| |
| void thread_stack__sample(struct thread *thread, int cpu, |
| struct ip_callchain *chain, |
| size_t sz, u64 ip, u64 kernel_start) |
| { |
| struct thread_stack *ts = thread__stack(thread, cpu); |
| u64 context = callchain_context(ip, kernel_start); |
| u64 last_context; |
| size_t i, j; |
| |
| if (sz < 2) { |
| chain->nr = 0; |
| return; |
| } |
| |
| chain->ips[0] = context; |
| chain->ips[1] = ip; |
| |
| if (!ts) { |
| chain->nr = 2; |
| return; |
| } |
| |
| last_context = context; |
| |
| for (i = 2, j = 1; i < sz && j <= ts->cnt; i++, j++) { |
| ip = ts->stack[ts->cnt - j].ret_addr; |
| context = callchain_context(ip, kernel_start); |
| if (context != last_context) { |
| if (i >= sz - 1) |
| break; |
| chain->ips[i++] = context; |
| last_context = context; |
| } |
| chain->ips[i] = ip; |
| } |
| |
| chain->nr = i; |
| } |
| |
| /* |
| * Hardware sample records, created some time after the event occurred, need to |
| * have subsequent addresses removed from the call chain. |
| */ |
| void thread_stack__sample_late(struct thread *thread, int cpu, |
| struct ip_callchain *chain, size_t sz, |
| u64 sample_ip, u64 kernel_start) |
| { |
| struct thread_stack *ts = thread__stack(thread, cpu); |
| u64 sample_context = callchain_context(sample_ip, kernel_start); |
| u64 last_context, context, ip; |
| size_t nr = 0, j; |
| |
| if (sz < 2) { |
| chain->nr = 0; |
| return; |
| } |
| |
| if (!ts) |
| goto out; |
| |
| /* |
| * When tracing kernel space, kernel addresses occur at the top of the |
| * call chain after the event occurred but before tracing stopped. |
| * Skip them. |
| */ |
| for (j = 1; j <= ts->cnt; j++) { |
| ip = ts->stack[ts->cnt - j].ret_addr; |
| context = callchain_context(ip, kernel_start); |
| if (context == PERF_CONTEXT_USER || |
| (context == sample_context && ip == sample_ip)) |
| break; |
| } |
| |
| last_context = sample_ip; /* Use sample_ip as an invalid context */ |
| |
| for (; nr < sz && j <= ts->cnt; nr++, j++) { |
| ip = ts->stack[ts->cnt - j].ret_addr; |
| context = callchain_context(ip, kernel_start); |
| if (context != last_context) { |
| if (nr >= sz - 1) |
| break; |
| chain->ips[nr++] = context; |
| last_context = context; |
| } |
| chain->ips[nr] = ip; |
| } |
| out: |
| if (nr) { |
| chain->nr = nr; |
| } else { |
| chain->ips[0] = sample_context; |
| chain->ips[1] = sample_ip; |
| chain->nr = 2; |
| } |
| } |
| |
| void thread_stack__br_sample(struct thread *thread, int cpu, |
| struct branch_stack *dst, unsigned int sz) |
| { |
| struct thread_stack *ts = thread__stack(thread, cpu); |
| const size_t bsz = sizeof(struct branch_entry); |
| struct branch_stack *src; |
| struct branch_entry *be; |
| unsigned int nr; |
| |
| dst->nr = 0; |
| |
| if (!ts) |
| return; |
| |
| src = ts->br_stack_rb; |
| if (!src->nr) |
| return; |
| |
| dst->nr = min((unsigned int)src->nr, sz); |
| |
| be = &dst->entries[0]; |
| nr = min(ts->br_stack_sz - ts->br_stack_pos, (unsigned int)dst->nr); |
| memcpy(be, &src->entries[ts->br_stack_pos], bsz * nr); |
| |
| if (src->nr >= ts->br_stack_sz) { |
| sz -= nr; |
| be = &dst->entries[nr]; |
| nr = min(ts->br_stack_pos, sz); |
| memcpy(be, &src->entries[0], bsz * ts->br_stack_pos); |
