| // SPDX-License-Identifier: GPL-2.0-only |
| /* |
| * lib/bitmap.c |
| * Helper functions for bitmap.h. |
| */ |
| |
| #include <linux/bitmap.h> |
| #include <linux/bitops.h> |
| #include <linux/ctype.h> |
| #include <linux/device.h> |
| #include <linux/export.h> |
| #include <linux/slab.h> |
| |
| /** |
| * DOC: bitmap introduction |
| * |
| * bitmaps provide an array of bits, implemented using an |
| * array of unsigned longs. The number of valid bits in a |
| * given bitmap does _not_ need to be an exact multiple of |
| * BITS_PER_LONG. |
| * |
| * The possible unused bits in the last, partially used word |
| * of a bitmap are 'don't care'. The implementation makes |
| * no particular effort to keep them zero. It ensures that |
| * their value will not affect the results of any operation. |
| * The bitmap operations that return Boolean (bitmap_empty, |
| * for example) or scalar (bitmap_weight, for example) results |
| * carefully filter out these unused bits from impacting their |
| * results. |
| * |
| * The byte ordering of bitmaps is more natural on little |
| * endian architectures. See the big-endian headers |
| * include/asm-ppc64/bitops.h and include/asm-s390/bitops.h |
| * for the best explanations of this ordering. |
| */ |
| |
| bool __bitmap_equal(const unsigned long *bitmap1, |
| const unsigned long *bitmap2, unsigned int bits) |
| { |
| unsigned int k, lim = bits/BITS_PER_LONG; |
| for (k = 0; k < lim; ++k) |
| if (bitmap1[k] != bitmap2[k]) |
| return false; |
| |
| if (bits % BITS_PER_LONG) |
| if ((bitmap1[k] ^ bitmap2[k]) & BITMAP_LAST_WORD_MASK(bits)) |
| return false; |
| |
| return true; |
| } |
| EXPORT_SYMBOL(__bitmap_equal); |
| |
| bool __bitmap_or_equal(const unsigned long *bitmap1, |
| const unsigned long *bitmap2, |
| const unsigned long *bitmap3, |
| unsigned int bits) |
| { |
| unsigned int k, lim = bits / BITS_PER_LONG; |
| unsigned long tmp; |
| |
| for (k = 0; k < lim; ++k) { |
| if ((bitmap1[k] | bitmap2[k]) != bitmap3[k]) |
| return false; |
| } |
| |
| if (!(bits % BITS_PER_LONG)) |
| return true; |
| |
| tmp = (bitmap1[k] | bitmap2[k]) ^ bitmap3[k]; |
| return (tmp & BITMAP_LAST_WORD_MASK(bits)) == 0; |
| } |
| |
| void __bitmap_complement(unsigned long *dst, const unsigned long *src, unsigned int bits) |
| { |
| unsigned int k, lim = BITS_TO_LONGS(bits); |
| for (k = 0; k < lim; ++k) |
| dst[k] = ~src[k]; |
| } |
| EXPORT_SYMBOL(__bitmap_complement); |
| |
| /** |
| * __bitmap_shift_right - logical right shift of the bits in a bitmap |
| * @dst : destination bitmap |
| * @src : source bitmap |
| * @shift : shift by this many bits |
| * @nbits : bitmap size, in bits |
| * |
| * Shifting right (dividing) means moving bits in the MS -> LS bit |
| * direction. Zeros are fed into the vacated MS positions and the |
| * LS bits shifted off the bottom are lost. |
| */ |
| void __bitmap_shift_right(unsigned long *dst, const unsigned long *src, |
| unsigned shift, unsigned nbits) |
| { |
| unsigned k, lim = BITS_TO_LONGS(nbits); |
| unsigned off = shift/BITS_PER_LONG, rem = shift % BITS_PER_LONG; |
| unsigned long mask = BITMAP_LAST_WORD_MASK(nbits); |
| for (k = 0; off + k < lim; ++k) { |
| unsigned long upper, lower; |
| |
| /* |
| * If shift is not word aligned, take lower rem bits of |
| * word above and make them the top rem bits of result. |
| */ |
| if (!rem || off + k + 1 >= lim) |
| upper = 0; |
| else { |
| upper = src[off + k + 1]; |
| if (off + k + 1 == lim - 1) |
| upper &= mask; |
| upper <<= (BITS_PER_LONG - rem); |
| } |
| lower = src[off + k]; |
| if (off + k == lim - 1) |
