| // SPDX-License-Identifier: GPL-2.0-or-later |
| /* |
| * HW_breakpoint: a unified kernel/user-space hardware breakpoint facility, |
| * using the CPU's debug registers. Derived from |
| * "arch/x86/kernel/hw_breakpoint.c" |
| * |
| * Copyright 2010 IBM Corporation |
| * Author: K.Prasad <prasad@linux.vnet.ibm.com> |
| */ |
| |
| #include <linux/hw_breakpoint.h> |
| #include <linux/notifier.h> |
| #include <linux/kprobes.h> |
| #include <linux/percpu.h> |
| #include <linux/kernel.h> |
| #include <linux/sched.h> |
| #include <linux/smp.h> |
| #include <linux/debugfs.h> |
| #include <linux/init.h> |
| |
| #include <asm/hw_breakpoint.h> |
| #include <asm/processor.h> |
| #include <asm/sstep.h> |
| #include <asm/debug.h> |
| #include <asm/debugfs.h> |
| #include <asm/hvcall.h> |
| #include <asm/inst.h> |
| #include <linux/uaccess.h> |
| |
| /* |
| * Stores the breakpoints currently in use on each breakpoint address |
| * register for every cpu |
| */ |
| static DEFINE_PER_CPU(struct perf_event *, bp_per_reg[HBP_NUM_MAX]); |
| |
| /* |
| * Returns total number of data or instruction breakpoints available. |
| */ |
| int hw_breakpoint_slots(int type) |
| { |
| if (type == TYPE_DATA) |
| return nr_wp_slots(); |
| return 0; /* no instruction breakpoints available */ |
| } |
| |
| static bool single_step_pending(void) |
| { |
| int i; |
| |
| for (i = 0; i < nr_wp_slots(); i++) { |
| if (current->thread.last_hit_ubp[i]) |
| return true; |
| } |
| return false; |
| } |
| |
| /* |
| * Install a perf counter breakpoint. |
| * |
| * We seek a free debug address register and use it for this |
| * breakpoint. |
| * |
| * Atomic: we hold the counter->ctx->lock and we only handle variables |
| * and registers local to this cpu. |
| */ |
| int arch_install_hw_breakpoint(struct perf_event *bp) |
| { |
| struct arch_hw_breakpoint *info = counter_arch_bp(bp); |
| struct perf_event **slot; |
| int i; |
| |
| for (i = 0; i < nr_wp_slots(); i++) { |
| slot = this_cpu_ptr(&bp_per_reg[i]); |
| if (!*slot) { |
| *slot = bp; |
| break; |
| } |
| } |
| |
| if (WARN_ONCE(i == nr_wp_slots(), "Can't find any breakpoint slot")) |
| return -EBUSY; |
| |
| /* |
| * Do not install DABR values if the instruction must be single-stepped. |
| * If so, DABR will be populated in single_step_dabr_instruction(). |
| */ |
| if (!single_step_pending()) |
| __set_breakpoint(i, info); |
| |
| return 0; |
| } |
| |
| /* |
| * Uninstall the breakpoint contained in the given counter. |
| * |
| * First we search the debug address register it uses and then we disable |
| * it. |
| * |
| * Atomic: we hold the counter->ctx->lock and we only handle variables |
| * and registers local to this cpu. |
| */ |
| void arch_uninstall_hw_breakpoint(struct perf_event *bp) |
| { |
| struct arch_hw_breakpoint null_brk = {0}; |
| struct perf_event **slot; |
| int i; |
| |
| for (i = 0; i < nr_wp_slots(); i++) { |
| slot = this_cpu_ptr(&bp_per_reg[i]); |
| if (*slot == bp) { |
| *slot = NULL; |
| break; |
| } |
| } |
| |
| if (WARN_ONCE(i == nr_wp_slots(), "Can't find any breakpoint slot")) |
| return; |
| |
| __set_breakpoint(i, &null_brk); |
| } |
| |
| static bool is_ptrace_bp(struct perf_event *bp) |
| { |
| return bp->overflow_handler == ptrace_triggered; |
| } |
| |
| struct breakpoint { |
| struct list_head list; |
| struct perf_event *bp; |