| } |
| } |
| |
| /* Start of user space branch entries */ |
| static bool us_start(struct branch_entry *be, u64 kernel_start, bool *start) |
| { |
| if (!*start) |
| *start = be->to && be->to < kernel_start; |
| |
| return *start; |
| } |
| |
| /* |
| * Start of branch entries after the ip fell in between 2 branches, or user |
| * space branch entries. |
| */ |
| static bool ks_start(struct branch_entry *be, u64 sample_ip, u64 kernel_start, |
| bool *start, struct branch_entry *nb) |
| { |
| if (!*start) { |
| *start = (nb && sample_ip >= be->to && sample_ip <= nb->from) || |
| be->from < kernel_start || |
| (be->to && be->to < kernel_start); |
| } |
| |
| return *start; |
| } |
| |
| /* |
| * Hardware sample records, created some time after the event occurred, need to |
| * have subsequent addresses removed from the branch stack. |
| */ |
| void thread_stack__br_sample_late(struct thread *thread, int cpu, |
| struct branch_stack *dst, unsigned int sz, |
| u64 ip, u64 kernel_start) |
| { |
| struct thread_stack *ts = thread__stack(thread, cpu); |
| struct branch_entry *d, *s, *spos, *ssz; |
| struct branch_stack *src; |
| unsigned int nr = 0; |
| bool start = false; |
| |
| dst->nr = 0; |
| |
| if (!ts) |
| return; |
| |
| src = ts->br_stack_rb; |
| if (!src->nr) |
| return; |
| |
| spos = &src->entries[ts->br_stack_pos]; |
| ssz = &src->entries[ts->br_stack_sz]; |
| |
| d = &dst->entries[0]; |
| s = spos; |
| |
| if (ip < kernel_start) { |
| /* |
| * User space sample: start copying branch entries when the |
| * branch is in user space. |
| */ |
| for (s = spos; s < ssz && nr < sz; s++) { |
| if (us_start(s, kernel_start, &start)) { |
| *d++ = *s; |
| nr += 1; |
| } |
| } |
| |
| if (src->nr >= ts->br_stack_sz) { |
| for (s = &src->entries[0]; s < spos && nr < sz; s++) { |
| if (us_start(s, kernel_start, &start)) { |
| *d++ = *s; |
| nr += 1; |
| } |
| } |
| } |
| } else { |
| struct branch_entry *nb = NULL; |
| |
| /* |
| * Kernel space sample: start copying branch entries when the ip |
| * falls in between 2 branches (or the branch is in user space |
| * because then the start must have been missed). |
| */ |
| for (s = spos; s < ssz && nr < sz; s++) { |
| if (ks_start(s, ip, kernel_start, &start, nb)) { |
| *d++ = *s; |
| nr += 1; |
| } |
| nb = s; |
| } |
| |
| if (src->nr >= ts->br_stack_sz) { |
| for (s = &src->entries[0]; s < spos && nr < sz; s++) { |
| if (ks_start(s, ip, kernel_start, &start, nb)) { |
| *d++ = *s; |
| nr += 1; |
| } |
| nb = s; |
| } |
| } |
| } |
| |
| dst->nr = nr; |
| } |
| |
| struct call_return_processor * |
| call_return_processor__new(int (*process)(struct call_return *cr, u64 *parent_db_id, void *data), |
| void *data) |
| { |
| struct call_return_processor *crp; |
| |
| crp = zalloc(sizeof(struct call_return_processor)); |
| if (!crp) |
| return NULL; |
| crp->cpr = call_path_root__new(); |
| if (!crp->cpr) |
| goto out_free; |
| crp->process = process; |
| crp->data = data; |
| return crp; |
| |
| out_free: |
| free(crp); |
| return NULL; |
| } |
| |
| void call_return_processor__free(struct call_return_processor *crp) |
| { |
| if (crp) { |
| call_path_root__free(crp->cpr); |
| free(crp); |
| } |
| } |
| |
