|  | // SPDX-License-Identifier: GPL-2.0 | 
|  | #include "audit.h" | 
|  | #include <linux/fsnotify_backend.h> | 
|  | #include <linux/namei.h> | 
|  | #include <linux/mount.h> | 
|  | #include <linux/kthread.h> | 
|  | #include <linux/refcount.h> | 
|  | #include <linux/slab.h> | 
|  |  | 
|  | struct audit_tree; | 
|  | struct audit_chunk; | 
|  |  | 
|  | struct audit_tree { | 
|  | refcount_t count; | 
|  | int goner; | 
|  | struct audit_chunk *root; | 
|  | struct list_head chunks; | 
|  | struct list_head rules; | 
|  | struct list_head list; | 
|  | struct list_head same_root; | 
|  | struct rcu_head head; | 
|  | char pathname[]; | 
|  | }; | 
|  |  | 
|  | struct audit_chunk { | 
|  | struct list_head hash; | 
|  | unsigned long key; | 
|  | struct fsnotify_mark *mark; | 
|  | struct list_head trees;		/* with root here */ | 
|  | int count; | 
|  | atomic_long_t refs; | 
|  | struct rcu_head head; | 
|  | struct node { | 
|  | struct list_head list; | 
|  | struct audit_tree *owner; | 
|  | unsigned index;		/* index; upper bit indicates 'will prune' */ | 
|  | } owners[]; | 
|  | }; | 
|  |  | 
|  | struct audit_tree_mark { | 
|  | struct fsnotify_mark mark; | 
|  | struct audit_chunk *chunk; | 
|  | }; | 
|  |  | 
|  | static LIST_HEAD(tree_list); | 
|  | static LIST_HEAD(prune_list); | 
|  | static struct task_struct *prune_thread; | 
|  |  | 
|  | /* | 
|  | * One struct chunk is attached to each inode of interest through | 
|  | * audit_tree_mark (fsnotify mark). We replace struct chunk on tagging / | 
|  | * untagging, the mark is stable as long as there is chunk attached. The | 
|  | * association between mark and chunk is protected by hash_lock and | 
|  | * audit_tree_group->mark_mutex. Thus as long as we hold | 
|  | * audit_tree_group->mark_mutex and check that the mark is alive by | 
|  | * FSNOTIFY_MARK_FLAG_ATTACHED flag check, we are sure the mark points to | 
|  | * the current chunk. | 
|  | * | 
|  | * Rules have pointer to struct audit_tree. | 
|  | * Rules have struct list_head rlist forming a list of rules over | 
|  | * the same tree. | 
|  | * References to struct chunk are collected at audit_inode{,_child}() | 
|  | * time and used in AUDIT_TREE rule matching. | 
|  | * These references are dropped at the same time we are calling | 
|  | * audit_free_names(), etc. | 
|  | * | 
|  | * Cyclic lists galore: | 
|  | * tree.chunks anchors chunk.owners[].list			hash_lock | 
|  | * tree.rules anchors rule.rlist				audit_filter_mutex | 
|  | * chunk.trees anchors tree.same_root				hash_lock | 
|  | * chunk.hash is a hash with middle bits of watch.inode as | 
|  | * a hash function.						RCU, hash_lock | 
|  | * | 
|  | * tree is refcounted; one reference for "some rules on rules_list refer to | 
|  | * it", one for each chunk with pointer to it. | 
|  | * | 
|  | * chunk is refcounted by embedded .refs. Mark associated with the chunk holds | 
|  | * one chunk reference. This reference is dropped either when a mark is going | 
|  | * to be freed (corresponding inode goes away) or when chunk attached to the | 
|  | * mark gets replaced. This reference must be dropped using | 
|  | * audit_mark_put_chunk() to make sure the reference is dropped only after RCU | 
|  | * grace period as it protects RCU readers of the hash table. | 
|  | * | 
|  | * node.index allows to get from node.list to containing chunk. | 
|  | * MSB of that sucker is stolen to mark taggings that we might have to | 
|  | * revert - several operations have very unpleasant cleanup logics and | 
|  | * that makes a difference.  Some. | 
|  | */ | 
|  |  | 
|  | static struct fsnotify_group *audit_tree_group; | 
|  | static struct kmem_cache *audit_tree_mark_cachep __read_mostly; | 
|  |  | 
|  | static struct audit_tree *alloc_tree(const char *s) | 
|  | { | 
|  | struct audit_tree *tree; | 
|  |  | 
|  | tree = kmalloc(sizeof(struct audit_tree) + strlen(s) + 1, GFP_KERNEL); | 
|  | if (tree) { | 
|  | refcount_set(&tree->count, 1); | 
|  | tree->goner = 0; | 
|  | INIT_LIST_HEAD(&tree->chunks); | 
|  | INIT_LIST_HEAD(&tree->rules); | 
|  | INIT_LIST_HEAD(&tree->list); | 
|  | INIT_LIST_HEAD(&tree->same_root); | 
|  | tree->root = NULL; | 
