blob: 89920f84d0a34385471e9afbf9c26d287cbbd838 [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0-only
/*
* Copied from arch/arm64/kernel/cpufeature.c
*
* Copyright (C) 2015 ARM Ltd.
* Copyright (C) 2017 SiFive
*/
#include <linux/acpi.h>
#include <linux/bitmap.h>
#include <linux/cpu.h>
#include <linux/cpuhotplug.h>
#include <linux/ctype.h>
#include <linux/jump_label.h>
#include <linux/log2.h>
#include <linux/memory.h>
#include <linux/module.h>
#include <linux/of.h>
#include <asm/acpi.h>
#include <asm/alternative.h>
#include <asm/cacheflush.h>
#include <asm/cpufeature.h>
#include <asm/hwcap.h>
#include <asm/hwprobe.h>
#include <asm/patch.h>
#include <asm/processor.h>
#include <asm/vector.h>
#include "copy-unaligned.h"
#define NUM_ALPHA_EXTS ('z' - 'a' + 1)
#define MISALIGNED_ACCESS_JIFFIES_LG2 1
#define MISALIGNED_BUFFER_SIZE 0x4000
#define MISALIGNED_BUFFER_ORDER get_order(MISALIGNED_BUFFER_SIZE)
#define MISALIGNED_COPY_SIZE ((MISALIGNED_BUFFER_SIZE / 2) - 0x80)
unsigned long elf_hwcap __read_mostly;
/* Host ISA bitmap */
static DECLARE_BITMAP(riscv_isa, RISCV_ISA_EXT_MAX) __read_mostly;
/* Per-cpu ISA extensions. */
struct riscv_isainfo hart_isa[NR_CPUS];
/* Performance information */
DEFINE_PER_CPU(long, misaligned_access_speed);
static cpumask_t fast_misaligned_access;
/**
* riscv_isa_extension_base() - Get base extension word
*
* @isa_bitmap: ISA bitmap to use
* Return: base extension word as unsigned long value
*
* NOTE: If isa_bitmap is NULL then Host ISA bitmap will be used.
*/
unsigned long riscv_isa_extension_base(const unsigned long *isa_bitmap)
{
if (!isa_bitmap)
return riscv_isa[0];
return isa_bitmap[0];
}
EXPORT_SYMBOL_GPL(riscv_isa_extension_base);
/**
* __riscv_isa_extension_available() - Check whether given extension
* is available or not
*
* @isa_bitmap: ISA bitmap to use
* @bit: bit position of the desired extension
* Return: true or false
*
* NOTE: If isa_bitmap is NULL then Host ISA bitmap will be used.
*/
bool __riscv_isa_extension_available(const unsigned long *isa_bitmap, unsigned int bit)
{
const unsigned long *bmap = (isa_bitmap) ? isa_bitmap : riscv_isa;
if (bit >= RISCV_ISA_EXT_MAX)
return false;
return test_bit(bit, bmap) ? true : false;
}
EXPORT_SYMBOL_GPL(__riscv_isa_extension_available);
static bool riscv_isa_extension_check(int id)
{
switch (id) {
case RISCV_ISA_EXT_ZICBOM:
if (!riscv_cbom_block_size) {
pr_err("Zicbom detected in ISA string, disabling as no cbom-block-size found\n");
return false;
} else if (!is_power_of_2(riscv_cbom_block_size)) {
pr_err("Zicbom disabled as cbom-block-size present, but is not a power-of-2\n");
return false;
}
return true;
case RISCV_ISA_EXT_ZICBOZ:
if (!riscv_cboz_block_size) {
pr_err("Zicboz detected in ISA string, disabling as no cboz-block-size found\n");
return false;
} else if (!is_power_of_2(riscv_cboz_block_size)) {
pr_err("Zicboz disabled as cboz-block-size present, but is not a power-of-2\n");
return false;
}
return true;
case RISCV_ISA_EXT_INVALID:
return false;
}
return true;
}
#define _RISCV_ISA_EXT_DATA(_name, _id, _subset_exts, _subset_exts_size) { \
.name = #_name, \
.property = #_name, \
.id = _id, \
.subset_ext_ids = _subset_exts, \
.subset_ext_size = _subset_exts_size \
}
#define __RISCV_ISA_EXT_DATA(_name, _id) _RISCV_ISA_EXT_DATA(_name, _id, NULL, 0)
/* Used to declare pure "lasso" extension (Zk for instance) */
#define __RISCV_ISA_EXT_BUNDLE(_name, _bundled_exts) \