| static int thread_stack__push_cp(struct thread_stack *ts, u64 ret_addr, |
| u64 timestamp, u64 ref, struct call_path *cp, |
| bool no_call, bool trace_end) |
| { |
| struct thread_stack_entry *tse; |
| int err; |
| |
| if (!cp) |
| return -ENOMEM; |
| |
| if (ts->cnt == ts->sz) { |
| err = thread_stack__grow(ts); |
| if (err) |
| return err; |
| } |
| |
| tse = &ts->stack[ts->cnt++]; |
| tse->ret_addr = ret_addr; |
| tse->timestamp = timestamp; |
| tse->ref = ref; |
| tse->branch_count = ts->branch_count; |
| tse->insn_count = ts->insn_count; |
| tse->cyc_count = ts->cyc_count; |
| tse->cp = cp; |
| tse->no_call = no_call; |
| tse->trace_end = trace_end; |
| tse->non_call = false; |
| tse->db_id = 0; |
| |
| return 0; |
| } |
| |
| static int thread_stack__pop_cp(struct thread *thread, struct thread_stack *ts, |
| u64 ret_addr, u64 timestamp, u64 ref, |
| struct symbol *sym) |
| { |
| int err; |
| |
| if (!ts->cnt) |
| return 1; |
| |
| if (ts->cnt == 1) { |
| struct thread_stack_entry *tse = &ts->stack[0]; |
| |
| if (tse->cp->sym == sym) |
| return thread_stack__call_return(thread, ts, --ts->cnt, |
| timestamp, ref, false); |
| } |
| |
| if (ts->stack[ts->cnt - 1].ret_addr == ret_addr && |
| !ts->stack[ts->cnt - 1].non_call) { |
| return thread_stack__call_return(thread, ts, --ts->cnt, |
| timestamp, ref, false); |
| } else { |
| size_t i = ts->cnt - 1; |
| |
| while (i--) { |
| if (ts->stack[i].ret_addr != ret_addr || |
| ts->stack[i].non_call) |
| continue; |
| i += 1; |
| while (ts->cnt > i) { |
| err = thread_stack__call_return(thread, ts, |
| --ts->cnt, |
| timestamp, ref, |
| true); |
| if (err) |
| return err; |
| } |
| return thread_stack__call_return(thread, ts, --ts->cnt, |
| timestamp, ref, false); |
| } |
| } |
| |
| return 1; |
| } |
| |
| static int thread_stack__bottom(struct thread_stack *ts, |
| struct perf_sample *sample, |
| struct addr_location *from_al, |
| struct addr_location *to_al, u64 ref) |
| { |
| struct call_path_root *cpr = ts->crp->cpr; |
| struct call_path *cp; |
| struct symbol *sym; |
| u64 ip; |
| |
| if (sample->ip) { |
| ip = sample->ip; |
| sym = from_al->sym; |
| } else if (sample->addr) { |
| ip = sample->addr; |
| sym = to_al->sym; |
| } else { |
| return 0; |
| } |
| |
| cp = call_path__findnew(cpr, &cpr->call_path, sym, ip, |
| ts->kernel_start); |
| |
| return thread_stack__push_cp(ts, ip, sample->time, ref, cp, |
| true, false); |
| } |
| |
| static int thread_stack__pop_ks(struct thread *thread, struct thread_stack *ts, |
| struct perf_sample *sample, u64 ref) |
| { |
| u64 tm = sample->time; |
| int err; |
| |
| /* Return to userspace, so pop all kernel addresses */ |
| while (thread_stack__in_kernel(ts)) { |
| err = thread_stack__call_return(thread, ts, --ts->cnt, |
| tm, ref, true); |
| if (err) |
| return err; |
| } |
| |
| return 0; |
| } |
| |
| static int thread_stack__no_call_return(struct thread *thread, |
| struct thread_stack *ts, |
| struct perf_sample *sample, |
| struct addr_location *from_al, |
| struct addr_location *to_al, u64 ref) |
| { |
| struct call_path_root *cpr = ts->crp->cpr; |
| struct call_path *root = &cpr->call_path; |
| struct symbol *fsym = from_al->sym; |
| struct symbol *tsym = to_al->sym; |
