| // SPDX-License-Identifier: GPL-2.0-only |
| /* |
| * V4L2 fwnode binding parsing library |
| * |
| * The origins of the V4L2 fwnode library are in V4L2 OF library that |
| * formerly was located in v4l2-of.c. |
| * |
| * Copyright (c) 2016 Intel Corporation. |
| * Author: Sakari Ailus <sakari.ailus@linux.intel.com> |
| * |
| * Copyright (C) 2012 - 2013 Samsung Electronics Co., Ltd. |
| * Author: Sylwester Nawrocki <s.nawrocki@samsung.com> |
| * |
| * Copyright (C) 2012 Renesas Electronics Corp. |
| * Author: Guennadi Liakhovetski <g.liakhovetski@gmx.de> |
| */ |
| #include <linux/acpi.h> |
| #include <linux/kernel.h> |
| #include <linux/mm.h> |
| #include <linux/module.h> |
| #include <linux/of.h> |
| #include <linux/property.h> |
| #include <linux/slab.h> |
| #include <linux/string.h> |
| #include <linux/types.h> |
| |
| #include <media/v4l2-async.h> |
| #include <media/v4l2-fwnode.h> |
| #include <media/v4l2-subdev.h> |
| |
| static const struct v4l2_fwnode_bus_conv { |
| enum v4l2_fwnode_bus_type fwnode_bus_type; |
| enum v4l2_mbus_type mbus_type; |
| const char *name; |
| } buses[] = { |
| { |
| V4L2_FWNODE_BUS_TYPE_GUESS, |
| V4L2_MBUS_UNKNOWN, |
| "not specified", |
| }, { |
| V4L2_FWNODE_BUS_TYPE_CSI2_CPHY, |
| V4L2_MBUS_CSI2_CPHY, |
| "MIPI CSI-2 C-PHY", |
| }, { |
| V4L2_FWNODE_BUS_TYPE_CSI1, |
| V4L2_MBUS_CSI1, |
| "MIPI CSI-1", |
| }, { |
| V4L2_FWNODE_BUS_TYPE_CCP2, |
| V4L2_MBUS_CCP2, |
| "compact camera port 2", |
| }, { |
| V4L2_FWNODE_BUS_TYPE_CSI2_DPHY, |
| V4L2_MBUS_CSI2_DPHY, |
| "MIPI CSI-2 D-PHY", |
| }, { |
| V4L2_FWNODE_BUS_TYPE_PARALLEL, |
| V4L2_MBUS_PARALLEL, |
| "parallel", |
| }, { |
| V4L2_FWNODE_BUS_TYPE_BT656, |
| V4L2_MBUS_BT656, |
| "Bt.656", |
| } |
| }; |
| |
| static const struct v4l2_fwnode_bus_conv * |
| get_v4l2_fwnode_bus_conv_by_fwnode_bus(enum v4l2_fwnode_bus_type type) |
| { |
| unsigned int i; |
| |
| for (i = 0; i < ARRAY_SIZE(buses); i++) |
| if (buses[i].fwnode_bus_type == type) |
| return &buses[i]; |
| |
| return NULL; |
| } |
| |
| static enum v4l2_mbus_type |
| v4l2_fwnode_bus_type_to_mbus(enum v4l2_fwnode_bus_type type) |
| { |
| const struct v4l2_fwnode_bus_conv *conv = |
| get_v4l2_fwnode_bus_conv_by_fwnode_bus(type); |
| |
| return conv ? conv->mbus_type : V4L2_MBUS_INVALID; |
| } |
| |
| static const char * |
| v4l2_fwnode_bus_type_to_string(enum v4l2_fwnode_bus_type type) |
| { |
| const struct v4l2_fwnode_bus_conv *conv = |
| get_v4l2_fwnode_bus_conv_by_fwnode_bus(type); |
| |
| return conv ? conv->name : "not found"; |
| } |
| |
| static const struct v4l2_fwnode_bus_conv * |
| get_v4l2_fwnode_bus_conv_by_mbus(enum v4l2_mbus_type type) |
| { |
| unsigned int i; |
| |
| for (i = 0; i < ARRAY_SIZE(buses); i++) |
| if (buses[i].mbus_type == type) |
| return &buses[i]; |
| |
| return NULL; |
| } |
| |
| static const char * |
| v4l2_fwnode_mbus_type_to_string(enum v4l2_mbus_type type) |
| { |
| const struct v4l2_fwnode_bus_conv *conv = |
| get_v4l2_fwnode_bus_conv_by_mbus(type); |
| |
| return conv ? conv->name : "not found"; |
| } |
| |
| static int v4l2_fwnode_endpoint_parse_csi2_bus(struct fwnode_handle *fwnode, |
| struct v4l2_fwnode_endpoint *vep, |
| enum v4l2_mbus_type bus_type) |
| { |
| struct v4l2_fwnode_bus_mipi_csi2 *bus = &vep->bus.mipi_csi2; |
| bool have_clk_lane = false, have_data_lanes = false, |
| have_lane_polarities = false; |
| unsigned int flags = 0, lanes_used = 0; |
| u32 array[1 + V4L2_FWNODE_CSI2_MAX_DATA_LANES]; |
| u32 clock_lane = 0; |
| unsigned int num_data_lanes = 0; |
| bool use_default_lane_mapping = false; |
| unsigned int i; |
| u32 v; |
| int rval; |
| |
| if (bus_type == V4L2_MBUS_CSI2_DPHY || |
| bus_type == V4L2_MBUS_CSI2_CPHY) { |
| use_default_lane_mapping = true; |
| |
| num_data_lanes = min_t(u32, bus->num_data_lanes, |
| V4L2_FWNODE_CSI2_MAX_DATA_LANES); |
| |
| clock_lane = bus->clock_lane; |
| if (clock_lane) |
| use_default_lane_mapping = false; |
| |
| for (i = 0; i < num_data_lanes; i++) { |
| array[i] = bus->data_lanes[i]; |
| if (array[i]) |
| use_default_lane_mapping = false; |
| } |
| |
| if (use_default_lane_mapping) |
| pr_debug("no lane mapping given, using defaults\n"); |
| } |
| |
| rval = fwnode_property_count_u32(fwnode, "data-lanes"); |
| if (rval > 0) { |
| num_data_lanes = |
| min_t(int, V4L2_FWNODE_CSI2_MAX_DATA_LANES, rval); |
| |
| fwnode_property_read_u32_array(fwnode, "data-lanes", array, |
| num_data_lanes); |
| |
| have_data_lanes = true; |
| if (use_default_lane_mapping) { |
| pr_debug("data-lanes property exists; disabling default mapping\n"); |
| use_default_lane_mapping = false; |
| } |
| } |
| |
| for (i = 0; i < num_data_lanes; i++) { |
| if (lanes_used & BIT(array[i])) { |