_RISCV_ISA_EXT_DATA(_name, RISCV_ISA_EXT_INVALID, _bundled_exts, ARRAY_SIZE(_bundled_exts))
/* Used to declare extensions that are a superset of other extensions (Zvbb for instance) */
#define __RISCV_ISA_EXT_SUPERSET(_name, _id, _sub_exts) \
_RISCV_ISA_EXT_DATA(_name, _id, _sub_exts, ARRAY_SIZE(_sub_exts))
static const unsigned int riscv_zk_bundled_exts[] = {
RISCV_ISA_EXT_ZBKB,
RISCV_ISA_EXT_ZBKC,
RISCV_ISA_EXT_ZBKX,
RISCV_ISA_EXT_ZKND,
RISCV_ISA_EXT_ZKNE,
RISCV_ISA_EXT_ZKR,
RISCV_ISA_EXT_ZKT,
};
static const unsigned int riscv_zkn_bundled_exts[] = {
RISCV_ISA_EXT_ZBKB,
RISCV_ISA_EXT_ZBKC,
RISCV_ISA_EXT_ZBKX,
RISCV_ISA_EXT_ZKND,
RISCV_ISA_EXT_ZKNE,
RISCV_ISA_EXT_ZKNH,
};
static const unsigned int riscv_zks_bundled_exts[] = {
RISCV_ISA_EXT_ZBKB,
RISCV_ISA_EXT_ZBKC,
RISCV_ISA_EXT_ZKSED,
RISCV_ISA_EXT_ZKSH
};
#define RISCV_ISA_EXT_ZVKN \
RISCV_ISA_EXT_ZVKNED, \
RISCV_ISA_EXT_ZVKNHB, \
RISCV_ISA_EXT_ZVKB, \
RISCV_ISA_EXT_ZVKT
static const unsigned int riscv_zvkn_bundled_exts[] = {
RISCV_ISA_EXT_ZVKN
};
static const unsigned int riscv_zvknc_bundled_exts[] = {
RISCV_ISA_EXT_ZVKN,
RISCV_ISA_EXT_ZVBC
};
static const unsigned int riscv_zvkng_bundled_exts[] = {
RISCV_ISA_EXT_ZVKN,
RISCV_ISA_EXT_ZVKG
};
#define RISCV_ISA_EXT_ZVKS \
RISCV_ISA_EXT_ZVKSED, \
RISCV_ISA_EXT_ZVKSH, \
RISCV_ISA_EXT_ZVKB, \
RISCV_ISA_EXT_ZVKT
static const unsigned int riscv_zvks_bundled_exts[] = {
RISCV_ISA_EXT_ZVKS
};
static const unsigned int riscv_zvksc_bundled_exts[] = {
RISCV_ISA_EXT_ZVKS,
RISCV_ISA_EXT_ZVBC
};
static const unsigned int riscv_zvksg_bundled_exts[] = {
RISCV_ISA_EXT_ZVKS,
RISCV_ISA_EXT_ZVKG
};
static const unsigned int riscv_zvbb_exts[] = {
RISCV_ISA_EXT_ZVKB
};
/*
* The canonical order of ISA extension names in the ISA string is defined in
* chapter 27 of the unprivileged specification.
*
* Ordinarily, for in-kernel data structures, this order is unimportant but
* isa_ext_arr defines the order of the ISA string in /proc/cpuinfo.
*
* The specification uses vague wording, such as should, when it comes to
* ordering, so for our purposes the following rules apply:
*
* 1. All multi-letter extensions must be separated from other extensions by an
* underscore.
*
* 2. Additional standard extensions (starting with 'Z') must be sorted after
* single-letter extensions and before any higher-privileged extensions.
*
* 3. The first letter following the 'Z' conventionally indicates the most
* closely related alphabetical extension category, IMAFDQLCBKJTPVH.
* If multiple 'Z' extensions are named, they must be ordered first by
* category, then alphabetically within a category.
*
* 3. Standard supervisor-level extensions (starting with 'S') must be listed
* after standard unprivileged extensions. If multiple supervisor-level
* extensions are listed, they must be ordered alphabetically.
*
* 4. Standard machine-level extensions (starting with 'Zxm') must be listed
* after any lower-privileged, standard extensions. If multiple
* machine-level extensions are listed, they must be ordered
* alphabetically.
*
* 5. Non-standard extensions (starting with 'X') must be listed after all
* standard extensions. If multiple non-standard extensions are listed, they
* must be ordered alphabetically.
*
* An example string following the order is:
* rv64imadc_zifoo_zigoo_zafoo_sbar_scar_zxmbaz_xqux_xrux
*
* New entries to this struct should follow the ordering rules described above.