| bool ptrace_bp; |
| }; |
| |
| static DEFINE_PER_CPU(struct breakpoint *, cpu_bps[HBP_NUM_MAX]); |
| static LIST_HEAD(task_bps); |
| |
| static struct breakpoint *alloc_breakpoint(struct perf_event *bp) |
| { |
| struct breakpoint *tmp; |
| |
| tmp = kzalloc(sizeof(*tmp), GFP_KERNEL); |
| if (!tmp) |
| return ERR_PTR(-ENOMEM); |
| tmp->bp = bp; |
| tmp->ptrace_bp = is_ptrace_bp(bp); |
| return tmp; |
| } |
| |
| static bool bp_addr_range_overlap(struct perf_event *bp1, struct perf_event *bp2) |
| { |
| __u64 bp1_saddr, bp1_eaddr, bp2_saddr, bp2_eaddr; |
| |
| bp1_saddr = ALIGN_DOWN(bp1->attr.bp_addr, HW_BREAKPOINT_SIZE); |
| bp1_eaddr = ALIGN(bp1->attr.bp_addr + bp1->attr.bp_len, HW_BREAKPOINT_SIZE); |
| bp2_saddr = ALIGN_DOWN(bp2->attr.bp_addr, HW_BREAKPOINT_SIZE); |
| bp2_eaddr = ALIGN(bp2->attr.bp_addr + bp2->attr.bp_len, HW_BREAKPOINT_SIZE); |
| |
| return (bp1_saddr < bp2_eaddr && bp1_eaddr > bp2_saddr); |
| } |
| |
| static bool alternate_infra_bp(struct breakpoint *b, struct perf_event *bp) |
| { |
| return is_ptrace_bp(bp) ? !b->ptrace_bp : b->ptrace_bp; |
| } |
| |
| static bool can_co_exist(struct breakpoint *b, struct perf_event *bp) |
| { |
| return !(alternate_infra_bp(b, bp) && bp_addr_range_overlap(b->bp, bp)); |
| } |
| |
| static int task_bps_add(struct perf_event *bp) |
| { |
| struct breakpoint *tmp; |
| |
| tmp = alloc_breakpoint(bp); |
| if (IS_ERR(tmp)) |
| return PTR_ERR(tmp); |
| |
| list_add(&tmp->list, &task_bps); |
| return 0; |
| } |
| |
| static void task_bps_remove(struct perf_event *bp) |
| { |
| struct list_head *pos, *q; |
| |
| list_for_each_safe(pos, q, &task_bps) { |
| struct breakpoint *tmp = list_entry(pos, struct breakpoint, list); |
| |
| if (tmp->bp == bp) { |
| list_del(&tmp->list); |
| kfree(tmp); |
| break; |
| } |
| } |
| } |
| |
| /* |
| * If any task has breakpoint from alternate infrastructure, |
| * return true. Otherwise return false. |
| */ |
| static bool all_task_bps_check(struct perf_event *bp) |
| { |
| struct breakpoint *tmp; |
| |
| list_for_each_entry(tmp, &task_bps, list) { |
| if (!can_co_exist(tmp, bp)) |
| return true; |
| } |
| return false; |
| } |
| |
| /* |
| * If same task has breakpoint from alternate infrastructure, |
| * return true. Otherwise return false. |
| */ |
| static bool same_task_bps_check(struct perf_event *bp) |
| { |
| struct breakpoint *tmp; |
| |
| list_for_each_entry(tmp, &task_bps, list) { |
| if (tmp->bp->hw.target == bp->hw.target && |
| !can_co_exist(tmp, bp)) |
| return true; |
| } |
| return false; |
| } |
| |
| static int cpu_bps_add(struct perf_event *bp) |
| { |
| struct breakpoint **cpu_bp; |
| struct breakpoint *tmp; |
| int i = 0; |
| |
| tmp = alloc_breakpoint(bp); |
| if (IS_ERR(tmp)) |
| return PTR_ERR(tmp); |
| |
| cpu_bp = per_cpu_ptr(cpu_bps, bp->cpu); |
| for (i = 0; i < nr_wp_slots(); i++) { |
| if (!cpu_bp[i]) { |
| cpu_bp[i] = tmp; |
| break; |
| } |
| } |
| return 0; |
| } |
| |
| static void cpu_bps_remove(struct perf_event *bp) |
| { |
| struct breakpoint **cpu_bp; |
| int i = 0; |
| |
| cpu_bp = per_cpu_ptr(cpu_bps, bp->cpu); |
| for (i = 0; i < nr_wp_slots(); i++) { |
| if (!cpu_bp[i]) |
| continue; |
| |
| if (cpu_bp[i]->bp == bp) { |
| kfree(cpu_bp[i]); |
| cpu_bp[i] = NULL; |
| break; |
| } |
| } |
| } |
| |
| static bool cpu_bps_check(int cpu, struct perf_event *bp) |