| if (have_data_lanes || !use_default_lane_mapping) |
| pr_warn("duplicated lane %u in data-lanes, using defaults\n", |
| array[i]); |
| use_default_lane_mapping = true; |
| } |
| lanes_used |= BIT(array[i]); |
| |
| if (have_data_lanes) |
| pr_debug("lane %u position %u\n", i, array[i]); |
| } |
| |
| rval = fwnode_property_count_u32(fwnode, "lane-polarities"); |
| if (rval > 0) { |
| if (rval != 1 + num_data_lanes /* clock+data */) { |
| pr_warn("invalid number of lane-polarities entries (need %u, got %u)\n", |
| 1 + num_data_lanes, rval); |
| return -EINVAL; |
| } |
| |
| have_lane_polarities = true; |
| } |
| |
| if (!fwnode_property_read_u32(fwnode, "clock-lanes", &v)) { |
| clock_lane = v; |
| pr_debug("clock lane position %u\n", v); |
| have_clk_lane = true; |
| } |
| |
| if (have_clk_lane && lanes_used & BIT(clock_lane) && |
| !use_default_lane_mapping) { |
| pr_warn("duplicated lane %u in clock-lanes, using defaults\n", |
| v); |
| use_default_lane_mapping = true; |
| } |
| |
| if (fwnode_property_present(fwnode, "clock-noncontinuous")) { |
| flags |= V4L2_MBUS_CSI2_NONCONTINUOUS_CLOCK; |
| pr_debug("non-continuous clock\n"); |
| } else { |
| flags |= V4L2_MBUS_CSI2_CONTINUOUS_CLOCK; |
| } |
| |
| if (bus_type == V4L2_MBUS_CSI2_DPHY || |
| bus_type == V4L2_MBUS_CSI2_CPHY || lanes_used || |
| have_clk_lane || (flags & ~V4L2_MBUS_CSI2_CONTINUOUS_CLOCK)) { |
| /* Only D-PHY has a clock lane. */ |
| unsigned int dfl_data_lane_index = |
| bus_type == V4L2_MBUS_CSI2_DPHY; |
| |
| bus->flags = flags; |
| if (bus_type == V4L2_MBUS_UNKNOWN) |
| vep->bus_type = V4L2_MBUS_CSI2_DPHY; |
| bus->num_data_lanes = num_data_lanes; |
| |
| if (use_default_lane_mapping) { |
| bus->clock_lane = 0; |
| for (i = 0; i < num_data_lanes; i++) |
| bus->data_lanes[i] = dfl_data_lane_index + i; |
| } else { |
| bus->clock_lane = clock_lane; |
| for (i = 0; i < num_data_lanes; i++) |
| bus->data_lanes[i] = array[i]; |
| } |
| |
| if (have_lane_polarities) { |
| fwnode_property_read_u32_array(fwnode, |
| "lane-polarities", array, |
| 1 + num_data_lanes); |
| |
| for (i = 0; i < 1 + num_data_lanes; i++) { |
| bus->lane_polarities[i] = array[i]; |
| pr_debug("lane %u polarity %sinverted", |
| i, array[i] ? "" : "not "); |
| } |
| } else { |
| pr_debug("no lane polarities defined, assuming not inverted\n"); |
| } |
| } |
| |
| return 0; |
| } |
| |
| #define PARALLEL_MBUS_FLAGS (V4L2_MBUS_HSYNC_ACTIVE_HIGH | \ |
| V4L2_MBUS_HSYNC_ACTIVE_LOW | \ |
| V4L2_MBUS_VSYNC_ACTIVE_HIGH | \ |
| V4L2_MBUS_VSYNC_ACTIVE_LOW | \ |
| V4L2_MBUS_FIELD_EVEN_HIGH | \ |
| V4L2_MBUS_FIELD_EVEN_LOW) |
| |
| static void |
| v4l2_fwnode_endpoint_parse_parallel_bus(struct fwnode_handle *fwnode, |
| struct v4l2_fwnode_endpoint *vep, |
| enum v4l2_mbus_type bus_type) |
| { |
| struct v4l2_fwnode_bus_parallel *bus = &vep->bus.parallel; |
| unsigned int flags = 0; |
| u32 v; |
| |
| if (bus_type == V4L2_MBUS_PARALLEL || bus_type == V4L2_MBUS_BT656) |
| flags = bus->flags; |
| |
| if (!fwnode_property_read_u32(fwnode, "hsync-active", &v)) { |
| flags &= ~(V4L2_MBUS_HSYNC_ACTIVE_HIGH | |
| V4L2_MBUS_HSYNC_ACTIVE_LOW); |
| flags |= v ? V4L2_MBUS_HSYNC_ACTIVE_HIGH : |
| V4L2_MBUS_HSYNC_ACTIVE_LOW; |
| pr_debug("hsync-active %s\n", v ? "high" : "low"); |
| } |
| |
| if (!fwnode_property_read_u32(fwnode, "vsync-active", &v)) { |
| flags &= ~(V4L2_MBUS_VSYNC_ACTIVE_HIGH | |
| V4L2_MBUS_VSYNC_ACTIVE_LOW); |
| flags |= v ? V4L2_MBUS_VSYNC_ACTIVE_HIGH : |
| V4L2_MBUS_VSYNC_ACTIVE_LOW; |
| pr_debug("vsync-active %s\n", v ? "high" : "low"); |
| } |
| |
| if (!fwnode_property_read_u32(fwnode, "field-even-active", &v)) { |
| flags &= ~(V4L2_MBUS_FIELD_EVEN_HIGH | |
| V4L2_MBUS_FIELD_EVEN_LOW); |
| flags |= v ? V4L2_MBUS_FIELD_EVEN_HIGH : |
| V4L2_MBUS_FIELD_EVEN_LOW; |
| pr_debug("field-even-active %s\n", v ? "high" : "low"); |
| } |
| |
| if (!fwnode_property_read_u32(fwnode, "pclk-sample", &v)) { |
| flags &= ~(V4L2_MBUS_PCLK_SAMPLE_RISING | |
| V4L2_MBUS_PCLK_SAMPLE_FALLING); |
| flags |= v ? V4L2_MBUS_PCLK_SAMPLE_RISING : |
| V4L2_MBUS_PCLK_SAMPLE_FALLING; |
| pr_debug("pclk-sample %s\n", v ? "high" : "low"); |
| } |
| |
| if (!fwnode_property_read_u32(fwnode, "data-active", &v)) { |
| flags &= ~(V4L2_MBUS_DATA_ACTIVE_HIGH | |
| V4L2_MBUS_DATA_ACTIVE_LOW); |
| flags |= v ? V4L2_MBUS_DATA_ACTIVE_HIGH : |
| V4L2_MBUS_DATA_ACTIVE_LOW; |
| pr_debug("data-active %s\n", v ? "high" : "low"); |
| } |
| |
| if (fwnode_property_present(fwnode, "slave-mode")) { |
| pr_debug("slave mode\n"); |
| flags &= ~V4L2_MBUS_MASTER; |
| flags |= V4L2_MBUS_SLAVE; |
| } else { |
| flags &= ~V4L2_MBUS_SLAVE; |
| flags |= V4L2_MBUS_MASTER; |
| } |
| |
| if (!fwnode_property_read_u32(fwnode, "bus-width", &v)) { |
| bus->bus_width = v; |