*/
const struct riscv_isa_ext_data riscv_isa_ext[] = {
__RISCV_ISA_EXT_DATA(i, RISCV_ISA_EXT_i),
__RISCV_ISA_EXT_DATA(m, RISCV_ISA_EXT_m),
__RISCV_ISA_EXT_DATA(a, RISCV_ISA_EXT_a),
__RISCV_ISA_EXT_DATA(f, RISCV_ISA_EXT_f),
__RISCV_ISA_EXT_DATA(d, RISCV_ISA_EXT_d),
__RISCV_ISA_EXT_DATA(q, RISCV_ISA_EXT_q),
__RISCV_ISA_EXT_DATA(c, RISCV_ISA_EXT_c),
__RISCV_ISA_EXT_DATA(v, RISCV_ISA_EXT_v),
__RISCV_ISA_EXT_DATA(h, RISCV_ISA_EXT_h),
__RISCV_ISA_EXT_DATA(zicbom, RISCV_ISA_EXT_ZICBOM),
__RISCV_ISA_EXT_DATA(zicboz, RISCV_ISA_EXT_ZICBOZ),
__RISCV_ISA_EXT_DATA(zicntr, RISCV_ISA_EXT_ZICNTR),
__RISCV_ISA_EXT_DATA(zicond, RISCV_ISA_EXT_ZICOND),
__RISCV_ISA_EXT_DATA(zicsr, RISCV_ISA_EXT_ZICSR),
__RISCV_ISA_EXT_DATA(zifencei, RISCV_ISA_EXT_ZIFENCEI),
__RISCV_ISA_EXT_DATA(zihintntl, RISCV_ISA_EXT_ZIHINTNTL),
__RISCV_ISA_EXT_DATA(zihintpause, RISCV_ISA_EXT_ZIHINTPAUSE),
__RISCV_ISA_EXT_DATA(zihpm, RISCV_ISA_EXT_ZIHPM),
__RISCV_ISA_EXT_DATA(zacas, RISCV_ISA_EXT_ZACAS),
__RISCV_ISA_EXT_DATA(zfa, RISCV_ISA_EXT_ZFA),
__RISCV_ISA_EXT_DATA(zfh, RISCV_ISA_EXT_ZFH),
__RISCV_ISA_EXT_DATA(zfhmin, RISCV_ISA_EXT_ZFHMIN),
__RISCV_ISA_EXT_DATA(zba, RISCV_ISA_EXT_ZBA),
__RISCV_ISA_EXT_DATA(zbb, RISCV_ISA_EXT_ZBB),
__RISCV_ISA_EXT_DATA(zbc, RISCV_ISA_EXT_ZBC),
__RISCV_ISA_EXT_DATA(zbkb, RISCV_ISA_EXT_ZBKB),
__RISCV_ISA_EXT_DATA(zbkc, RISCV_ISA_EXT_ZBKC),
__RISCV_ISA_EXT_DATA(zbkx, RISCV_ISA_EXT_ZBKX),
__RISCV_ISA_EXT_DATA(zbs, RISCV_ISA_EXT_ZBS),
__RISCV_ISA_EXT_BUNDLE(zk, riscv_zk_bundled_exts),
__RISCV_ISA_EXT_BUNDLE(zkn, riscv_zkn_bundled_exts),
__RISCV_ISA_EXT_DATA(zknd, RISCV_ISA_EXT_ZKND),
__RISCV_ISA_EXT_DATA(zkne, RISCV_ISA_EXT_ZKNE),
__RISCV_ISA_EXT_DATA(zknh, RISCV_ISA_EXT_ZKNH),
__RISCV_ISA_EXT_DATA(zkr, RISCV_ISA_EXT_ZKR),
__RISCV_ISA_EXT_BUNDLE(zks, riscv_zks_bundled_exts),
__RISCV_ISA_EXT_DATA(zkt, RISCV_ISA_EXT_ZKT),
__RISCV_ISA_EXT_DATA(zksed, RISCV_ISA_EXT_ZKSED),
__RISCV_ISA_EXT_DATA(zksh, RISCV_ISA_EXT_ZKSH),
__RISCV_ISA_EXT_DATA(ztso, RISCV_ISA_EXT_ZTSO),
__RISCV_ISA_EXT_SUPERSET(zvbb, RISCV_ISA_EXT_ZVBB, riscv_zvbb_exts),
__RISCV_ISA_EXT_DATA(zvbc, RISCV_ISA_EXT_ZVBC),
__RISCV_ISA_EXT_DATA(zvfh, RISCV_ISA_EXT_ZVFH),
__RISCV_ISA_EXT_DATA(zvfhmin, RISCV_ISA_EXT_ZVFHMIN),
__RISCV_ISA_EXT_DATA(zvkb, RISCV_ISA_EXT_ZVKB),
__RISCV_ISA_EXT_DATA(zvkg, RISCV_ISA_EXT_ZVKG),
__RISCV_ISA_EXT_BUNDLE(zvkn, riscv_zvkn_bundled_exts),
__RISCV_ISA_EXT_BUNDLE(zvknc, riscv_zvknc_bundled_exts),
__RISCV_ISA_EXT_DATA(zvkned, RISCV_ISA_EXT_ZVKNED),
__RISCV_ISA_EXT_BUNDLE(zvkng, riscv_zvkng_bundled_exts),
__RISCV_ISA_EXT_DATA(zvknha, RISCV_ISA_EXT_ZVKNHA),
__RISCV_ISA_EXT_DATA(zvknhb, RISCV_ISA_EXT_ZVKNHB),
__RISCV_ISA_EXT_BUNDLE(zvks, riscv_zvks_bundled_exts),
__RISCV_ISA_EXT_BUNDLE(zvksc, riscv_zvksc_bundled_exts),
__RISCV_ISA_EXT_DATA(zvksed, RISCV_ISA_EXT_ZVKSED),
__RISCV_ISA_EXT_DATA(zvksh, RISCV_ISA_EXT_ZVKSH),
__RISCV_ISA_EXT_BUNDLE(zvksg, riscv_zvksg_bundled_exts),
__RISCV_ISA_EXT_DATA(zvkt, RISCV_ISA_EXT_ZVKT),
__RISCV_ISA_EXT_DATA(smaia, RISCV_ISA_EXT_SMAIA),
__RISCV_ISA_EXT_DATA(smstateen, RISCV_ISA_EXT_SMSTATEEN),
__RISCV_ISA_EXT_DATA(ssaia, RISCV_ISA_EXT_SSAIA),
__RISCV_ISA_EXT_DATA(sscofpmf, RISCV_ISA_EXT_SSCOFPMF),
__RISCV_ISA_EXT_DATA(sstc, RISCV_ISA_EXT_SSTC),
__RISCV_ISA_EXT_DATA(svinval, RISCV_ISA_EXT_SVINVAL),
__RISCV_ISA_EXT_DATA(svnapot, RISCV_ISA_EXT_SVNAPOT),
__RISCV_ISA_EXT_DATA(svpbmt, RISCV_ISA_EXT_SVPBMT),
};