| lower &= mask; |
| lower >>= rem; |
| dst[k] = lower | upper; |
| } |
| if (off) |
| memset(&dst[lim - off], 0, off*sizeof(unsigned long)); |
| } |
| EXPORT_SYMBOL(__bitmap_shift_right); |
| |
| |
| /** |
| * __bitmap_shift_left - logical left shift of the bits in a bitmap |
| * @dst : destination bitmap |
| * @src : source bitmap |
| * @shift : shift by this many bits |
| * @nbits : bitmap size, in bits |
| * |
| * Shifting left (multiplying) means moving bits in the LS -> MS |
| * direction. Zeros are fed into the vacated LS bit positions |
| * and those MS bits shifted off the top are lost. |
| */ |
| |
| void __bitmap_shift_left(unsigned long *dst, const unsigned long *src, |
| unsigned int shift, unsigned int nbits) |
| { |
| int k; |
| unsigned int lim = BITS_TO_LONGS(nbits); |
| unsigned int off = shift/BITS_PER_LONG, rem = shift % BITS_PER_LONG; |
| for (k = lim - off - 1; k >= 0; --k) { |
| unsigned long upper, lower; |
| |
| /* |
| * If shift is not word aligned, take upper rem bits of |
| * word below and make them the bottom rem bits of result. |
| */ |
| if (rem && k > 0) |
| lower = src[k - 1] >> (BITS_PER_LONG - rem); |
| else |
| lower = 0; |
| upper = src[k] << rem; |
| dst[k + off] = lower | upper; |
| } |
| if (off) |
| memset(dst, 0, off*sizeof(unsigned long)); |
| } |
| EXPORT_SYMBOL(__bitmap_shift_left); |
| |
| /** |
| * bitmap_cut() - remove bit region from bitmap and right shift remaining bits |
| * @dst: destination bitmap, might overlap with src |
| * @src: source bitmap |
| * @first: start bit of region to be removed |
| * @cut: number of bits to remove |
| * @nbits: bitmap size, in bits |
| * |
| * Set the n-th bit of @dst iff the n-th bit of @src is set and |
| * n is less than @first, or the m-th bit of @src is set for any |
| * m such that @first <= n < nbits, and m = n + @cut. |
| * |
| * In pictures, example for a big-endian 32-bit architecture: |
| * |
| * The @src bitmap is:: |
| * |
| * 31 63 |
| * | | |
| * 10000000 11000001 11110010 00010101 10000000 11000001 01110010 00010101 |
| * | | | | |
| * 16 14 0 32 |
| * |
| * if @cut is 3, and @first is 14, bits 14-16 in @src are cut and @dst is:: |
| * |
| * 31 63 |
| * | | |
| * 10110000 00011000 00110010 00010101 00010000 00011000 00101110 01000010 |
| * | | | |
| * 14 (bit 17 0 32 |
| * from @src) |
| * |
| * Note that @dst and @src might overlap partially or entirely. |
| * |
| * This is implemented in the obvious way, with a shift and carry |
| * step for each moved bit. Optimisation is left as an exercise |
| * for the compiler. |
| */ |
| void bitmap_cut(unsigned long *dst, const unsigned long *src, |
| unsigned int first, unsigned int cut, unsigned int nbits) |
| { |
| unsigned int len = BITS_TO_LONGS(nbits); |
| unsigned long keep = 0, carry; |
| int i; |
| |
| if (first % BITS_PER_LONG) { |
| keep = src[first / BITS_PER_LONG] & |
| (~0UL >> (BITS_PER_LONG - first % BITS_PER_LONG)); |
| } |
| |
| memmove(dst, src, len * sizeof(*dst)); |
| |
| while (cut--) { |
| for (i = first / BITS_PER_LONG; i < len; i++) { |
| if (i < len - 1) |
| carry = dst[i + 1] & 1UL; |
| else |
| carry = 0; |
| |
| dst[i] = (dst[i] >> 1) | (carry << (BITS_PER_LONG - 1)); |
| } |
| } |
| |
| dst[first / BITS_PER_LONG] &= ~0UL << (first % BITS_PER_LONG); |
| dst[first / BITS_PER_LONG] |= keep; |
| } |
| EXPORT_SYMBOL(bitmap_cut); |
| |
| bool __bitmap_and(unsigned long *dst, const unsigned long *bitmap1, |
| const unsigned long *bitmap2, unsigned int bits) |
| { |
| unsigned int k; |
| unsigned int lim = bits/BITS_PER_LONG; |