| pr_debug("bus-width %u\n", v); |
| } |
| |
| if (!fwnode_property_read_u32(fwnode, "data-shift", &v)) { |
| bus->data_shift = v; |
| pr_debug("data-shift %u\n", v); |
| } |
| |
| if (!fwnode_property_read_u32(fwnode, "sync-on-green-active", &v)) { |
| flags &= ~(V4L2_MBUS_VIDEO_SOG_ACTIVE_HIGH | |
| V4L2_MBUS_VIDEO_SOG_ACTIVE_LOW); |
| flags |= v ? V4L2_MBUS_VIDEO_SOG_ACTIVE_HIGH : |
| V4L2_MBUS_VIDEO_SOG_ACTIVE_LOW; |
| pr_debug("sync-on-green-active %s\n", v ? "high" : "low"); |
| } |
| |
| if (!fwnode_property_read_u32(fwnode, "data-enable-active", &v)) { |
| flags &= ~(V4L2_MBUS_DATA_ENABLE_HIGH | |
| V4L2_MBUS_DATA_ENABLE_LOW); |
| flags |= v ? V4L2_MBUS_DATA_ENABLE_HIGH : |
| V4L2_MBUS_DATA_ENABLE_LOW; |
| pr_debug("data-enable-active %s\n", v ? "high" : "low"); |
| } |
| |
| switch (bus_type) { |
| default: |
| bus->flags = flags; |
| if (flags & PARALLEL_MBUS_FLAGS) |
| vep->bus_type = V4L2_MBUS_PARALLEL; |
| else |
| vep->bus_type = V4L2_MBUS_BT656; |
| break; |
| case V4L2_MBUS_PARALLEL: |
| vep->bus_type = V4L2_MBUS_PARALLEL; |
| bus->flags = flags; |
| break; |
| case V4L2_MBUS_BT656: |
| vep->bus_type = V4L2_MBUS_BT656; |
| bus->flags = flags & ~PARALLEL_MBUS_FLAGS; |
| break; |
| } |
| } |
| |
| static void |
| v4l2_fwnode_endpoint_parse_csi1_bus(struct fwnode_handle *fwnode, |
| struct v4l2_fwnode_endpoint *vep, |
| enum v4l2_mbus_type bus_type) |
| { |
| struct v4l2_fwnode_bus_mipi_csi1 *bus = &vep->bus.mipi_csi1; |
| u32 v; |
| |
| if (!fwnode_property_read_u32(fwnode, "clock-inv", &v)) { |
| bus->clock_inv = v; |
| pr_debug("clock-inv %u\n", v); |
| } |
| |
| if (!fwnode_property_read_u32(fwnode, "strobe", &v)) { |
| bus->strobe = v; |
| pr_debug("strobe %u\n", v); |
| } |
| |
| if (!fwnode_property_read_u32(fwnode, "data-lanes", &v)) { |
| bus->data_lane = v; |
| pr_debug("data-lanes %u\n", v); |
| } |
| |
| if (!fwnode_property_read_u32(fwnode, "clock-lanes", &v)) { |
| bus->clock_lane = v; |
| pr_debug("clock-lanes %u\n", v); |
| } |
| |
| if (bus_type == V4L2_MBUS_CCP2) |
| vep->bus_type = V4L2_MBUS_CCP2; |
| else |
| vep->bus_type = V4L2_MBUS_CSI1; |
| } |
| |
| static int __v4l2_fwnode_endpoint_parse(struct fwnode_handle *fwnode, |
| struct v4l2_fwnode_endpoint *vep) |
| { |
| u32 bus_type = V4L2_FWNODE_BUS_TYPE_GUESS; |
| enum v4l2_mbus_type mbus_type; |
| int rval; |
| |
| pr_debug("===== begin parsing endpoint %pfw\n", fwnode); |
| |
| fwnode_property_read_u32(fwnode, "bus-type", &bus_type); |
| pr_debug("fwnode video bus type %s (%u), mbus type %s (%u)\n", |
| v4l2_fwnode_bus_type_to_string(bus_type), bus_type, |
| v4l2_fwnode_mbus_type_to_string(vep->bus_type), |
| vep->bus_type); |
| mbus_type = v4l2_fwnode_bus_type_to_mbus(bus_type); |
| if (mbus_type == V4L2_MBUS_INVALID) { |
| pr_debug("unsupported bus type %u\n", bus_type); |
| return -EINVAL; |
| } |
| |
| if (vep->bus_type != V4L2_MBUS_UNKNOWN) { |
| if (mbus_type != V4L2_MBUS_UNKNOWN && |
| vep->bus_type != mbus_type) { |
| pr_debug("expecting bus type %s\n", |
| v4l2_fwnode_mbus_type_to_string(vep->bus_type)); |
| return -ENXIO; |
| } |
| } else { |
| vep->bus_type = mbus_type; |
| } |
| |
| switch (vep->bus_type) { |
| case V4L2_MBUS_UNKNOWN: |
| rval = v4l2_fwnode_endpoint_parse_csi2_bus(fwnode, vep, |
| V4L2_MBUS_UNKNOWN); |
| if (rval) |
| return rval; |
| |
| if (vep->bus_type == V4L2_MBUS_UNKNOWN) |
| v4l2_fwnode_endpoint_parse_parallel_bus(fwnode, vep, |
| V4L2_MBUS_UNKNOWN); |
| |
| pr_debug("assuming media bus type %s (%u)\n", |
| v4l2_fwnode_mbus_type_to_string(vep->bus_type), |
| vep->bus_type); |
| |
| break; |
| case V4L2_MBUS_CCP2: |
| case V4L2_MBUS_CSI1: |
| v4l2_fwnode_endpoint_parse_csi1_bus(fwnode, vep, vep->bus_type); |
| |
| break; |
| case V4L2_MBUS_CSI2_DPHY: |
| case V4L2_MBUS_CSI2_CPHY: |
| rval = v4l2_fwnode_endpoint_parse_csi2_bus(fwnode, vep, |
| vep->bus_type); |
| if (rval) |
| return rval; |
| |
| break; |
| case V4L2_MBUS_PARALLEL: |
| case V4L2_MBUS_BT656: |
| v4l2_fwnode_endpoint_parse_parallel_bus(fwnode, vep, |
| vep->bus_type); |
| |
| break; |
| default: |
| pr_warn("unsupported bus type %u\n", mbus_type); |
| return -EINVAL; |
| } |
| |
| fwnode_graph_parse_endpoint(fwnode, &vep->base); |
| |
| return 0; |
| } |
| |
| int v4l2_fwnode_endpoint_parse(struct fwnode_handle *fwnode, |
| struct v4l2_fwnode_endpoint *vep) |
| { |
| int ret; |
| |
| ret = __v4l2_fwnode_endpoint_parse(fwnode, vep); |
| |
| pr_debug("===== end parsing endpoint %pfw\n", fwnode); |
| |
| return ret; |
| } |
| EXPORT_SYMBOL_GPL(v4l2_fwnode_endpoint_parse); |
| |
| void v4l2_fwnode_endpoint_free(struct v4l2_fwnode_endpoint *vep) |
| { |
| if (IS_ERR_OR_NULL(vep)) |
| return; |
| |
| kfree(vep->link_frequencies); |
| vep->link_frequencies = NULL; |