| { |
| struct breakpoint **cpu_bp; |
| int i; |
| |
| cpu_bp = per_cpu_ptr(cpu_bps, cpu); |
| for (i = 0; i < nr_wp_slots(); i++) { |
| if (cpu_bp[i] && !can_co_exist(cpu_bp[i], bp)) |
| return true; |
| } |
| return false; |
| } |
| |
| static bool all_cpu_bps_check(struct perf_event *bp) |
| { |
| int cpu; |
| |
| for_each_online_cpu(cpu) { |
| if (cpu_bps_check(cpu, bp)) |
| return true; |
| } |
| return false; |
| } |
| |
| /* |
| * We don't use any locks to serialize accesses to cpu_bps or task_bps |
| * because are already inside nr_bp_mutex. |
| */ |
| int arch_reserve_bp_slot(struct perf_event *bp) |
| { |
| int ret; |
| |
| /* ptrace breakpoint */ |
| if (is_ptrace_bp(bp)) { |
| if (all_cpu_bps_check(bp)) |
| return -ENOSPC; |
| |
| if (same_task_bps_check(bp)) |
| return -ENOSPC; |
| |
| return task_bps_add(bp); |
| } |
| |
| /* perf breakpoint */ |
| if (is_kernel_addr(bp->attr.bp_addr)) |
| return 0; |
| |
| if (bp->hw.target && bp->cpu == -1) { |
| if (same_task_bps_check(bp)) |
| return -ENOSPC; |
| |
| return task_bps_add(bp); |
| } else if (!bp->hw.target && bp->cpu != -1) { |
| if (all_task_bps_check(bp)) |
| return -ENOSPC; |
| |
| return cpu_bps_add(bp); |
| } |
| |
| if (same_task_bps_check(bp)) |
| return -ENOSPC; |
| |
| ret = cpu_bps_add(bp); |
| if (ret) |
| return ret; |
| ret = task_bps_add(bp); |
| if (ret) |
| cpu_bps_remove(bp); |
| |
| return ret; |
| } |
| |
| void arch_release_bp_slot(struct perf_event *bp) |
| { |
| if (!is_kernel_addr(bp->attr.bp_addr)) { |
| if (bp->hw.target) |
| task_bps_remove(bp); |
| if (bp->cpu != -1) |
| cpu_bps_remove(bp); |
| } |
| } |
| |
| /* |
| * Perform cleanup of arch-specific counters during unregistration |
| * of the perf-event |
| */ |
| void arch_unregister_hw_breakpoint(struct perf_event *bp) |
| { |
| /* |
| * If the breakpoint is unregistered between a hw_breakpoint_handler() |
| * and the single_step_dabr_instruction(), then cleanup the breakpoint |
| * restoration variables to prevent dangling pointers. |
| * FIXME, this should not be using bp->ctx at all! Sayeth peterz. |
| */ |
| if (bp->ctx && bp->ctx->task && bp->ctx->task != ((void *)-1L)) { |
| int i; |
| |
| for (i = 0; i < nr_wp_slots(); i++) { |
| if (bp->ctx->task->thread.last_hit_ubp[i] == bp) |
| bp->ctx->task->thread.last_hit_ubp[i] = NULL; |
| } |
| } |
| } |
| |
| /* |
| * Check for virtual address in kernel space. |
| */ |
| int arch_check_bp_in_kernelspace(struct arch_hw_breakpoint *hw) |
| { |
| return is_kernel_addr(hw->address); |
| } |
| |
| int arch_bp_generic_fields(int type, int *gen_bp_type) |
| { |
| *gen_bp_type = 0; |
| if (type & HW_BRK_TYPE_READ) |
| *gen_bp_type |= HW_BREAKPOINT_R; |
| if (type & HW_BRK_TYPE_WRITE) |
| *gen_bp_type |= HW_BREAKPOINT_W; |
| if (*gen_bp_type == 0) |
| return -EINVAL; |
| return 0; |
| } |
| |
| /* |
| * Watchpoint match range is always doubleword(8 bytes) aligned on |
| * powerpc. If the given range is crossing doubleword boundary, we |
| * need to increase the length such that next doubleword also get |
| * covered. Ex, |
| * |
| * address len = 6 bytes |
| * |=========. |
| * |------------v--|------v--------| |
| * | | | | | | | | | | | | | | | | | |
| * |---------------|---------------| |
| * <---8 bytes---> |
| * |
| * In this case, we should configure hw as: |