| unsigned long result = 0; |
| |
| for (k = 0; k < lim; k++) |
| result |= (dst[k] = bitmap1[k] & bitmap2[k]); |
| if (bits % BITS_PER_LONG) |
| result |= (dst[k] = bitmap1[k] & bitmap2[k] & |
| BITMAP_LAST_WORD_MASK(bits)); |
| return result != 0; |
| } |
| EXPORT_SYMBOL(__bitmap_and); |
| |
| void __bitmap_or(unsigned long *dst, const unsigned long *bitmap1, |
| const unsigned long *bitmap2, unsigned int bits) |
| { |
| unsigned int k; |
| unsigned int nr = BITS_TO_LONGS(bits); |
| |
| for (k = 0; k < nr; k++) |
| dst[k] = bitmap1[k] | bitmap2[k]; |
| } |
| EXPORT_SYMBOL(__bitmap_or); |
| |
| void __bitmap_xor(unsigned long *dst, const unsigned long *bitmap1, |
| const unsigned long *bitmap2, unsigned int bits) |
| { |
| unsigned int k; |
| unsigned int nr = BITS_TO_LONGS(bits); |
| |
| for (k = 0; k < nr; k++) |
| dst[k] = bitmap1[k] ^ bitmap2[k]; |
| } |
| EXPORT_SYMBOL(__bitmap_xor); |
| |
| bool __bitmap_andnot(unsigned long *dst, const unsigned long *bitmap1, |
| const unsigned long *bitmap2, unsigned int bits) |
| { |
| unsigned int k; |
| unsigned int lim = bits/BITS_PER_LONG; |
| unsigned long result = 0; |
| |
| for (k = 0; k < lim; k++) |
| result |= (dst[k] = bitmap1[k] & ~bitmap2[k]); |
| if (bits % BITS_PER_LONG) |
| result |= (dst[k] = bitmap1[k] & ~bitmap2[k] & |
| BITMAP_LAST_WORD_MASK(bits)); |
| return result != 0; |
| } |
| EXPORT_SYMBOL(__bitmap_andnot); |
| |
| void __bitmap_replace(unsigned long *dst, |
| const unsigned long *old, const unsigned long *new, |
| const unsigned long *mask, unsigned int nbits) |
| { |
| unsigned int k; |
| unsigned int nr = BITS_TO_LONGS(nbits); |
| |
| for (k = 0; k < nr; k++) |
| dst[k] = (old[k] & ~mask[k]) | (new[k] & mask[k]); |
| } |
| EXPORT_SYMBOL(__bitmap_replace); |
| |
| bool __bitmap_intersects(const unsigned long *bitmap1, |
| const unsigned long *bitmap2, unsigned int bits) |
| { |
| unsigned int k, lim = bits/BITS_PER_LONG; |
| for (k = 0; k < lim; ++k) |
| if (bitmap1[k] & bitmap2[k]) |
| return true; |
| |
| if (bits % BITS_PER_LONG) |
| if ((bitmap1[k] & bitmap2[k]) & BITMAP_LAST_WORD_MASK(bits)) |
| return true; |
| return false; |
| } |
| EXPORT_SYMBOL(__bitmap_intersects); |
| |
| bool __bitmap_subset(const unsigned long *bitmap1, |
| const unsigned long *bitmap2, unsigned int bits) |
| { |
| unsigned int k, lim = bits/BITS_PER_LONG; |
| for (k = 0; k < lim; ++k) |
| if (bitmap1[k] & ~bitmap2[k]) |
| return false; |
| |
| if (bits % BITS_PER_LONG) |
| if ((bitmap1[k] & ~bitmap2[k]) & BITMAP_LAST_WORD_MASK(bits)) |
| return false; |
| return true; |
| } |
| EXPORT_SYMBOL(__bitmap_subset); |
| |
| #define BITMAP_WEIGHT(FETCH, bits) \ |
| ({ \ |
| unsigned int __bits = (bits), idx, w = 0; \ |
| \ |
| for (idx = 0; idx < __bits / BITS_PER_LONG; idx++) \ |
| w += hweight_long(FETCH); \ |
| \ |
| if (__bits % BITS_PER_LONG) \ |
| w += hweight_long((FETCH) & BITMAP_LAST_WORD_MASK(__bits)); \ |
| \ |
| w; \ |
| }) |
| |
| unsigned int __bitmap_weight(const unsigned long *bitmap, unsigned int bits) |
| { |
| return BITMAP_WEIGHT(bitmap[idx], bits); |
| } |
| EXPORT_SYMBOL(__bitmap_weight); |
| |
| unsigned int __bitmap_weight_and(const unsigned long *bitmap1, |
| const unsigned long *bitmap2, unsigned int bits) |
| { |
| return BITMAP_WEIGHT(bitmap1[idx] & bitmap2[idx], bits); |
| } |
| EXPORT_SYMBOL(__bitmap_weight_and); |
| |
| void __bitmap_set(unsigned long *map, unsigned int start, int len) |
| { |
| unsigned long *p = map + BIT_WORD(start); |
| const unsigned int size = start + len; |
| int bits_to_set = BITS_PER_LONG - (start % BITS_PER_LONG); |