| } |
| EXPORT_SYMBOL_GPL(v4l2_fwnode_endpoint_free); |
| |
| int v4l2_fwnode_endpoint_alloc_parse(struct fwnode_handle *fwnode, |
| struct v4l2_fwnode_endpoint *vep) |
| { |
| int rval; |
| |
| rval = __v4l2_fwnode_endpoint_parse(fwnode, vep); |
| if (rval < 0) |
| return rval; |
| |
| rval = fwnode_property_count_u64(fwnode, "link-frequencies"); |
| if (rval > 0) { |
| unsigned int i; |
| |
| vep->link_frequencies = |
| kmalloc_array(rval, sizeof(*vep->link_frequencies), |
| GFP_KERNEL); |
| if (!vep->link_frequencies) |
| return -ENOMEM; |
| |
| vep->nr_of_link_frequencies = rval; |
| |
| rval = fwnode_property_read_u64_array(fwnode, |
| "link-frequencies", |
| vep->link_frequencies, |
| vep->nr_of_link_frequencies); |
| if (rval < 0) { |
| v4l2_fwnode_endpoint_free(vep); |
| return rval; |
| } |
| |
| for (i = 0; i < vep->nr_of_link_frequencies; i++) |
| pr_debug("link-frequencies %u value %llu\n", i, |
| vep->link_frequencies[i]); |
| } |
| |
| pr_debug("===== end parsing endpoint %pfw\n", fwnode); |
| |
| return 0; |
| } |
| EXPORT_SYMBOL_GPL(v4l2_fwnode_endpoint_alloc_parse); |
| |
| int v4l2_fwnode_parse_link(struct fwnode_handle *fwnode, |
| struct v4l2_fwnode_link *link) |
| { |
| struct fwnode_endpoint fwep; |
| |
| memset(link, 0, sizeof(*link)); |
| |
| fwnode_graph_parse_endpoint(fwnode, &fwep); |
| link->local_id = fwep.id; |
| link->local_port = fwep.port; |
| link->local_node = fwnode_graph_get_port_parent(fwnode); |
| |
| fwnode = fwnode_graph_get_remote_endpoint(fwnode); |
| if (!fwnode) { |
| fwnode_handle_put(fwnode); |
| return -ENOLINK; |
| } |
| |
| fwnode_graph_parse_endpoint(fwnode, &fwep); |
| link->remote_id = fwep.id; |
| link->remote_port = fwep.port; |
| link->remote_node = fwnode_graph_get_port_parent(fwnode); |
| |
| return 0; |
| } |
| EXPORT_SYMBOL_GPL(v4l2_fwnode_parse_link); |
| |
| void v4l2_fwnode_put_link(struct v4l2_fwnode_link *link) |
| { |
| fwnode_handle_put(link->local_node); |
| fwnode_handle_put(link->remote_node); |
| } |
| EXPORT_SYMBOL_GPL(v4l2_fwnode_put_link); |
| |
| static const struct v4l2_fwnode_connector_conv { |
| enum v4l2_connector_type type; |
| const char *compatible; |
| } connectors[] = { |
| { |
| .type = V4L2_CONN_COMPOSITE, |
| .compatible = "composite-video-connector", |
| }, { |
| .type = V4L2_CONN_SVIDEO, |
| .compatible = "svideo-connector", |
| }, |
| }; |
| |
| static enum v4l2_connector_type |
| v4l2_fwnode_string_to_connector_type(const char *con_str) |
| { |
| unsigned int i; |
| |
| for (i = 0; i < ARRAY_SIZE(connectors); i++) |
| if (!strcmp(con_str, connectors[i].compatible)) |
| return connectors[i].type; |
| |
| return V4L2_CONN_UNKNOWN; |
| } |
| |
| static void |
| v4l2_fwnode_connector_parse_analog(struct fwnode_handle *fwnode, |
| struct v4l2_fwnode_connector *vc) |
| { |
| u32 stds; |
| int ret; |
| |
| ret = fwnode_property_read_u32(fwnode, "sdtv-standards", &stds); |
| |
| /* The property is optional. */ |
| vc->connector.analog.sdtv_stds = ret ? V4L2_STD_ALL : stds; |
| } |
| |
| void v4l2_fwnode_connector_free(struct v4l2_fwnode_connector *connector) |
| { |
| struct v4l2_connector_link *link, *tmp; |
| |
| if (IS_ERR_OR_NULL(connector) || connector->type == V4L2_CONN_UNKNOWN) |
| return; |
| |
| list_for_each_entry_safe(link, tmp, &connector->links, head) { |
| v4l2_fwnode_put_link(&link->fwnode_link); |
| list_del(&link->head); |
| kfree(link); |
| } |
| |
| kfree(connector->label); |
| connector->label = NULL; |
| connector->type = V4L2_CONN_UNKNOWN; |
| } |
| EXPORT_SYMBOL_GPL(v4l2_fwnode_connector_free); |
| |
| static enum v4l2_connector_type |
| v4l2_fwnode_get_connector_type(struct fwnode_handle *fwnode) |
| { |
| const char *type_name; |
| int err; |
| |
| if (!fwnode) |
| return V4L2_CONN_UNKNOWN; |
| |
| /* The connector-type is stored within the compatible string. */ |
| err = fwnode_property_read_string(fwnode, "compatible", &type_name); |
| if (err) |
| return V4L2_CONN_UNKNOWN; |
| |
| return v4l2_fwnode_string_to_connector_type(type_name); |
| } |
| |
| int v4l2_fwnode_connector_parse(struct fwnode_handle *fwnode, |
| struct v4l2_fwnode_connector *connector) |
| { |
| struct fwnode_handle *connector_node; |
| enum v4l2_connector_type connector_type; |
| const char *label; |
| int err; |
| |
| if (!fwnode) |
| return -EINVAL; |
| |
| memset(connector, 0, sizeof(*connector)); |
| |
| INIT_LIST_HEAD(&connector->links); |
| |
| connector_node = fwnode_graph_get_port_parent(fwnode); |
| connector_type = v4l2_fwnode_get_connector_type(connector_node); |
| if (connector_type == V4L2_CONN_UNKNOWN) { |
| fwnode_handle_put(connector_node); |
| connector_node = fwnode_graph_get_remote_port_parent(fwnode); |