|  | strcpy(tree->pathname, s); | 
|  | } | 
|  | return tree; | 
|  | } | 
|  |  | 
|  | static inline void get_tree(struct audit_tree *tree) | 
|  | { | 
|  | refcount_inc(&tree->count); | 
|  | } | 
|  |  | 
|  | static inline void put_tree(struct audit_tree *tree) | 
|  | { | 
|  | if (refcount_dec_and_test(&tree->count)) | 
|  | kfree_rcu(tree, head); | 
|  | } | 
|  |  | 
|  | /* to avoid bringing the entire thing in audit.h */ | 
|  | const char *audit_tree_path(struct audit_tree *tree) | 
|  | { | 
|  | return tree->pathname; | 
|  | } | 
|  |  | 
|  | static void free_chunk(struct audit_chunk *chunk) | 
|  | { | 
|  | int i; | 
|  |  | 
|  | for (i = 0; i < chunk->count; i++) { | 
|  | if (chunk->owners[i].owner) | 
|  | put_tree(chunk->owners[i].owner); | 
|  | } | 
|  | kfree(chunk); | 
|  | } | 
|  |  | 
|  | void audit_put_chunk(struct audit_chunk *chunk) | 
|  | { | 
|  | if (atomic_long_dec_and_test(&chunk->refs)) | 
|  | free_chunk(chunk); | 
|  | } | 
|  |  | 
|  | static void __put_chunk(struct rcu_head *rcu) | 
|  | { | 
|  | struct audit_chunk *chunk = container_of(rcu, struct audit_chunk, head); | 
|  | audit_put_chunk(chunk); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Drop reference to the chunk that was held by the mark. This is the reference | 
|  | * that gets dropped after we've removed the chunk from the hash table and we | 
|  | * use it to make sure chunk cannot be freed before RCU grace period expires. | 
|  | */ | 
|  | static void audit_mark_put_chunk(struct audit_chunk *chunk) | 
|  | { | 
|  | call_rcu(&chunk->head, __put_chunk); | 
|  | } | 
|  |  | 
|  | static inline struct audit_tree_mark *audit_mark(struct fsnotify_mark *mark) | 
|  | { | 
|  | return container_of(mark, struct audit_tree_mark, mark); | 
|  | } | 
|  |  | 
|  | static struct audit_chunk *mark_chunk(struct fsnotify_mark *mark) | 
|  | { | 
|  | return audit_mark(mark)->chunk; | 
|  | } | 
|  |  | 
|  | static void audit_tree_destroy_watch(struct fsnotify_mark *mark) | 
|  | { | 
|  | kmem_cache_free(audit_tree_mark_cachep, audit_mark(mark)); | 
|  | } | 
|  |  | 
|  | static struct fsnotify_mark *alloc_mark(void) | 
|  | { | 
|  | struct audit_tree_mark *amark; | 
|  |  | 
|  | amark = kmem_cache_zalloc(audit_tree_mark_cachep, GFP_KERNEL); | 
|  | if (!amark) | 
|  | return NULL; | 
|  | fsnotify_init_mark(&amark->mark, audit_tree_group); | 
|  | amark->mark.mask = FS_IN_IGNORED; | 
|  | return &amark->mark; | 
|  | } | 
|  |  | 
|  | static struct audit_chunk *alloc_chunk(int count) | 
|  | { | 
|  | struct audit_chunk *chunk; | 
|  | int i; | 
|  |  | 
|  | chunk = kzalloc(struct_size(chunk, owners, count), GFP_KERNEL); | 
|  | if (!chunk) | 
|  | return NULL; | 
|  |  | 
|  | INIT_LIST_HEAD(&chunk->hash); | 
|  | INIT_LIST_HEAD(&chunk->trees); | 
|  | chunk->count = count; | 
|  | atomic_long_set(&chunk->refs, 1); | 
|  | for (i = 0; i < count; i++) { | 
|  | INIT_LIST_HEAD(&chunk->owners[i].list); | 
|  | chunk->owners[i].index = i; | 
|  | } | 
|  | return chunk; | 
|  | } | 
|  |  | 
|  | enum {HASH_SIZE = 128}; | 
|  | static struct list_head chunk_hash_heads[HASH_SIZE]; | 
|  | static __cacheline_aligned_in_smp DEFINE_SPINLOCK(hash_lock); | 
|  |  | 
|  | /* Function to return search key in our hash from inode. */ | 
|  | static unsigned long inode_to_key(const struct inode *inode) | 
|  | { | 
|  | /* Use address pointed to by connector->obj as the key */ | 
|  | return (unsigned long)&inode->i_fsnotify_marks; | 
|  | } | 
|  |  | 
|  | static inline struct list_head *chunk_hash(unsigned long key) | 
|  | { | 
|  | unsigned long n = key / L1_CACHE_BYTES; | 
|  | return chunk_hash_heads + n % HASH_SIZE; | 
|  | } | 
|  |  | 
|  | /* hash_lock & mark->group->mark_mutex is held by caller */ | 
|  | static void insert_hash(struct audit_chunk *chunk) | 
|  | { | 
|  | struct list_head *list; | 
|  |  | 
|  | /* | 
|  | * Make sure chunk is fully initialized before making it visible in the | 
|  | * hash. Pairs with a data dependency barrier in READ_ONCE() in | 
|  | * audit_tree_lookup(). | 
|  | */ | 
|  | smp_wmb(); | 
|  | WARN_ON_ONCE(!chunk->key); | 
|  | list = chunk_hash(chunk->key); | 