| unsigned long mask_to_set = BITMAP_FIRST_WORD_MASK(start); |
| |
| while (len - bits_to_set >= 0) { |
| *p |= mask_to_set; |
| len -= bits_to_set; |
| bits_to_set = BITS_PER_LONG; |
| mask_to_set = ~0UL; |
| p++; |
| } |
| if (len) { |
| mask_to_set &= BITMAP_LAST_WORD_MASK(size); |
| *p |= mask_to_set; |
| } |
| } |
| EXPORT_SYMBOL(__bitmap_set); |
| |
| void __bitmap_clear(unsigned long *map, unsigned int start, int len) |
| { |
| unsigned long *p = map + BIT_WORD(start); |
| const unsigned int size = start + len; |
| int bits_to_clear = BITS_PER_LONG - (start % BITS_PER_LONG); |
| unsigned long mask_to_clear = BITMAP_FIRST_WORD_MASK(start); |
| |
| while (len - bits_to_clear >= 0) { |
| *p &= ~mask_to_clear; |
| len -= bits_to_clear; |
| bits_to_clear = BITS_PER_LONG; |
| mask_to_clear = ~0UL; |
| p++; |
| } |
| if (len) { |
| mask_to_clear &= BITMAP_LAST_WORD_MASK(size); |
| *p &= ~mask_to_clear; |
| } |
| } |
| EXPORT_SYMBOL(__bitmap_clear); |
| |
| /** |
| * bitmap_find_next_zero_area_off - find a contiguous aligned zero area |
| * @map: The address to base the search on |
| * @size: The bitmap size in bits |
| * @start: The bitnumber to start searching at |
| * @nr: The number of zeroed bits we're looking for |
| * @align_mask: Alignment mask for zero area |
| * @align_offset: Alignment offset for zero area. |
| * |
| * The @align_mask should be one less than a power of 2; the effect is that |
| * the bit offset of all zero areas this function finds plus @align_offset |
| * is multiple of that power of 2. |
| */ |
| unsigned long bitmap_find_next_zero_area_off(unsigned long *map, |
| unsigned long size, |
| unsigned long start, |
| unsigned int nr, |
| unsigned long align_mask, |
| unsigned long align_offset) |
| { |
| unsigned long index, end, i; |
| again: |
| index = find_next_zero_bit(map, size, start); |
| |
| /* Align allocation */ |
| index = __ALIGN_MASK(index + align_offset, align_mask) - align_offset; |
| |
| end = index + nr; |
| if (end > size) |
| return end; |
| i = find_next_bit(map, end, index); |
| if (i < end) { |
| start = i + 1; |
| goto again; |
| } |
| return index; |
| } |
| EXPORT_SYMBOL(bitmap_find_next_zero_area_off); |
| |
| /** |
| * bitmap_pos_to_ord - find ordinal of set bit at given position in bitmap |
| * @buf: pointer to a bitmap |
| * @pos: a bit position in @buf (0 <= @pos < @nbits) |
| * @nbits: number of valid bit positions in @buf |
| * |
| * Map the bit at position @pos in @buf (of length @nbits) to the |
| * ordinal of which set bit it is. If it is not set or if @pos |
| * is not a valid bit position, map to -1. |
| * |
| * If for example, just bits 4 through 7 are set in @buf, then @pos |
| * values 4 through 7 will get mapped to 0 through 3, respectively, |
| * and other @pos values will get mapped to -1. When @pos value 7 |
| * gets mapped to (returns) @ord value 3 in this example, that means |
| * that bit 7 is the 3rd (starting with 0th) set bit in @buf. |
| * |
| * The bit positions 0 through @bits are valid positions in @buf. |
| */ |
| static int bitmap_pos_to_ord(const unsigned long *buf, unsigned int pos, unsigned int nbits) |
| { |
| if (pos >= nbits || !test_bit(pos, buf)) |
| return -1; |
| |
| return bitmap_weight(buf, pos); |
| } |
| |
| /** |
| * bitmap_remap - Apply map defined by a pair of bitmaps to another bitmap |
| * @dst: remapped result |
| * @src: subset to be remapped |
| * @old: defines domain of map |
| * @new: defines range of map |
| * @nbits: number of bits in each of these bitmaps |
| * |
| * Let @old and @new define a mapping of bit positions, such that |