| connector_type = v4l2_fwnode_get_connector_type(connector_node); |
| } |
| |
| if (connector_type == V4L2_CONN_UNKNOWN) { |
| pr_err("Unknown connector type\n"); |
| err = -ENOTCONN; |
| goto out; |
| } |
| |
| connector->type = connector_type; |
| connector->name = fwnode_get_name(connector_node); |
| err = fwnode_property_read_string(connector_node, "label", &label); |
| connector->label = err ? NULL : kstrdup_const(label, GFP_KERNEL); |
| |
| /* Parse the connector specific properties. */ |
| switch (connector->type) { |
| case V4L2_CONN_COMPOSITE: |
| case V4L2_CONN_SVIDEO: |
| v4l2_fwnode_connector_parse_analog(connector_node, connector); |
| break; |
| /* Avoid compiler warnings */ |
| case V4L2_CONN_UNKNOWN: |
| break; |
| } |
| |
| out: |
| fwnode_handle_put(connector_node); |
| |
| return err; |
| } |
| EXPORT_SYMBOL_GPL(v4l2_fwnode_connector_parse); |
| |
| int v4l2_fwnode_connector_add_link(struct fwnode_handle *fwnode, |
| struct v4l2_fwnode_connector *connector) |
| { |
| struct fwnode_handle *connector_ep; |
| struct v4l2_connector_link *link; |
| int err; |
| |
| if (!fwnode || !connector || connector->type == V4L2_CONN_UNKNOWN) |
| return -EINVAL; |
| |
| connector_ep = fwnode_graph_get_remote_endpoint(fwnode); |
| if (!connector_ep) |
| return -ENOTCONN; |
| |
| link = kzalloc(sizeof(*link), GFP_KERNEL); |
| if (!link) { |
| err = -ENOMEM; |
| goto err; |
| } |
| |
| err = v4l2_fwnode_parse_link(connector_ep, &link->fwnode_link); |
| if (err) |
| goto err; |
| |
| fwnode_handle_put(connector_ep); |
| |
| list_add(&link->head, &connector->links); |
| connector->nr_of_links++; |
| |
| return 0; |
| |
| err: |
| kfree(link); |
| fwnode_handle_put(connector_ep); |
| |
| return err; |
| } |
| EXPORT_SYMBOL_GPL(v4l2_fwnode_connector_add_link); |
| |
| int v4l2_fwnode_device_parse(struct device *dev, |
| struct v4l2_fwnode_device_properties *props) |
| { |
| struct fwnode_handle *fwnode = dev_fwnode(dev); |
| u32 val; |
| int ret; |
| |
| memset(props, 0, sizeof(*props)); |
| |
| props->orientation = V4L2_FWNODE_PROPERTY_UNSET; |
| ret = fwnode_property_read_u32(fwnode, "orientation", &val); |
| if (!ret) { |
| switch (val) { |
| case V4L2_FWNODE_ORIENTATION_FRONT: |
| case V4L2_FWNODE_ORIENTATION_BACK: |
| case V4L2_FWNODE_ORIENTATION_EXTERNAL: |
| break; |
| default: |
| dev_warn(dev, "Unsupported device orientation: %u\n", val); |
| return -EINVAL; |
| } |
| |
| props->orientation = val; |
| dev_dbg(dev, "device orientation: %u\n", val); |
| } |
| |
| props->rotation = V4L2_FWNODE_PROPERTY_UNSET; |
| ret = fwnode_property_read_u32(fwnode, "rotation", &val); |
| if (!ret) { |
| if (val >= 360) { |
| dev_warn(dev, "Unsupported device rotation: %u\n", val); |
| return -EINVAL; |
| } |
| |
| props->rotation = val; |
| dev_dbg(dev, "device rotation: %u\n", val); |
| } |
| |
| return 0; |
| } |
| EXPORT_SYMBOL_GPL(v4l2_fwnode_device_parse); |
| |
| static int |
| v4l2_async_notifier_fwnode_parse_endpoint(struct device *dev, |
| struct v4l2_async_notifier *notifier, |
| struct fwnode_handle *endpoint, |
| unsigned int asd_struct_size, |
| parse_endpoint_func parse_endpoint) |
| { |
| struct v4l2_fwnode_endpoint vep = { .bus_type = 0 }; |
| struct v4l2_async_subdev *asd; |
| int ret; |
| |
| asd = kzalloc(asd_struct_size, GFP_KERNEL); |
| if (!asd) |
| return -ENOMEM; |
| |
| asd->match_type = V4L2_ASYNC_MATCH_FWNODE; |
| asd->match.fwnode = |
| fwnode_graph_get_remote_port_parent(endpoint); |
| if (!asd->match.fwnode) { |
| dev_dbg(dev, "no remote endpoint found\n"); |
| ret = -ENOTCONN; |
| goto out_err; |
| } |
| |
| ret = v4l2_fwnode_endpoint_alloc_parse(endpoint, &vep); |
| if (ret) { |
| dev_warn(dev, "unable to parse V4L2 fwnode endpoint (%d)\n", |
| ret); |
| goto out_err; |
| } |
| |
| ret = parse_endpoint ? parse_endpoint(dev, &vep, asd) : 0; |
| if (ret == -ENOTCONN) |
| dev_dbg(dev, "ignoring port@%u/endpoint@%u\n", vep.base.port, |
| vep.base.id); |
| else if (ret < 0) |
| dev_warn(dev, |
| "driver could not parse port@%u/endpoint@%u (%d)\n", |
| vep.base.port, vep.base.id, ret); |
| v4l2_fwnode_endpoint_free(&vep); |
| if (ret < 0) |
| goto out_err; |
| |
| ret = __v4l2_async_notifier_add_subdev(notifier, asd); |
| if (ret < 0) { |
| /* not an error if asd already exists */ |
| if (ret == -EEXIST) |
| ret = 0; |
| goto out_err; |
| } |
| |
| return 0; |
| |
| out_err: |
| fwnode_handle_put(asd->match.fwnode); |
| kfree(asd); |
| |
| return ret == -ENOTCONN ? 0 : ret; |
| } |
| |
| static int |
| __v4l2_async_notifier_parse_fwnode_ep(struct device *dev, |
| struct v4l2_async_notifier *notifier, |
| size_t asd_struct_size, |
| unsigned int port, |
| bool has_port, |
| parse_endpoint_func parse_endpoint) |
| { |
