blob: a9403a227c6b33071e7daac9e2e7d856a6add84f [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0-only
/*
* drivers/media/i2c/ccs/ccs-core.c
*
* Generic driver for MIPI CCS/SMIA/SMIA++ compliant camera sensors
*
* Copyright (C) 2020 Intel Corporation
* Copyright (C) 2010--2012 Nokia Corporation
* Contact: Sakari Ailus <sakari.ailus@linux.intel.com>
*
* Based on smiapp driver by Vimarsh Zutshi
* Based on jt8ev1.c by Vimarsh Zutshi
* Based on smia-sensor.c by Tuukka Toivonen <tuukkat76@gmail.com>
*/
#include <linux/clk.h>
#include <linux/delay.h>
#include <linux/device.h>
#include <linux/firmware.h>
#include <linux/gpio.h>
#include <linux/gpio/consumer.h>
#include <linux/module.h>
#include <linux/pm_runtime.h>
#include <linux/property.h>
#include <linux/regulator/consumer.h>
#include <linux/slab.h>
#include <linux/smiapp.h>
#include <linux/v4l2-mediabus.h>
#include <media/v4l2-fwnode.h>
#include <media/v4l2-device.h>
#include <uapi/linux/ccs.h>
#include "ccs.h"
#define CCS_ALIGN_DIM(dim, flags) \
((flags) & V4L2_SEL_FLAG_GE \
? ALIGN((dim), 2) \
: (dim) & ~1)
static struct ccs_limit_offset {
u16 lim;
u16 info;
} ccs_limit_offsets[CCS_L_LAST + 1];
/*
* ccs_module_idents - supported camera modules
*/
static const struct ccs_module_ident ccs_module_idents[] = {
CCS_IDENT_L(0x01, 0x022b, -1, "vs6555"),
CCS_IDENT_L(0x01, 0x022e, -1, "vw6558"),
CCS_IDENT_L(0x07, 0x7698, -1, "ovm7698"),
CCS_IDENT_L(0x0b, 0x4242, -1, "smiapp-003"),
CCS_IDENT_L(0x0c, 0x208a, -1, "tcm8330md"),
CCS_IDENT_LQ(0x0c, 0x2134, -1, "tcm8500md", &smiapp_tcm8500md_quirk),
CCS_IDENT_L(0x0c, 0x213e, -1, "et8en2"),
CCS_IDENT_L(0x0c, 0x2184, -1, "tcm8580md"),
CCS_IDENT_LQ(0x0c, 0x560f, -1, "jt8ew9", &smiapp_jt8ew9_quirk),
CCS_IDENT_LQ(0x10, 0x4141, -1, "jt8ev1", &smiapp_jt8ev1_quirk),
CCS_IDENT_LQ(0x10, 0x4241, -1, "imx125es", &smiapp_imx125es_quirk),
};
#define CCS_DEVICE_FLAG_IS_SMIA BIT(0)
struct ccs_device {
unsigned char flags;
};
static const char * const ccs_regulators[] = { "vcore", "vio", "vana" };
/*
*
* Dynamic Capability Identification
*
*/
static void ccs_assign_limit(void *ptr, unsigned int width, u32 val)
{
switch (width) {
case sizeof(u8):
*(u8 *)ptr = val;
break;
case sizeof(u16):
*(u16 *)ptr = val;
break;
case sizeof(u32):
*(u32 *)ptr = val;
break;
}
}
static int ccs_limit_ptr(struct ccs_sensor *sensor, unsigned int limit,
unsigned int offset, void **__ptr)
{
const struct ccs_limit *linfo;
if (WARN_ON(limit >= CCS_L_LAST))
return -EINVAL;
linfo = &ccs_limits[ccs_limit_offsets[limit].info];
if (WARN_ON(!sensor->ccs_limits) ||
WARN_ON(offset + ccs_reg_width(linfo->reg) >
ccs_limit_offsets[limit + 1].lim))
return -EINVAL;
*__ptr = sensor->ccs_limits + ccs_limit_offsets[limit].lim + offset;
return 0;
}
void ccs_replace_limit(struct ccs_sensor *sensor,
unsigned int limit, unsigned int offset, u32 val)
{
struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd);
const struct ccs_limit *linfo;
void *ptr;
int ret;
ret = ccs_limit_ptr(sensor, limit, offset, &ptr);
if (ret)
return;
linfo = &ccs_limits[ccs_limit_offsets[limit].info];
dev_dbg(&client->dev, "quirk: 0x%8.8x \"%s\" %u = %d, 0x%x\n",
linfo->reg, linfo->name, offset, val, val);
ccs_assign_limit(ptr, ccs_reg_width(linfo->reg), val);
}
u32 ccs_get_limit(struct ccs_sensor *sensor, unsigned int limit,
unsigned int offset)
{
void *ptr;
u32 val;
int ret;
ret = ccs_limit_ptr(sensor, limit, offset, &ptr);
if (ret)
return 0;
switch (ccs_reg_width(ccs_limits[ccs_limit_offsets[limit].info].reg)) {
case sizeof(u8):
val = *(u8 *)ptr;
break;
case sizeof(u16):
val = *(u16 *)ptr;
break;
case sizeof(u32):
val = *(u32 *)ptr;
break;
default:
WARN_ON(1);
return 0;
}
return ccs_reg_conv(sensor, ccs_limits[limit].reg, val);
}
static int ccs_read_all_limits(struct ccs_sensor *sensor)
{
struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd);
void *ptr, *alloc, *end;
unsigned int i, l;
int ret;
kfree(sensor->ccs_limits);
sensor->ccs_limits = NULL;
alloc = kzalloc(ccs_limit_offsets[CCS_L_LAST].lim, GFP_KERNEL);
if (!alloc)
return -ENOMEM;
end = alloc + ccs_limit_offsets[CCS_L_LAST].lim;
for (i = 0, l = 0, ptr = alloc; ccs_limits[i].size; i++) {
u32 reg = ccs_limits[i].reg;
unsigned int width = ccs_reg_width(reg);
unsigned int j;
if (l == CCS_L_LAST) {
dev_err(&client->dev,
"internal error --- end of limit array\n");
ret = -EINVAL;
goto out_err;
}
for (j = 0; j < ccs_limits[i].size / width;
j++, reg += width, ptr += width) {
u32 val;
ret = ccs_read_addr_noconv(sensor, reg, &val);
if (ret)
goto out_err;
if (ptr + width > end) {
dev_err(&client->dev,
"internal error --- no room for regs\n");
ret = -EINVAL;
goto out_err;
}
if (!val && j)
break;
ccs_assign_limit(ptr, width, val);
dev_dbg(&client->dev, "0x%8.8x \"%s\" = %u, 0x%x\n",
reg, ccs_limits[i].name, val, val);
}
if (ccs_limits[i].flags & CCS_L_FL_SAME_REG)
continue;
l++;
ptr = alloc + ccs_limit_offsets[l].lim;
}
if (l != CCS_L_LAST) {
dev_err(&client->dev,
"internal error --- insufficient limits\n");
ret = -EINVAL;
goto out_err;
}
sensor->ccs_limits = alloc;
if (CCS_LIM(sensor, SCALER_N_MIN) < 16)
ccs_replace_limit(sensor, CCS_L_SCALER_N_MIN, 0, 16);
return 0;
out_err:
kfree(alloc);
return ret;
}
static int ccs_read_frame_fmt(struct ccs_sensor *sensor)
{
struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd);
u8 fmt_model_type, fmt_model_subtype, ncol_desc, nrow_desc;
unsigned int i;
int pixel_count = 0;
int line_count = 0;
fmt_model_type = CCS_LIM(sensor, FRAME_FORMAT_MODEL_TYPE);
fmt_model_subtype = CCS_LIM(sensor, FRAME_FORMAT_MODEL_SUBTYPE);
ncol_desc = (fmt_model_subtype
& CCS_FRAME_FORMAT_MODEL_SUBTYPE_COLUMNS_MASK)
>> CCS_FRAME_FORMAT_MODEL_SUBTYPE_COLUMNS_SHIFT;
nrow_desc = fmt_model_subtype
& CCS_FRAME_FORMAT_MODEL_SUBTYPE_ROWS_MASK;
dev_dbg(&client->dev, "format_model_type %s\n",
fmt_model_type == CCS_FRAME_FORMAT_MODEL_TYPE_2_BYTE
? "2 byte" :
fmt_model_type == CCS_FRAME_FORMAT_MODEL_TYPE_4_BYTE
? "4 byte" : "is simply bad");
dev_dbg(&client->dev, "%u column and %u row descriptors\n",
ncol_desc, nrow_desc);
for (i = 0; i < ncol_desc + nrow_desc; i++) {
u32 desc;
u32 pixelcode;
u32 pixels;
char *which;
char *what;
if (fmt_model_type == CCS_FRAME_FORMAT_MODEL_TYPE_2_BYTE) {
desc = CCS_LIM_AT(sensor, FRAME_FORMAT_DESCRIPTOR, i);
pixelcode =
(desc
& CCS_FRAME_FORMAT_DESCRIPTOR_PCODE_MASK)
>> CCS_FRAME_FORMAT_DESCRIPTOR_PCODE_SHIFT;
pixels = desc & CCS_FRAME_FORMAT_DESCRIPTOR_PIXELS_MASK;
} else if (fmt_model_type
== CCS_FRAME_FORMAT_MODEL_TYPE_4_BYTE) {
desc = CCS_LIM_AT(sensor, FRAME_FORMAT_DESCRIPTOR_4, i);
pixelcode =
(desc
& CCS_FRAME_FORMAT_DESCRIPTOR_4_PCODE_MASK)
>> CCS_FRAME_FORMAT_DESCRIPTOR_4_PCODE_SHIFT;
pixels = desc &
CCS_FRAME_FORMAT_DESCRIPTOR_4_PIXELS_MASK;
} else {
dev_dbg(&client->dev,
"invalid frame format model type %d\n",
fmt_model_type);
return -EINVAL;
}
if (i < ncol_desc)
which = "columns";
else
which = "rows";
switch (pixelcode) {
case CCS_FRAME_FORMAT_DESCRIPTOR_PCODE_EMBEDDED:
what = "embedded";
break;
case CCS_FRAME_FORMAT_DESCRIPTOR_PCODE_DUMMY_PIXEL:
what = "dummy";
break;
case CCS_FRAME_FORMAT_DESCRIPTOR_PCODE_BLACK_PIXEL:
what = "black";
break;
case CCS_FRAME_FORMAT_DESCRIPTOR_PCODE_DARK_PIXEL:
what = "dark";
break;
case CCS_FRAME_FORMAT_DESCRIPTOR_PCODE_VISIBLE_PIXEL:
what = "visible";
break;
default:
what = "invalid";
break;
}
dev_dbg(&client->dev,
"%s pixels: %d %s (pixelcode %u)\n",
what, pixels, which, pixelcode);
if (i < ncol_desc) {
if (pixelcode ==
CCS_FRAME_FORMAT_DESCRIPTOR_PCODE_VISIBLE_PIXEL)
sensor->visible_pixel_start = pixel_count;
pixel_count += pixels;
continue;
}
/* Handle row descriptors */
switch (pixelcode) {
case CCS_FRAME_FORMAT_DESCRIPTOR_PCODE_EMBEDDED:
if (sensor->embedded_end)
break;
sensor->embedded_start = line_count;
sensor->embedded_end = line_count + pixels;
break;
case CCS_FRAME_FORMAT_DESCRIPTOR_PCODE_VISIBLE_PIXEL:
sensor->image_start = line_count;
break;
}
line_count += pixels;
}
if (sensor->embedded_end > sensor->image_start) {
dev_dbg(&client->dev,
"adjusting image start line to %u (was %u)\n",
sensor->embedded_end, sensor->image_start);
sensor->image_start = sensor->embedded_end;
}
dev_dbg(&client->dev, "embedded data from lines %d to %d\n",
sensor->embedded_start, sensor->embedded_end);
dev_dbg(&client->dev, "image data starts at line %d\n",
sensor->image_start);
return 0;
}
static int ccs_pll_configure(struct ccs_sensor *sensor)
{
struct ccs_pll *pll = &sensor->pll;
int rval;
rval = ccs_write(sensor, VT_PIX_CLK_DIV, pll->vt_bk.pix_clk_div);
if (rval < 0)
return rval;
rval = ccs_write(sensor, VT_SYS_CLK_DIV, pll->vt_bk.sys_clk_div);
if (rval < 0)
return rval;
rval = ccs_write(sensor, PRE_PLL_CLK_DIV, pll->vt_fr.pre_pll_clk_div);
if (rval < 0)
return rval;
rval = ccs_write(sensor, PLL_MULTIPLIER, pll->vt_fr.pll_multiplier);
if (rval < 0)
return rval;
if (!(CCS_LIM(sensor, PHY_CTRL_CAPABILITY) &
CCS_PHY_CTRL_CAPABILITY_AUTO_PHY_CTL)) {
/* Lane op clock ratio does not apply here. */
rval = ccs_write(sensor, REQUESTED_LINK_RATE,
DIV_ROUND_UP(pll->op_bk.sys_clk_freq_hz,
1000000 / 256 / 256) *
(pll->flags & CCS_PLL_FLAG_LANE_SPEED_MODEL ?
sensor->pll.csi2.lanes : 1) <<
(pll->flags & CCS_PLL_FLAG_OP_SYS_DDR ?