| * whatever position is held by the n-th set bit in @old is mapped |
| * to the n-th set bit in @new. In the more general case, allowing |
| * for the possibility that the weight 'w' of @new is less than the |
| * weight of @old, map the position of the n-th set bit in @old to |
| * the position of the m-th set bit in @new, where m == n % w. |
| * |
| * If either of the @old and @new bitmaps are empty, or if @src and |
| * @dst point to the same location, then this routine copies @src |
| * to @dst. |
| * |
| * The positions of unset bits in @old are mapped to themselves |
| * (the identity map). |
| * |
| * Apply the above specified mapping to @src, placing the result in |
| * @dst, clearing any bits previously set in @dst. |
| * |
| * For example, lets say that @old has bits 4 through 7 set, and |
| * @new has bits 12 through 15 set. This defines the mapping of bit |
| * position 4 to 12, 5 to 13, 6 to 14 and 7 to 15, and of all other |
| * bit positions unchanged. So if say @src comes into this routine |
| * with bits 1, 5 and 7 set, then @dst should leave with bits 1, |
| * 13 and 15 set. |
| */ |
| void bitmap_remap(unsigned long *dst, const unsigned long *src, |
| const unsigned long *old, const unsigned long *new, |
| unsigned int nbits) |
| { |
| unsigned int oldbit, w; |
| |
| if (dst == src) /* following doesn't handle inplace remaps */ |
| return; |
| bitmap_zero(dst, nbits); |
| |
| w = bitmap_weight(new, nbits); |
| for_each_set_bit(oldbit, src, nbits) { |
| int n = bitmap_pos_to_ord(old, oldbit, nbits); |
| |
| if (n < 0 || w == 0) |
| set_bit(oldbit, dst); /* identity map */ |
| else |
| set_bit(find_nth_bit(new, nbits, n % w), dst); |
| } |
| } |
| EXPORT_SYMBOL(bitmap_remap); |
| |
| /** |
| * bitmap_bitremap - Apply map defined by a pair of bitmaps to a single bit |
| * @oldbit: bit position to be mapped |
| * @old: defines domain of map |
| * @new: defines range of map |
| * @bits: number of bits in each of these bitmaps |
| * |
| * Let @old and @new define a mapping of bit positions, such that |
| * whatever position is held by the n-th set bit in @old is mapped |
| * to the n-th set bit in @new. In the more general case, allowing |
| * for the possibility that the weight 'w' of @new is less than the |
| * weight of @old, map the position of the n-th set bit in @old to |
| * the position of the m-th set bit in @new, where m == n % w. |
| * |
| * The positions of unset bits in @old are mapped to themselves |
| * (the identity map). |
| * |
| * Apply the above specified mapping to bit position @oldbit, returning |
| * the new bit position. |
| * |
| * For example, lets say that @old has bits 4 through 7 set, and |
| * @new has bits 12 through 15 set. This defines the mapping of bit |
| * position 4 to 12, 5 to 13, 6 to 14 and 7 to 15, and of all other |
| * bit positions unchanged. So if say @oldbit is 5, then this routine |
| * returns 13. |
| */ |
| int bitmap_bitremap(int oldbit, const unsigned long *old, |
| const unsigned long *new, int bits) |
| { |
| int w = bitmap_weight(new, bits); |
| int n = bitmap_pos_to_ord(old, oldbit, bits); |
| if (n < 0 || w == 0) |
| return oldbit; |
| else |
| return find_nth_bit(new, bits, n % w); |
| } |
| EXPORT_SYMBOL(bitmap_bitremap); |
| |
| #ifdef CONFIG_NUMA |
| /** |
| * bitmap_onto - translate one bitmap relative to another |
| * @dst: resulting translated bitmap |
| * @orig: original untranslated bitmap |
| * @relmap: bitmap relative to which translated |
| * @bits: number of bits in each of these bitmaps |
| * |