| struct fwnode_handle *fwnode; |
| int ret = 0; |
| |
| if (WARN_ON(asd_struct_size < sizeof(struct v4l2_async_subdev))) |
| return -EINVAL; |
| |
| fwnode_graph_for_each_endpoint(dev_fwnode(dev), fwnode) { |
| struct fwnode_handle *dev_fwnode; |
| bool is_available; |
| |
| dev_fwnode = fwnode_graph_get_port_parent(fwnode); |
| is_available = fwnode_device_is_available(dev_fwnode); |
| fwnode_handle_put(dev_fwnode); |
| if (!is_available) |
| continue; |
| |
| if (has_port) { |
| struct fwnode_endpoint ep; |
| |
| ret = fwnode_graph_parse_endpoint(fwnode, &ep); |
| if (ret) |
| break; |
| |
| if (ep.port != port) |
| continue; |
| } |
| |
| ret = v4l2_async_notifier_fwnode_parse_endpoint(dev, |
| notifier, |
| fwnode, |
| asd_struct_size, |
| parse_endpoint); |
| if (ret < 0) |
| break; |
| } |
| |
| fwnode_handle_put(fwnode); |
| |
| return ret; |
| } |
| |
| int |
| v4l2_async_notifier_parse_fwnode_endpoints(struct device *dev, |
| struct v4l2_async_notifier *notifier, |
| size_t asd_struct_size, |
| parse_endpoint_func parse_endpoint) |
| { |
| return __v4l2_async_notifier_parse_fwnode_ep(dev, notifier, |
| asd_struct_size, 0, |
| false, parse_endpoint); |
| } |
| EXPORT_SYMBOL_GPL(v4l2_async_notifier_parse_fwnode_endpoints); |
| |
| /* |
| * v4l2_fwnode_reference_parse - parse references for async sub-devices |
| * @dev: the device node the properties of which are parsed for references |
| * @notifier: the async notifier where the async subdevs will be added |
| * @prop: the name of the property |
| * |
| * Return: 0 on success |
| * -ENOENT if no entries were found |
| * -ENOMEM if memory allocation failed |
| * -EINVAL if property parsing failed |
| */ |
| static int v4l2_fwnode_reference_parse(struct device *dev, |
| struct v4l2_async_notifier *notifier, |
| const char *prop) |
| { |
| struct fwnode_reference_args args; |
| unsigned int index; |
| int ret; |
| |
| for (index = 0; |
| !(ret = fwnode_property_get_reference_args(dev_fwnode(dev), |
| prop, NULL, 0, |
| index, &args)); |
| index++) |
| fwnode_handle_put(args.fwnode); |
| |
| if (!index) |
| return -ENOENT; |
| |
| /* |
| * Note that right now both -ENODATA and -ENOENT may signal |
| * out-of-bounds access. Return the error in cases other than that. |
| */ |
| if (ret != -ENOENT && ret != -ENODATA) |
| return ret; |
| |
| for (index = 0; |
| !fwnode_property_get_reference_args(dev_fwnode(dev), prop, NULL, |
| 0, index, &args); |
| index++) { |
| struct v4l2_async_subdev *asd; |
| |
| asd = v4l2_async_notifier_add_fwnode_subdev(notifier, |
| args.fwnode, |
| struct v4l2_async_subdev); |
| fwnode_handle_put(args.fwnode); |
| if (IS_ERR(asd)) { |
| /* not an error if asd already exists */ |
| if (PTR_ERR(asd) == -EEXIST) |
| continue; |
| |
| return PTR_ERR(asd); |
| } |
| } |
| |
| return 0; |
| } |
| |
| /* |
| * v4l2_fwnode_reference_get_int_prop - parse a reference with integer |
| * arguments |
| * @fwnode: fwnode to read @prop from |
| * @notifier: notifier for @dev |
| * @prop: the name of the property |
| * @index: the index of the reference to get |
| * @props: the array of integer property names |
| * @nprops: the number of integer property names in @nprops |
| * |
| * First find an fwnode referred to by the reference at @index in @prop. |
| * |
| * Then under that fwnode, @nprops times, for each property in @props, |
| * iteratively follow child nodes starting from fwnode such that they have the |
| * property in @props array at the index of the child node distance from the |
| * root node and the value of that property matching with the integer argument |
| * of the reference, at the same index. |
| * |
| * The child fwnode reached at the end of the iteration is then returned to the |
| * caller. |
| * |
| * The core reason for this is that you cannot refer to just any node in ACPI. |
| * So to refer to an endpoint (easy in DT) you need to refer to a device, then |
| * provide a list of (property name, property value) tuples where each tuple |
| * uniquely identifies a child node. The first tuple identifies a child directly |
| * underneath the device fwnode, the next tuple identifies a child node |
| * underneath the fwnode identified by the previous tuple, etc. until you |
| * reached the fwnode you need. |
| * |
| * THIS EXAMPLE EXISTS MERELY TO DOCUMENT THIS FUNCTION. DO NOT USE IT AS A |
| * REFERENCE IN HOW ACPI TABLES SHOULD BE WRITTEN!! See documentation under |
| * Documentation/firmware-guide/acpi/dsd/ instead and especially graph.txt, |
| * data-node-references.txt and leds.txt . |
| * |
| * Scope (\_SB.PCI0.I2C2) |
| * { |
| * Device (CAM0) |
| * { |
| * Name (_DSD, Package () { |
| * ToUUID("daffd814-6eba-4d8c-8a91-bc9bbf4aa301"), |
| * Package () { |