|  | list_add_rcu(&chunk->hash, list); | 
|  | } | 
|  |  | 
|  | /* called under rcu_read_lock */ | 
|  | struct audit_chunk *audit_tree_lookup(const struct inode *inode) | 
|  | { | 
|  | unsigned long key = inode_to_key(inode); | 
|  | struct list_head *list = chunk_hash(key); | 
|  | struct audit_chunk *p; | 
|  |  | 
|  | list_for_each_entry_rcu(p, list, hash) { | 
|  | /* | 
|  | * We use a data dependency barrier in READ_ONCE() to make sure | 
|  | * the chunk we see is fully initialized. | 
|  | */ | 
|  | if (READ_ONCE(p->key) == key) { | 
|  | atomic_long_inc(&p->refs); | 
|  | return p; | 
|  | } | 
|  | } | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | bool audit_tree_match(struct audit_chunk *chunk, struct audit_tree *tree) | 
|  | { | 
|  | int n; | 
|  | for (n = 0; n < chunk->count; n++) | 
|  | if (chunk->owners[n].owner == tree) | 
|  | return true; | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /* tagging and untagging inodes with trees */ | 
|  |  | 
|  | static struct audit_chunk *find_chunk(struct node *p) | 
|  | { | 
|  | int index = p->index & ~(1U<<31); | 
|  | p -= index; | 
|  | return container_of(p, struct audit_chunk, owners[0]); | 
|  | } | 
|  |  | 
|  | static void replace_mark_chunk(struct fsnotify_mark *mark, | 
|  | struct audit_chunk *chunk) | 
|  | { | 
|  | struct audit_chunk *old; | 
|  |  | 
|  | assert_spin_locked(&hash_lock); | 
|  | old = mark_chunk(mark); | 
|  | audit_mark(mark)->chunk = chunk; | 
|  | if (chunk) | 
|  | chunk->mark = mark; | 
|  | if (old) | 
|  | old->mark = NULL; | 
|  | } | 
|  |  | 
|  | static void replace_chunk(struct audit_chunk *new, struct audit_chunk *old) | 
|  | { | 
|  | struct audit_tree *owner; | 
|  | int i, j; | 
|  |  | 
|  | new->key = old->key; | 
|  | list_splice_init(&old->trees, &new->trees); | 
|  | list_for_each_entry(owner, &new->trees, same_root) | 
|  | owner->root = new; | 
|  | for (i = j = 0; j < old->count; i++, j++) { | 
|  | if (!old->owners[j].owner) { | 
|  | i--; | 
|  | continue; | 
|  | } | 
|  | owner = old->owners[j].owner; | 
|  | new->owners[i].owner = owner; | 
|  | new->owners[i].index = old->owners[j].index - j + i; | 
|  | if (!owner) /* result of earlier fallback */ | 
|  | continue; | 
|  | get_tree(owner); | 
|  | list_replace_init(&old->owners[j].list, &new->owners[i].list); | 
|  | } | 
|  | replace_mark_chunk(old->mark, new); | 
|  | /* | 
|  | * Make sure chunk is fully initialized before making it visible in the | 
|  | * hash. Pairs with a data dependency barrier in READ_ONCE() in | 
|  | * audit_tree_lookup(). | 
|  | */ | 
|  | smp_wmb(); | 
|  | list_replace_rcu(&old->hash, &new->hash); | 
|  | } | 
|  |  | 
|  | static void remove_chunk_node(struct audit_chunk *chunk, struct node *p) | 
|  | { | 
|  | struct audit_tree *owner = p->owner; | 
|  |  | 
|  | if (owner->root == chunk) { | 
|  | list_del_init(&owner->same_root); | 
|  | owner->root = NULL; | 
|  | } | 
|  | list_del_init(&p->list); | 
|  | p->owner = NULL; | 
|  | put_tree(owner); | 
|  | } | 
|  |  | 
|  | static int chunk_count_trees(struct audit_chunk *chunk) | 
|  | { | 
|  | int i; | 
|  | int ret = 0; | 
|  |  | 
|  | for (i = 0; i < chunk->count; i++) | 
|  | if (chunk->owners[i].owner) | 
|  | ret++; | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static void untag_chunk(struct audit_chunk *chunk, struct fsnotify_mark *mark) | 
|  | { | 
|  | struct audit_chunk *new; | 
|  | int size; | 
|  |  | 
|  | mutex_lock(&audit_tree_group->mark_mutex); | 
|  | /* | 
|  | * mark_mutex stabilizes chunk attached to the mark so we can check | 
|  | * whether it didn't change while we've dropped hash_lock. | 
|  | */ | 
|  | if (!(mark->flags & FSNOTIFY_MARK_FLAG_ATTACHED) || | 
|  | mark_chunk(mark) != chunk) | 
|  | goto out_mutex; | 
|  |  | 
|  | size = chunk_count_trees(chunk); | 
|  | if (!size) { | 
|  | spin_lock(&hash_lock); | 
|  | list_del_init(&chunk->trees); | 
|  | list_del_rcu(&chunk->hash); | 
|  | replace_mark_chunk(mark, NULL); | 
|  | spin_unlock(&hash_lock); | 
|  | fsnotify_detach_mark(mark); | 
|  | mutex_unlock(&audit_tree_group->mark_mutex); | 
|  | audit_mark_put_chunk(chunk); | 
|  | fsnotify_free_mark(mark); | 
|  | return; | 