| * Set the n-th bit of @dst iff there exists some m such that the |
| * n-th bit of @relmap is set, the m-th bit of @orig is set, and |
| * the n-th bit of @relmap is also the m-th _set_ bit of @relmap. |
| * (If you understood the previous sentence the first time your |
| * read it, you're overqualified for your current job.) |
| * |
| * In other words, @orig is mapped onto (surjectively) @dst, |
| * using the map { <n, m> | the n-th bit of @relmap is the |
| * m-th set bit of @relmap }. |
| * |
| * Any set bits in @orig above bit number W, where W is the |
| * weight of (number of set bits in) @relmap are mapped nowhere. |
| * In particular, if for all bits m set in @orig, m >= W, then |
| * @dst will end up empty. In situations where the possibility |
| * of such an empty result is not desired, one way to avoid it is |
| * to use the bitmap_fold() operator, below, to first fold the |
| * @orig bitmap over itself so that all its set bits x are in the |
| * range 0 <= x < W. The bitmap_fold() operator does this by |
| * setting the bit (m % W) in @dst, for each bit (m) set in @orig. |
| * |
| * Example [1] for bitmap_onto(): |
| * Let's say @relmap has bits 30-39 set, and @orig has bits |
| * 1, 3, 5, 7, 9 and 11 set. Then on return from this routine, |
| * @dst will have bits 31, 33, 35, 37 and 39 set. |
| * |
| * When bit 0 is set in @orig, it means turn on the bit in |
| * @dst corresponding to whatever is the first bit (if any) |
| * that is turned on in @relmap. Since bit 0 was off in the |
| * above example, we leave off that bit (bit 30) in @dst. |
| * |
| * When bit 1 is set in @orig (as in the above example), it |
| * means turn on the bit in @dst corresponding to whatever |
| * is the second bit that is turned on in @relmap. The second |
| * bit in @relmap that was turned on in the above example was |
| * bit 31, so we turned on bit 31 in @dst. |
| * |
| * Similarly, we turned on bits 33, 35, 37 and 39 in @dst, |
| * because they were the 4th, 6th, 8th and 10th set bits |
| * set in @relmap, and the 4th, 6th, 8th and 10th bits of |
| * @orig (i.e. bits 3, 5, 7 and 9) were also set. |
| * |
| * When bit 11 is set in @orig, it means turn on the bit in |
| * @dst corresponding to whatever is the twelfth bit that is |
| * turned on in @relmap. In the above example, there were |
| * only ten bits turned on in @relmap (30..39), so that bit |
| * 11 was set in @orig had no affect on @dst. |
| * |
| * Example [2] for bitmap_fold() + bitmap_onto(): |
| * Let's say @relmap has these ten bits set:: |
| * |
| * 40 41 42 43 45 48 53 61 74 95 |
| * |
| * (for the curious, that's 40 plus the first ten terms of the |
| * Fibonacci sequence.) |
| * |
| * Further lets say we use the following code, invoking |
| * bitmap_fold() then bitmap_onto, as suggested above to |
| * avoid the possibility of an empty @dst result:: |
| * |
| * unsigned long *tmp; // a temporary bitmap's bits |
| * |
| * bitmap_fold(tmp, orig, bitmap_weight(relmap, bits), bits); |
| * bitmap_onto(dst, tmp, relmap, bits); |
| * |
| * Then this table shows what various values of @dst would be, for |
| * various @orig's. I list the zero-based positions of each set bit. |
| * The tmp column shows the intermediate result, as computed by |
| * using bitmap_fold() to fold the @orig bitmap modulo ten |
| * (the weight of @relmap): |
| * |
| * =============== ============== ================= |
| * @orig tmp @dst |
| * 0 0 40 |
| * 1 1 41 |
| * 9 9 95 |
| * 10 0 40 [#f1]_ |
| * 1 3 5 7 1 3 5 7 41 43 48 61 |
| * 0 1 2 3 4 0 1 2 3 4 40 41 42 43 45 |
| * 0 9 18 27 0 9 8 7 40 61 74 95 |