1 : 0));
if (rval < 0)
return rval;
}
if (sensor->pll.flags & CCS_PLL_FLAG_NO_OP_CLOCKS)
return 0;
rval = ccs_write(sensor, OP_PIX_CLK_DIV, pll->op_bk.pix_clk_div);
if (rval < 0)
return rval;
rval = ccs_write(sensor, OP_SYS_CLK_DIV, pll->op_bk.sys_clk_div);
if (rval < 0)
return rval;
if (!(pll->flags & CCS_PLL_FLAG_DUAL_PLL))
return 0;
rval = ccs_write(sensor, PLL_MODE, CCS_PLL_MODE_DUAL);
if (rval < 0)
return rval;
rval = ccs_write(sensor, OP_PRE_PLL_CLK_DIV,
pll->op_fr.pre_pll_clk_div);
if (rval < 0)
return rval;
return ccs_write(sensor, OP_PLL_MULTIPLIER, pll->op_fr.pll_multiplier);
}
static int ccs_pll_try(struct ccs_sensor *sensor, struct ccs_pll *pll)
{
struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd);
struct ccs_pll_limits lim = {
.vt_fr = {
.min_pre_pll_clk_div = CCS_LIM(sensor, MIN_PRE_PLL_CLK_DIV),
.max_pre_pll_clk_div = CCS_LIM(sensor, MAX_PRE_PLL_CLK_DIV),
.min_pll_ip_clk_freq_hz = CCS_LIM(sensor, MIN_PLL_IP_CLK_FREQ_MHZ),
.max_pll_ip_clk_freq_hz = CCS_LIM(sensor, MAX_PLL_IP_CLK_FREQ_MHZ),
.min_pll_multiplier = CCS_LIM(sensor, MIN_PLL_MULTIPLIER),
.max_pll_multiplier = CCS_LIM(sensor, MAX_PLL_MULTIPLIER),
.min_pll_op_clk_freq_hz = CCS_LIM(sensor, MIN_PLL_OP_CLK_FREQ_MHZ),
.max_pll_op_clk_freq_hz = CCS_LIM(sensor, MAX_PLL_OP_CLK_FREQ_MHZ),
},
.op_fr = {
.min_pre_pll_clk_div = CCS_LIM(sensor, MIN_OP_PRE_PLL_CLK_DIV),
.max_pre_pll_clk_div = CCS_LIM(sensor, MAX_OP_PRE_PLL_CLK_DIV),
.min_pll_ip_clk_freq_hz = CCS_LIM(sensor, MIN_OP_PLL_IP_CLK_FREQ_MHZ),
.max_pll_ip_clk_freq_hz = CCS_LIM(sensor, MAX_OP_PLL_IP_CLK_FREQ_MHZ),
.min_pll_multiplier = CCS_LIM(sensor, MIN_OP_PLL_MULTIPLIER),
.max_pll_multiplier = CCS_LIM(sensor, MAX_OP_PLL_MULTIPLIER),
.min_pll_op_clk_freq_hz = CCS_LIM(sensor, MIN_OP_PLL_OP_CLK_FREQ_MHZ),
.max_pll_op_clk_freq_hz = CCS_LIM(sensor, MAX_OP_PLL_OP_CLK_FREQ_MHZ),
},
.op_bk = {
.min_sys_clk_div = CCS_LIM(sensor, MIN_OP_SYS_CLK_DIV),
.max_sys_clk_div = CCS_LIM(sensor, MAX_OP_SYS_CLK_DIV),
.min_pix_clk_div = CCS_LIM(sensor, MIN_OP_PIX_CLK_DIV),
.max_pix_clk_div = CCS_LIM(sensor, MAX_OP_PIX_CLK_DIV),
.min_sys_clk_freq_hz = CCS_LIM(sensor, MIN_OP_SYS_CLK_FREQ_MHZ),
.max_sys_clk_freq_hz = CCS_LIM(sensor, MAX_OP_SYS_CLK_FREQ_MHZ),
.min_pix_clk_freq_hz = CCS_LIM(sensor, MIN_OP_PIX_CLK_FREQ_MHZ),
.max_pix_clk_freq_hz = CCS_LIM(sensor, MAX_OP_PIX_CLK_FREQ_MHZ),
},
.vt_bk = {
.min_sys_clk_div = CCS_LIM(sensor, MIN_VT_SYS_CLK_DIV),
.max_sys_clk_div = CCS_LIM(sensor, MAX_VT_SYS_CLK_DIV),
.min_pix_clk_div = CCS_LIM(sensor, MIN_VT_PIX_CLK_DIV),
.max_pix_clk_div = CCS_LIM(sensor, MAX_VT_PIX_CLK_DIV),
.min_sys_clk_freq_hz = CCS_LIM(sensor, MIN_VT_SYS_CLK_FREQ_MHZ),
.max_sys_clk_freq_hz = CCS_LIM(sensor, MAX_VT_SYS_CLK_FREQ_MHZ),
.min_pix_clk_freq_hz = CCS_LIM(sensor, MIN_VT_PIX_CLK_FREQ_MHZ),
.max_pix_clk_freq_hz = CCS_LIM(sensor, MAX_VT_PIX_CLK_FREQ_MHZ),
},
.min_line_length_pck_bin = CCS_LIM(sensor, MIN_LINE_LENGTH_PCK_BIN),
.min_line_length_pck = CCS_LIM(sensor, MIN_LINE_LENGTH_PCK),
};
return ccs_pll_calculate(&client->dev, &lim, pll);
}
static int ccs_pll_update(struct ccs_sensor *sensor)
{
struct ccs_pll *pll = &sensor->pll;
int rval;
pll->binning_horizontal = sensor->binning_horizontal;
pll->binning_vertical = sensor->binning_vertical;
pll->link_freq =
sensor->link_freq->qmenu_int[sensor->link_freq->val];
pll->scale_m = sensor->scale_m;
pll->bits_per_pixel = sensor->csi_format->compressed;
rval = ccs_pll_try(sensor, pll);
if (rval < 0)
return rval;
__v4l2_ctrl_s_ctrl_int64(sensor->pixel_rate_parray,
pll->pixel_rate_pixel_array);
__v4l2_ctrl_s_ctrl_int64(sensor->pixel_rate_csi, pll->pixel_rate_csi);
return 0;
}
/*
*
* V4L2 Controls handling
*
*/
static void __ccs_update_exposure_limits(struct ccs_sensor *sensor)
{
struct v4l2_ctrl *ctrl = sensor->exposure;
int max;
max = sensor->pixel_array->crop[CCS_PA_PAD_SRC].height
+ sensor->vblank->val
- CCS_LIM(sensor, COARSE_INTEGRATION_TIME_MAX_MARGIN);
__v4l2_ctrl_modify_range(ctrl, ctrl->minimum, max, ctrl->step, max);
}
/*
* Order matters.
*
* 1. Bits-per-pixel, descending.
* 2. Bits-per-pixel compressed, descending.
* 3. Pixel order, same as in pixel_order_str. Formats for all four pixel
* orders must be defined.
*/
static const struct ccs_csi_data_format ccs_csi_data_formats[] = {
{ MEDIA_BUS_FMT_SGRBG16_1X16, 16, 16, CCS_PIXEL_ORDER_GRBG, },
{ MEDIA_BUS_FMT_SRGGB16_1X16, 16, 16, CCS_PIXEL_ORDER_RGGB, },
{ MEDIA_BUS_FMT_SBGGR16_1X16, 16, 16, CCS_PIXEL_ORDER_BGGR, },
{ MEDIA_BUS_FMT_SGBRG16_1X16, 16, 16, CCS_PIXEL_ORDER_GBRG, },
{ MEDIA_BUS_FMT_SGRBG14_1X14, 14, 14, CCS_PIXEL_ORDER_GRBG, },
{ MEDIA_BUS_FMT_SRGGB14_1X14, 14, 14, CCS_PIXEL_ORDER_RGGB, },
{ MEDIA_BUS_FMT_SBGGR14_1X14, 14, 14, CCS_PIXEL_ORDER_BGGR, },
{ MEDIA_BUS_FMT_SGBRG14_1X14, 14, 14, CCS_PIXEL_ORDER_GBRG, },
{ MEDIA_BUS_FMT_SGRBG12_1X12, 12, 12, CCS_PIXEL_ORDER_GRBG, },
{ MEDIA_BUS_FMT_SRGGB12_1X12, 12, 12, CCS_PIXEL_ORDER_RGGB, },
{ MEDIA_BUS_FMT_SBGGR12_1X12, 12, 12, CCS_PIXEL_ORDER_BGGR, },
{ MEDIA_BUS_FMT_SGBRG12_1X12, 12, 12, CCS_PIXEL_ORDER_GBRG, },
{ MEDIA_BUS_FMT_SGRBG10_1X10, 10, 10, CCS_PIXEL_ORDER_GRBG, },
{ MEDIA_BUS_FMT_SRGGB10_1X10, 10, 10, CCS_PIXEL_ORDER_RGGB, },
{ MEDIA_BUS_FMT_SBGGR10_1X10, 10, 10, CCS_PIXEL_ORDER_BGGR, },
{ MEDIA_BUS_FMT_SGBRG10_1X10, 10, 10, CCS_PIXEL_ORDER_GBRG, },
{ MEDIA_BUS_FMT_SGRBG10_DPCM8_1X8, 10, 8, CCS_PIXEL_ORDER_GRBG, },
{ MEDIA_BUS_FMT_SRGGB10_DPCM8_1X8, 10, 8, CCS_PIXEL_ORDER_RGGB, },
{ MEDIA_BUS_FMT_SBGGR10_DPCM8_1X8, 10, 8, CCS_PIXEL_ORDER_BGGR, },
{ MEDIA_BUS_FMT_SGBRG10_DPCM8_1X8, 10, 8, CCS_PIXEL_ORDER_GBRG, },
{ MEDIA_BUS_FMT_SGRBG8_1X8, 8, 8, CCS_PIXEL_ORDER_GRBG, },
{ MEDIA_BUS_FMT_SRGGB8_1X8, 8, 8, CCS_PIXEL_ORDER_RGGB, },
{ MEDIA_BUS_FMT_SBGGR8_1X8, 8, 8, CCS_PIXEL_ORDER_BGGR, },
{ MEDIA_BUS_FMT_SGBRG8_1X8, 8, 8, CCS_PIXEL_ORDER_GBRG, },
};
static const char *pixel_order_str[] = { "GRBG", "RGGB", "BGGR", "GBRG" };
#define to_csi_format_idx(fmt) (((unsigned long)(fmt) \
- (unsigned long)ccs_csi_data_formats) \
/ sizeof(*ccs_csi_data_formats))
static u32 ccs_pixel_order(struct ccs_sensor *sensor)
{
struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd);
int flip = 0;
if (sensor->hflip) {
if (sensor->hflip->val)
flip |= CCS_IMAGE_ORIENTATION_HORIZONTAL_MIRROR;
if (sensor->vflip->val)
flip |= CCS_IMAGE_ORIENTATION_VERTICAL_FLIP;
}
flip ^= sensor->hvflip_inv_mask;
dev_dbg(&client->dev, "flip %d\n", flip);
return sensor->default_pixel_order ^ flip;
}
static void ccs_update_mbus_formats(struct ccs_sensor *sensor)
{
struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd);
unsigned int csi_format_idx =
to_csi_format_idx(sensor->csi_format) & ~3;
unsigned int internal_csi_format_idx =
to_csi_format_idx(sensor->internal_csi_format) & ~3;
unsigned int pixel_order = ccs_pixel_order(sensor);
if (WARN_ON_ONCE(max(internal_csi_format_idx, csi_format_idx) +
pixel_order >= ARRAY_SIZE(ccs_csi_data_formats)))
return;
sensor->mbus_frame_fmts =
sensor->default_mbus_frame_fmts << pixel_order;
sensor->csi_format =
&ccs_csi_data_formats[csi_format_idx + pixel_order];
sensor->internal_csi_format =
&ccs_csi_data_formats[internal_csi_format_idx
+ pixel_order];
dev_dbg(&client->dev, "new pixel order %s\n",
pixel_order_str[pixel_order]);
}
static const char * const ccs_test_patterns[] = {
"Disabled",
"Solid Colour",
"Eight Vertical Colour Bars",
"Colour Bars With Fade to Grey",
"Pseudorandom Sequence (PN9)",
};
static int ccs_set_ctrl(struct v4l2_ctrl *ctrl)
{
struct ccs_sensor *sensor =
container_of(ctrl->handler, struct ccs_subdev, ctrl_handler)
->sensor;
struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd);
int pm_status;
u32 orient = 0;
unsigned int i;
int exposure;
int rval;
switch (ctrl->id) {
case V4L2_CID_HFLIP:
case V4L2_CID_VFLIP:
if (sensor->streaming)
return -EBUSY;
if (sensor->hflip->val)
orient |= CCS_IMAGE_ORIENTATION_HORIZONTAL_MIRROR;
if (sensor->vflip->val)
orient |= CCS_IMAGE_ORIENTATION_VERTICAL_FLIP;
orient ^= sensor->hvflip_inv_mask;
ccs_update_mbus_formats(sensor);
break;
case V4L2_CID_VBLANK:
exposure = sensor->exposure->val;
__ccs_update_exposure_limits(sensor);
if (exposure > sensor->exposure->maximum) {
sensor->exposure->val = sensor->exposure->maximum;
rval = ccs_set_ctrl(sensor->exposure);
if (rval < 0)
return rval;
}
break;
case V4L2_CID_LINK_FREQ:
if (sensor->streaming)
return -EBUSY;
rval = ccs_pll_update(sensor);
if (rval)
return rval;
return 0;
case V4L2_CID_TEST_PATTERN:
for (i = 0; i < ARRAY_SIZE(sensor->test_data); i++)
v4l2_ctrl_activate(
sensor->test_data[i],
ctrl->val ==
V4L2_SMIAPP_TEST_PATTERN_MODE_SOLID_COLOUR);
break;
}
pm_status = pm_runtime_get_if_active(&client->dev, true);
if (!pm_status)
return 0;
switch (ctrl->id) {
case V4L2_CID_ANALOGUE_GAIN:
rval = ccs_write(sensor, ANALOG_GAIN_CODE_GLOBAL, ctrl->val);
break;
case V4L2_CID_CCS_ANALOGUE_LINEAR_GAIN:
rval = ccs_write(sensor, ANALOG_LINEAR_GAIN_GLOBAL, ctrl->val);
break;
case V4L2_CID_CCS_ANALOGUE_EXPONENTIAL_GAIN:
rval = ccs_write(sensor, ANALOG_EXPONENTIAL_GAIN_GLOBAL,
ctrl->val);
break;
case V4L2_CID_DIGITAL_GAIN:
if (CCS_LIM(sensor, DIGITAL_GAIN_CAPABILITY) ==
CCS_DIGITAL_GAIN_CAPABILITY_GLOBAL) {
rval = ccs_write(sensor, DIGITAL_GAIN_GLOBAL,
ctrl->val);
break;
}
rval = ccs_write_addr(sensor,
SMIAPP_REG_U16_DIGITAL_GAIN_GREENR,
ctrl->val);
if (rval)
break;
rval = ccs_write_addr(sensor,
SMIAPP_REG_U16_DIGITAL_GAIN_RED,
ctrl->val);
if (rval)
break;
rval = ccs_write_addr(sensor,
SMIAPP_REG_U16_DIGITAL_GAIN_BLUE,
ctrl->val);
if (rval)
break;
rval = ccs_write_addr(sensor,
SMIAPP_REG_U16_DIGITAL_GAIN_GREENB,
ctrl->val);
break;
case V4L2_CID_EXPOSURE:
rval = ccs_write(sensor, COARSE_INTEGRATION_TIME, ctrl->val);
break;
case V4L2_CID_HFLIP:
case V4L2_CID_VFLIP:
rval = ccs_write(sensor, IMAGE_ORIENTATION, orient);
break;
case V4L2_CID_VBLANK:
rval = ccs_write(sensor, FRAME_LENGTH_LINES,
sensor->pixel_array->crop[
CCS_PA_PAD_SRC].height
+ ctrl->val);
break;
case V4L2_CID_HBLANK:
rval = ccs_write(sensor, LINE_LENGTH_PCK,
sensor->pixel_array->crop[CCS_PA_PAD_SRC].width
+ ctrl->val);
break;
case V4L2_CID_TEST_PATTERN:
rval = ccs_write(sensor, TEST_PATTERN_MODE, ctrl->val);
break;
case V4L2_CID_TEST_PATTERN_RED:
rval = ccs_write(sensor, TEST_DATA_RED, ctrl->val);
break;
case V4L2_CID_TEST_PATTERN_GREENR:
rval = ccs_write(sensor, TEST_DATA_GREENR, ctrl->val);
break;
case V4L2_CID_TEST_PATTERN_BLUE:
rval = ccs_write(sensor, TEST_DATA_BLUE, ctrl->val);
break;
case V4L2_CID_TEST_PATTERN_GREENB:
rval = ccs_write(sensor, TEST_DATA_GREENB, ctrl->val);
break;
case V4L2_CID_CCS_SHADING_CORRECTION:
rval = ccs_write(sensor, SHADING_CORRECTION_EN,
ctrl->val ? CCS_SHADING_CORRECTION_EN_ENABLE :
0);
if (!rval && sensor->luminance_level)
v4l2_ctrl_activate(sensor->luminance_level, ctrl->val);
break;
case V4L2_CID_CCS_LUMINANCE_CORRECTION_LEVEL:
rval = ccs_write(sensor, LUMINANCE_CORRECTION_LEVEL, ctrl->val);
break;
case V4L2_CID_PIXEL_RATE:
/* For v4l2_ctrl_s_ctrl_int64() used internally. */
rval = 0;
break;
default:
rval = -EINVAL;
}
if (pm_status > 0) {
pm_runtime_mark_last_busy(&client->dev);
pm_runtime_put_autosuspend(&client->dev);
}
return rval;
}
static const struct v4l2_ctrl_ops ccs_ctrl_ops = {
.s_ctrl = ccs_set_ctrl,
};
static int ccs_init_controls(struct ccs_sensor *sensor)
{
struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd);
int rval;
rval = v4l2_ctrl_handler_init(&sensor->pixel_array->ctrl_handler, 17);
if (rval)
return rval;
sensor->pixel_array->ctrl_handler.lock = &sensor->mutex;
switch (CCS_LIM(sensor, ANALOG_GAIN_CAPABILITY)) {
case CCS_ANALOG_GAIN_CAPABILITY_GLOBAL: {
struct {
const char *name;
u32 id;
s32 value;
} const gain_ctrls[] = {
{ "Analogue Gain m0", V4L2_CID_CCS_ANALOGUE_GAIN_M0,
CCS_LIM(sensor, ANALOG_GAIN_M0), },
{ "Analogue Gain c0", V4L2_CID_CCS_ANALOGUE_GAIN_C0,
CCS_LIM(sensor, ANALOG_GAIN_C0), },
{ "Analogue Gain m1", V4L2_CID_CCS_ANALOGUE_GAIN_M1,
CCS_LIM(sensor, ANALOG_GAIN_M1), },
{ "Analogue Gain c1", V4L2_CID_CCS_ANALOGUE_GAIN_C1,
CCS_LIM(sensor, ANALOG_GAIN_C1), },
};
struct v4l2_ctrl_config ctrl_cfg = {
.type = V4L2_CTRL_TYPE_INTEGER,
.ops = &ccs_ctrl_ops,
.flags = V4L2_CTRL_FLAG_READ_ONLY,
.step = 1,
};
unsigned int i;
for (i = 0; i < ARRAY_SIZE(gain_ctrls); i++) {
ctrl_cfg.name = gain_ctrls[i].name;
ctrl_cfg.id = gain_ctrls[i].id;
ctrl_cfg.min = ctrl_cfg.max = ctrl_cfg.def =
gain_ctrls[i].value;
v4l2_ctrl_new_custom(&sensor->pixel_array->ctrl_handler,
&ctrl_cfg, NULL);
}
v4l2_ctrl_new_std(&sensor->pixel_array->ctrl_handler,
&ccs_ctrl_ops, V4L2_CID_ANALOGUE_GAIN,
CCS_LIM(sensor, ANALOG_GAIN_CODE_MIN),
CCS_LIM(sensor, ANALOG_GAIN_CODE_MAX),
max(CCS_LIM(sensor, ANALOG_GAIN_CODE_STEP),
1U),
CCS_LIM(sensor, ANALOG_GAIN_CODE_MIN));
}
break;
case CCS_ANALOG_GAIN_CAPABILITY_ALTERNATE_GLOBAL: {
struct {
const char *name;
u32 id;
u16 min, max, step;
} const gain_ctrls[] = {
{
"Analogue Linear Gain",
V4L2_CID_CCS_ANALOGUE_LINEAR_GAIN,
CCS_LIM(sensor, ANALOG_LINEAR_GAIN_MIN),
CCS_LIM(sensor, ANALOG_LINEAR_GAIN_MAX),
max(CCS_LIM(sensor,
ANALOG_LINEAR_GAIN_STEP_SIZE),
1U),
},
{
"Analogue Exponential Gain",
V4L2_CID_CCS_ANALOGUE_EXPONENTIAL_GAIN,
CCS_LIM(sensor, ANALOG_EXPONENTIAL_GAIN_MIN),