|  | } | 
|  |  | 
|  | new = alloc_chunk(size); | 
|  | if (!new) | 
|  | goto out_mutex; | 
|  |  | 
|  | spin_lock(&hash_lock); | 
|  | /* | 
|  | * This has to go last when updating chunk as once replace_chunk() is | 
|  | * called, new RCU readers can see the new chunk. | 
|  | */ | 
|  | replace_chunk(new, chunk); | 
|  | spin_unlock(&hash_lock); | 
|  | mutex_unlock(&audit_tree_group->mark_mutex); | 
|  | audit_mark_put_chunk(chunk); | 
|  | return; | 
|  |  | 
|  | out_mutex: | 
|  | mutex_unlock(&audit_tree_group->mark_mutex); | 
|  | } | 
|  |  | 
|  | /* Call with group->mark_mutex held, releases it */ | 
|  | static int create_chunk(struct inode *inode, struct audit_tree *tree) | 
|  | { | 
|  | struct fsnotify_mark *mark; | 
|  | struct audit_chunk *chunk = alloc_chunk(1); | 
|  |  | 
|  | if (!chunk) { | 
|  | mutex_unlock(&audit_tree_group->mark_mutex); | 
|  | return -ENOMEM; | 
|  | } | 
|  |  | 
|  | mark = alloc_mark(); | 
|  | if (!mark) { | 
|  | mutex_unlock(&audit_tree_group->mark_mutex); | 
|  | kfree(chunk); | 
|  | return -ENOMEM; | 
|  | } | 
|  |  | 
|  | if (fsnotify_add_inode_mark_locked(mark, inode, 0)) { | 
|  | mutex_unlock(&audit_tree_group->mark_mutex); | 
|  | fsnotify_put_mark(mark); | 
|  | kfree(chunk); | 
|  | return -ENOSPC; | 
|  | } | 
|  |  | 
|  | spin_lock(&hash_lock); | 
|  | if (tree->goner) { | 
|  | spin_unlock(&hash_lock); | 
|  | fsnotify_detach_mark(mark); | 
|  | mutex_unlock(&audit_tree_group->mark_mutex); | 
|  | fsnotify_free_mark(mark); | 
|  | fsnotify_put_mark(mark); | 
|  | kfree(chunk); | 
|  | return 0; | 
|  | } | 
|  | replace_mark_chunk(mark, chunk); | 
|  | chunk->owners[0].index = (1U << 31); | 
|  | chunk->owners[0].owner = tree; | 
|  | get_tree(tree); | 
|  | list_add(&chunk->owners[0].list, &tree->chunks); | 
|  | if (!tree->root) { | 
|  | tree->root = chunk; | 
|  | list_add(&tree->same_root, &chunk->trees); | 
|  | } | 
|  | chunk->key = inode_to_key(inode); | 
|  | /* | 
|  | * Inserting into the hash table has to go last as once we do that RCU | 
|  | * readers can see the chunk. | 
|  | */ | 
|  | insert_hash(chunk); | 
|  | spin_unlock(&hash_lock); | 
|  | mutex_unlock(&audit_tree_group->mark_mutex); | 
|  | /* | 
|  | * Drop our initial reference. When mark we point to is getting freed, | 
|  | * we get notification through ->freeing_mark callback and cleanup | 
|  | * chunk pointing to this mark. | 
|  | */ | 
|  | fsnotify_put_mark(mark); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* the first tagged inode becomes root of tree */ | 
|  | static int tag_chunk(struct inode *inode, struct audit_tree *tree) | 
|  | { | 
|  | struct fsnotify_mark *mark; | 
|  | struct audit_chunk *chunk, *old; | 
|  | struct node *p; | 
|  | int n; | 
|  |  | 
|  | mutex_lock(&audit_tree_group->mark_mutex); | 
|  | mark = fsnotify_find_mark(&inode->i_fsnotify_marks, audit_tree_group); | 
|  | if (!mark) | 
|  | return create_chunk(inode, tree); | 
|  |  | 
|  | /* | 
|  | * Found mark is guaranteed to be attached and mark_mutex protects mark | 
|  | * from getting detached and thus it makes sure there is chunk attached | 
|  | * to the mark. | 
|  | */ | 
|  | /* are we already there? */ | 
|  | spin_lock(&hash_lock); | 
|  | old = mark_chunk(mark); | 
|  | for (n = 0; n < old->count; n++) { | 
|  | if (old->owners[n].owner == tree) { | 
|  | spin_unlock(&hash_lock); | 
|  | mutex_unlock(&audit_tree_group->mark_mutex); | 
|  | fsnotify_put_mark(mark); | 
|  | return 0; | 
|  | } | 
|  | } | 
|  | spin_unlock(&hash_lock); | 
|  |  | 
|  | chunk = alloc_chunk(old->count + 1); | 
|  | if (!chunk) { | 
|  | mutex_unlock(&audit_tree_group->mark_mutex); | 
|  | fsnotify_put_mark(mark); | 
|  | return -ENOMEM; | 
|  | } | 
|  |  | 
|  | spin_lock(&hash_lock); | 
|  | if (tree->goner) { | 
|  | spin_unlock(&hash_lock); | 
|  | mutex_unlock(&audit_tree_group->mark_mutex); | 
|  | fsnotify_put_mark(mark); | 
|  | kfree(chunk); | 
|  | return 0; | 
|  | } | 
|  | p = &chunk->owners[chunk->count - 1]; | 
|  | p->index = (chunk->count - 1) | (1U<<31); | 
|  | p->owner = tree; | 
|  | get_tree(tree); | 
|  | list_add(&p->list, &tree->chunks); | 
|  | if (!tree->root) { | 