const size_t riscv_isa_ext_count = ARRAY_SIZE(riscv_isa_ext);
static void __init match_isa_ext(const struct riscv_isa_ext_data *ext, const char *name,
const char *name_end, struct riscv_isainfo *isainfo)
{
if ((name_end - name == strlen(ext->name)) &&
!strncasecmp(name, ext->name, name_end - name)) {
/*
* If this is a bundle, enable all the ISA extensions that
* comprise the bundle.
*/
if (ext->subset_ext_size) {
for (int i = 0; i < ext->subset_ext_size; i++) {
if (riscv_isa_extension_check(ext->subset_ext_ids[i]))
set_bit(ext->subset_ext_ids[i], isainfo->isa);
}
}
/*
* This is valid even for bundle extensions which uses the RISCV_ISA_EXT_INVALID id
* (rejected by riscv_isa_extension_check()).
*/
if (riscv_isa_extension_check(ext->id))
set_bit(ext->id, isainfo->isa);
}
}
static void __init riscv_parse_isa_string(unsigned long *this_hwcap, struct riscv_isainfo *isainfo,
unsigned long *isa2hwcap, const char *isa)
{
/*
* For all possible cpus, we have already validated in
* the boot process that they at least contain "rv" and
* whichever of "32"/"64" this kernel supports, and so this
* section can be skipped.
*/
isa += 4;
while (*isa) {
const char *ext = isa++;
const char *ext_end = isa;
bool ext_long = false, ext_err = false;
switch (*ext) {
case 's':
/*
* Workaround for invalid single-letter 's' & 'u' (QEMU).
* No need to set the bit in riscv_isa as 's' & 'u' are
* not valid ISA extensions. It works unless the first
* multi-letter extension in the ISA string begins with
* "Su" and is not prefixed with an underscore.
*/
if (ext[-1] != '_' && ext[1] == 'u') {
++isa;
ext_err = true;
break;
}
fallthrough;
case 'S':
case 'x':
case 'X':
case 'z':
case 'Z':
/*
* Before attempting to parse the extension itself, we find its end.
* As multi-letter extensions must be split from other multi-letter
* extensions with an "_", the end of a multi-letter extension will
* either be the null character or the "_" at the start of the next
* multi-letter extension.
*
* Next, as the extensions version is currently ignored, we
* eliminate that portion. This is done by parsing backwards from
* the end of the extension, removing any numbers. This may be a
* major or minor number however, so the process is repeated if a
* minor number was found.
*
* ext_end is intended to represent the first character *after* the
* name portion of an extension, but will be decremented to the last
* character itself while eliminating the extensions version number.
* A simple re-increment solves this problem.
*/
ext_long = true;
for (; *isa && *isa != '_'; ++isa)
if (unlikely(!isalnum(*isa)))
ext_err = true;
ext_end = isa;
if (unlikely(ext_err))
break;
if (!isdigit(ext_end[-1]))
break;
while (isdigit(*--ext_end))
;
if (tolower(ext_end[0]) != 'p' || !isdigit(ext_end[-1])) {
++ext_end;
break;
}
while (isdigit(*--ext_end))
;
++ext_end;
break;
default:
/*
* Things are a little easier for single-letter extensions, as they
* are parsed forwards.
*
* After checking that our starting position is valid, we need to
* ensure that, when isa was incremented at the start of the loop,
* that it arrived at the start of the next extension.