| * Package () { |
| * "compatible", |
| * Package () { "nokia,smia" } |
| * }, |
| * }, |
| * ToUUID("dbb8e3e6-5886-4ba6-8795-1319f52a966b"), |
| * Package () { |
| * Package () { "port0", "PRT0" }, |
| * } |
| * }) |
| * Name (PRT0, Package() { |
| * ToUUID("daffd814-6eba-4d8c-8a91-bc9bbf4aa301"), |
| * Package () { |
| * Package () { "port", 0 }, |
| * }, |
| * ToUUID("dbb8e3e6-5886-4ba6-8795-1319f52a966b"), |
| * Package () { |
| * Package () { "endpoint0", "EP00" }, |
| * } |
| * }) |
| * Name (EP00, Package() { |
| * ToUUID("daffd814-6eba-4d8c-8a91-bc9bbf4aa301"), |
| * Package () { |
| * Package () { "endpoint", 0 }, |
| * Package () { |
| * "remote-endpoint", |
| * Package() { |
| * \_SB.PCI0.ISP, 4, 0 |
| * } |
| * }, |
| * } |
| * }) |
| * } |
| * } |
| * |
| * Scope (\_SB.PCI0) |
| * { |
| * Device (ISP) |
| * { |
| * Name (_DSD, Package () { |
| * ToUUID("dbb8e3e6-5886-4ba6-8795-1319f52a966b"), |
| * Package () { |
| * Package () { "port4", "PRT4" }, |
| * } |
| * }) |
| * |
| * Name (PRT4, Package() { |
| * ToUUID("daffd814-6eba-4d8c-8a91-bc9bbf4aa301"), |
| * Package () { |
| * Package () { "port", 4 }, |
| * }, |
| * ToUUID("dbb8e3e6-5886-4ba6-8795-1319f52a966b"), |
| * Package () { |
| * Package () { "endpoint0", "EP40" }, |
| * } |
| * }) |
| * |
| * Name (EP40, Package() { |
| * ToUUID("daffd814-6eba-4d8c-8a91-bc9bbf4aa301"), |
| * Package () { |
| * Package () { "endpoint", 0 }, |
| * Package () { |
| * "remote-endpoint", |
| * Package () { |
| * \_SB.PCI0.I2C2.CAM0, |
| * 0, 0 |
| * } |
| * }, |
| * } |
| * }) |
| * } |
| * } |
| * |
| * From the EP40 node under ISP device, you could parse the graph remote |
| * endpoint using v4l2_fwnode_reference_get_int_prop with these arguments: |
| * |
| * @fwnode: fwnode referring to EP40 under ISP. |
| * @prop: "remote-endpoint" |
| * @index: 0 |
| * @props: "port", "endpoint" |
| * @nprops: 2 |
| * |
| * And you'd get back fwnode referring to EP00 under CAM0. |
| * |
| * The same works the other way around: if you use EP00 under CAM0 as the |
| * fwnode, you'll get fwnode referring to EP40 under ISP. |
| * |
| * The same example in DT syntax would look like this: |
| * |
| * cam: cam0 { |
| * compatible = "nokia,smia"; |
| * |
| * port { |
| * port = <0>; |
| * endpoint { |
| * endpoint = <0>; |
| * remote-endpoint = <&isp 4 0>; |
| * }; |
| * }; |
| * }; |
| * |
| * isp: isp { |
| * ports { |
| * port@4 { |
| * port = <4>; |
| * endpoint { |
| * endpoint = <0>; |
| * remote-endpoint = <&cam 0 0>; |
| * }; |
| * }; |
| * }; |
| * }; |
| * |
| * Return: 0 on success |
| * -ENOENT if no entries (or the property itself) were found |
| * -EINVAL if property parsing otherwise failed |
| * -ENOMEM if memory allocation failed |
| */ |
| static struct fwnode_handle * |
| v4l2_fwnode_reference_get_int_prop(struct fwnode_handle *fwnode, |
| const char *prop, |
| unsigned int index, |
| const char * const *props, |
| unsigned int nprops) |
| { |
| struct fwnode_reference_args fwnode_args; |
| u64 *args = fwnode_args.args; |
| struct fwnode_handle *child; |
| int ret; |
| |
| /* |
| * Obtain remote fwnode as well as the integer arguments. |
| * |
| * Note that right now both -ENODATA and -ENOENT may signal |
| * out-of-bounds access. Return -ENOENT in that case. |
| */ |
| ret = fwnode_property_get_reference_args(fwnode, prop, NULL, nprops, |
| index, &fwnode_args); |
| if (ret) |
| return ERR_PTR(ret == -ENODATA ? -ENOENT : ret); |
| |
| /* |
| * Find a node in the tree under the referred fwnode corresponding to |
| * the integer arguments. |
| */ |
| fwnode = fwnode_args.fwnode; |
| while (nprops--) { |
| u32 val; |
| |
| /* Loop over all child nodes under fwnode. */ |
| fwnode_for_each_child_node(fwnode, child) { |
| if (fwnode_property_read_u32(child, *props, &val)) |
| continue; |
| |
| /* Found property, see if its value matches. */ |
| if (val == *args) |
| break; |
| } |
| |
| fwnode_handle_put(fwnode); |
| |
| /* No property found; return an error here. */ |
| if (!child) { |
| fwnode = ERR_PTR(-ENOENT); |
| break; |
| } |
| |
| props++; |
| args++; |
| fwnode = child; |
| } |
| |
| return fwnode; |
| } |
| |
| struct v4l2_fwnode_int_props { |
| const char *name; |
| const char * const *props; |
| unsigned int nprops; |
| }; |
| |
| /* |
| * v4l2_fwnode_reference_parse_int_props - parse references for async |
| * sub-devices |
| * @dev: struct device pointer |
| * @notifier: notifier for @dev |
| * @prop: the name of the property |
| * @props: the array of integer property names |
| * @nprops: the number of integer properties |
| * |
| * Use v4l2_fwnode_reference_get_int_prop to find fwnodes through reference in |
| * property @prop with integer arguments with child nodes matching in properties |