|  | tree->root = chunk; | 
|  | list_add(&tree->same_root, &chunk->trees); | 
|  | } | 
|  | /* | 
|  | * This has to go last when updating chunk as once replace_chunk() is | 
|  | * called, new RCU readers can see the new chunk. | 
|  | */ | 
|  | replace_chunk(chunk, old); | 
|  | spin_unlock(&hash_lock); | 
|  | mutex_unlock(&audit_tree_group->mark_mutex); | 
|  | fsnotify_put_mark(mark); /* pair to fsnotify_find_mark */ | 
|  | audit_mark_put_chunk(old); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void audit_tree_log_remove_rule(struct audit_context *context, | 
|  | struct audit_krule *rule) | 
|  | { | 
|  | struct audit_buffer *ab; | 
|  |  | 
|  | if (!audit_enabled) | 
|  | return; | 
|  | ab = audit_log_start(context, GFP_KERNEL, AUDIT_CONFIG_CHANGE); | 
|  | if (unlikely(!ab)) | 
|  | return; | 
|  | audit_log_format(ab, "op=remove_rule dir="); | 
|  | audit_log_untrustedstring(ab, rule->tree->pathname); | 
|  | audit_log_key(ab, rule->filterkey); | 
|  | audit_log_format(ab, " list=%d res=1", rule->listnr); | 
|  | audit_log_end(ab); | 
|  | } | 
|  |  | 
|  | static void kill_rules(struct audit_context *context, struct audit_tree *tree) | 
|  | { | 
|  | struct audit_krule *rule, *next; | 
|  | struct audit_entry *entry; | 
|  |  | 
|  | list_for_each_entry_safe(rule, next, &tree->rules, rlist) { | 
|  | entry = container_of(rule, struct audit_entry, rule); | 
|  |  | 
|  | list_del_init(&rule->rlist); | 
|  | if (rule->tree) { | 
|  | /* not a half-baked one */ | 
|  | audit_tree_log_remove_rule(context, rule); | 
|  | if (entry->rule.exe) | 
|  | audit_remove_mark(entry->rule.exe); | 
|  | rule->tree = NULL; | 
|  | list_del_rcu(&entry->list); | 
|  | list_del(&entry->rule.list); | 
|  | call_rcu(&entry->rcu, audit_free_rule_rcu); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Remove tree from chunks. If 'tagged' is set, remove tree only from tagged | 
|  | * chunks. The function expects tagged chunks are all at the beginning of the | 
|  | * chunks list. | 
|  | */ | 
|  | static void prune_tree_chunks(struct audit_tree *victim, bool tagged) | 
|  | { | 
|  | spin_lock(&hash_lock); | 
|  | while (!list_empty(&victim->chunks)) { | 
|  | struct node *p; | 
|  | struct audit_chunk *chunk; | 
|  | struct fsnotify_mark *mark; | 
|  |  | 
|  | p = list_first_entry(&victim->chunks, struct node, list); | 
|  | /* have we run out of marked? */ | 
|  | if (tagged && !(p->index & (1U<<31))) | 
|  | break; | 
|  | chunk = find_chunk(p); | 
|  | mark = chunk->mark; | 
|  | remove_chunk_node(chunk, p); | 
|  | /* Racing with audit_tree_freeing_mark()? */ | 
|  | if (!mark) | 
|  | continue; | 
|  | fsnotify_get_mark(mark); | 
|  | spin_unlock(&hash_lock); | 
|  |  | 
|  | untag_chunk(chunk, mark); | 
|  | fsnotify_put_mark(mark); | 
|  |  | 
|  | spin_lock(&hash_lock); | 
|  | } | 
|  | spin_unlock(&hash_lock); | 
|  | put_tree(victim); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * finish killing struct audit_tree | 
|  | */ | 
|  | static void prune_one(struct audit_tree *victim) | 
|  | { | 
|  | prune_tree_chunks(victim, false); | 
|  | } | 
|  |  | 
|  | /* trim the uncommitted chunks from tree */ | 
|  |  | 
|  | static void trim_marked(struct audit_tree *tree) | 
|  | { | 
|  | struct list_head *p, *q; | 
|  | spin_lock(&hash_lock); | 
|  | if (tree->goner) { | 
|  | spin_unlock(&hash_lock); | 
|  | return; | 
|  | } | 
|  | /* reorder */ | 
|  | for (p = tree->chunks.next; p != &tree->chunks; p = q) { | 
|  | struct node *node = list_entry(p, struct node, list); | 
|  | q = p->next; | 
|  | if (node->index & (1U<<31)) { | 
|  | list_del_init(p); | 
|  | list_add(p, &tree->chunks); | 
|  | } | 
|  | } | 
|  | spin_unlock(&hash_lock); | 
|  |  | 
|  | prune_tree_chunks(tree, true); | 
|  |  | 
|  | spin_lock(&hash_lock); | 
|  | if (!tree->root && !tree->goner) { | 
|  | tree->goner = 1; | 
|  | spin_unlock(&hash_lock); | 
|  | mutex_lock(&audit_filter_mutex); | 
|  | kill_rules(audit_context(), tree); | 
|  | list_del_init(&tree->list); | 
|  | mutex_unlock(&audit_filter_mutex); | 
|  | prune_one(tree); | 
|  | } else { | 
|  | spin_unlock(&hash_lock); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void audit_schedule_prune(void); | 