| * 0 10 20 30 0 40 |
| * 0 11 22 33 0 1 2 3 40 41 42 43 |
| * 0 12 24 36 0 2 4 6 40 42 45 53 |
| * 78 102 211 1 2 8 41 42 74 [#f1]_ |
| * =============== ============== ================= |
| * |
| * .. [#f1] |
| * |
| * For these marked lines, if we hadn't first done bitmap_fold() |
| * into tmp, then the @dst result would have been empty. |
| * |
| * If either of @orig or @relmap is empty (no set bits), then @dst |
| * will be returned empty. |
| * |
| * If (as explained above) the only set bits in @orig are in positions |
| * m where m >= W, (where W is the weight of @relmap) then @dst will |
| * once again be returned empty. |
| * |
| * All bits in @dst not set by the above rule are cleared. |
| */ |
| void bitmap_onto(unsigned long *dst, const unsigned long *orig, |
| const unsigned long *relmap, unsigned int bits) |
| { |
| unsigned int n, m; /* same meaning as in above comment */ |
| |
| if (dst == orig) /* following doesn't handle inplace mappings */ |
| return; |
| bitmap_zero(dst, bits); |
| |
| /* |
| * The following code is a more efficient, but less |
| * obvious, equivalent to the loop: |
| * for (m = 0; m < bitmap_weight(relmap, bits); m++) { |
| * n = find_nth_bit(orig, bits, m); |
| * if (test_bit(m, orig)) |
| * set_bit(n, dst); |
| * } |
| */ |
| |
| m = 0; |
| for_each_set_bit(n, relmap, bits) { |
| /* m == bitmap_pos_to_ord(relmap, n, bits) */ |
| if (test_bit(m, orig)) |
| set_bit(n, dst); |
| m++; |
| } |
| } |
| |
| /** |
| * bitmap_fold - fold larger bitmap into smaller, modulo specified size |
| * @dst: resulting smaller bitmap |
| * @orig: original larger bitmap |
| * @sz: specified size |
| * @nbits: number of bits in each of these bitmaps |
| * |
| * For each bit oldbit in @orig, set bit oldbit mod @sz in @dst. |
| * Clear all other bits in @dst. See further the comment and |
| * Example [2] for bitmap_onto() for why and how to use this. |
| */ |
| void bitmap_fold(unsigned long *dst, const unsigned long *orig, |
| unsigned int sz, unsigned int nbits) |
| { |
| unsigned int oldbit; |
| |
| if (dst == orig) /* following doesn't handle inplace mappings */ |
| return; |
| bitmap_zero(dst, nbits); |
| |
| for_each_set_bit(oldbit, orig, nbits) |
| set_bit(oldbit % sz, dst); |
| } |
| #endif /* CONFIG_NUMA */ |
| |
| unsigned long *bitmap_alloc(unsigned int nbits, gfp_t flags) |
| { |
| return kmalloc_array(BITS_TO_LONGS(nbits), sizeof(unsigned long), |
| flags); |
| } |
| EXPORT_SYMBOL(bitmap_alloc); |
| |
| unsigned long *bitmap_zalloc(unsigned int nbits, gfp_t flags) |
| { |
| return bitmap_alloc(nbits, flags | __GFP_ZERO); |
| } |
| EXPORT_SYMBOL(bitmap_zalloc); |
| |
| unsigned long *bitmap_alloc_node(unsigned int nbits, gfp_t flags, int node) |
| { |
| return kmalloc_array_node(BITS_TO_LONGS(nbits), sizeof(unsigned long), |
| flags, node); |
| } |
| EXPORT_SYMBOL(bitmap_alloc_node); |
| |
| unsigned long *bitmap_zalloc_node(unsigned int nbits, gfp_t flags, int node) |
| { |
| return bitmap_alloc_node(nbits, flags | __GFP_ZERO, node); |
| } |
| EXPORT_SYMBOL(bitmap_zalloc_node); |
| |
| void bitmap_free(const unsigned long *bitmap) |
| { |
| kfree(bitmap); |
| } |
| EXPORT_SYMBOL(bitmap_free); |
| |
| static void devm_bitmap_free(void *data) |
| { |
| unsigned long *bitmap = data; |
| |
| bitmap_free(bitmap); |
| } |
| |
| unsigned long *devm_bitmap_alloc(struct device *dev, |
| unsigned int nbits, gfp_t flags) |
| { |
| unsigned long *bitmap; |
| int ret; |
| |
| bitmap = bitmap_alloc(nbits, flags); |
| if (!bitmap) |
| return NULL; |
| |
| ret = devm_add_action_or_reset(dev, devm_bitmap_free, bitmap); |