CCS_LIM(sensor, ANALOG_EXPONENTIAL_GAIN_MAX),
max(CCS_LIM(sensor,
ANALOG_EXPONENTIAL_GAIN_STEP_SIZE),
1U),
},
};
struct v4l2_ctrl_config ctrl_cfg = {
.type = V4L2_CTRL_TYPE_INTEGER,
.ops = &ccs_ctrl_ops,
};
unsigned int i;
for (i = 0; i < ARRAY_SIZE(gain_ctrls); i++) {
ctrl_cfg.name = gain_ctrls[i].name;
ctrl_cfg.min = ctrl_cfg.def = gain_ctrls[i].min;
ctrl_cfg.max = gain_ctrls[i].max;
ctrl_cfg.step = gain_ctrls[i].step;
ctrl_cfg.id = gain_ctrls[i].id;
v4l2_ctrl_new_custom(&sensor->pixel_array->ctrl_handler,
&ctrl_cfg, NULL);
}
}
}
if (CCS_LIM(sensor, SHADING_CORRECTION_CAPABILITY) &
(CCS_SHADING_CORRECTION_CAPABILITY_COLOR_SHADING |
CCS_SHADING_CORRECTION_CAPABILITY_LUMINANCE_CORRECTION)) {
const struct v4l2_ctrl_config ctrl_cfg = {
.name = "Shading Correction",
.type = V4L2_CTRL_TYPE_BOOLEAN,
.id = V4L2_CID_CCS_SHADING_CORRECTION,
.ops = &ccs_ctrl_ops,
.max = 1,
.step = 1,
};
v4l2_ctrl_new_custom(&sensor->pixel_array->ctrl_handler,
&ctrl_cfg, NULL);
}
if (CCS_LIM(sensor, SHADING_CORRECTION_CAPABILITY) &
CCS_SHADING_CORRECTION_CAPABILITY_LUMINANCE_CORRECTION) {
const struct v4l2_ctrl_config ctrl_cfg = {
.name = "Luminance Correction Level",
.type = V4L2_CTRL_TYPE_BOOLEAN,
.id = V4L2_CID_CCS_LUMINANCE_CORRECTION_LEVEL,
.ops = &ccs_ctrl_ops,
.max = 255,
.step = 1,
.def = 128,
};
sensor->luminance_level =
v4l2_ctrl_new_custom(&sensor->pixel_array->ctrl_handler,
&ctrl_cfg, NULL);
}
if (CCS_LIM(sensor, DIGITAL_GAIN_CAPABILITY) ==
CCS_DIGITAL_GAIN_CAPABILITY_GLOBAL ||
CCS_LIM(sensor, DIGITAL_GAIN_CAPABILITY) ==
SMIAPP_DIGITAL_GAIN_CAPABILITY_PER_CHANNEL)
v4l2_ctrl_new_std(&sensor->pixel_array->ctrl_handler,
&ccs_ctrl_ops, V4L2_CID_DIGITAL_GAIN,
CCS_LIM(sensor, DIGITAL_GAIN_MIN),
CCS_LIM(sensor, DIGITAL_GAIN_MAX),
max(CCS_LIM(sensor, DIGITAL_GAIN_STEP_SIZE),
1U),
0x100);
/* Exposure limits will be updated soon, use just something here. */
sensor->exposure = v4l2_ctrl_new_std(
&sensor->pixel_array->ctrl_handler, &ccs_ctrl_ops,
V4L2_CID_EXPOSURE, 0, 0, 1, 0);
sensor->hflip = v4l2_ctrl_new_std(
&sensor->pixel_array->ctrl_handler, &ccs_ctrl_ops,
V4L2_CID_HFLIP, 0, 1, 1, 0);
sensor->vflip = v4l2_ctrl_new_std(
&sensor->pixel_array->ctrl_handler, &ccs_ctrl_ops,
V4L2_CID_VFLIP, 0, 1, 1, 0);
sensor->vblank = v4l2_ctrl_new_std(
&sensor->pixel_array->ctrl_handler, &ccs_ctrl_ops,
V4L2_CID_VBLANK, 0, 1, 1, 0);
if (sensor->vblank)
sensor->vblank->flags |= V4L2_CTRL_FLAG_UPDATE;
sensor->hblank = v4l2_ctrl_new_std(
&sensor->pixel_array->ctrl_handler, &ccs_ctrl_ops,
V4L2_CID_HBLANK, 0, 1, 1, 0);
if (sensor->hblank)
sensor->hblank->flags |= V4L2_CTRL_FLAG_UPDATE;
sensor->pixel_rate_parray = v4l2_ctrl_new_std(
&sensor->pixel_array->ctrl_handler, &ccs_ctrl_ops,
V4L2_CID_PIXEL_RATE, 1, INT_MAX, 1, 1);
v4l2_ctrl_new_std_menu_items(&sensor->pixel_array->ctrl_handler,
&ccs_ctrl_ops, V4L2_CID_TEST_PATTERN,
ARRAY_SIZE(ccs_test_patterns) - 1,
0, 0, ccs_test_patterns);
if (sensor->pixel_array->ctrl_handler.error) {
dev_err(&client->dev,
"pixel array controls initialization failed (%d)\n",
sensor->pixel_array->ctrl_handler.error);
return sensor->pixel_array->ctrl_handler.error;
}
sensor->pixel_array->sd.ctrl_handler =
&sensor->pixel_array->ctrl_handler;
v4l2_ctrl_cluster(2, &sensor->hflip);
rval = v4l2_ctrl_handler_init(&sensor->src->ctrl_handler, 0);
if (rval)
return rval;
sensor->src->ctrl_handler.lock = &sensor->mutex;
sensor->pixel_rate_csi = v4l2_ctrl_new_std(
&sensor->src->ctrl_handler, &ccs_ctrl_ops,
V4L2_CID_PIXEL_RATE, 1, INT_MAX, 1, 1);
if (sensor->src->ctrl_handler.error) {
dev_err(&client->dev,
"src controls initialization failed (%d)\n",
sensor->src->ctrl_handler.error);
return sensor->src->ctrl_handler.error;
}
sensor->src->sd.ctrl_handler = &sensor->src->ctrl_handler;
return 0;
}
/*
* For controls that require information on available media bus codes
* and linke frequencies.
*/
static int ccs_init_late_controls(struct ccs_sensor *sensor)
{
unsigned long *valid_link_freqs = &sensor->valid_link_freqs[
sensor->csi_format->compressed - sensor->compressed_min_bpp];
unsigned int i;
for (i = 0; i < ARRAY_SIZE(sensor->test_data); i++) {
int max_value = (1 << sensor->csi_format->width) - 1;
sensor->test_data[i] = v4l2_ctrl_new_std(
&sensor->pixel_array->ctrl_handler,
&ccs_ctrl_ops, V4L2_CID_TEST_PATTERN_RED + i,
0, max_value, 1, max_value);
}
sensor->link_freq = v4l2_ctrl_new_int_menu(
&sensor->src->ctrl_handler, &ccs_ctrl_ops,
V4L2_CID_LINK_FREQ, __fls(*valid_link_freqs),
__ffs(*valid_link_freqs), sensor->hwcfg.op_sys_clock);
return sensor->src->ctrl_handler.error;
}
static void ccs_free_controls(struct ccs_sensor *sensor)
{
unsigned int i;
for (i = 0; i < sensor->ssds_used; i++)
v4l2_ctrl_handler_free(&sensor->ssds[i].ctrl_handler);
}
static int ccs_get_mbus_formats(struct ccs_sensor *sensor)
{
struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd);
struct ccs_pll *pll = &sensor->pll;
u8 compressed_max_bpp = 0;
unsigned int type, n;
unsigned int i, pixel_order;
int rval;
type = CCS_LIM(sensor, DATA_FORMAT_MODEL_TYPE);
dev_dbg(&client->dev, "data_format_model_type %d\n", type);
rval = ccs_read(sensor, PIXEL_ORDER, &pixel_order);
if (rval)
return rval;
if (pixel_order >= ARRAY_SIZE(pixel_order_str)) {
dev_dbg(&client->dev, "bad pixel order %d\n", pixel_order);
return -EINVAL;
}
dev_dbg(&client->dev, "pixel order %d (%s)\n", pixel_order,
pixel_order_str[pixel_order]);
switch (type) {
case CCS_DATA_FORMAT_MODEL_TYPE_NORMAL:
n = SMIAPP_DATA_FORMAT_MODEL_TYPE_NORMAL_N;
break;
case CCS_DATA_FORMAT_MODEL_TYPE_EXTENDED:
n = CCS_LIM_DATA_FORMAT_DESCRIPTOR_MAX_N + 1;
break;
default:
return -EINVAL;
}
sensor->default_pixel_order = pixel_order;
sensor->mbus_frame_fmts = 0;
for (i = 0; i < n; i++) {
unsigned int fmt, j;
fmt = CCS_LIM_AT(sensor, DATA_FORMAT_DESCRIPTOR, i);
dev_dbg(&client->dev, "%u: bpp %u, compressed %u\n",
i, fmt >> 8, (u8)fmt);
for (j = 0; j < ARRAY_SIZE(ccs_csi_data_formats); j++) {
const struct ccs_csi_data_format *f =
&ccs_csi_data_formats[j];
if (f->pixel_order != CCS_PIXEL_ORDER_GRBG)
continue;
if (f->width != fmt >>
CCS_DATA_FORMAT_DESCRIPTOR_UNCOMPRESSED_SHIFT ||
f->compressed !=
(fmt & CCS_DATA_FORMAT_DESCRIPTOR_COMPRESSED_MASK))
continue;
dev_dbg(&client->dev, "jolly good! %d\n", j);
sensor->default_mbus_frame_fmts |= 1 << j;
}
}
/* Figure out which BPP values can be used with which formats. */
pll->binning_horizontal = 1;
pll->binning_vertical = 1;
pll->scale_m = sensor->scale_m;
for (i = 0; i < ARRAY_SIZE(ccs_csi_data_formats); i++) {
sensor->compressed_min_bpp =
min(ccs_csi_data_formats[i].compressed,
sensor->compressed_min_bpp);
compressed_max_bpp =
max(ccs_csi_data_formats[i].compressed,
compressed_max_bpp);
}
sensor->valid_link_freqs = devm_kcalloc(
&client->dev,
compressed_max_bpp - sensor->compressed_min_bpp + 1,
sizeof(*sensor->valid_link_freqs), GFP_KERNEL);
if (!sensor->valid_link_freqs)
return -ENOMEM;
for (i = 0; i < ARRAY_SIZE(ccs_csi_data_formats); i++) {
const struct ccs_csi_data_format *f =
&ccs_csi_data_formats[i];
unsigned long *valid_link_freqs =
&sensor->valid_link_freqs[
f->compressed - sensor->compressed_min_bpp];
unsigned int j;
if (!(sensor->default_mbus_frame_fmts & 1 << i))
continue;
pll->bits_per_pixel = f->compressed;
for (j = 0; sensor->hwcfg.op_sys_clock[j]; j++) {
pll->link_freq = sensor->hwcfg.op_sys_clock[j];
rval = ccs_pll_try(sensor, pll);
dev_dbg(&client->dev, "link freq %u Hz, bpp %u %s\n",
pll->link_freq, pll->bits_per_pixel,
rval ? "not ok" : "ok");
if (rval)
continue;
set_bit(j, valid_link_freqs);
}
if (!*valid_link_freqs) {
dev_info(&client->dev,
"no valid link frequencies for %u bpp\n",
f->compressed);
sensor->default_mbus_frame_fmts &= ~BIT(i);
continue;
}
if (!sensor->csi_format
|| f->width > sensor->csi_format->width
|| (f->width == sensor->csi_format->width
&& f->compressed > sensor->csi_format->compressed)) {
sensor->csi_format = f;
sensor->internal_csi_format = f;
}
}
if (!sensor->csi_format) {
dev_err(&client->dev, "no supported mbus code found\n");
return -EINVAL;
}
ccs_update_mbus_formats(sensor);
return 0;
}
static void ccs_update_blanking(struct ccs_sensor *sensor)
{
struct v4l2_ctrl *vblank = sensor->vblank;
struct v4l2_ctrl *hblank = sensor->hblank;
u16 min_fll, max_fll, min_llp, max_llp, min_lbp;
int min, max;
if (sensor->binning_vertical > 1 || sensor->binning_horizontal > 1) {
min_fll = CCS_LIM(sensor, MIN_FRAME_LENGTH_LINES_BIN);
max_fll = CCS_LIM(sensor, MAX_FRAME_LENGTH_LINES_BIN);
min_llp = CCS_LIM(sensor, MIN_LINE_LENGTH_PCK_BIN);
max_llp = CCS_LIM(sensor, MAX_LINE_LENGTH_PCK_BIN);
min_lbp = CCS_LIM(sensor, MIN_LINE_BLANKING_PCK_BIN);
} else {
min_fll = CCS_LIM(sensor, MIN_FRAME_LENGTH_LINES);
max_fll = CCS_LIM(sensor, MAX_FRAME_LENGTH_LINES);
min_llp = CCS_LIM(sensor, MIN_LINE_LENGTH_PCK);
max_llp = CCS_LIM(sensor, MAX_LINE_LENGTH_PCK);
min_lbp = CCS_LIM(sensor, MIN_LINE_BLANKING_PCK);
}
min = max_t(int,
CCS_LIM(sensor, MIN_FRAME_BLANKING_LINES),
min_fll - sensor->pixel_array->crop[CCS_PA_PAD_SRC].height);
max = max_fll - sensor->pixel_array->crop[CCS_PA_PAD_SRC].height;
__v4l2_ctrl_modify_range(vblank, min, max, vblank->step, min);
min = max_t(int,
min_llp - sensor->pixel_array->crop[CCS_PA_PAD_SRC].width,
min_lbp);
max = max_llp - sensor->pixel_array->crop[CCS_PA_PAD_SRC].width;
__v4l2_ctrl_modify_range(hblank, min, max, hblank->step, min);
__ccs_update_exposure_limits(sensor);
}
static int ccs_pll_blanking_update(struct ccs_sensor *sensor)
{
struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd);
int rval;
rval = ccs_pll_update(sensor);
if (rval < 0)
return rval;
/* Output from pixel array, including blanking */
ccs_update_blanking(sensor);
dev_dbg(&client->dev, "vblank\t\t%d\n", sensor->vblank->val);
dev_dbg(&client->dev, "hblank\t\t%d\n", sensor->hblank->val);
dev_dbg(&client->dev, "real timeperframe\t100/%d\n",
sensor->pll.pixel_rate_pixel_array /
((sensor->pixel_array->crop[CCS_PA_PAD_SRC].width
+ sensor->hblank->val) *
(sensor->pixel_array->crop[CCS_PA_PAD_SRC].height
+ sensor->vblank->val) / 100));
return 0;
}
/*
*
* SMIA++ NVM handling
*
*/
static int ccs_read_nvm_page(struct ccs_sensor *sensor, u32 p, u8 *nvm,
u8 *status)
{
unsigned int i;
int rval;
u32 s;
*status = 0;
rval = ccs_write(sensor, DATA_TRANSFER_IF_1_PAGE_SELECT, p);
if (rval)
return rval;
rval = ccs_write(sensor, DATA_TRANSFER_IF_1_CTRL,
CCS_DATA_TRANSFER_IF_1_CTRL_ENABLE);
if (rval)
return rval;
rval = ccs_read(sensor, DATA_TRANSFER_IF_1_STATUS, &s);
if (rval)
return rval;
if (s & CCS_DATA_TRANSFER_IF_1_STATUS_IMPROPER_IF_USAGE) {
*status = s;
return -ENODATA;
}
if (CCS_LIM(sensor, DATA_TRANSFER_IF_CAPABILITY) &
CCS_DATA_TRANSFER_IF_CAPABILITY_POLLING) {
for (i = 1000; i > 0; i--) {
if (s & CCS_DATA_TRANSFER_IF_1_STATUS_READ_IF_READY)
break;
rval = ccs_read(sensor, DATA_TRANSFER_IF_1_STATUS, &s);
if (rval)
return rval;
}
if (!i)
return -ETIMEDOUT;
}
for (i = 0; i <= CCS_LIM_DATA_TRANSFER_IF_1_DATA_MAX_P; i++) {
u32 v;
rval = ccs_read(sensor, DATA_TRANSFER_IF_1_DATA(i), &v);
if (rval)
return rval;
*nvm++ = v;
}
return 0;
}
static int ccs_read_nvm(struct ccs_sensor *sensor, unsigned char *nvm,
size_t nvm_size)
{
u8 status = 0;
u32 p;
int rval = 0, rval2;
for (p = 0; p < nvm_size / (CCS_LIM_DATA_TRANSFER_IF_1_DATA_MAX_P + 1)
&& !rval; p++) {
rval = ccs_read_nvm_page(sensor, p, nvm, &status);
nvm += CCS_LIM_DATA_TRANSFER_IF_1_DATA_MAX_P + 1;
}
if (rval == -ENODATA &&
status & CCS_DATA_TRANSFER_IF_1_STATUS_IMPROPER_IF_USAGE)
rval = 0;
rval2 = ccs_write(sensor, DATA_TRANSFER_IF_1_CTRL, 0);
if (rval < 0)
return rval;
else
return rval2 ?: p * (CCS_LIM_DATA_TRANSFER_IF_1_DATA_MAX_P + 1);
}
/*
*
* SMIA++ CCI address control
*
*/
static int ccs_change_cci_addr(struct ccs_sensor *sensor)
{
struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd);
int rval;
u32 val;
client->addr = sensor->hwcfg.i2c_addr_dfl;
rval = ccs_write(sensor, CCI_ADDRESS_CTRL,
sensor->hwcfg.i2c_addr_alt << 1);
if (rval)
return rval;
client->addr = sensor->hwcfg.i2c_addr_alt;
/* verify addr change went ok */
rval = ccs_read(sensor, CCI_ADDRESS_CTRL, &val);
if (rval)
return rval;
if (val != sensor->hwcfg.i2c_addr_alt << 1)
return -ENODEV;
return 0;
}
/*
*
* SMIA++ Mode Control
*
*/
static int ccs_setup_flash_strobe(struct ccs_sensor *sensor)
{
struct ccs_flash_strobe_parms *strobe_setup;
unsigned int ext_freq = sensor->hwcfg.ext_clk;
u32 tmp;
u32 strobe_adjustment;
u32 strobe_width_high_rs;
int rval;
strobe_setup = sensor->hwcfg.strobe_setup;
/*
* How to calculate registers related to strobe length. Please
* do not change, or if you do at least know what you're
* doing. :-)
*
* Sakari Ailus <sakari.ailus@linux.intel.com> 2010-10-25
*
* flash_strobe_length [us] / 10^6 = (tFlash_strobe_width_ctrl
* / EXTCLK freq [Hz]) * flash_strobe_adjustment
*
* tFlash_strobe_width_ctrl E N, [1 - 0xffff]
* flash_strobe_adjustment E N, [1 - 0xff]
*
* The formula above is written as below to keep it on one
* line:
*
* l / 10^6 = w / e * a
*
* Let's mark w * a by x:
*
* x = w * a
*
* Thus, we get:
*
* x = l * e / 10^6
*
* The strobe width must be at least as long as requested,
* thus rounding upwards is needed.