|  |  | 
|  | /* called with audit_filter_mutex */ | 
|  | int audit_remove_tree_rule(struct audit_krule *rule) | 
|  | { | 
|  | struct audit_tree *tree; | 
|  | tree = rule->tree; | 
|  | if (tree) { | 
|  | spin_lock(&hash_lock); | 
|  | list_del_init(&rule->rlist); | 
|  | if (list_empty(&tree->rules) && !tree->goner) { | 
|  | tree->root = NULL; | 
|  | list_del_init(&tree->same_root); | 
|  | tree->goner = 1; | 
|  | list_move(&tree->list, &prune_list); | 
|  | rule->tree = NULL; | 
|  | spin_unlock(&hash_lock); | 
|  | audit_schedule_prune(); | 
|  | return 1; | 
|  | } | 
|  | rule->tree = NULL; | 
|  | spin_unlock(&hash_lock); | 
|  | return 1; | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int compare_root(struct vfsmount *mnt, void *arg) | 
|  | { | 
|  | return inode_to_key(d_backing_inode(mnt->mnt_root)) == | 
|  | (unsigned long)arg; | 
|  | } | 
|  |  | 
|  | void audit_trim_trees(void) | 
|  | { | 
|  | struct list_head cursor; | 
|  |  | 
|  | mutex_lock(&audit_filter_mutex); | 
|  | list_add(&cursor, &tree_list); | 
|  | while (cursor.next != &tree_list) { | 
|  | struct audit_tree *tree; | 
|  | struct path path; | 
|  | struct vfsmount *root_mnt; | 
|  | struct node *node; | 
|  | int err; | 
|  |  | 
|  | tree = container_of(cursor.next, struct audit_tree, list); | 
|  | get_tree(tree); | 
|  | list_move(&cursor, &tree->list); | 
|  | mutex_unlock(&audit_filter_mutex); | 
|  |  | 
|  | err = kern_path(tree->pathname, 0, &path); | 
|  | if (err) | 
|  | goto skip_it; | 
|  |  | 
|  | root_mnt = collect_mounts(&path); | 
|  | path_put(&path); | 
|  | if (IS_ERR(root_mnt)) | 
|  | goto skip_it; | 
|  |  | 
|  | spin_lock(&hash_lock); | 
|  | list_for_each_entry(node, &tree->chunks, list) { | 
|  | struct audit_chunk *chunk = find_chunk(node); | 
|  | /* this could be NULL if the watch is dying else where... */ | 
|  | node->index |= 1U<<31; | 
|  | if (iterate_mounts(compare_root, | 
|  | (void *)(chunk->key), | 
|  | root_mnt)) | 
|  | node->index &= ~(1U<<31); | 
|  | } | 
|  | spin_unlock(&hash_lock); | 
|  | trim_marked(tree); | 
|  | drop_collected_mounts(root_mnt); | 
|  | skip_it: | 
|  | put_tree(tree); | 
|  | mutex_lock(&audit_filter_mutex); | 
|  | } | 
|  | list_del(&cursor); | 
|  | mutex_unlock(&audit_filter_mutex); | 
|  | } | 
|  |  | 
|  | int audit_make_tree(struct audit_krule *rule, char *pathname, u32 op) | 
|  | { | 
|  |  | 
|  | if (pathname[0] != '/' || | 
|  | rule->listnr != AUDIT_FILTER_EXIT || | 
|  | op != Audit_equal || | 
|  | rule->inode_f || rule->watch || rule->tree) | 
|  | return -EINVAL; | 
|  | rule->tree = alloc_tree(pathname); | 
|  | if (!rule->tree) | 
|  | return -ENOMEM; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | void audit_put_tree(struct audit_tree *tree) | 
|  | { | 
|  | put_tree(tree); | 
|  | } | 
|  |  | 
|  | static int tag_mount(struct vfsmount *mnt, void *arg) | 
|  | { | 
|  | return tag_chunk(d_backing_inode(mnt->mnt_root), arg); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * That gets run when evict_chunk() ends up needing to kill audit_tree. | 
|  | * Runs from a separate thread. | 
|  | */ | 
|  | static int prune_tree_thread(void *unused) | 
|  | { | 
|  | for (;;) { | 
|  | if (list_empty(&prune_list)) { | 
|  | set_current_state(TASK_INTERRUPTIBLE); | 
|  | schedule(); | 
|  | } | 
|  |  | 
|  | audit_ctl_lock(); | 
|  | mutex_lock(&audit_filter_mutex); | 
|  |  | 
|  | while (!list_empty(&prune_list)) { | 
|  | struct audit_tree *victim; | 
|  |  | 
|  | victim = list_entry(prune_list.next, | 
|  | struct audit_tree, list); | 
|  | list_del_init(&victim->list); | 
|  |  | 
|  | mutex_unlock(&audit_filter_mutex); | 
|  |  | 
|  | prune_one(victim); | 
|  |  | 
|  | mutex_lock(&audit_filter_mutex); | 
|  | } | 
|  |  | 
|  | mutex_unlock(&audit_filter_mutex); | 
|  | audit_ctl_unlock(); | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int audit_launch_prune(void) | 
|  | { | 
|  | if (prune_thread) | 
|  | return 0; | 
|  | prune_thread = kthread_run(prune_tree_thread, NULL, | 
|  | "audit_prune_tree"); | 
|  | if (IS_ERR(prune_thread)) { | 
|  | pr_err("cannot start thread audit_prune_tree"); | 