*
* If we are already on a non-digit, there is nothing to do. Either
* we have a multi-letter extension's _, or the start of an
* extension.
*
* Otherwise we have found the current extension's major version
* number. Parse past it, and a subsequent p/minor version number
* if present. The `p` extension must not appear immediately after
* a number, so there is no fear of missing it.
*
*/
if (unlikely(!isalpha(*ext))) {
ext_err = true;
break;
}
if (!isdigit(*isa))
break;
while (isdigit(*++isa))
;
if (tolower(*isa) != 'p')
break;
if (!isdigit(*++isa)) {
--isa;
break;
}
while (isdigit(*++isa))
;
break;
}
/*
* The parser expects that at the start of an iteration isa points to the
* first character of the next extension. As we stop parsing an extension
* on meeting a non-alphanumeric character, an extra increment is needed
* where the succeeding extension is a multi-letter prefixed with an "_".
*/
if (*isa == '_')
++isa;
if (unlikely(ext_err))
continue;
if (!ext_long) {
int nr = tolower(*ext) - 'a';
if (riscv_isa_extension_check(nr)) {
*this_hwcap |= isa2hwcap[nr];
set_bit(nr, isainfo->isa);
}
} else {
for (int i = 0; i < riscv_isa_ext_count; i++)
match_isa_ext(&riscv_isa_ext[i], ext, ext_end, isainfo);
}
}
}
static void __init riscv_fill_hwcap_from_isa_string(unsigned long *isa2hwcap)
{
struct device_node *node;
const char *isa;
int rc;
struct acpi_table_header *rhct;
acpi_status status;
unsigned int cpu;
if (!acpi_disabled) {
status = acpi_get_table(ACPI_SIG_RHCT, 0, &rhct);
if (ACPI_FAILURE(status))
return;
}
for_each_possible_cpu(cpu) {
struct riscv_isainfo *isainfo = &hart_isa[cpu];
unsigned long this_hwcap = 0;
if (acpi_disabled) {
node = of_cpu_device_node_get(cpu);
if (!node) {
pr_warn("Unable to find cpu node\n");
continue;
}
rc = of_property_read_string(node, "riscv,isa", &isa);
of_node_put(node);
if (rc) {
pr_warn("Unable to find \"riscv,isa\" devicetree entry\n");
continue;
}
} else {
rc = acpi_get_riscv_isa(rhct, cpu, &isa);
if (rc < 0) {
pr_warn("Unable to get ISA for the hart - %d\n", cpu);
continue;
}
}
riscv_parse_isa_string(&this_hwcap, isainfo, isa2hwcap, isa);
/*
* These ones were as they were part of the base ISA when the
* port & dt-bindings were upstreamed, and so can be set
* unconditionally where `i` is in riscv,isa on DT systems.
*/
if (acpi_disabled) {
set_bit(RISCV_ISA_EXT_ZICSR, isainfo->isa);
set_bit(RISCV_ISA_EXT_ZIFENCEI, isainfo->isa);
set_bit(RISCV_ISA_EXT_ZICNTR, isainfo->isa);
set_bit(RISCV_ISA_EXT_ZIHPM, isainfo->isa);
}
/*
* All "okay" hart should have same isa. Set HWCAP based on
* common capabilities of every "okay" hart, in case they don't
* have.
*/
if (elf_hwcap)
elf_hwcap &= this_hwcap;
else
elf_hwcap = this_hwcap;
if (bitmap_empty(riscv_isa, RISCV_ISA_EXT_MAX))
bitmap_copy(riscv_isa, isainfo->isa, RISCV_ISA_EXT_MAX);
else
bitmap_and(riscv_isa, riscv_isa, isainfo->isa, RISCV_ISA_EXT_MAX);
}
if (!acpi_disabled && rhct)
acpi_put_table((struct acpi_table_header *)rhct);
}
static int __init riscv_fill_hwcap_from_ext_list(unsigned long *isa2hwcap)
{
unsigned int cpu;
for_each_possible_cpu(cpu) {
unsigned long this_hwcap = 0;
struct device_node *cpu_node;
struct riscv_isainfo *isainfo = &hart_isa[cpu];
cpu_node = of_cpu_device_node_get(cpu);
if (!cpu_node) {
pr_warn("Unable to find cpu node\n");
continue;
}
if (!of_property_present(cpu_node, "riscv,isa-extensions")) {
of_node_put(cpu_node);
continue;
}
for (int i = 0; i < riscv_isa_ext_count; i++) {
const struct riscv_isa_ext_data *ext = &riscv_isa_ext[i];
if (of_property_match_string(cpu_node, "riscv,isa-extensions",
ext->property) < 0)
continue;
if (ext->subset_ext_size) {
for (int j = 0; j < ext->subset_ext_size; j++) {
if (riscv_isa_extension_check(ext->subset_ext_ids[i]))
set_bit(ext->subset_ext_ids[j], isainfo->isa);
}
}
if (riscv_isa_extension_check(ext->id)) {
set_bit(ext->id, isainfo->isa);
/* Only single letter extensions get set in hwcap */
if (strnlen(riscv_isa_ext[i].name, 2) == 1)
this_hwcap |= isa2hwcap[riscv_isa_ext[i].id];
}
}
of_node_put(cpu_node);
/*
* All "okay" harts should have same isa. Set HWCAP based on
* common capabilities of every "okay" hart, in case they don't.