| struct call_path *cp, *parent; |
| u64 ks = ts->kernel_start; |
| u64 addr = sample->addr; |
| u64 tm = sample->time; |
| u64 ip = sample->ip; |
| int err; |
| |
| if (ip >= ks && addr < ks) { |
| /* Return to userspace, so pop all kernel addresses */ |
| err = thread_stack__pop_ks(thread, ts, sample, ref); |
| if (err) |
| return err; |
| |
| /* If the stack is empty, push the userspace address */ |
| if (!ts->cnt) { |
| cp = call_path__findnew(cpr, root, tsym, addr, ks); |
| return thread_stack__push_cp(ts, 0, tm, ref, cp, true, |
| false); |
| } |
| } else if (thread_stack__in_kernel(ts) && ip < ks) { |
| /* Return to userspace, so pop all kernel addresses */ |
| err = thread_stack__pop_ks(thread, ts, sample, ref); |
| if (err) |
| return err; |
| } |
| |
| if (ts->cnt) |
| parent = ts->stack[ts->cnt - 1].cp; |
| else |
| parent = root; |
| |
| if (parent->sym == from_al->sym) { |
| /* |
| * At the bottom of the stack, assume the missing 'call' was |
| * before the trace started. So, pop the current symbol and push |
| * the 'to' symbol. |
| */ |
| if (ts->cnt == 1) { |
| err = thread_stack__call_return(thread, ts, --ts->cnt, |
| tm, ref, false); |
| if (err) |
| return err; |
| } |
| |
| if (!ts->cnt) { |
| cp = call_path__findnew(cpr, root, tsym, addr, ks); |
| |
| return thread_stack__push_cp(ts, addr, tm, ref, cp, |
| true, false); |
| } |
| |
| /* |
| * Otherwise assume the 'return' is being used as a jump (e.g. |
| * retpoline) and just push the 'to' symbol. |
| */ |
| cp = call_path__findnew(cpr, parent, tsym, addr, ks); |
| |
| err = thread_stack__push_cp(ts, 0, tm, ref, cp, true, false); |
| if (!err) |
| ts->stack[ts->cnt - 1].non_call = true; |
| |
| return err; |
| } |
| |
| /* |
| * Assume 'parent' has not yet returned, so push 'to', and then push and |
| * pop 'from'. |
| */ |
| |
| cp = call_path__findnew(cpr, parent, tsym, addr, ks); |
| |
| err = thread_stack__push_cp(ts, addr, tm, ref, cp, true, false); |
| if (err) |
| return err; |
| |
| cp = call_path__findnew(cpr, cp, fsym, ip, ks); |
| |
| err = thread_stack__push_cp(ts, ip, tm, ref, cp, true, false); |
| if (err) |
| return err; |
| |
| return thread_stack__call_return(thread, ts, --ts->cnt, tm, ref, false); |
| } |
| |
| static int thread_stack__trace_begin(struct thread *thread, |
| struct thread_stack *ts, u64 timestamp, |
| u64 ref) |
| { |
| struct thread_stack_entry *tse; |
| int err; |
| |
| if (!ts->cnt) |
| return 0; |
| |
| /* Pop trace end */ |
| tse = &ts->stack[ts->cnt - 1]; |
| if (tse->trace_end) { |
| err = thread_stack__call_return(thread, ts, --ts->cnt, |
| timestamp, ref, false); |
| if (err) |
| return err; |
| } |
| |
| return 0; |
| } |
| |
| static int thread_stack__trace_end(struct thread_stack *ts, |
| struct perf_sample *sample, u64 ref) |
| { |
| struct call_path_root *cpr = ts->crp->cpr; |
| struct call_path *cp; |
| u64 ret_addr; |
| |
| /* No point having 'trace end' on the bottom of the stack */ |
| if (!ts->cnt || (ts->cnt == 1 && ts->stack[0].ref == ref)) |
| return 0; |
| |
| cp = call_path__findnew(cpr, ts->stack[ts->cnt - 1].cp, NULL, 0, |
| ts->kernel_start); |
| |
| ret_addr = sample->ip + sample->insn_len; |
| |