| * start_addr = address & ~(HW_BREAKPOINT_SIZE - 1) |
| * len = 16 bytes |
| * |
| * @start_addr is inclusive but @end_addr is exclusive. |
| */ |
| static int hw_breakpoint_validate_len(struct arch_hw_breakpoint *hw) |
| { |
| u16 max_len = DABR_MAX_LEN; |
| u16 hw_len; |
| unsigned long start_addr, end_addr; |
| |
| start_addr = ALIGN_DOWN(hw->address, HW_BREAKPOINT_SIZE); |
| end_addr = ALIGN(hw->address + hw->len, HW_BREAKPOINT_SIZE); |
| hw_len = end_addr - start_addr; |
| |
| if (dawr_enabled()) { |
| max_len = DAWR_MAX_LEN; |
| /* DAWR region can't cross 512 bytes boundary on p10 predecessors */ |
| if (!cpu_has_feature(CPU_FTR_ARCH_31) && |
| (ALIGN_DOWN(start_addr, SZ_512) != ALIGN_DOWN(end_addr - 1, SZ_512))) |
| return -EINVAL; |
| } else if (IS_ENABLED(CONFIG_PPC_8xx)) { |
| /* 8xx can setup a range without limitation */ |
| max_len = U16_MAX; |
| } |
| |
| if (hw_len > max_len) |
| return -EINVAL; |
| |
| hw->hw_len = hw_len; |
| return 0; |
| } |
| |
| /* |
| * Validate the arch-specific HW Breakpoint register settings |
| */ |
| int hw_breakpoint_arch_parse(struct perf_event *bp, |
| const struct perf_event_attr *attr, |
| struct arch_hw_breakpoint *hw) |
| { |
| int ret = -EINVAL; |
| |
| if (!bp || !attr->bp_len) |
| return ret; |
| |
| hw->type = HW_BRK_TYPE_TRANSLATE; |
| if (attr->bp_type & HW_BREAKPOINT_R) |
| hw->type |= HW_BRK_TYPE_READ; |
| if (attr->bp_type & HW_BREAKPOINT_W) |
| hw->type |= HW_BRK_TYPE_WRITE; |
| if (hw->type == HW_BRK_TYPE_TRANSLATE) |
| /* must set alteast read or write */ |
| return ret; |
| if (!attr->exclude_user) |
| hw->type |= HW_BRK_TYPE_USER; |
| if (!attr->exclude_kernel) |
| hw->type |= HW_BRK_TYPE_KERNEL; |
| if (!attr->exclude_hv) |
| hw->type |= HW_BRK_TYPE_HYP; |
| hw->address = attr->bp_addr; |
| hw->len = attr->bp_len; |
| |
| if (!ppc_breakpoint_available()) |
| return -ENODEV; |
| |
| return hw_breakpoint_validate_len(hw); |
| } |
| |
| /* |
| * Restores the breakpoint on the debug registers. |
| * Invoke this function if it is known that the execution context is |
| * about to change to cause loss of MSR_SE settings. |
| */ |
| void thread_change_pc(struct task_struct *tsk, struct pt_regs *regs) |
| { |
| struct arch_hw_breakpoint *info; |
| int i; |
| |
| for (i = 0; i < nr_wp_slots(); i++) { |
| if (unlikely(tsk->thread.last_hit_ubp[i])) |
| goto reset; |
| } |
| return; |
| |
| reset: |
| regs->msr &= ~MSR_SE; |
| for (i = 0; i < nr_wp_slots(); i++) { |
| info = counter_arch_bp(__this_cpu_read(bp_per_reg[i])); |
| __set_breakpoint(i, info); |
| tsk->thread.last_hit_ubp[i] = NULL; |
| } |
| } |
| |
| static bool dar_in_user_range(unsigned long dar, struct arch_hw_breakpoint *info) |
| { |
| return ((info->address <= dar) && (dar - info->address < info->len)); |
| } |
| |
| static bool ea_user_range_overlaps(unsigned long ea, int size, |
| struct arch_hw_breakpoint *info) |
| { |
| return ((ea < info->address + info->len) && |
| (ea + size > info->address)); |
| } |
| |
| static bool dar_in_hw_range(unsigned long dar, struct arch_hw_breakpoint *info) |
| { |
| unsigned long hw_start_addr, hw_end_addr; |
| |
| hw_start_addr = ALIGN_DOWN(info->address, HW_BREAKPOINT_SIZE); |
| hw_end_addr = ALIGN(info->address + info->len, HW_BREAKPOINT_SIZE); |
| |
| return ((hw_start_addr <= dar) && (hw_end_addr > dar)); |
| } |
| |