*
* x = (l * e + 10^6 - 1) / 10^6
* -----------------------------
*
* Maximum possible accuracy is wanted at all times. Thus keep
* a as small as possible.
*
* Calculate a, assuming maximum w, with rounding upwards:
*
* a = (x + (2^16 - 1) - 1) / (2^16 - 1)
* -------------------------------------
*
* Thus, we also get w, with that a, with rounding upwards:
*
* w = (x + a - 1) / a
* -------------------
*
* To get limits:
*
* x E [1, (2^16 - 1) * (2^8 - 1)]
*
* Substituting maximum x to the original formula (with rounding),
* the maximum l is thus
*
* (2^16 - 1) * (2^8 - 1) * 10^6 = l * e + 10^6 - 1
*
* l = (10^6 * (2^16 - 1) * (2^8 - 1) - 10^6 + 1) / e
* --------------------------------------------------
*
* flash_strobe_length must be clamped between 1 and
* (10^6 * (2^16 - 1) * (2^8 - 1) - 10^6 + 1) / EXTCLK freq.
*
* Then,
*
* flash_strobe_adjustment = ((flash_strobe_length *
* EXTCLK freq + 10^6 - 1) / 10^6 + (2^16 - 1) - 1) / (2^16 - 1)
*
* tFlash_strobe_width_ctrl = ((flash_strobe_length *
* EXTCLK freq + 10^6 - 1) / 10^6 +
* flash_strobe_adjustment - 1) / flash_strobe_adjustment
*/
tmp = div_u64(1000000ULL * ((1 << 16) - 1) * ((1 << 8) - 1) -
1000000 + 1, ext_freq);
strobe_setup->strobe_width_high_us =
clamp_t(u32, strobe_setup->strobe_width_high_us, 1, tmp);
tmp = div_u64(((u64)strobe_setup->strobe_width_high_us * (u64)ext_freq +
1000000 - 1), 1000000ULL);
strobe_adjustment = (tmp + (1 << 16) - 1 - 1) / ((1 << 16) - 1);
strobe_width_high_rs = (tmp + strobe_adjustment - 1) /
strobe_adjustment;
rval = ccs_write(sensor, FLASH_MODE_RS, strobe_setup->mode);
if (rval < 0)
goto out;
rval = ccs_write(sensor, FLASH_STROBE_ADJUSTMENT, strobe_adjustment);
if (rval < 0)
goto out;
rval = ccs_write(sensor, TFLASH_STROBE_WIDTH_HIGH_RS_CTRL,
strobe_width_high_rs);
if (rval < 0)
goto out;
rval = ccs_write(sensor, TFLASH_STROBE_DELAY_RS_CTRL,
strobe_setup->strobe_delay);
if (rval < 0)
goto out;
rval = ccs_write(sensor, FLASH_STROBE_START_POINT,
strobe_setup->stobe_start_point);
if (rval < 0)
goto out;
rval = ccs_write(sensor, FLASH_TRIGGER_RS, strobe_setup->trigger);
out:
sensor->hwcfg.strobe_setup->trigger = 0;
return rval;
}
/* -----------------------------------------------------------------------------
* Power management
*/
static int ccs_write_msr_regs(struct ccs_sensor *sensor)
{
int rval;
rval = ccs_write_data_regs(sensor,
sensor->sdata.sensor_manufacturer_regs,
sensor->sdata.num_sensor_manufacturer_regs);
if (rval)
return rval;
return ccs_write_data_regs(sensor,
sensor->mdata.module_manufacturer_regs,
sensor->mdata.num_module_manufacturer_regs);
}
static int ccs_update_phy_ctrl(struct ccs_sensor *sensor)
{
struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd);
u8 val;
if (!sensor->ccs_limits)
return 0;
if (CCS_LIM(sensor, PHY_CTRL_CAPABILITY) &
CCS_PHY_CTRL_CAPABILITY_AUTO_PHY_CTL) {
val = CCS_PHY_CTRL_AUTO;
} else if (CCS_LIM(sensor, PHY_CTRL_CAPABILITY) &
CCS_PHY_CTRL_CAPABILITY_UI_PHY_CTL) {
val = CCS_PHY_CTRL_UI;
} else {
dev_err(&client->dev, "manual PHY control not supported\n");
return -EINVAL;
}
return ccs_write(sensor, PHY_CTRL, val);
}
static int ccs_power_on(struct device *dev)
{
struct v4l2_subdev *subdev = dev_get_drvdata(dev);
struct ccs_subdev *ssd = to_ccs_subdev(subdev);
/*
* The sub-device related to the I2C device is always the
* source one, i.e. ssds[0].
*/
struct ccs_sensor *sensor =
container_of(ssd, struct ccs_sensor, ssds[0]);
const struct ccs_device *ccsdev = device_get_match_data(dev);
int rval;
rval = regulator_bulk_enable(ARRAY_SIZE(ccs_regulators),
sensor->regulators);
if (rval) {
dev_err(dev, "failed to enable vana regulator\n");
return rval;
}
if (sensor->reset || sensor->xshutdown || sensor->ext_clk) {
unsigned int sleep;
rval = clk_prepare_enable(sensor->ext_clk);
if (rval < 0) {
dev_dbg(dev, "failed to enable xclk\n");
goto out_xclk_fail;
}
gpiod_set_value(sensor->reset, 0);
gpiod_set_value(sensor->xshutdown, 1);
if (ccsdev->flags & CCS_DEVICE_FLAG_IS_SMIA)
sleep = SMIAPP_RESET_DELAY(sensor->hwcfg.ext_clk);
else
sleep = 5000;
usleep_range(sleep, sleep);
}
/*
* Failures to respond to the address change command have been noticed.
* Those failures seem to be caused by the sensor requiring a longer
* boot time than advertised. An additional 10ms delay seems to work
* around the issue, but the SMIA++ I2C write retry hack makes the delay
* unnecessary. The failures need to be investigated to find a proper
* fix, and a delay will likely need to be added here if the I2C write
* retry hack is reverted before the root cause of the boot time issue
* is found.
*/
if (!sensor->reset && !sensor->xshutdown) {
u8 retry = 100;
u32 reset;
rval = ccs_write(sensor, SOFTWARE_RESET, CCS_SOFTWARE_RESET_ON);
if (rval < 0) {
dev_err(dev, "software reset failed\n");
goto out_cci_addr_fail;
}
do {
rval = ccs_read(sensor, SOFTWARE_RESET, &reset);
reset = !rval && reset == CCS_SOFTWARE_RESET_OFF;
if (reset)
break;
usleep_range(1000, 2000);
} while (--retry);
if (!reset)
return -EIO;
}
if (sensor->hwcfg.i2c_addr_alt) {
rval = ccs_change_cci_addr(sensor);
if (rval) {
dev_err(dev, "cci address change error\n");
goto out_cci_addr_fail;
}
}
rval = ccs_write(sensor, COMPRESSION_MODE,
CCS_COMPRESSION_MODE_DPCM_PCM_SIMPLE);
if (rval) {
dev_err(dev, "compression mode set failed\n");
goto out_cci_addr_fail;
}
rval = ccs_write(sensor, EXTCLK_FREQUENCY_MHZ,
sensor->hwcfg.ext_clk / (1000000 / (1 << 8)));
if (rval) {
dev_err(dev, "extclk frequency set failed\n");
goto out_cci_addr_fail;
}
rval = ccs_write(sensor, CSI_LANE_MODE, sensor->hwcfg.lanes - 1);
if (rval) {
dev_err(dev, "csi lane mode set failed\n");
goto out_cci_addr_fail;
}
rval = ccs_write(sensor, FAST_STANDBY_CTRL,
CCS_FAST_STANDBY_CTRL_FRAME_TRUNCATION);
if (rval) {
dev_err(dev, "fast standby set failed\n");
goto out_cci_addr_fail;
}
rval = ccs_write(sensor, CSI_SIGNALING_MODE,
sensor->hwcfg.csi_signalling_mode);
if (rval) {
dev_err(dev, "csi signalling mode set failed\n");
goto out_cci_addr_fail;
}
rval = ccs_update_phy_ctrl(sensor);
if (rval < 0)
goto out_cci_addr_fail;
rval = ccs_write_msr_regs(sensor);
if (rval)
goto out_cci_addr_fail;
rval = ccs_call_quirk(sensor, post_poweron);
if (rval) {
dev_err(dev, "post_poweron quirks failed\n");
goto out_cci_addr_fail;
}
return 0;
out_cci_addr_fail:
gpiod_set_value(sensor->reset, 1);
gpiod_set_value(sensor->xshutdown, 0);
clk_disable_unprepare(sensor->ext_clk);
out_xclk_fail:
regulator_bulk_disable(ARRAY_SIZE(ccs_regulators),
sensor->regulators);
return rval;
}
static int ccs_power_off(struct device *dev)
{
struct v4l2_subdev *subdev = dev_get_drvdata(dev);
struct ccs_subdev *ssd = to_ccs_subdev(subdev);
struct ccs_sensor *sensor =
container_of(ssd, struct ccs_sensor, ssds[0]);
/*
* Currently power/clock to lens are enable/disabled separately
* but they are essentially the same signals. So if the sensor is
* powered off while the lens is powered on the sensor does not
* really see a power off and next time the cci address change
* will fail. So do a soft reset explicitly here.
*/
if (sensor->hwcfg.i2c_addr_alt)
ccs_write(sensor, SOFTWARE_RESET, CCS_SOFTWARE_RESET_ON);
gpiod_set_value(sensor->reset, 1);
gpiod_set_value(sensor->xshutdown, 0);
clk_disable_unprepare(sensor->ext_clk);
usleep_range(5000, 5000);
regulator_bulk_disable(ARRAY_SIZE(ccs_regulators),
sensor->regulators);
sensor->streaming = false;
return 0;
}
/* -----------------------------------------------------------------------------
* Video stream management
*/
static int ccs_start_streaming(struct ccs_sensor *sensor)
{
struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd);
unsigned int binning_mode;
int rval;
mutex_lock(&sensor->mutex);
rval = ccs_write(sensor, CSI_DATA_FORMAT,
(sensor->csi_format->width << 8) |
sensor->csi_format->compressed);
if (rval)
goto out;
/* Binning configuration */
if (sensor->binning_horizontal == 1 &&
sensor->binning_vertical == 1) {
binning_mode = 0;
} else {
u8 binning_type =
(sensor->binning_horizontal << 4)
| sensor->binning_vertical;
rval = ccs_write(sensor, BINNING_TYPE, binning_type);
if (rval < 0)
goto out;
binning_mode = 1;
}
rval = ccs_write(sensor, BINNING_MODE, binning_mode);
if (rval < 0)
goto out;
/* Set up PLL */
rval = ccs_pll_configure(sensor);
if (rval)
goto out;
/* Analog crop start coordinates */
rval = ccs_write(sensor, X_ADDR_START,
sensor->pixel_array->crop[CCS_PA_PAD_SRC].left);
if (rval < 0)
goto out;
rval = ccs_write(sensor, Y_ADDR_START,
sensor->pixel_array->crop[CCS_PA_PAD_SRC].top);
if (rval < 0)
goto out;
/* Analog crop end coordinates */
rval = ccs_write(
sensor, X_ADDR_END,
sensor->pixel_array->crop[CCS_PA_PAD_SRC].left
+ sensor->pixel_array->crop[CCS_PA_PAD_SRC].width - 1);
if (rval < 0)
goto out;
rval = ccs_write(
sensor, Y_ADDR_END,
sensor->pixel_array->crop[CCS_PA_PAD_SRC].top
+ sensor->pixel_array->crop[CCS_PA_PAD_SRC].height - 1);
if (rval < 0)
goto out;
/*
* Output from pixel array, including blanking, is set using
* controls below. No need to set here.