| return thread_stack__push_cp(ts, ret_addr, sample->time, ref, cp, |
| false, true); |
| } |
| |
| static bool is_x86_retpoline(const char *name) |
| { |
| const char *p = strstr(name, "__x86_indirect_thunk_"); |
| |
| return p == name || !strcmp(name, "__indirect_thunk_start"); |
| } |
| |
| /* |
| * x86 retpoline functions pollute the call graph. This function removes them. |
| * This does not handle function return thunks, nor is there any improvement |
| * for the handling of inline thunks or extern thunks. |
| */ |
| static int thread_stack__x86_retpoline(struct thread_stack *ts, |
| struct perf_sample *sample, |
| struct addr_location *to_al) |
| { |
| struct thread_stack_entry *tse = &ts->stack[ts->cnt - 1]; |
| struct call_path_root *cpr = ts->crp->cpr; |
| struct symbol *sym = tse->cp->sym; |
| struct symbol *tsym = to_al->sym; |
| struct call_path *cp; |
| |
| if (sym && is_x86_retpoline(sym->name)) { |
| /* |
| * This is a x86 retpoline fn. It pollutes the call graph by |
| * showing up everywhere there is an indirect branch, but does |
| * not itself mean anything. Here the top-of-stack is removed, |
| * by decrementing the stack count, and then further down, the |
| * resulting top-of-stack is replaced with the actual target. |
| * The result is that the retpoline functions will no longer |
| * appear in the call graph. Note this only affects the call |
| * graph, since all the original branches are left unchanged. |
| */ |
| ts->cnt -= 1; |
| sym = ts->stack[ts->cnt - 2].cp->sym; |
| if (sym && sym == tsym && to_al->addr != tsym->start) { |
| /* |
| * Target is back to the middle of the symbol we came |
| * from so assume it is an indirect jmp and forget it |
| * altogether. |
| */ |
| ts->cnt -= 1; |
| return 0; |
| } |
| } else if (sym && sym == tsym) { |
| /* |
| * Target is back to the symbol we came from so assume it is an |
| * indirect jmp and forget it altogether. |
| */ |
| ts->cnt -= 1; |
| return 0; |
| } |
| |
| cp = call_path__findnew(cpr, ts->stack[ts->cnt - 2].cp, tsym, |
| sample->addr, ts->kernel_start); |
| if (!cp) |
| return -ENOMEM; |
| |
| /* Replace the top-of-stack with the actual target */ |
| ts->stack[ts->cnt - 1].cp = cp; |
| |
| return 0; |
| } |
| |
| int thread_stack__process(struct thread *thread, struct comm *comm, |
| struct perf_sample *sample, |
| struct addr_location *from_al, |
| struct addr_location *to_al, u64 ref, |
| struct call_return_processor *crp) |
| { |
| struct thread_stack *ts = thread__stack(thread, sample->cpu); |
| enum retpoline_state_t rstate; |
| int err = 0; |
| |
| if (ts && !ts->crp) { |
| /* Supersede thread_stack__event() */ |
| thread_stack__reset(thread, ts); |
| ts = NULL; |
| } |
| |
| if (!ts) { |
| ts = thread_stack__new(thread, sample->cpu, crp, true, 0); |
| if (!ts) |
| return -ENOMEM; |
| ts->comm = comm; |
| } |
| |
| rstate = ts->rstate; |
| if (rstate == X86_RETPOLINE_DETECTED) |
| ts->rstate = X86_RETPOLINE_POSSIBLE; |
| |
| /* Flush stack on exec */ |
| if (ts->comm != comm && thread->pid_ == thread->tid) { |
| err = __thread_stack__flush(thread, ts); |
| if (err) |
| return err; |
| ts->comm = comm; |
| } |
| |
| /* If the stack is empty, put the current symbol on the stack */ |