|  | prune_thread = NULL; | 
|  | return -ENOMEM; | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* called with audit_filter_mutex */ | 
|  | int audit_add_tree_rule(struct audit_krule *rule) | 
|  | { | 
|  | struct audit_tree *seed = rule->tree, *tree; | 
|  | struct path path; | 
|  | struct vfsmount *mnt; | 
|  | int err; | 
|  |  | 
|  | rule->tree = NULL; | 
|  | list_for_each_entry(tree, &tree_list, list) { | 
|  | if (!strcmp(seed->pathname, tree->pathname)) { | 
|  | put_tree(seed); | 
|  | rule->tree = tree; | 
|  | list_add(&rule->rlist, &tree->rules); | 
|  | return 0; | 
|  | } | 
|  | } | 
|  | tree = seed; | 
|  | list_add(&tree->list, &tree_list); | 
|  | list_add(&rule->rlist, &tree->rules); | 
|  | /* do not set rule->tree yet */ | 
|  | mutex_unlock(&audit_filter_mutex); | 
|  |  | 
|  | if (unlikely(!prune_thread)) { | 
|  | err = audit_launch_prune(); | 
|  | if (err) | 
|  | goto Err; | 
|  | } | 
|  |  | 
|  | err = kern_path(tree->pathname, 0, &path); | 
|  | if (err) | 
|  | goto Err; | 
|  | mnt = collect_mounts(&path); | 
|  | path_put(&path); | 
|  | if (IS_ERR(mnt)) { | 
|  | err = PTR_ERR(mnt); | 
|  | goto Err; | 
|  | } | 
|  |  | 
|  | get_tree(tree); | 
|  | err = iterate_mounts(tag_mount, tree, mnt); | 
|  | drop_collected_mounts(mnt); | 
|  |  | 
|  | if (!err) { | 
|  | struct node *node; | 
|  | spin_lock(&hash_lock); | 
|  | list_for_each_entry(node, &tree->chunks, list) | 
|  | node->index &= ~(1U<<31); | 
|  | spin_unlock(&hash_lock); | 
|  | } else { | 
|  | trim_marked(tree); | 
|  | goto Err; | 
|  | } | 
|  |  | 
|  | mutex_lock(&audit_filter_mutex); | 
|  | if (list_empty(&rule->rlist)) { | 
|  | put_tree(tree); | 
|  | return -ENOENT; | 
|  | } | 
|  | rule->tree = tree; | 
|  | put_tree(tree); | 
|  |  | 
|  | return 0; | 
|  | Err: | 
|  | mutex_lock(&audit_filter_mutex); | 
|  | list_del_init(&tree->list); | 
|  | list_del_init(&tree->rules); | 
|  | put_tree(tree); | 
|  | return err; | 
|  | } | 
|  |  | 
|  | int audit_tag_tree(char *old, char *new) | 
|  | { | 
|  | struct list_head cursor, barrier; | 
|  | int failed = 0; | 
|  | struct path path1, path2; | 
|  | struct vfsmount *tagged; | 
|  | int err; | 
|  |  | 
|  | err = kern_path(new, 0, &path2); | 
|  | if (err) | 
|  | return err; | 
|  | tagged = collect_mounts(&path2); | 
|  | path_put(&path2); | 
|  | if (IS_ERR(tagged)) | 
|  | return PTR_ERR(tagged); | 
|  |  | 
|  | err = kern_path(old, 0, &path1); | 
|  | if (err) { | 
|  | drop_collected_mounts(tagged); | 
|  | return err; | 
|  | } | 
|  |  | 
|  | mutex_lock(&audit_filter_mutex); | 
|  | list_add(&barrier, &tree_list); | 
|  | list_add(&cursor, &barrier); | 
|  |  | 
|  | while (cursor.next != &tree_list) { | 
|  | struct audit_tree *tree; | 
|  | int good_one = 0; | 
|  |  | 
|  | tree = container_of(cursor.next, struct audit_tree, list); | 
|  | get_tree(tree); | 
|  | list_move(&cursor, &tree->list); | 
|  | mutex_unlock(&audit_filter_mutex); | 
|  |  | 
|  | err = kern_path(tree->pathname, 0, &path2); | 
|  | if (!err) { | 
|  | good_one = path_is_under(&path1, &path2); | 
|  | path_put(&path2); | 
|  | } | 
|  |  | 
|  | if (!good_one) { | 
|  | put_tree(tree); | 
|  | mutex_lock(&audit_filter_mutex); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | failed = iterate_mounts(tag_mount, tree, tagged); | 
|  | if (failed) { | 
|  | put_tree(tree); | 
|  | mutex_lock(&audit_filter_mutex); | 
|  | break; | 
|  | } | 
|  |  | 
|  | mutex_lock(&audit_filter_mutex); | 
|  | spin_lock(&hash_lock); | 
|  | if (!tree->goner) { | 
|  | list_move(&tree->list, &tree_list); | 
|  | } | 
|  | spin_unlock(&hash_lock); | 
|  | put_tree(tree); | 
|  | } | 
|  |  | 
|  | while (barrier.prev != &tree_list) { | 
|  | struct audit_tree *tree; | 
|  |  | 
|  | tree = container_of(barrier.prev, struct audit_tree, list); | 
|  | get_tree(tree); | 
|  | list_move(&tree->list, &barrier); | 
|  | mutex_unlock(&audit_filter_mutex); | 
|  |  | 
|  | if (!failed) { | 
|  | struct node *node; | 
|  | spin_lock(&hash_lock); | 
|  | list_for_each_entry(node, &tree->chunks, list) | 
|  | node->index &= ~(1U<<31); | 
|  | spin_unlock(&hash_lock); | 
|  | } else { | 