*/
/* Digital crop */
if (CCS_LIM(sensor, DIGITAL_CROP_CAPABILITY)
== CCS_DIGITAL_CROP_CAPABILITY_INPUT_CROP) {
rval = ccs_write(
sensor, DIGITAL_CROP_X_OFFSET,
sensor->scaler->crop[CCS_PAD_SINK].left);
if (rval < 0)
goto out;
rval = ccs_write(
sensor, DIGITAL_CROP_Y_OFFSET,
sensor->scaler->crop[CCS_PAD_SINK].top);
if (rval < 0)
goto out;
rval = ccs_write(
sensor, DIGITAL_CROP_IMAGE_WIDTH,
sensor->scaler->crop[CCS_PAD_SINK].width);
if (rval < 0)
goto out;
rval = ccs_write(
sensor, DIGITAL_CROP_IMAGE_HEIGHT,
sensor->scaler->crop[CCS_PAD_SINK].height);
if (rval < 0)
goto out;
}
/* Scaling */
if (CCS_LIM(sensor, SCALING_CAPABILITY)
!= CCS_SCALING_CAPABILITY_NONE) {
rval = ccs_write(sensor, SCALING_MODE, sensor->scaling_mode);
if (rval < 0)
goto out;
rval = ccs_write(sensor, SCALE_M, sensor->scale_m);
if (rval < 0)
goto out;
}
/* Output size from sensor */
rval = ccs_write(sensor, X_OUTPUT_SIZE,
sensor->src->crop[CCS_PAD_SRC].width);
if (rval < 0)
goto out;
rval = ccs_write(sensor, Y_OUTPUT_SIZE,
sensor->src->crop[CCS_PAD_SRC].height);
if (rval < 0)
goto out;
if (CCS_LIM(sensor, FLASH_MODE_CAPABILITY) &
(CCS_FLASH_MODE_CAPABILITY_SINGLE_STROBE |
SMIAPP_FLASH_MODE_CAPABILITY_MULTIPLE_STROBE) &&
sensor->hwcfg.strobe_setup != NULL &&
sensor->hwcfg.strobe_setup->trigger != 0) {
rval = ccs_setup_flash_strobe(sensor);
if (rval)
goto out;
}
rval = ccs_call_quirk(sensor, pre_streamon);
if (rval) {
dev_err(&client->dev, "pre_streamon quirks failed\n");
goto out;
}
rval = ccs_write(sensor, MODE_SELECT, CCS_MODE_SELECT_STREAMING);
out:
mutex_unlock(&sensor->mutex);
return rval;
}
static int ccs_stop_streaming(struct ccs_sensor *sensor)
{
struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd);
int rval;
mutex_lock(&sensor->mutex);
rval = ccs_write(sensor, MODE_SELECT, CCS_MODE_SELECT_SOFTWARE_STANDBY);
if (rval)
goto out;
rval = ccs_call_quirk(sensor, post_streamoff);
if (rval)
dev_err(&client->dev, "post_streamoff quirks failed\n");
out:
mutex_unlock(&sensor->mutex);
return rval;
}
/* -----------------------------------------------------------------------------
* V4L2 subdev video operations
*/
static int ccs_pm_get_init(struct ccs_sensor *sensor)
{
struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd);
int rval;
/*
* It can't use pm_runtime_resume_and_get() here, as the driver
* relies at the returned value to detect if the device was already
* active or not.
*/
rval = pm_runtime_get_sync(&client->dev);
if (rval < 0)
goto error;
/* Device was already active, so don't set controls */
if (rval == 1)
return 0;
/* Restore V4L2 controls to the previously suspended device */
rval = v4l2_ctrl_handler_setup(&sensor->pixel_array->ctrl_handler);
if (rval)
goto error;
rval = v4l2_ctrl_handler_setup(&sensor->src->ctrl_handler);
if (rval)
goto error;
/* Keep PM runtime usage_count incremented on success */
return 0;
error:
pm_runtime_put(&client->dev);
return rval;
}
static int ccs_set_stream(struct v4l2_subdev *subdev, int enable)
{
struct ccs_sensor *sensor = to_ccs_sensor(subdev);
struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd);
int rval;
if (sensor->streaming == enable)
return 0;
if (!enable) {
ccs_stop_streaming(sensor);
sensor->streaming = false;
pm_runtime_mark_last_busy(&client->dev);
pm_runtime_put_autosuspend(&client->dev);
return 0;
}
rval = ccs_pm_get_init(sensor);
if (rval)
return rval;
sensor->streaming = true;
rval = ccs_start_streaming(sensor);
if (rval < 0) {
sensor->streaming = false;
pm_runtime_mark_last_busy(&client->dev);
pm_runtime_put_autosuspend(&client->dev);
}
return rval;
}
static int ccs_enum_mbus_code(struct v4l2_subdev *subdev,
struct v4l2_subdev_state *sd_state,
struct v4l2_subdev_mbus_code_enum *code)
{
struct i2c_client *client = v4l2_get_subdevdata(subdev);
struct ccs_sensor *sensor = to_ccs_sensor(subdev);
unsigned int i;
int idx = -1;
int rval = -EINVAL;
mutex_lock(&sensor->mutex);
dev_err(&client->dev, "subdev %s, pad %d, index %d\n",
subdev->name, code->pad, code->index);
if (subdev != &sensor->src->sd || code->pad != CCS_PAD_SRC) {
if (code->index)
goto out;
code->code = sensor->internal_csi_format->code;
rval = 0;
goto out;
}
for (i = 0; i < ARRAY_SIZE(ccs_csi_data_formats); i++) {
if (sensor->mbus_frame_fmts & (1 << i))
idx++;
if (idx == code->index) {
code->code = ccs_csi_data_formats[i].code;
dev_err(&client->dev, "found index %d, i %d, code %x\n",
code->index, i, code->code);
rval = 0;
break;
}
}
out:
mutex_unlock(&sensor->mutex);
return rval;
}
static u32 __ccs_get_mbus_code(struct v4l2_subdev *subdev, unsigned int pad)
{
struct ccs_sensor *sensor = to_ccs_sensor(subdev);
if (subdev == &sensor->src->sd && pad == CCS_PAD_SRC)
return sensor->csi_format->code;
else
return sensor->internal_csi_format->code;
}
static int __ccs_get_format(struct v4l2_subdev *subdev,
struct v4l2_subdev_state *sd_state,
struct v4l2_subdev_format *fmt)
{
struct ccs_subdev *ssd = to_ccs_subdev(subdev);
if (fmt->which == V4L2_SUBDEV_FORMAT_TRY) {
fmt->format = *v4l2_subdev_get_try_format(subdev, sd_state,
fmt->pad);
} else {
struct v4l2_rect *r;
if (fmt->pad == ssd->source_pad)
r = &ssd->crop[ssd->source_pad];
else
r = &ssd->sink_fmt;
fmt->format.code = __ccs_get_mbus_code(subdev, fmt->pad);
fmt->format.width = r->width;
fmt->format.height = r->height;
fmt->format.field = V4L2_FIELD_NONE;
}
return 0;
}
static int ccs_get_format(struct v4l2_subdev *subdev,
struct v4l2_subdev_state *sd_state,
struct v4l2_subdev_format *fmt)
{
struct ccs_sensor *sensor = to_ccs_sensor(subdev);
int rval;
mutex_lock(&sensor->mutex);
rval = __ccs_get_format(subdev, sd_state, fmt);
mutex_unlock(&sensor->mutex);
return rval;
}
static void ccs_get_crop_compose(struct v4l2_subdev *subdev,
struct v4l2_subdev_state *sd_state,
struct v4l2_rect **crops,
struct v4l2_rect **comps, int which)
{
struct ccs_subdev *ssd = to_ccs_subdev(subdev);
unsigned int i;
if (which == V4L2_SUBDEV_FORMAT_ACTIVE) {
if (crops)
for (i = 0; i < subdev->entity.num_pads; i++)
crops[i] = &ssd->crop[i];
if (comps)
*comps = &ssd->compose;
} else {
if (crops) {
for (i = 0; i < subdev->entity.num_pads; i++)
crops[i] = v4l2_subdev_get_try_crop(subdev,
sd_state,
i);
}
if (comps)
*comps = v4l2_subdev_get_try_compose(subdev, sd_state,
CCS_PAD_SINK);
}
}
/* Changes require propagation only on sink pad. */
static void ccs_propagate(struct v4l2_subdev *subdev,
struct v4l2_subdev_state *sd_state, int which,
int target)
{
struct ccs_sensor *sensor = to_ccs_sensor(subdev);
struct ccs_subdev *ssd = to_ccs_subdev(subdev);
struct v4l2_rect *comp, *crops[CCS_PADS];
ccs_get_crop_compose(subdev, sd_state, crops, &comp, which);
switch (target) {
case V4L2_SEL_TGT_CROP:
comp->width = crops[CCS_PAD_SINK]->width;
comp->height = crops[CCS_PAD_SINK]->height;
if (which == V4L2_SUBDEV_FORMAT_ACTIVE) {
if (ssd == sensor->scaler) {
sensor->scale_m = CCS_LIM(sensor, SCALER_N_MIN);
sensor->scaling_mode =
CCS_SCALING_MODE_NO_SCALING;
} else if (ssd == sensor->binner) {
sensor->binning_horizontal = 1;
sensor->binning_vertical = 1;
}
}
fallthrough;
case V4L2_SEL_TGT_COMPOSE:
*crops[CCS_PAD_SRC] = *comp;
break;
default:
WARN_ON_ONCE(1);
}
}
static const struct ccs_csi_data_format
*ccs_validate_csi_data_format(struct ccs_sensor *sensor, u32 code)
{
unsigned int i;
for (i = 0; i < ARRAY_SIZE(ccs_csi_data_formats); i++) {
if (sensor->mbus_frame_fmts & (1 << i) &&
ccs_csi_data_formats[i].code == code)
return &ccs_csi_data_formats[i];
}
return sensor->csi_format;
}
static int ccs_set_format_source(struct v4l2_subdev *subdev,
struct v4l2_subdev_state *sd_state,
struct v4l2_subdev_format *fmt)
{
struct ccs_sensor *sensor = to_ccs_sensor(subdev);
const struct ccs_csi_data_format *csi_format,
*old_csi_format = sensor->csi_format;
unsigned long *valid_link_freqs;
u32 code = fmt->format.code;
unsigned int i;
int rval;
rval = __ccs_get_format(subdev, sd_state, fmt);
if (rval)
return rval;
/*
* Media bus code is changeable on src subdev's source pad. On
* other source pads we just get format here.
*/
if (subdev != &sensor->src->sd)
return 0;
csi_format = ccs_validate_csi_data_format(sensor, code);
fmt->format.code = csi_format->code;
if (fmt->which != V4L2_SUBDEV_FORMAT_ACTIVE)
return 0;
sensor->csi_format = csi_format;
if (csi_format->width != old_csi_format->width)
for (i = 0; i < ARRAY_SIZE(sensor->test_data); i++)
__v4l2_ctrl_modify_range(
sensor->test_data[i], 0,
(1 << csi_format->width) - 1, 1, 0);
if (csi_format->compressed == old_csi_format->compressed)
return 0;
valid_link_freqs =
&sensor->valid_link_freqs[sensor->csi_format->compressed
- sensor->compressed_min_bpp];
__v4l2_ctrl_modify_range(
sensor->link_freq, 0,
__fls(*valid_link_freqs), ~*valid_link_freqs,
__ffs(*valid_link_freqs));
return ccs_pll_update(sensor);
}
static int ccs_set_format(struct v4l2_subdev *subdev,
struct v4l2_subdev_state *sd_state,
struct v4l2_subdev_format *fmt)
{
struct ccs_sensor *sensor = to_ccs_sensor(subdev);
struct ccs_subdev *ssd = to_ccs_subdev(subdev);
struct v4l2_rect *crops[CCS_PADS];
mutex_lock(&sensor->mutex);
if (fmt->pad == ssd->source_pad) {
int rval;
rval = ccs_set_format_source(subdev, sd_state, fmt);
mutex_unlock(&sensor->mutex);
return rval;
}
/* Sink pad. Width and height are changeable here. */
fmt->format.code = __ccs_get_mbus_code(subdev, fmt->pad);
fmt->format.width &= ~1;
fmt->format.height &= ~1;
fmt->format.field = V4L2_FIELD_NONE;
fmt->format.width =
clamp(fmt->format.width,
CCS_LIM(sensor, MIN_X_OUTPUT_SIZE),
CCS_LIM(sensor, MAX_X_OUTPUT_SIZE));
fmt->format.height =
clamp(fmt->format.height,
CCS_LIM(sensor, MIN_Y_OUTPUT_SIZE),
CCS_LIM(sensor, MAX_Y_OUTPUT_SIZE));
ccs_get_crop_compose(subdev, sd_state, crops, NULL, fmt->which);
crops[ssd->sink_pad]->left = 0;
crops[ssd->sink_pad]->top = 0;
crops[ssd->sink_pad]->width = fmt->format.width;
crops[ssd->sink_pad]->height = fmt->format.height;
if (fmt->which == V4L2_SUBDEV_FORMAT_ACTIVE)
ssd->sink_fmt = *crops[ssd->sink_pad];
ccs_propagate(subdev, sd_state, fmt->which, V4L2_SEL_TGT_CROP);
mutex_unlock(&sensor->mutex);
return 0;
}
/*
* Calculate goodness of scaled image size compared to expected image
* size and flags provided.
*/
#define SCALING_GOODNESS 100000
#define SCALING_GOODNESS_EXTREME 100000000
static int scaling_goodness(struct v4l2_subdev *subdev, int w, int ask_w,
int h, int ask_h, u32 flags)
{
struct ccs_sensor *sensor = to_ccs_sensor(subdev);
struct i2c_client *client = v4l2_get_subdevdata(subdev);
int val = 0;
w &= ~1;
ask_w &= ~1;
h &= ~1;
ask_h &= ~1;
if (flags & V4L2_SEL_FLAG_GE) {
if (w < ask_w)
val -= SCALING_GOODNESS;
if (h < ask_h)
val -= SCALING_GOODNESS;
}
if (flags & V4L2_SEL_FLAG_LE) {
if (w > ask_w)
val -= SCALING_GOODNESS;
if (h > ask_h)
val -= SCALING_GOODNESS;
}
val -= abs(w - ask_w);
val -= abs(h - ask_h);
if (w < CCS_LIM(sensor, MIN_X_OUTPUT_SIZE))
val -= SCALING_GOODNESS_EXTREME;
dev_dbg(&client->dev, "w %d ask_w %d h %d ask_h %d goodness %d\n",
w, ask_w, h, ask_h, val);
return val;
}
static void ccs_set_compose_binner(struct v4l2_subdev *subdev,
struct v4l2_subdev_state *sd_state,
struct v4l2_subdev_selection *sel,
struct v4l2_rect **crops,
struct v4l2_rect *comp)
{
struct ccs_sensor *sensor = to_ccs_sensor(subdev);
unsigned int i;
unsigned int binh = 1, binv = 1;
int best = scaling_goodness(
subdev,
crops[CCS_PAD_SINK]->width, sel->r.width,
crops[CCS_PAD_SINK]->height, sel->r.height, sel->flags);
for (i = 0; i < sensor->nbinning_subtypes; i++) {
int this = scaling_goodness(
subdev,
crops[CCS_PAD_SINK]->width
/ sensor->binning_subtypes[i].horizontal,
sel->r.width,
crops[CCS_PAD_SINK]->height
/ sensor->binning_subtypes[i].vertical,
sel->r.height, sel->flags);
if (this > best) {
binh = sensor->binning_subtypes[i].horizontal;
binv = sensor->binning_subtypes[i].vertical;
best = this;
}
}
if (sel->which == V4L2_SUBDEV_FORMAT_ACTIVE) {
sensor->binning_vertical = binv;
sensor->binning_horizontal = binh;
}
sel->r.width = (crops[CCS_PAD_SINK]->width / binh) & ~1;
sel->r.height = (crops[CCS_PAD_SINK]->height / binv) & ~1;
}
/*
* Calculate best scaling ratio and mode for given output resolution.
*
* Try all of these: horizontal ratio, vertical ratio and smallest
* size possible (horizontally).
*
* Also try whether horizontal scaler or full scaler gives a better
* result.