| if (!ts->cnt) { |
| err = thread_stack__bottom(ts, sample, from_al, to_al, ref); |
| if (err) |
| return err; |
| } |
| |
| ts->branch_count += 1; |
| ts->insn_count += sample->insn_cnt; |
| ts->cyc_count += sample->cyc_cnt; |
| ts->last_time = sample->time; |
| |
| if (sample->flags & PERF_IP_FLAG_CALL) { |
| bool trace_end = sample->flags & PERF_IP_FLAG_TRACE_END; |
| struct call_path_root *cpr = ts->crp->cpr; |
| struct call_path *cp; |
| u64 ret_addr; |
| |
| if (!sample->ip || !sample->addr) |
| return 0; |
| |
| ret_addr = sample->ip + sample->insn_len; |
| if (ret_addr == sample->addr) |
| return 0; /* Zero-length calls are excluded */ |
| |
| cp = call_path__findnew(cpr, ts->stack[ts->cnt - 1].cp, |
| to_al->sym, sample->addr, |
| ts->kernel_start); |
| err = thread_stack__push_cp(ts, ret_addr, sample->time, ref, |
| cp, false, trace_end); |
| |
| /* |
| * A call to the same symbol but not the start of the symbol, |
| * may be the start of a x86 retpoline. |
| */ |
| if (!err && rstate == X86_RETPOLINE_POSSIBLE && to_al->sym && |
| from_al->sym == to_al->sym && |
| to_al->addr != to_al->sym->start) |
| ts->rstate = X86_RETPOLINE_DETECTED; |
| |
| } else if (sample->flags & PERF_IP_FLAG_RETURN) { |
| if (!sample->addr) { |
| u32 return_from_kernel = PERF_IP_FLAG_SYSCALLRET | |
| PERF_IP_FLAG_INTERRUPT; |
| |
| if (!(sample->flags & return_from_kernel)) |
| return 0; |
| |
| /* Pop kernel stack */ |
| return thread_stack__pop_ks(thread, ts, sample, ref); |
| } |
| |
| if (!sample->ip) |
| return 0; |
| |
| /* x86 retpoline 'return' doesn't match the stack */ |
| if (rstate == X86_RETPOLINE_DETECTED && ts->cnt > 2 && |
| ts->stack[ts->cnt - 1].ret_addr != sample->addr) |
| return thread_stack__x86_retpoline(ts, sample, to_al); |
| |
| err = thread_stack__pop_cp(thread, ts, sample->addr, |
| sample->time, ref, from_al->sym); |
| if (err) { |
| if (err < 0) |
| return err; |
| err = thread_stack__no_call_return(thread, ts, sample, |
| from_al, to_al, ref); |
| } |
| } else if (sample->flags & PERF_IP_FLAG_TRACE_BEGIN) { |
| err = thread_stack__trace_begin(thread, ts, sample->time, ref); |
| } else if (sample->flags & PERF_IP_FLAG_TRACE_END) { |
| err = thread_stack__trace_end(ts, sample, ref); |
| } else if (sample->flags & PERF_IP_FLAG_BRANCH && |
| from_al->sym != to_al->sym && to_al->sym && |
| to_al->addr == to_al->sym->start) { |
| struct call_path_root *cpr = ts->crp->cpr; |
| struct call_path *cp; |
| |
| /* |
| * The compiler might optimize a call/ret combination by making |
| * it a jmp. Make that visible by recording on the stack a |
| * branch to the start of a different symbol. Note, that means |
| * when a ret pops the stack, all jmps must be popped off first. |
| */ |
| cp = call_path__findnew(cpr, ts->stack[ts->cnt - 1].cp, |
| to_al->sym, sample->addr, |
| ts->kernel_start); |
| err = thread_stack__push_cp(ts, 0, sample->time, ref, cp, false, |
| false); |
| if (!err) |
| ts->stack[ts->cnt - 1].non_call = true; |
| } |
| |
| return err; |
| } |
| |
| size_t thread_stack__depth(struct thread *thread, int cpu) |
| { |
| struct thread_stack *ts = thread__stack(thread, cpu); |
| |
| if (!ts) |
| return 0; |
| return ts->cnt; |
| } |