| if (ret) |
| return NULL; |
| |
| return bitmap; |
| } |
| EXPORT_SYMBOL_GPL(devm_bitmap_alloc); |
| |
| unsigned long *devm_bitmap_zalloc(struct device *dev, |
| unsigned int nbits, gfp_t flags) |
| { |
| return devm_bitmap_alloc(dev, nbits, flags | __GFP_ZERO); |
| } |
| EXPORT_SYMBOL_GPL(devm_bitmap_zalloc); |
| |
| #if BITS_PER_LONG == 64 |
| /** |
| * bitmap_from_arr32 - copy the contents of u32 array of bits to bitmap |
| * @bitmap: array of unsigned longs, the destination bitmap |
| * @buf: array of u32 (in host byte order), the source bitmap |
| * @nbits: number of bits in @bitmap |
| */ |
| void bitmap_from_arr32(unsigned long *bitmap, const u32 *buf, unsigned int nbits) |
| { |
| unsigned int i, halfwords; |
| |
| halfwords = DIV_ROUND_UP(nbits, 32); |
| for (i = 0; i < halfwords; i++) { |
| bitmap[i/2] = (unsigned long) buf[i]; |
| if (++i < halfwords) |
| bitmap[i/2] |= ((unsigned long) buf[i]) << 32; |
| } |
| |
| /* Clear tail bits in last word beyond nbits. */ |
| if (nbits % BITS_PER_LONG) |
| bitmap[(halfwords - 1) / 2] &= BITMAP_LAST_WORD_MASK(nbits); |
| } |
| EXPORT_SYMBOL(bitmap_from_arr32); |
| |
| /** |
| * bitmap_to_arr32 - copy the contents of bitmap to a u32 array of bits |
| * @buf: array of u32 (in host byte order), the dest bitmap |
| * @bitmap: array of unsigned longs, the source bitmap |
| * @nbits: number of bits in @bitmap |
| */ |
| void bitmap_to_arr32(u32 *buf, const unsigned long *bitmap, unsigned int nbits) |
| { |
| unsigned int i, halfwords; |
| |
| halfwords = DIV_ROUND_UP(nbits, 32); |
| for (i = 0; i < halfwords; i++) { |
| buf[i] = (u32) (bitmap[i/2] & UINT_MAX); |
| if (++i < halfwords) |
| buf[i] = (u32) (bitmap[i/2] >> 32); |
| } |
| |
| /* Clear tail bits in last element of array beyond nbits. */ |
| if (nbits % BITS_PER_LONG) |
| buf[halfwords - 1] &= (u32) (UINT_MAX >> ((-nbits) & 31)); |
| } |
| EXPORT_SYMBOL(bitmap_to_arr32); |
| #endif |
| |
| #if BITS_PER_LONG == 32 |
| /** |
| * bitmap_from_arr64 - copy the contents of u64 array of bits to bitmap |
| * @bitmap: array of unsigned longs, the destination bitmap |
| * @buf: array of u64 (in host byte order), the source bitmap |
| * @nbits: number of bits in @bitmap |
| */ |
| void bitmap_from_arr64(unsigned long *bitmap, const u64 *buf, unsigned int nbits) |
| { |
| int n; |
| |
| for (n = nbits; n > 0; n -= 64) { |
| u64 val = *buf++; |
| |
| *bitmap++ = val; |
| if (n > 32) |
| *bitmap++ = val >> 32; |
| } |
| |
| /* |
| * Clear tail bits in the last word beyond nbits. |
| * |
| * Negative index is OK because here we point to the word next |
| * to the last word of the bitmap, except for nbits == 0, which |
| * is tested implicitly. |
| */ |
| if (nbits % BITS_PER_LONG) |
| bitmap[-1] &= BITMAP_LAST_WORD_MASK(nbits); |
| } |
| EXPORT_SYMBOL(bitmap_from_arr64); |
| |
| /** |
| * bitmap_to_arr64 - copy the contents of bitmap to a u64 array of bits |
| * @buf: array of u64 (in host byte order), the dest bitmap |
| * @bitmap: array of unsigned longs, the source bitmap |
| * @nbits: number of bits in @bitmap |
| */ |
| void bitmap_to_arr64(u64 *buf, const unsigned long *bitmap, unsigned int nbits) |
| { |
| const unsigned long *end = bitmap + BITS_TO_LONGS(nbits); |
| |
| while (bitmap < end) { |
| *buf = *bitmap++; |
| if (bitmap < end) |
| *buf |= (u64)(*bitmap++) << 32; |
| buf++; |
| } |
| |
| /* Clear tail bits in the last element of array beyond nbits. */ |
| if (nbits % 64) |
| buf[-1] &= GENMASK_ULL((nbits - 1) % 64, 0); |
| } |
| EXPORT_SYMBOL(bitmap_to_arr64); |
| #endif |