*/
if (elf_hwcap)
elf_hwcap &= this_hwcap;
else
elf_hwcap = this_hwcap;
if (bitmap_empty(riscv_isa, RISCV_ISA_EXT_MAX))
bitmap_copy(riscv_isa, isainfo->isa, RISCV_ISA_EXT_MAX);
else
bitmap_and(riscv_isa, riscv_isa, isainfo->isa, RISCV_ISA_EXT_MAX);
}
if (bitmap_empty(riscv_isa, RISCV_ISA_EXT_MAX))
return -ENOENT;
return 0;
}
#ifdef CONFIG_RISCV_ISA_FALLBACK
bool __initdata riscv_isa_fallback = true;
#else
bool __initdata riscv_isa_fallback;
static int __init riscv_isa_fallback_setup(char *__unused)
{
riscv_isa_fallback = true;
return 1;
}
early_param("riscv_isa_fallback", riscv_isa_fallback_setup);
#endif
void __init riscv_fill_hwcap(void)
{
char print_str[NUM_ALPHA_EXTS + 1];
unsigned long isa2hwcap[26] = {0};
int i, j;
isa2hwcap['i' - 'a'] = COMPAT_HWCAP_ISA_I;
isa2hwcap['m' - 'a'] = COMPAT_HWCAP_ISA_M;
isa2hwcap['a' - 'a'] = COMPAT_HWCAP_ISA_A;
isa2hwcap['f' - 'a'] = COMPAT_HWCAP_ISA_F;
isa2hwcap['d' - 'a'] = COMPAT_HWCAP_ISA_D;
isa2hwcap['c' - 'a'] = COMPAT_HWCAP_ISA_C;
isa2hwcap['v' - 'a'] = COMPAT_HWCAP_ISA_V;
if (!acpi_disabled) {
riscv_fill_hwcap_from_isa_string(isa2hwcap);
} else {
int ret = riscv_fill_hwcap_from_ext_list(isa2hwcap);
if (ret && riscv_isa_fallback) {
pr_info("Falling back to deprecated \"riscv,isa\"\n");
riscv_fill_hwcap_from_isa_string(isa2hwcap);
}
}
/*
* We don't support systems with F but without D, so mask those out
* here.
*/
if ((elf_hwcap & COMPAT_HWCAP_ISA_F) && !(elf_hwcap & COMPAT_HWCAP_ISA_D)) {
pr_info("This kernel does not support systems with F but not D\n");
elf_hwcap &= ~COMPAT_HWCAP_ISA_F;
}
if (elf_hwcap & COMPAT_HWCAP_ISA_V) {
riscv_v_setup_vsize();
/*
* ISA string in device tree might have 'v' flag, but
* CONFIG_RISCV_ISA_V is disabled in kernel.
* Clear V flag in elf_hwcap if CONFIG_RISCV_ISA_V is disabled.
*/
if (!IS_ENABLED(CONFIG_RISCV_ISA_V))
elf_hwcap &= ~COMPAT_HWCAP_ISA_V;
}
memset(print_str, 0, sizeof(print_str));
for (i = 0, j = 0; i < NUM_ALPHA_EXTS; i++)
if (riscv_isa[0] & BIT_MASK(i))
print_str[j++] = (char)('a' + i);
pr_info("riscv: base ISA extensions %s\n", print_str);
memset(print_str, 0, sizeof(print_str));
for (i = 0, j = 0; i < NUM_ALPHA_EXTS; i++)
if (elf_hwcap & BIT_MASK(i))
print_str[j++] = (char)('a' + i);
pr_info("riscv: ELF capabilities %s\n", print_str);
}
unsigned long riscv_get_elf_hwcap(void)
{
unsigned long hwcap;
hwcap = (elf_hwcap & ((1UL << RISCV_ISA_EXT_BASE) - 1));
if (!riscv_v_vstate_ctrl_user_allowed())
hwcap &= ~COMPAT_HWCAP_ISA_V;
return hwcap;
}
static int check_unaligned_access(void *param)
{
int cpu = smp_processor_id();
u64 start_cycles, end_cycles;
u64 word_cycles;
u64 byte_cycles;
int ratio;
unsigned long start_jiffies, now;
struct page *page = param;
void *dst;
void *src;
long speed = RISCV_HWPROBE_MISALIGNED_SLOW;
if (check_unaligned_access_emulated(cpu))
return 0;
/* Make an unaligned destination buffer. */
dst = (void *)((unsigned long)page_address(page) | 0x1);
/* Unalign src as well, but differently (off by 1 + 2 = 3). */
src = dst + (MISALIGNED_BUFFER_SIZE / 2);
src += 2;
word_cycles = -1ULL;
/* Do a warmup. */
__riscv_copy_words_unaligned(dst, src, MISALIGNED_COPY_SIZE);
preempt_disable();
start_jiffies = jiffies;
while ((now = jiffies) == start_jiffies)
cpu_relax();
/*
* For a fixed amount of time, repeatedly try the function, and take
* the best time in cycles as the measurement.