| static bool ea_hw_range_overlaps(unsigned long ea, int size, |
| struct arch_hw_breakpoint *info) |
| { |
| unsigned long hw_start_addr, hw_end_addr; |
| |
| hw_start_addr = ALIGN_DOWN(info->address, HW_BREAKPOINT_SIZE); |
| hw_end_addr = ALIGN(info->address + info->len, HW_BREAKPOINT_SIZE); |
| |
| return ((ea < hw_end_addr) && (ea + size > hw_start_addr)); |
| } |
| |
| /* |
| * If hw has multiple DAWR registers, we also need to check all |
| * dawrx constraint bits to confirm this is _really_ a valid event. |
| * If type is UNKNOWN, but privilege level matches, consider it as |
| * a positive match. |
| */ |
| static bool check_dawrx_constraints(struct pt_regs *regs, int type, |
| struct arch_hw_breakpoint *info) |
| { |
| if (OP_IS_LOAD(type) && !(info->type & HW_BRK_TYPE_READ)) |
| return false; |
| |
| /* |
| * The Cache Management instructions other than dcbz never |
| * cause a match. i.e. if type is CACHEOP, the instruction |
| * is dcbz, and dcbz is treated as Store. |
| */ |
| if ((OP_IS_STORE(type) || type == CACHEOP) && !(info->type & HW_BRK_TYPE_WRITE)) |
| return false; |
| |
| if (is_kernel_addr(regs->nip) && !(info->type & HW_BRK_TYPE_KERNEL)) |
| return false; |
| |
| if (user_mode(regs) && !(info->type & HW_BRK_TYPE_USER)) |
| return false; |
| |
| return true; |
| } |
| |
| /* |
| * Return true if the event is valid wrt dawr configuration, |
| * including extraneous exception. Otherwise return false. |
| */ |
| static bool check_constraints(struct pt_regs *regs, struct ppc_inst instr, |
| unsigned long ea, int type, int size, |
| struct arch_hw_breakpoint *info) |
| { |
| bool in_user_range = dar_in_user_range(regs->dar, info); |
| bool dawrx_constraints; |
| |
| /* |
| * 8xx supports only one breakpoint and thus we can |
| * unconditionally return true. |
| */ |
| if (IS_ENABLED(CONFIG_PPC_8xx)) { |
| if (!in_user_range) |
| info->type |= HW_BRK_TYPE_EXTRANEOUS_IRQ; |
| return true; |
| } |
| |
| if (unlikely(ppc_inst_equal(instr, ppc_inst(0)))) { |
| if (cpu_has_feature(CPU_FTR_ARCH_31) && |
| !dar_in_hw_range(regs->dar, info)) |
| return false; |
| |
| return true; |
| } |
| |
| dawrx_constraints = check_dawrx_constraints(regs, type, info); |
| |
| if (type == UNKNOWN) { |
| if (cpu_has_feature(CPU_FTR_ARCH_31) && |
| !dar_in_hw_range(regs->dar, info)) |
| return false; |
| |
| return dawrx_constraints; |
| } |
| |
| if (ea_user_range_overlaps(ea, size, info)) |
| return dawrx_constraints; |
| |
| if (ea_hw_range_overlaps(ea, size, info)) { |
| if (dawrx_constraints) { |
| info->type |= HW_BRK_TYPE_EXTRANEOUS_IRQ; |
| return true; |
| } |
| } |
| return false; |
| } |
| |
| static int cache_op_size(void) |
| { |
| #ifdef __powerpc64__ |
| return ppc64_caches.l1d.block_size; |
| #else |
| return L1_CACHE_BYTES; |
| #endif |
| } |
| |
| static void get_instr_detail(struct pt_regs *regs, struct ppc_inst *instr, |
| int *type, int *size, unsigned long *ea) |
| { |
| struct instruction_op op; |
| |
| if (__get_user_instr_inatomic(*instr, (void __user *)regs->nip)) |
| return; |
| |
| analyse_instr(&op, regs, *instr); |
| *type = GETTYPE(op.type); |
| *ea = op.ea; |
| #ifdef __powerpc64__ |
| if (!(regs->msr & MSR_64BIT)) |
| *ea &= 0xffffffffUL; |
| #endif |
| |
| *size = GETSIZE(op.type); |
| if (*type == CACHEOP) { |
| *size = cache_op_size(); |