| * @props. Then, set up V4L2 async sub-devices for those fwnodes in the notifier |
| * accordingly. |
| * |
| * While it is technically possible to use this function on DT, it is only |
| * meaningful on ACPI. On Device tree you can refer to any node in the tree but |
| * on ACPI the references are limited to devices. |
| * |
| * Return: 0 on success |
| * -ENOENT if no entries (or the property itself) were found |
| * -EINVAL if property parsing otherwisefailed |
| * -ENOMEM if memory allocation failed |
| */ |
| static int |
| v4l2_fwnode_reference_parse_int_props(struct device *dev, |
| struct v4l2_async_notifier *notifier, |
| const struct v4l2_fwnode_int_props *p) |
| { |
| struct fwnode_handle *fwnode; |
| unsigned int index; |
| int ret; |
| const char *prop = p->name; |
| const char * const *props = p->props; |
| unsigned int nprops = p->nprops; |
| |
| index = 0; |
| do { |
| fwnode = v4l2_fwnode_reference_get_int_prop(dev_fwnode(dev), |
| prop, index, |
| props, nprops); |
| if (IS_ERR(fwnode)) { |
| /* |
| * Note that right now both -ENODATA and -ENOENT may |
| * signal out-of-bounds access. Return the error in |
| * cases other than that. |
| */ |
| if (PTR_ERR(fwnode) != -ENOENT && |
| PTR_ERR(fwnode) != -ENODATA) |
| return PTR_ERR(fwnode); |
| break; |
| } |
| fwnode_handle_put(fwnode); |
| index++; |
| } while (1); |
| |
| for (index = 0; |
| !IS_ERR((fwnode = v4l2_fwnode_reference_get_int_prop(dev_fwnode(dev), |
| prop, index, |
| props, |
| nprops))); |
| index++) { |
| struct v4l2_async_subdev *asd; |
| |
| asd = v4l2_async_notifier_add_fwnode_subdev(notifier, fwnode, |
| struct v4l2_async_subdev); |
| fwnode_handle_put(fwnode); |
| if (IS_ERR(asd)) { |
| ret = PTR_ERR(asd); |
| /* not an error if asd already exists */ |
| if (ret == -EEXIST) |
| continue; |
| |
| return PTR_ERR(asd); |
| } |
| } |
| |
| return !fwnode || PTR_ERR(fwnode) == -ENOENT ? 0 : PTR_ERR(fwnode); |
| } |
| |
| /** |
| * v4l2_async_notifier_parse_fwnode_sensor - parse common references on |
| * sensors for async sub-devices |
| * @dev: the device node the properties of which are parsed for references |
| * @notifier: the async notifier where the async subdevs will be added |
| * |
| * Parse common sensor properties for remote devices related to the |
| * sensor and set up async sub-devices for them. |
| * |
| * Any notifier populated using this function must be released with a call to |
| * v4l2_async_notifier_release() after it has been unregistered and the async |
| * sub-devices are no longer in use, even in the case the function returned an |
| * error. |
| * |
| * Return: 0 on success |
| * -ENOMEM if memory allocation failed |
| * -EINVAL if property parsing failed |
| */ |
| static int |
| v4l2_async_notifier_parse_fwnode_sensor(struct device *dev, |
| struct v4l2_async_notifier *notifier) |
| { |
| static const char * const led_props[] = { "led" }; |
| static const struct v4l2_fwnode_int_props props[] = { |
| { "flash-leds", led_props, ARRAY_SIZE(led_props) }, |
| { "lens-focus", NULL, 0 }, |
| }; |
| unsigned int i; |
| |
| for (i = 0; i < ARRAY_SIZE(props); i++) { |
| int ret; |
| |
| if (props[i].props && is_acpi_node(dev_fwnode(dev))) |
| ret = v4l2_fwnode_reference_parse_int_props(dev, |
| notifier, |
| &props[i]); |
| else |
| ret = v4l2_fwnode_reference_parse(dev, notifier, |
| props[i].name); |
| if (ret && ret != -ENOENT) { |
| dev_warn(dev, "parsing property \"%s\" failed (%d)\n", |
| props[i].name, ret); |
| return ret; |
| } |
| } |
| |
| return 0; |
| } |
| |
| int v4l2_async_register_subdev_sensor(struct v4l2_subdev *sd) |
| { |
| struct v4l2_async_notifier *notifier; |
| int ret; |
| |
| if (WARN_ON(!sd->dev)) |
| return -ENODEV; |
| |
| notifier = kzalloc(sizeof(*notifier), GFP_KERNEL); |
| if (!notifier) |
| return -ENOMEM; |
| |
| v4l2_async_notifier_init(notifier); |
| |
| ret = v4l2_async_notifier_parse_fwnode_sensor(sd->dev, notifier); |
| if (ret < 0) |
| goto out_cleanup; |
| |
| ret = v4l2_async_subdev_notifier_register(sd, notifier); |
| if (ret < 0) |
| goto out_cleanup; |
| |
| ret = v4l2_async_register_subdev(sd); |
| if (ret < 0) |
| goto out_unregister; |
| |
| sd->subdev_notifier = notifier; |
| |
| return 0; |
| |
| out_unregister: |
| v4l2_async_notifier_unregister(notifier); |
| |
| out_cleanup: |
| v4l2_async_notifier_cleanup(notifier); |
| kfree(notifier); |
| |
| return ret; |
| } |
| EXPORT_SYMBOL_GPL(v4l2_async_register_subdev_sensor); |
| |
| MODULE_LICENSE("GPL"); |
| MODULE_AUTHOR("Sakari Ailus <sakari.ailus@linux.intel.com>"); |
| MODULE_AUTHOR("Sylwester Nawrocki <s.nawrocki@samsung.com>"); |
| MODULE_AUTHOR("Guennadi Liakhovetski <g.liakhovetski@gmx.de>"); |