*/
while (time_before(jiffies, now + (1 << MISALIGNED_ACCESS_JIFFIES_LG2))) {
start_cycles = get_cycles64();
/* Ensure the CSR read can't reorder WRT to the copy. */
mb();
__riscv_copy_words_unaligned(dst, src, MISALIGNED_COPY_SIZE);
/* Ensure the copy ends before the end time is snapped. */
mb();
end_cycles = get_cycles64();
if ((end_cycles - start_cycles) < word_cycles)
word_cycles = end_cycles - start_cycles;
}
byte_cycles = -1ULL;
__riscv_copy_bytes_unaligned(dst, src, MISALIGNED_COPY_SIZE);
start_jiffies = jiffies;
while ((now = jiffies) == start_jiffies)
cpu_relax();
while (time_before(jiffies, now + (1 << MISALIGNED_ACCESS_JIFFIES_LG2))) {
start_cycles = get_cycles64();
mb();
__riscv_copy_bytes_unaligned(dst, src, MISALIGNED_COPY_SIZE);
mb();
end_cycles = get_cycles64();
if ((end_cycles - start_cycles) < byte_cycles)
byte_cycles = end_cycles - start_cycles;
}
preempt_enable();
/* Don't divide by zero. */
if (!word_cycles || !byte_cycles) {
pr_warn("cpu%d: rdtime lacks granularity needed to measure unaligned access speed\n",
cpu);
return 0;
}
if (word_cycles < byte_cycles)
speed = RISCV_HWPROBE_MISALIGNED_FAST;
ratio = div_u64((byte_cycles * 100), word_cycles);
pr_info("cpu%d: Ratio of byte access time to unaligned word access is %d.%02d, unaligned accesses are %s\n",
cpu,
ratio / 100,
ratio % 100,
(speed == RISCV_HWPROBE_MISALIGNED_FAST) ? "fast" : "slow");
per_cpu(misaligned_access_speed, cpu) = speed;
/*
* Set the value of fast_misaligned_access of a CPU. These operations
* are atomic to avoid race conditions.
*/
if (speed == RISCV_HWPROBE_MISALIGNED_FAST)
cpumask_set_cpu(cpu, &fast_misaligned_access);
else
cpumask_clear_cpu(cpu, &fast_misaligned_access);
return 0;
}
static void check_unaligned_access_nonboot_cpu(void *param)
{
unsigned int cpu = smp_processor_id();
struct page **pages = param;
if (smp_processor_id() != 0)
check_unaligned_access(pages[cpu]);
}
DEFINE_STATIC_KEY_FALSE(fast_misaligned_access_speed_key);
static void modify_unaligned_access_branches(cpumask_t *mask, int weight)
{
if (cpumask_weight(mask) == weight)
static_branch_enable_cpuslocked(&fast_misaligned_access_speed_key);
else
static_branch_disable_cpuslocked(&fast_misaligned_access_speed_key);
}
static void set_unaligned_access_static_branches_except_cpu(int cpu)
{
/*
* Same as set_unaligned_access_static_branches, except excludes the
* given CPU from the result. When a CPU is hotplugged into an offline
* state, this function is called before the CPU is set to offline in
* the cpumask, and thus the CPU needs to be explicitly excluded.
*/
cpumask_t fast_except_me;
cpumask_and(&fast_except_me, &fast_misaligned_access, cpu_online_mask);
cpumask_clear_cpu(cpu, &fast_except_me);
modify_unaligned_access_branches(&fast_except_me, num_online_cpus() - 1);
}
static void set_unaligned_access_static_branches(void)
{
/*
* This will be called after check_unaligned_access_all_cpus so the
* result of unaligned access speed for all CPUs will be available.
*
* To avoid the number of online cpus changing between reading
* cpu_online_mask and calling num_online_cpus, cpus_read_lock must be
* held before calling this function.