*/
static void ccs_set_compose_scaler(struct v4l2_subdev *subdev,
struct v4l2_subdev_state *sd_state,
struct v4l2_subdev_selection *sel,
struct v4l2_rect **crops,
struct v4l2_rect *comp)
{
struct i2c_client *client = v4l2_get_subdevdata(subdev);
struct ccs_sensor *sensor = to_ccs_sensor(subdev);
u32 min, max, a, b, max_m;
u32 scale_m = CCS_LIM(sensor, SCALER_N_MIN);
int mode = CCS_SCALING_MODE_HORIZONTAL;
u32 try[4];
u32 ntry = 0;
unsigned int i;
int best = INT_MIN;
sel->r.width = min_t(unsigned int, sel->r.width,
crops[CCS_PAD_SINK]->width);
sel->r.height = min_t(unsigned int, sel->r.height,
crops[CCS_PAD_SINK]->height);
a = crops[CCS_PAD_SINK]->width
* CCS_LIM(sensor, SCALER_N_MIN) / sel->r.width;
b = crops[CCS_PAD_SINK]->height
* CCS_LIM(sensor, SCALER_N_MIN) / sel->r.height;
max_m = crops[CCS_PAD_SINK]->width
* CCS_LIM(sensor, SCALER_N_MIN)
/ CCS_LIM(sensor, MIN_X_OUTPUT_SIZE);
a = clamp(a, CCS_LIM(sensor, SCALER_M_MIN),
CCS_LIM(sensor, SCALER_M_MAX));
b = clamp(b, CCS_LIM(sensor, SCALER_M_MIN),
CCS_LIM(sensor, SCALER_M_MAX));
max_m = clamp(max_m, CCS_LIM(sensor, SCALER_M_MIN),
CCS_LIM(sensor, SCALER_M_MAX));
dev_dbg(&client->dev, "scaling: a %d b %d max_m %d\n", a, b, max_m);
min = min(max_m, min(a, b));
max = min(max_m, max(a, b));
try[ntry] = min;
ntry++;
if (min != max) {
try[ntry] = max;
ntry++;
}
if (max != max_m) {
try[ntry] = min + 1;
ntry++;
if (min != max) {
try[ntry] = max + 1;
ntry++;
}
}
for (i = 0; i < ntry; i++) {
int this = scaling_goodness(
subdev,
crops[CCS_PAD_SINK]->width
/ try[i] * CCS_LIM(sensor, SCALER_N_MIN),
sel->r.width,
crops[CCS_PAD_SINK]->height,
sel->r.height,
sel->flags);
dev_dbg(&client->dev, "trying factor %d (%d)\n", try[i], i);
if (this > best) {
scale_m = try[i];
mode = CCS_SCALING_MODE_HORIZONTAL;
best = this;
}
if (CCS_LIM(sensor, SCALING_CAPABILITY)
== CCS_SCALING_CAPABILITY_HORIZONTAL)
continue;
this = scaling_goodness(
subdev, crops[CCS_PAD_SINK]->width
/ try[i]
* CCS_LIM(sensor, SCALER_N_MIN),
sel->r.width,
crops[CCS_PAD_SINK]->height
/ try[i]
* CCS_LIM(sensor, SCALER_N_MIN),
sel->r.height,
sel->flags);
if (this > best) {
scale_m = try[i];
mode = SMIAPP_SCALING_MODE_BOTH;
best = this;
}
}
sel->r.width =
(crops[CCS_PAD_SINK]->width
/ scale_m
* CCS_LIM(sensor, SCALER_N_MIN)) & ~1;
if (mode == SMIAPP_SCALING_MODE_BOTH)
sel->r.height =
(crops[CCS_PAD_SINK]->height
/ scale_m
* CCS_LIM(sensor, SCALER_N_MIN))
& ~1;
else
sel->r.height = crops[CCS_PAD_SINK]->height;
if (sel->which == V4L2_SUBDEV_FORMAT_ACTIVE) {
sensor->scale_m = scale_m;
sensor->scaling_mode = mode;
}
}
/* We're only called on source pads. This function sets scaling. */
static int ccs_set_compose(struct v4l2_subdev *subdev,
struct v4l2_subdev_state *sd_state,
struct v4l2_subdev_selection *sel)
{
struct ccs_sensor *sensor = to_ccs_sensor(subdev);
struct ccs_subdev *ssd = to_ccs_subdev(subdev);
struct v4l2_rect *comp, *crops[CCS_PADS];
ccs_get_crop_compose(subdev, sd_state, crops, &comp, sel->which);
sel->r.top = 0;
sel->r.left = 0;
if (ssd == sensor->binner)
ccs_set_compose_binner(subdev, sd_state, sel, crops, comp);
else
ccs_set_compose_scaler(subdev, sd_state, sel, crops, comp);
*comp = sel->r;
ccs_propagate(subdev, sd_state, sel->which, V4L2_SEL_TGT_COMPOSE);
if (sel->which == V4L2_SUBDEV_FORMAT_ACTIVE)
return ccs_pll_blanking_update(sensor);
return 0;
}
static int __ccs_sel_supported(struct v4l2_subdev *subdev,
struct v4l2_subdev_selection *sel)
{
struct ccs_sensor *sensor = to_ccs_sensor(subdev);
struct ccs_subdev *ssd = to_ccs_subdev(subdev);
/* We only implement crop in three places. */
switch (sel->target) {
case V4L2_SEL_TGT_CROP:
case V4L2_SEL_TGT_CROP_BOUNDS:
if (ssd == sensor->pixel_array && sel->pad == CCS_PA_PAD_SRC)
return 0;
if (ssd == sensor->src && sel->pad == CCS_PAD_SRC)
return 0;
if (ssd == sensor->scaler && sel->pad == CCS_PAD_SINK &&
CCS_LIM(sensor, DIGITAL_CROP_CAPABILITY)
== CCS_DIGITAL_CROP_CAPABILITY_INPUT_CROP)
return 0;
return -EINVAL;
case V4L2_SEL_TGT_NATIVE_SIZE:
if (ssd == sensor->pixel_array && sel->pad == CCS_PA_PAD_SRC)
return 0;
return -EINVAL;
case V4L2_SEL_TGT_COMPOSE:
case V4L2_SEL_TGT_COMPOSE_BOUNDS:
if (sel->pad == ssd->source_pad)
return -EINVAL;
if (ssd == sensor->binner)
return 0;
if (ssd == sensor->scaler && CCS_LIM(sensor, SCALING_CAPABILITY)
!= CCS_SCALING_CAPABILITY_NONE)
return 0;
fallthrough;
default:
return -EINVAL;
}
}
static int ccs_set_crop(struct v4l2_subdev *subdev,
struct v4l2_subdev_state *sd_state,
struct v4l2_subdev_selection *sel)
{
struct ccs_sensor *sensor = to_ccs_sensor(subdev);
struct ccs_subdev *ssd = to_ccs_subdev(subdev);
struct v4l2_rect *src_size, *crops[CCS_PADS];
struct v4l2_rect _r;
ccs_get_crop_compose(subdev, sd_state, crops, NULL, sel->which);
if (sel->which == V4L2_SUBDEV_FORMAT_ACTIVE) {
if (sel->pad == ssd->sink_pad)
src_size = &ssd->sink_fmt;
else
src_size = &ssd->compose;
} else {
if (sel->pad == ssd->sink_pad) {
_r.left = 0;
_r.top = 0;
_r.width = v4l2_subdev_get_try_format(subdev,
sd_state,
sel->pad)
->width;
_r.height = v4l2_subdev_get_try_format(subdev,
sd_state,
sel->pad)
->height;
src_size = &_r;
} else {
src_size = v4l2_subdev_get_try_compose(
subdev, sd_state, ssd->sink_pad);
}
}
if (ssd == sensor->src && sel->pad == CCS_PAD_SRC) {
sel->r.left = 0;
sel->r.top = 0;
}
sel->r.width = min(sel->r.width, src_size->width);
sel->r.height = min(sel->r.height, src_size->height);
sel->r.left = min_t(int, sel->r.left, src_size->width - sel->r.width);
sel->r.top = min_t(int, sel->r.top, src_size->height - sel->r.height);
*crops[sel->pad] = sel->r;
if (ssd != sensor->pixel_array && sel->pad == CCS_PAD_SINK)
ccs_propagate(subdev, sd_state, sel->which, V4L2_SEL_TGT_CROP);
return 0;
}
static void ccs_get_native_size(struct ccs_subdev *ssd, struct v4l2_rect *r)
{
r->top = 0;
r->left = 0;
r->width = CCS_LIM(ssd->sensor, X_ADDR_MAX) + 1;
r->height = CCS_LIM(ssd->sensor, Y_ADDR_MAX) + 1;
}
static int __ccs_get_selection(struct v4l2_subdev *subdev,
struct v4l2_subdev_state *sd_state,
struct v4l2_subdev_selection *sel)
{
struct ccs_sensor *sensor = to_ccs_sensor(subdev);
struct ccs_subdev *ssd = to_ccs_subdev(subdev);
struct v4l2_rect *comp, *crops[CCS_PADS];
struct v4l2_rect sink_fmt;
int ret;
ret = __ccs_sel_supported(subdev, sel);
if (ret)
return ret;
ccs_get_crop_compose(subdev, sd_state, crops, &comp, sel->which);
if (sel->which == V4L2_SUBDEV_FORMAT_ACTIVE) {
sink_fmt = ssd->sink_fmt;
} else {
struct v4l2_mbus_framefmt *fmt =
v4l2_subdev_get_try_format(subdev, sd_state,
ssd->sink_pad);
sink_fmt.left = 0;
sink_fmt.top = 0;
sink_fmt.width = fmt->width;
sink_fmt.height = fmt->height;
}
switch (sel->target) {
case V4L2_SEL_TGT_CROP_BOUNDS:
case V4L2_SEL_TGT_NATIVE_SIZE:
if (ssd == sensor->pixel_array)
ccs_get_native_size(ssd, &sel->r);
else if (sel->pad == ssd->sink_pad)
sel->r = sink_fmt;
else
sel->r = *comp;
break;
case V4L2_SEL_TGT_CROP:
case V4L2_SEL_TGT_COMPOSE_BOUNDS:
sel->r = *crops[sel->pad];
break;
case V4L2_SEL_TGT_COMPOSE:
sel->r = *comp;
break;
}
return 0;
}
static int ccs_get_selection(struct v4l2_subdev *subdev,
struct v4l2_subdev_state *sd_state,
struct v4l2_subdev_selection *sel)
{
struct ccs_sensor *sensor = to_ccs_sensor(subdev);
int rval;
mutex_lock(&sensor->mutex);
rval = __ccs_get_selection(subdev, sd_state, sel);
mutex_unlock(&sensor->mutex);
return rval;
}
static int ccs_set_selection(struct v4l2_subdev *subdev,
struct v4l2_subdev_state *sd_state,
struct v4l2_subdev_selection *sel)
{
struct ccs_sensor *sensor = to_ccs_sensor(subdev);
int ret;
ret = __ccs_sel_supported(subdev, sel);
if (ret)
return ret;
mutex_lock(&sensor->mutex);
sel->r.left = max(0, sel->r.left & ~1);
sel->r.top = max(0, sel->r.top & ~1);
sel->r.width = CCS_ALIGN_DIM(sel->r.width, sel->flags);
sel->r.height = CCS_ALIGN_DIM(sel->r.height, sel->flags);
sel->r.width = max_t(unsigned int, CCS_LIM(sensor, MIN_X_OUTPUT_SIZE),
sel->r.width);
sel->r.height = max_t(unsigned int, CCS_LIM(sensor, MIN_Y_OUTPUT_SIZE),
sel->r.height);
switch (sel->target) {
case V4L2_SEL_TGT_CROP:
ret = ccs_set_crop(subdev, sd_state, sel);
break;
case V4L2_SEL_TGT_COMPOSE:
ret = ccs_set_compose(subdev, sd_state, sel);
break;
default:
ret = -EINVAL;
}
mutex_unlock(&sensor->mutex);
return ret;
}
static int ccs_get_skip_frames(struct v4l2_subdev *subdev, u32 *frames)
{
struct ccs_sensor *sensor = to_ccs_sensor(subdev);
*frames = sensor->frame_skip;
return 0;
}
static int ccs_get_skip_top_lines(struct v4l2_subdev *subdev, u32 *lines)
{
struct ccs_sensor *sensor = to_ccs_sensor(subdev);
*lines = sensor->image_start;
return 0;
}
/* -----------------------------------------------------------------------------
* sysfs attributes
*/
static ssize_t
ccs_sysfs_nvm_read(struct device *dev, struct device_attribute *attr,
char *buf)
{
struct v4l2_subdev *subdev = i2c_get_clientdata(to_i2c_client(dev));
struct i2c_client *client = v4l2_get_subdevdata(subdev);
struct ccs_sensor *sensor = to_ccs_sensor(subdev);
int rval;
if (!sensor->dev_init_done)
return -EBUSY;
rval = ccs_pm_get_init(sensor);
if (rval < 0)
return -ENODEV;
rval = ccs_read_nvm(sensor, buf, PAGE_SIZE);
if (rval < 0) {
pm_runtime_put(&client->dev);
dev_err(&client->dev, "nvm read failed\n");
return -ENODEV;
}
pm_runtime_mark_last_busy(&client->dev);
pm_runtime_put_autosuspend(&client->dev);
/*
* NVM is still way below a PAGE_SIZE, so we can safely
* assume this for now.
*/
return rval;
}
static DEVICE_ATTR(nvm, S_IRUGO, ccs_sysfs_nvm_read, NULL);
static ssize_t
ccs_sysfs_ident_read(struct device *dev, struct device_attribute *attr,
char *buf)
{
struct v4l2_subdev *subdev = i2c_get_clientdata(to_i2c_client(dev));
struct ccs_sensor *sensor = to_ccs_sensor(subdev);
struct ccs_module_info *minfo = &sensor->minfo;
if (minfo->mipi_manufacturer_id)
return snprintf(buf, PAGE_SIZE, "%4.4x%4.4x%2.2x\n",
minfo->mipi_manufacturer_id, minfo->model_id,
minfo->revision_number) + 1;
else
return snprintf(buf, PAGE_SIZE, "%2.2x%4.4x%2.2x\n",
minfo->smia_manufacturer_id, minfo->model_id,
minfo->revision_number) + 1;
}
static DEVICE_ATTR(ident, S_IRUGO, ccs_sysfs_ident_read, NULL);
/* -----------------------------------------------------------------------------
* V4L2 subdev core operations
*/
static int ccs_identify_module(struct ccs_sensor *sensor)
{
struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd);
struct ccs_module_info *minfo = &sensor->minfo;
unsigned int i;
u32 rev;
int rval = 0;
/* Module info */
rval = ccs_read(sensor, MODULE_MANUFACTURER_ID,
&minfo->mipi_manufacturer_id);
if (!rval && !minfo->mipi_manufacturer_id)
rval = ccs_read_addr_8only(sensor,
SMIAPP_REG_U8_MANUFACTURER_ID,
&minfo->smia_manufacturer_id);
if (!rval)
rval = ccs_read_addr_8only(sensor, CCS_R_MODULE_MODEL_ID,
&minfo->model_id);
if (!rval)
rval = ccs_read_addr_8only(sensor,
CCS_R_MODULE_REVISION_NUMBER_MAJOR,
&rev);
if (!rval) {
rval = ccs_read_addr_8only(sensor,
CCS_R_MODULE_REVISION_NUMBER_MINOR,
&minfo->revision_number);
minfo->revision_number |= rev << 8;
}
if (!rval)
rval = ccs_read_addr_8only(sensor, CCS_R_MODULE_DATE_YEAR,
&minfo->module_year);
if (!rval)
rval = ccs_read_addr_8only(sensor, CCS_R_MODULE_DATE_MONTH,
&minfo->module_month);
if (!rval)
rval = ccs_read_addr_8only(sensor, CCS_R_MODULE_DATE_DAY,
&minfo->module_day);
/* Sensor info */
if (!rval)
rval = ccs_read(sensor, SENSOR_MANUFACTURER_ID,
&minfo->sensor_mipi_manufacturer_id);
if (!rval && !minfo->sensor_mipi_manufacturer_id)
rval = ccs_read_addr_8only(sensor,
CCS_R_SENSOR_MANUFACTURER_ID,
&minfo->sensor_smia_manufacturer_id);
if (!rval)
rval = ccs_read_addr_8only(sensor,
CCS_R_SENSOR_MODEL_ID,
&minfo->sensor_model_id);
if (!rval)
rval = ccs_read_addr_8only(sensor,
CCS_R_SENSOR_REVISION_NUMBER,
&minfo->sensor_revision_number);
if (!rval)
rval = ccs_read_addr_8only(sensor,
CCS_R_SENSOR_FIRMWARE_VERSION,
&minfo->sensor_firmware_version);
/* SMIA */
if (!rval)
rval = ccs_read(sensor, MIPI_CCS_VERSION, &minfo->ccs_version);
if (!rval && !minfo->ccs_version)
rval = ccs_read_addr_8only(sensor, SMIAPP_REG_U8_SMIA_VERSION,
&minfo->smia_version);
if (!rval && !minfo->ccs_version)
rval = ccs_read_addr_8only(sensor, SMIAPP_REG_U8_SMIAPP_VERSION,
&minfo->smiapp_version);
if (rval) {
dev_err(&client->dev, "sensor detection failed\n");
return -ENODEV;
}
if (minfo->mipi_manufacturer_id)
dev_dbg(&client->dev, "MIPI CCS module 0x%4.4x-0x%4.4x\n",
minfo->mipi_manufacturer_id, minfo->model_id);
else
dev_dbg(&client->dev, "SMIA module 0x%2.2x-0x%4.4x\n",
minfo->smia_manufacturer_id, minfo->model_id);
dev_dbg(&client->dev,
"module revision 0x%4.4x date %2.2d-%2.2d-%2.2d\n",
minfo->revision_number, minfo->module_year, minfo->module_month,
minfo->module_day);
if (minfo->sensor_mipi_manufacturer_id)
dev_dbg(&client->dev, "MIPI CCS sensor 0x%4.4x-0x%4.4x\n",
minfo->sensor_mipi_manufacturer_id,
minfo->sensor_model_id);
else
dev_dbg(&client->dev, "SMIA sensor 0x%2.2x-0x%4.4x\n",
minfo->sensor_smia_manufacturer_id,
minfo->sensor_model_id);
dev_dbg(&client->dev,
"sensor revision 0x%2.2x firmware version 0x%2.2x\n",
minfo->sensor_revision_number, minfo->sensor_firmware_version);
if (minfo->ccs_version) {
dev_dbg(&client->dev, "MIPI CCS version %u.%u",
(minfo->ccs_version & CCS_MIPI_CCS_VERSION_MAJOR_MASK)
>> CCS_MIPI_CCS_VERSION_MAJOR_SHIFT,
(minfo->ccs_version & CCS_MIPI_CCS_VERSION_MINOR_MASK));
minfo->name = CCS_NAME;
} else {
dev_dbg(&client->dev,
"smia version %2.2d smiapp version %2.2d\n",
minfo->smia_version, minfo->smiapp_version);
minfo->name = SMIAPP_NAME;
}
/*
* Some modules have bad data in the lvalues below. Hope the
* rvalues have better stuff. The lvalues are module
* parameters whereas the rvalues are sensor parameters.