|  | trim_marked(tree); | 
|  | } | 
|  |  | 
|  | put_tree(tree); | 
|  | mutex_lock(&audit_filter_mutex); | 
|  | } | 
|  | list_del(&barrier); | 
|  | list_del(&cursor); | 
|  | mutex_unlock(&audit_filter_mutex); | 
|  | path_put(&path1); | 
|  | drop_collected_mounts(tagged); | 
|  | return failed; | 
|  | } | 
|  |  | 
|  |  | 
|  | static void audit_schedule_prune(void) | 
|  | { | 
|  | wake_up_process(prune_thread); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * ... and that one is done if evict_chunk() decides to delay until the end | 
|  | * of syscall.  Runs synchronously. | 
|  | */ | 
|  | void audit_kill_trees(struct audit_context *context) | 
|  | { | 
|  | struct list_head *list = &context->killed_trees; | 
|  |  | 
|  | audit_ctl_lock(); | 
|  | mutex_lock(&audit_filter_mutex); | 
|  |  | 
|  | while (!list_empty(list)) { | 
|  | struct audit_tree *victim; | 
|  |  | 
|  | victim = list_entry(list->next, struct audit_tree, list); | 
|  | kill_rules(context, victim); | 
|  | list_del_init(&victim->list); | 
|  |  | 
|  | mutex_unlock(&audit_filter_mutex); | 
|  |  | 
|  | prune_one(victim); | 
|  |  | 
|  | mutex_lock(&audit_filter_mutex); | 
|  | } | 
|  |  | 
|  | mutex_unlock(&audit_filter_mutex); | 
|  | audit_ctl_unlock(); | 
|  | } | 
|  |  | 
|  | /* | 
|  | *  Here comes the stuff asynchronous to auditctl operations | 
|  | */ | 
|  |  | 
|  | static void evict_chunk(struct audit_chunk *chunk) | 
|  | { | 
|  | struct audit_tree *owner; | 
|  | struct list_head *postponed = audit_killed_trees(); | 
|  | int need_prune = 0; | 
|  | int n; | 
|  |  | 
|  | mutex_lock(&audit_filter_mutex); | 
|  | spin_lock(&hash_lock); | 
|  | while (!list_empty(&chunk->trees)) { | 
|  | owner = list_entry(chunk->trees.next, | 
|  | struct audit_tree, same_root); | 
|  | owner->goner = 1; | 
|  | owner->root = NULL; | 
|  | list_del_init(&owner->same_root); | 
|  | spin_unlock(&hash_lock); | 
|  | if (!postponed) { | 
|  | kill_rules(audit_context(), owner); | 
|  | list_move(&owner->list, &prune_list); | 
|  | need_prune = 1; | 
|  | } else { | 
|  | list_move(&owner->list, postponed); | 
|  | } | 
|  | spin_lock(&hash_lock); | 
|  | } | 
|  | list_del_rcu(&chunk->hash); | 
|  | for (n = 0; n < chunk->count; n++) | 
|  | list_del_init(&chunk->owners[n].list); | 
|  | spin_unlock(&hash_lock); | 
|  | mutex_unlock(&audit_filter_mutex); | 
|  | if (need_prune) | 
|  | audit_schedule_prune(); | 
|  | } | 
|  |  | 
|  | static int audit_tree_handle_event(struct fsnotify_mark *mark, u32 mask, | 
|  | struct inode *inode, struct inode *dir, | 
|  | const struct qstr *file_name, u32 cookie) | 
|  | { | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void audit_tree_freeing_mark(struct fsnotify_mark *mark, | 
|  | struct fsnotify_group *group) | 
|  | { | 
|  | struct audit_chunk *chunk; | 
|  |  | 
|  | mutex_lock(&mark->group->mark_mutex); | 
|  | spin_lock(&hash_lock); | 
|  | chunk = mark_chunk(mark); | 
|  | replace_mark_chunk(mark, NULL); | 
|  | spin_unlock(&hash_lock); | 
|  | mutex_unlock(&mark->group->mark_mutex); | 
|  | if (chunk) { | 
|  | evict_chunk(chunk); | 
|  | audit_mark_put_chunk(chunk); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * We are guaranteed to have at least one reference to the mark from | 
|  | * either the inode or the caller of fsnotify_destroy_mark(). | 
|  | */ | 
|  | BUG_ON(refcount_read(&mark->refcnt) < 1); | 
|  | } | 
|  |  | 
|  | static const struct fsnotify_ops audit_tree_ops = { | 
|  | .handle_inode_event = audit_tree_handle_event, | 
|  | .freeing_mark = audit_tree_freeing_mark, | 
|  | .free_mark = audit_tree_destroy_watch, | 
|  | }; | 
|  |  | 
|  | static int __init audit_tree_init(void) | 
|  | { | 
|  | int i; | 
|  |  | 
|  | audit_tree_mark_cachep = KMEM_CACHE(audit_tree_mark, SLAB_PANIC); | 
|  |  | 
|  | audit_tree_group = fsnotify_alloc_group(&audit_tree_ops); | 
|  | if (IS_ERR(audit_tree_group)) | 
|  | audit_panic("cannot initialize fsnotify group for rectree watches"); | 
|  |  | 
|  | for (i = 0; i < HASH_SIZE; i++) | 
|  | INIT_LIST_HEAD(&chunk_hash_heads[i]); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  | __initcall(audit_tree_init); |