*/
cpumask_t fast_and_online;
cpumask_and(&fast_and_online, &fast_misaligned_access, cpu_online_mask);
modify_unaligned_access_branches(&fast_and_online, num_online_cpus());
}
static int lock_and_set_unaligned_access_static_branch(void)
{
cpus_read_lock();
set_unaligned_access_static_branches();
cpus_read_unlock();
return 0;
}
arch_initcall_sync(lock_and_set_unaligned_access_static_branch);
static int riscv_online_cpu(unsigned int cpu)
{
static struct page *buf;
/* We are already set since the last check */
if (per_cpu(misaligned_access_speed, cpu) != RISCV_HWPROBE_MISALIGNED_UNKNOWN)
goto exit;
buf = alloc_pages(GFP_KERNEL, MISALIGNED_BUFFER_ORDER);
if (!buf) {
pr_warn("Allocation failure, not measuring misaligned performance\n");
return -ENOMEM;
}
check_unaligned_access(buf);
__free_pages(buf, MISALIGNED_BUFFER_ORDER);
exit:
set_unaligned_access_static_branches();
return 0;
}
static int riscv_offline_cpu(unsigned int cpu)
{
set_unaligned_access_static_branches_except_cpu(cpu);
return 0;
}
/* Measure unaligned access on all CPUs present at boot in parallel. */
static int check_unaligned_access_all_cpus(void)
{
unsigned int cpu;
unsigned int cpu_count = num_possible_cpus();
struct page **bufs = kzalloc(cpu_count * sizeof(struct page *),
GFP_KERNEL);
if (!bufs) {
pr_warn("Allocation failure, not measuring misaligned performance\n");
return 0;
}
/*
* Allocate separate buffers for each CPU so there's no fighting over
* cache lines.
*/
for_each_cpu(cpu, cpu_online_mask) {
bufs[cpu] = alloc_pages(GFP_KERNEL, MISALIGNED_BUFFER_ORDER);
if (!bufs[cpu]) {
pr_warn("Allocation failure, not measuring misaligned performance\n");
goto out;
}
}
/* Check everybody except 0, who stays behind to tend jiffies. */
on_each_cpu(check_unaligned_access_nonboot_cpu, bufs, 1);
/* Check core 0. */
smp_call_on_cpu(0, check_unaligned_access, bufs[0], true);
/*
* Setup hotplug callbacks for any new CPUs that come online or go
* offline.
*/
cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN, "riscv:online",
riscv_online_cpu, riscv_offline_cpu);
out:
unaligned_emulation_finish();
for_each_cpu(cpu, cpu_online_mask) {
if (bufs[cpu])
__free_pages(bufs[cpu], MISALIGNED_BUFFER_ORDER);
}
kfree(bufs);
return 0;
}
arch_initcall(check_unaligned_access_all_cpus);
void riscv_user_isa_enable(void)
{
if (riscv_cpu_has_extension_unlikely(smp_processor_id(), RISCV_ISA_EXT_ZICBOZ))
csr_set(CSR_SENVCFG, ENVCFG_CBZE);
}
#ifdef CONFIG_RISCV_ALTERNATIVE
/*
* Alternative patch sites consider 48 bits when determining when to patch
* the old instruction sequence with the new. These bits are broken into a
* 16-bit vendor ID and a 32-bit patch ID. A non-zero vendor ID means the
* patch site is for an erratum, identified by the 32-bit patch ID. When
* the vendor ID is zero, the patch site is for a cpufeature. cpufeatures
* further break down patch ID into two 16-bit numbers. The lower 16 bits
* are the cpufeature ID and the upper 16 bits are used for a value specific
* to the cpufeature and patch site. If the upper 16 bits are zero, then it
* implies no specific value is specified. cpufeatures that want to control
* patching on a per-site basis will provide non-zero values and implement
* checks here. The checks return true when patching should be done, and
* false otherwise.
*/
static bool riscv_cpufeature_patch_check(u16 id, u16 value)
{
if (!value)
return true;
switch (id) {
case RISCV_ISA_EXT_ZICBOZ:
/*
* Zicboz alternative applications provide the maximum
* supported block size order, or zero when it doesn't
* matter. If the current block size exceeds the maximum,
* then the alternative cannot be applied.
*/
return riscv_cboz_block_size <= (1U << value);
}
return false;
}
void __init_or_module riscv_cpufeature_patch_func(struct alt_entry *begin,
struct alt_entry *end,
unsigned int stage)
{
struct alt_entry *alt;
void *oldptr, *altptr;
u16 id, value;
if (stage == RISCV_ALTERNATIVES_EARLY_BOOT)
return;
for (alt = begin; alt < end; alt++) {
if (alt->vendor_id != 0)
continue;
id = PATCH_ID_CPUFEATURE_ID(alt->patch_id);
if (id >= RISCV_ISA_EXT_MAX) {
WARN(1, "This extension id:%d is not in ISA extension list", id);
continue;
}
if (!__riscv_isa_extension_available(NULL, id))
continue;
value = PATCH_ID_CPUFEATURE_VALUE(alt->patch_id);
if (!riscv_cpufeature_patch_check(id, value))
continue;
oldptr = ALT_OLD_PTR(alt);
altptr = ALT_ALT_PTR(alt);
mutex_lock(&text_mutex);
patch_text_nosync(oldptr, altptr, alt->alt_len);
riscv_alternative_fix_offsets(oldptr, alt->alt_len, oldptr - altptr);
mutex_unlock(&text_mutex);
}
}
#endif