*/
if (minfo->sensor_smia_manufacturer_id &&
!minfo->smia_manufacturer_id && !minfo->model_id) {
minfo->smia_manufacturer_id =
minfo->sensor_smia_manufacturer_id;
minfo->model_id = minfo->sensor_model_id;
minfo->revision_number = minfo->sensor_revision_number;
}
for (i = 0; i < ARRAY_SIZE(ccs_module_idents); i++) {
if (ccs_module_idents[i].mipi_manufacturer_id &&
ccs_module_idents[i].mipi_manufacturer_id
!= minfo->mipi_manufacturer_id)
continue;
if (ccs_module_idents[i].smia_manufacturer_id &&
ccs_module_idents[i].smia_manufacturer_id
!= minfo->smia_manufacturer_id)
continue;
if (ccs_module_idents[i].model_id != minfo->model_id)
continue;
if (ccs_module_idents[i].flags
& CCS_MODULE_IDENT_FLAG_REV_LE) {
if (ccs_module_idents[i].revision_number_major
< (minfo->revision_number >> 8))
continue;
} else {
if (ccs_module_idents[i].revision_number_major
!= (minfo->revision_number >> 8))
continue;
}
minfo->name = ccs_module_idents[i].name;
minfo->quirk = ccs_module_idents[i].quirk;
break;
}
if (i >= ARRAY_SIZE(ccs_module_idents))
dev_warn(&client->dev,
"no quirks for this module; let's hope it's fully compliant\n");
dev_dbg(&client->dev, "the sensor is called %s\n", minfo->name);
return 0;
}
static const struct v4l2_subdev_ops ccs_ops;
static const struct v4l2_subdev_internal_ops ccs_internal_ops;
static const struct media_entity_operations ccs_entity_ops;
static int ccs_register_subdev(struct ccs_sensor *sensor,
struct ccs_subdev *ssd,
struct ccs_subdev *sink_ssd,
u16 source_pad, u16 sink_pad, u32 link_flags)
{
struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd);
int rval;
if (!sink_ssd)
return 0;
rval = media_entity_pads_init(&ssd->sd.entity, ssd->npads, ssd->pads);
if (rval) {
dev_err(&client->dev, "media_entity_pads_init failed\n");
return rval;
}
rval = v4l2_device_register_subdev(sensor->src->sd.v4l2_dev, &ssd->sd);
if (rval) {
dev_err(&client->dev, "v4l2_device_register_subdev failed\n");
return rval;
}
rval = media_create_pad_link(&ssd->sd.entity, source_pad,
&sink_ssd->sd.entity, sink_pad,
link_flags);
if (rval) {
dev_err(&client->dev, "media_create_pad_link failed\n");
v4l2_device_unregister_subdev(&ssd->sd);
return rval;
}
return 0;
}
static void ccs_unregistered(struct v4l2_subdev *subdev)
{
struct ccs_sensor *sensor = to_ccs_sensor(subdev);
unsigned int i;
for (i = 1; i < sensor->ssds_used; i++)
v4l2_device_unregister_subdev(&sensor->ssds[i].sd);
}
static int ccs_registered(struct v4l2_subdev *subdev)
{
struct ccs_sensor *sensor = to_ccs_sensor(subdev);
int rval;
if (sensor->scaler) {
rval = ccs_register_subdev(sensor, sensor->binner,
sensor->scaler,
CCS_PAD_SRC, CCS_PAD_SINK,
MEDIA_LNK_FL_ENABLED |
MEDIA_LNK_FL_IMMUTABLE);
if (rval < 0)
return rval;
}
rval = ccs_register_subdev(sensor, sensor->pixel_array, sensor->binner,
CCS_PA_PAD_SRC, CCS_PAD_SINK,
MEDIA_LNK_FL_ENABLED |
MEDIA_LNK_FL_IMMUTABLE);
if (rval)
goto out_err;
return 0;
out_err:
ccs_unregistered(subdev);
return rval;
}
static void ccs_cleanup(struct ccs_sensor *sensor)
{
struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd);
device_remove_file(&client->dev, &dev_attr_nvm);
device_remove_file(&client->dev, &dev_attr_ident);
ccs_free_controls(sensor);
}
static void ccs_create_subdev(struct ccs_sensor *sensor,
struct ccs_subdev *ssd, const char *name,
unsigned short num_pads, u32 function)
{
struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd);
if (!ssd)
return;
if (ssd != sensor->src)
v4l2_subdev_init(&ssd->sd, &ccs_ops);
ssd->sd.flags |= V4L2_SUBDEV_FL_HAS_DEVNODE;
ssd->sd.entity.function = function;
ssd->sensor = sensor;
ssd->npads = num_pads;
ssd->source_pad = num_pads - 1;
v4l2_i2c_subdev_set_name(&ssd->sd, client, sensor->minfo.name, name);
ccs_get_native_size(ssd, &ssd->sink_fmt);
ssd->compose.width = ssd->sink_fmt.width;
ssd->compose.height = ssd->sink_fmt.height;
ssd->crop[ssd->source_pad] = ssd->compose;
ssd->pads[ssd->source_pad].flags = MEDIA_PAD_FL_SOURCE;
if (ssd != sensor->pixel_array) {
ssd->crop[ssd->sink_pad] = ssd->compose;
ssd->pads[ssd->sink_pad].flags = MEDIA_PAD_FL_SINK;
}
ssd->sd.entity.ops = &ccs_entity_ops;
if (ssd == sensor->src)
return;
ssd->sd.internal_ops = &ccs_internal_ops;
ssd->sd.owner = THIS_MODULE;
ssd->sd.dev = &client->dev;
v4l2_set_subdevdata(&ssd->sd, client);
}
static int ccs_open(struct v4l2_subdev *sd, struct v4l2_subdev_fh *fh)
{
struct ccs_subdev *ssd = to_ccs_subdev(sd);
struct ccs_sensor *sensor = ssd->sensor;
unsigned int i;
mutex_lock(&sensor->mutex);
for (i = 0; i < ssd->npads; i++) {
struct v4l2_mbus_framefmt *try_fmt =
v4l2_subdev_get_try_format(sd, fh->state, i);
struct v4l2_rect *try_crop =
v4l2_subdev_get_try_crop(sd, fh->state, i);
struct v4l2_rect *try_comp;
ccs_get_native_size(ssd, try_crop);
try_fmt->width = try_crop->width;
try_fmt->height = try_crop->height;
try_fmt->code = sensor->internal_csi_format->code;
try_fmt->field = V4L2_FIELD_NONE;
if (ssd != sensor->pixel_array)
continue;
try_comp = v4l2_subdev_get_try_compose(sd, fh->state, i);
*try_comp = *try_crop;
}
mutex_unlock(&sensor->mutex);
return 0;
}
static const struct v4l2_subdev_video_ops ccs_video_ops = {
.s_stream = ccs_set_stream,
};
static const struct v4l2_subdev_pad_ops ccs_pad_ops = {
.enum_mbus_code = ccs_enum_mbus_code,
.get_fmt = ccs_get_format,
.set_fmt = ccs_set_format,
.get_selection = ccs_get_selection,
.set_selection = ccs_set_selection,
};
static const struct v4l2_subdev_sensor_ops ccs_sensor_ops = {
.g_skip_frames = ccs_get_skip_frames,
.g_skip_top_lines = ccs_get_skip_top_lines,
};
static const struct v4l2_subdev_ops ccs_ops = {
.video = &ccs_video_ops,
.pad = &ccs_pad_ops,
.sensor = &ccs_sensor_ops,
};
static const struct media_entity_operations ccs_entity_ops = {
.link_validate = v4l2_subdev_link_validate,
};
static const struct v4l2_subdev_internal_ops ccs_internal_src_ops = {
.registered = ccs_registered,
.unregistered = ccs_unregistered,
.open = ccs_open,
};
static const struct v4l2_subdev_internal_ops ccs_internal_ops = {
.open = ccs_open,
};
/* -----------------------------------------------------------------------------
* I2C Driver
*/
static int __maybe_unused ccs_suspend(struct device *dev)
{
struct i2c_client *client = to_i2c_client(dev);
struct v4l2_subdev *subdev = i2c_get_clientdata(client);
struct ccs_sensor *sensor = to_ccs_sensor(subdev);
bool streaming = sensor->streaming;
int rval;
rval = pm_runtime_resume_and_get(dev);
if (rval < 0)
return rval;
if (sensor->streaming)
ccs_stop_streaming(sensor);
/* save state for resume */
sensor->streaming = streaming;
return 0;
}
static int __maybe_unused ccs_resume(struct device *dev)
{
struct i2c_client *client = to_i2c_client(dev);
struct v4l2_subdev *subdev = i2c_get_clientdata(client);
struct ccs_sensor *sensor = to_ccs_sensor(subdev);
int rval = 0;
pm_runtime_put(dev);
if (sensor->streaming)
rval = ccs_start_streaming(sensor);
return rval;
}
static int ccs_get_hwconfig(struct ccs_sensor *sensor, struct device *dev)
{
struct ccs_hwconfig *hwcfg = &sensor->hwcfg;
struct v4l2_fwnode_endpoint bus_cfg = { .bus_type = V4L2_MBUS_UNKNOWN };
struct fwnode_handle *ep;
struct fwnode_handle *fwnode = dev_fwnode(dev);
u32 rotation;
int i;
int rval;
ep = fwnode_graph_get_endpoint_by_id(fwnode, 0, 0,
FWNODE_GRAPH_ENDPOINT_NEXT);
if (!ep)
return -ENODEV;
/*
* Note that we do need to rely on detecting the bus type between CSI-2
* D-PHY and CCP2 as the old bindings did not require it.
*/
rval = v4l2_fwnode_endpoint_alloc_parse(ep, &bus_cfg);
if (rval)
goto out_err;
switch (bus_cfg.bus_type) {
case V4L2_MBUS_CSI2_DPHY:
hwcfg->csi_signalling_mode = CCS_CSI_SIGNALING_MODE_CSI_2_DPHY;
hwcfg->lanes = bus_cfg.bus.mipi_csi2.num_data_lanes;
break;
case V4L2_MBUS_CSI2_CPHY:
hwcfg->csi_signalling_mode = CCS_CSI_SIGNALING_MODE_CSI_2_CPHY;
hwcfg->lanes = bus_cfg.bus.mipi_csi2.num_data_lanes;
break;
case V4L2_MBUS_CSI1:
case V4L2_MBUS_CCP2:
hwcfg->csi_signalling_mode = (bus_cfg.bus.mipi_csi1.strobe) ?
SMIAPP_CSI_SIGNALLING_MODE_CCP2_DATA_STROBE :
SMIAPP_CSI_SIGNALLING_MODE_CCP2_DATA_CLOCK;
hwcfg->lanes = 1;
break;
default:
dev_err(dev, "unsupported bus %u\n", bus_cfg.bus_type);
rval = -EINVAL;
goto out_err;
}
dev_dbg(dev, "lanes %u\n", hwcfg->lanes);
rval = fwnode_property_read_u32(fwnode, "rotation", &rotation);
if (!rval) {
switch (rotation) {
case 180:
hwcfg->module_board_orient =
CCS_MODULE_BOARD_ORIENT_180;
fallthrough;
case 0:
break;
default:
dev_err(dev, "invalid rotation %u\n", rotation);
rval = -EINVAL;
goto out_err;
}
}
rval = fwnode_property_read_u32(dev_fwnode(dev), "clock-frequency",
&hwcfg->ext_clk);
if (rval)
dev_info(dev, "can't get clock-frequency\n");
dev_dbg(dev, "clk %d, mode %d\n", hwcfg->ext_clk,
hwcfg->csi_signalling_mode);
if (!bus_cfg.nr_of_link_frequencies) {
dev_warn(dev, "no link frequencies defined\n");
rval = -EINVAL;
goto out_err;
}
hwcfg->op_sys_clock = devm_kcalloc(
dev, bus_cfg.nr_of_link_frequencies + 1 /* guardian */,
sizeof(*hwcfg->op_sys_clock), GFP_KERNEL);
if (!hwcfg->op_sys_clock) {
rval = -ENOMEM;
goto out_err;
}
for (i = 0; i < bus_cfg.nr_of_link_frequencies; i++) {
hwcfg->op_sys_clock[i] = bus_cfg.link_frequencies[i];
dev_dbg(dev, "freq %d: %lld\n", i, hwcfg->op_sys_clock[i]);
}
v4l2_fwnode_endpoint_free(&bus_cfg);
fwnode_handle_put(ep);
return 0;
out_err:
v4l2_fwnode_endpoint_free(&bus_cfg);
fwnode_handle_put(ep);
return rval;
}
static int ccs_probe(struct i2c_client *client)
{
struct ccs_sensor *sensor;
const struct firmware *fw;
char filename[40];
unsigned int i;
int rval;
sensor = devm_kzalloc(&client->dev, sizeof(*sensor), GFP_KERNEL);
if (sensor == NULL)
return -ENOMEM;
rval = ccs_get_hwconfig(sensor, &client->dev);
if (rval)
return rval;
sensor->src = &sensor->ssds[sensor->ssds_used];
v4l2_i2c_subdev_init(&sensor->src->sd, client, &ccs_ops);
sensor->src->sd.internal_ops = &ccs_internal_src_ops;
sensor->regulators = devm_kcalloc(&client->dev,
ARRAY_SIZE(ccs_regulators),
sizeof(*sensor->regulators),
GFP_KERNEL);
if (!sensor->regulators)
return -ENOMEM;
for (i = 0; i < ARRAY_SIZE(ccs_regulators); i++)
sensor->regulators[i].supply = ccs_regulators[i];
rval = devm_regulator_bulk_get(&client->dev, ARRAY_SIZE(ccs_regulators),
sensor->regulators);
if (rval) {
dev_err(&client->dev, "could not get regulators\n");
return rval;
}
sensor->ext_clk = devm_clk_get(&client->dev, NULL);
if (PTR_ERR(sensor->ext_clk) == -ENOENT) {
dev_info(&client->dev, "no clock defined, continuing...\n");
sensor->ext_clk = NULL;
} else if (IS_ERR(sensor->ext_clk)) {
dev_err(&client->dev, "could not get clock (%ld)\n",
PTR_ERR(sensor->ext_clk));
return -EPROBE_DEFER;
}
if (sensor->ext_clk) {
if (sensor->hwcfg.ext_clk) {
unsigned long rate;
rval = clk_set_rate(sensor->ext_clk,
sensor->hwcfg.ext_clk);
if (rval < 0) {
dev_err(&client->dev,
"unable to set clock freq to %u\n",
sensor->hwcfg.ext_clk);
return rval;
}
rate = clk_get_rate(sensor->ext_clk);
if (rate != sensor->hwcfg.ext_clk) {
dev_err(&client->dev,
"can't set clock freq, asked for %u but got %lu\n",
sensor->hwcfg.ext_clk, rate);
return -EINVAL;
}
} else {
sensor->hwcfg.ext_clk = clk_get_rate(sensor->ext_clk);
dev_dbg(&client->dev, "obtained clock freq %u\n",
sensor->hwcfg.ext_clk);
}
} else if (sensor->hwcfg.ext_clk) {
dev_dbg(&client->dev, "assuming clock freq %u\n",
sensor->hwcfg.ext_clk);
} else {
dev_err(&client->dev, "unable to obtain clock freq\n");
return -EINVAL;
}
if (!sensor->hwcfg.ext_clk) {
dev_err(&client->dev, "cannot work with xclk frequency 0\n");
return -EINVAL;
}
sensor->reset = devm_gpiod_get_optional(&client->dev, "reset",
GPIOD_OUT_HIGH);
if (IS_ERR(sensor->reset))
return PTR_ERR(sensor->reset);
/* Support old users that may have used "xshutdown" property. */
if (!sensor->reset)
sensor->xshutdown = devm_gpiod_get_optional(&client->dev,
"xshutdown",
GPIOD_OUT_LOW);
if (IS_ERR(sensor->xshutdown))
return PTR_ERR(sensor->xshutdown);
rval = ccs_power_on(&client->dev);
if (rval < 0)
return rval;
mutex_init(&sensor->mutex);
rval = ccs_identify_module(sensor);
if (rval) {
rval = -ENODEV;
goto out_power_off;
}
rval = snprintf(filename, sizeof(filename),
"ccs/ccs-sensor-%4.4x-%4.4x-%4.4x.fw",
sensor->minfo.sensor_mipi_manufacturer_id,
sensor->minfo.sensor_model_id,
sensor->minfo.sensor_revision_number);
if (rval >= sizeof(filename)) {
rval = -ENOMEM;
goto out_power_off;
}
rval = request_firmware(&fw, filename, &client->dev);
if (!rval) {
ccs_data_parse(&sensor->sdata, fw->data, fw->size, &client->dev,
true);
release_firmware(fw);
}
rval = snprintf(filename, sizeof(filename),
"ccs/ccs-module-%4.4x-%4.4x-%4.4x.fw",
sensor->minfo.mipi_manufacturer_id,
sensor->minfo.model_id,
sensor->minfo.revision_number);
if (rval >= sizeof(filename)) {
rval = -ENOMEM;
goto out_release_sdata;
}
rval = request_firmware(&fw, filename, &client->dev);
if (!rval) {
ccs_data_parse(&sensor->mdata, fw->data, fw->size, &client->dev,
true);
release_firmware(fw);
}
rval = ccs_read_all_limits(sensor);
if (rval)
goto out_release_mdata;
rval = ccs_read_frame_fmt(sensor);
if (rval) {
rval = -ENODEV;
goto out_free_ccs_limits;
}
rval = ccs_update_phy_ctrl(sensor);
if (rval < 0)
goto out_free_ccs_limits;
/*
* Handle Sensor Module orientation on the board.
*
* The application of H-FLIP and V-FLIP on the sensor is modified by
* the sensor orientation on the board.
*
* For CCS_BOARD_SENSOR_ORIENT_180 the default behaviour is to set
* both H-FLIP and V-FLIP for normal operation which also implies
* that a set/unset operation for user space HFLIP and VFLIP v4l2
* controls will need to be internally inverted.
*
* Rotation also changes the bayer pattern.
*/
if (sensor->hwcfg.module_board_orient ==
CCS_MODULE_BOARD_ORIENT_180)
sensor->hvflip_inv_mask =
CCS_IMAGE_ORIENTATION_HORIZONTAL_MIRROR |
CCS_IMAGE_ORIENTATION_VERTICAL_FLIP;
rval = ccs_call_quirk(sensor, limits);
if (rval) {
dev_err(&client->dev, "limits quirks failed\n");
goto out_free_ccs_limits;
}
if (CCS_LIM(sensor, BINNING_CAPABILITY)) {
sensor->nbinning_subtypes =
min_t(u8, CCS_LIM(sensor, BINNING_SUB_TYPES),
CCS_LIM_BINNING_SUB_TYPE_MAX_N);
for (i = 0; i < sensor->nbinning_subtypes; i++) {
sensor->binning_subtypes[i].horizontal =
CCS_LIM_AT(sensor, BINNING_SUB_TYPE, i) >>
CCS_BINNING_SUB_TYPE_COLUMN_SHIFT;
sensor->binning_subtypes[i].vertical =
CCS_LIM_AT(sensor, BINNING_SUB_TYPE, i) &
CCS_BINNING_SUB_TYPE_ROW_MASK;
dev_dbg(&client->dev, "binning %xx%x\n",
sensor->binning_subtypes[i].horizontal,
sensor->binning_subtypes[i].vertical);
}
}
sensor->binning_horizontal = 1;
sensor->binning_vertical = 1;
if (device_create_file(&client->dev, &dev_attr_ident) != 0) {
dev_err(&client->dev, "sysfs ident entry creation failed\n");
rval = -ENOENT;
goto out_free_ccs_limits;
}
if (sensor->minfo.smiapp_version &&
CCS_LIM(sensor, DATA_TRANSFER_IF_CAPABILITY) &
CCS_DATA_TRANSFER_IF_CAPABILITY_SUPPORTED) {
if (device_create_file(&client->dev, &dev_attr_nvm) != 0) {
dev_err(&client->dev, "sysfs nvm entry failed\n");
rval = -EBUSY;
goto out_cleanup;
}
}
if (!CCS_LIM(sensor, MIN_OP_SYS_CLK_DIV) ||
!CCS_LIM(sensor, MAX_OP_SYS_CLK_DIV) ||
!CCS_LIM(sensor, MIN_OP_PIX_CLK_DIV) ||
!CCS_LIM(sensor, MAX_OP_PIX_CLK_DIV)) {
/* No OP clock branch */
sensor->pll.flags |= CCS_PLL_FLAG_NO_OP_CLOCKS;
} else if (CCS_LIM(sensor, SCALING_CAPABILITY)
!= CCS_SCALING_CAPABILITY_NONE ||
CCS_LIM(sensor, DIGITAL_CROP_CAPABILITY)
== CCS_DIGITAL_CROP_CAPABILITY_INPUT_CROP) {
/* We have a scaler or digital crop. */
sensor->scaler = &sensor->ssds[sensor->ssds_used];
sensor->ssds_used++;
}
sensor->binner = &sensor->ssds[sensor->ssds_used];
sensor->ssds_used++;
sensor->pixel_array = &sensor->ssds[sensor->ssds_used];
sensor->ssds_used++;
sensor->scale_m = CCS_LIM(sensor, SCALER_N_MIN);
/* prepare PLL configuration input values */
sensor->pll.bus_type = CCS_PLL_BUS_TYPE_CSI2_DPHY;
sensor->pll.csi2.lanes = sensor->hwcfg.lanes;
if (CCS_LIM(sensor, CLOCK_CALCULATION) &
CCS_CLOCK_CALCULATION_LANE_SPEED) {
sensor->pll.flags |= CCS_PLL_FLAG_LANE_SPEED_MODEL;
if (CCS_LIM(sensor, CLOCK_CALCULATION) &
CCS_CLOCK_CALCULATION_LINK_DECOUPLED) {
sensor->pll.vt_lanes =
CCS_LIM(sensor, NUM_OF_VT_LANES) + 1;
sensor->pll.op_lanes =
CCS_LIM(sensor, NUM_OF_OP_LANES) + 1;
sensor->pll.flags |= CCS_PLL_FLAG_LINK_DECOUPLED;
} else {
sensor->pll.vt_lanes = sensor->pll.csi2.lanes;
sensor->pll.op_lanes = sensor->pll.csi2.lanes;
}
}
if (CCS_LIM(sensor, CLOCK_TREE_PLL_CAPABILITY) &
CCS_CLOCK_TREE_PLL_CAPABILITY_EXT_DIVIDER)
sensor->pll.flags |= CCS_PLL_FLAG_EXT_IP_PLL_DIVIDER;
if (CCS_LIM(sensor, CLOCK_TREE_PLL_CAPABILITY) &
CCS_CLOCK_TREE_PLL_CAPABILITY_FLEXIBLE_OP_PIX_CLK_DIV)
sensor->pll.flags |= CCS_PLL_FLAG_FLEXIBLE_OP_PIX_CLK_DIV;
if (CCS_LIM(sensor, FIFO_SUPPORT_CAPABILITY) &
CCS_FIFO_SUPPORT_CAPABILITY_DERATING)
sensor->pll.flags |= CCS_PLL_FLAG_FIFO_DERATING;
if (CCS_LIM(sensor, FIFO_SUPPORT_CAPABILITY) &
CCS_FIFO_SUPPORT_CAPABILITY_DERATING_OVERRATING)
sensor->pll.flags |= CCS_PLL_FLAG_FIFO_DERATING |
CCS_PLL_FLAG_FIFO_OVERRATING;
if (CCS_LIM(sensor, CLOCK_TREE_PLL_CAPABILITY) &
CCS_CLOCK_TREE_PLL_CAPABILITY_DUAL_PLL) {
if (CCS_LIM(sensor, CLOCK_TREE_PLL_CAPABILITY) &
CCS_CLOCK_TREE_PLL_CAPABILITY_SINGLE_PLL) {
u32 v;
/* Use sensor default in PLL mode selection */
rval = ccs_read(sensor, PLL_MODE, &v);
if (rval)
goto out_cleanup;
if (v == CCS_PLL_MODE_DUAL)
sensor->pll.flags |= CCS_PLL_FLAG_DUAL_PLL;
} else {
sensor->pll.flags |= CCS_PLL_FLAG_DUAL_PLL;
}
if (CCS_LIM(sensor, CLOCK_CALCULATION) &
CCS_CLOCK_CALCULATION_DUAL_PLL_OP_SYS_DDR)
sensor->pll.flags |= CCS_PLL_FLAG_OP_SYS_DDR;
if (CCS_LIM(sensor, CLOCK_CALCULATION) &
CCS_CLOCK_CALCULATION_DUAL_PLL_OP_PIX_DDR)
sensor->pll.flags |= CCS_PLL_FLAG_OP_PIX_DDR;
}
sensor->pll.op_bits_per_lane = CCS_LIM(sensor, OP_BITS_PER_LANE);
sensor->pll.ext_clk_freq_hz = sensor->hwcfg.ext_clk;
sensor->pll.scale_n = CCS_LIM(sensor, SCALER_N_MIN);
ccs_create_subdev(sensor, sensor->scaler, " scaler", 2,
MEDIA_ENT_F_PROC_VIDEO_SCALER);
ccs_create_subdev(sensor, sensor->binner, " binner", 2,
MEDIA_ENT_F_PROC_VIDEO_SCALER);
ccs_create_subdev(sensor, sensor->pixel_array, " pixel_array", 1,
MEDIA_ENT_F_CAM_SENSOR);
rval = ccs_init_controls(sensor);
if (rval < 0)
goto out_cleanup;
rval = ccs_call_quirk(sensor, init);
if (rval)
goto out_cleanup;
rval = ccs_get_mbus_formats(sensor);
if (rval) {
rval = -ENODEV;
goto out_cleanup;
}
rval = ccs_init_late_controls(sensor);
if (rval) {
rval = -ENODEV;
goto out_cleanup;
}
mutex_lock(&sensor->mutex);
rval = ccs_pll_blanking_update(sensor);
mutex_unlock(&sensor->mutex);
if (rval) {
dev_err(&client->dev, "update mode failed\n");
goto out_cleanup;
}
sensor->streaming = false;
sensor->dev_init_done = true;
rval = media_entity_pads_init(&sensor->src->sd.entity, 2,
sensor->src->pads);
if (rval < 0)
goto out_media_entity_cleanup;
rval = ccs_write_msr_regs(sensor);
if (rval)
goto out_media_entity_cleanup;
pm_runtime_set_active(&client->dev);
pm_runtime_get_noresume(&client->dev);
pm_runtime_enable(&client->dev);
rval = v4l2_async_register_subdev_sensor(&sensor->src->sd);
if (rval < 0)
goto out_disable_runtime_pm;
pm_runtime_set_autosuspend_delay(&client->dev, 1000);
pm_runtime_use_autosuspend(&client->dev);
pm_runtime_put_autosuspend(&client->dev);
return 0;
out_disable_runtime_pm:
pm_runtime_put_noidle(&client->dev);
pm_runtime_disable(&client->dev);
out_media_entity_cleanup:
media_entity_cleanup(&sensor->src->sd.entity);
out_cleanup:
ccs_cleanup(sensor);
out_release_mdata:
kvfree(sensor->mdata.backing);
out_release_sdata:
kvfree(sensor->sdata.backing);
out_free_ccs_limits:
kfree(sensor->ccs_limits);
out_power_off:
ccs_power_off(&client->dev);
mutex_destroy(&sensor->mutex);
return rval;
}
static int ccs_remove(struct i2c_client *client)
{
struct v4l2_subdev *subdev = i2c_get_clientdata(client);
struct ccs_sensor *sensor = to_ccs_sensor(subdev);
unsigned int i;
v4l2_async_unregister_subdev(subdev);
pm_runtime_disable(&client->dev);
if (!pm_runtime_status_suspended(&client->dev))
ccs_power_off(&client->dev);
pm_runtime_set_suspended(&client->dev);
for (i = 0; i < sensor->ssds_used; i++) {
v4l2_device_unregister_subdev(&sensor->ssds[i].sd);
media_entity_cleanup(&sensor->ssds[i].sd.entity);
}
ccs_cleanup(sensor);
mutex_destroy(&sensor->mutex);
kfree(sensor->ccs_limits);
kvfree(sensor->sdata.backing);
kvfree(sensor->mdata.backing);
return 0;
}
static const struct ccs_device smia_device = {
.flags = CCS_DEVICE_FLAG_IS_SMIA,
};
static const struct ccs_device ccs_device = {};
static const struct acpi_device_id ccs_acpi_table[] = {
{ .id = "MIPI0200", .driver_data = (unsigned long)&ccs_device },
{ },
};
MODULE_DEVICE_TABLE(acpi, ccs_acpi_table);
static const struct of_device_id ccs_of_table[] = {
{ .compatible = "mipi-ccs-1.1", .data = &ccs_device },
{ .compatible = "mipi-ccs-1.0", .data = &ccs_device },
{ .compatible = "mipi-ccs", .data = &ccs_device },
{ .compatible = "nokia,smia", .data = &smia_device },
{ },
};
MODULE_DEVICE_TABLE(of, ccs_of_table);
static const struct dev_pm_ops ccs_pm_ops = {
SET_SYSTEM_SLEEP_PM_OPS(ccs_suspend, ccs_resume)
SET_RUNTIME_PM_OPS(ccs_power_off, ccs_power_on, NULL)
};
static struct i2c_driver ccs_i2c_driver = {
.driver = {
.acpi_match_table = ccs_acpi_table,
.of_match_table = ccs_of_table,
.name = CCS_NAME,
.pm = &ccs_pm_ops,
},
.probe_new = ccs_probe,
.remove = ccs_remove,
};
static int ccs_module_init(void)
{
unsigned int i, l;
for (i = 0, l = 0; ccs_limits[i].size && l < CCS_L_LAST; i++) {
if (!(ccs_limits[i].flags & CCS_L_FL_SAME_REG)) {
ccs_limit_offsets[l + 1].lim =
ALIGN(ccs_limit_offsets[l].lim +
ccs_limits[i].size,
ccs_reg_width(ccs_limits[i + 1].reg));
ccs_limit_offsets[l].info = i;
l++;
} else {
ccs_limit_offsets[l].lim += ccs_limits[i].size;
}
}
if (WARN_ON(ccs_limits[i].size))
return -EINVAL;
if (WARN_ON(l != CCS_L_LAST))
return -EINVAL;
return i2c_register_driver(THIS_MODULE, &ccs_i2c_driver);
}
static void ccs_module_cleanup(void)
{
i2c_del_driver(&ccs_i2c_driver);
}
module_init(ccs_module_init);
module_exit(ccs_module_cleanup);
MODULE_AUTHOR("Sakari Ailus <sakari.ailus@linux.intel.com>");
MODULE_DESCRIPTION("Generic MIPI CCS/SMIA/SMIA++ camera sensor driver");
MODULE_LICENSE("GPL v2");
MODULE_ALIAS("smiapp");