| *ea &= ~(*size - 1); |
| } |
| } |
| |
| static bool is_larx_stcx_instr(int type) |
| { |
| return type == LARX || type == STCX; |
| } |
| |
| /* |
| * We've failed in reliably handling the hw-breakpoint. Unregister |
| * it and throw a warning message to let the user know about it. |
| */ |
| static void handler_error(struct perf_event *bp, struct arch_hw_breakpoint *info) |
| { |
| WARN(1, "Unable to handle hardware breakpoint. Breakpoint at 0x%lx will be disabled.", |
| info->address); |
| perf_event_disable_inatomic(bp); |
| } |
| |
| static void larx_stcx_err(struct perf_event *bp, struct arch_hw_breakpoint *info) |
| { |
| printk_ratelimited("Breakpoint hit on instruction that can't be emulated. Breakpoint at 0x%lx will be disabled.\n", |
| info->address); |
| perf_event_disable_inatomic(bp); |
| } |
| |
| static bool stepping_handler(struct pt_regs *regs, struct perf_event **bp, |
| struct arch_hw_breakpoint **info, int *hit, |
| struct ppc_inst instr) |
| { |
| int i; |
| int stepped; |
| |
| /* Do not emulate user-space instructions, instead single-step them */ |
| if (user_mode(regs)) { |
| for (i = 0; i < nr_wp_slots(); i++) { |
| if (!hit[i]) |
| continue; |
| current->thread.last_hit_ubp[i] = bp[i]; |
| info[i] = NULL; |
| } |
| regs->msr |= MSR_SE; |
| return false; |
| } |
| |
| stepped = emulate_step(regs, instr); |
| if (!stepped) { |
| for (i = 0; i < nr_wp_slots(); i++) { |
| if (!hit[i]) |
| continue; |
| handler_error(bp[i], info[i]); |
| info[i] = NULL; |
| } |
| return false; |
| } |
| return true; |
| } |
| |
| int hw_breakpoint_handler(struct die_args *args) |
| { |
| bool err = false; |
| int rc = NOTIFY_STOP; |
| struct perf_event *bp[HBP_NUM_MAX] = { NULL }; |
| struct pt_regs *regs = args->regs; |
| struct arch_hw_breakpoint *info[HBP_NUM_MAX] = { NULL }; |
| int i; |
| int hit[HBP_NUM_MAX] = {0}; |
| int nr_hit = 0; |
| bool ptrace_bp = false; |
| struct ppc_inst instr = ppc_inst(0); |
| int type = 0; |
| int size = 0; |
| unsigned long ea; |
| |
| /* Disable breakpoints during exception handling */ |
| hw_breakpoint_disable(); |
| |
| /* |
| * The counter may be concurrently released but that can only |
| * occur from a call_rcu() path. We can then safely fetch |
| * the breakpoint, use its callback, touch its counter |
| * while we are in an rcu_read_lock() path. |
| */ |
| rcu_read_lock(); |
| |
| if (!IS_ENABLED(CONFIG_PPC_8xx)) |
| get_instr_detail(regs, &instr, &type, &size, &ea); |
| |
| for (i = 0; i < nr_wp_slots(); i++) { |
| bp[i] = __this_cpu_read(bp_per_reg[i]); |
| if (!bp[i]) |
| continue; |
| |
| info[i] = counter_arch_bp(bp[i]); |
| info[i]->type &= ~HW_BRK_TYPE_EXTRANEOUS_IRQ; |
| |
| if (check_constraints(regs, instr, ea, type, size, info[i])) { |
| if (!IS_ENABLED(CONFIG_PPC_8xx) && |
| ppc_inst_equal(instr, ppc_inst(0))) { |
| handler_error(bp[i], info[i]); |
| info[i] = NULL; |
| err = 1; |
| continue; |
| } |
| |
| if (is_ptrace_bp(bp[i])) |
| ptrace_bp = true; |
| hit[i] = 1; |
| nr_hit++; |
| } |
| } |
| |
| if (err) |
| goto reset; |
| |
| if (!nr_hit) { |
| rc = NOTIFY_DONE; |
| goto out; |
| } |
| |
| /* |
| * Return early after invoking user-callback function without restoring |
| * DABR if the breakpoint is from ptrace which always operates in |
| * one-shot mode. The ptrace-ed process will receive the SIGTRAP signal |
| * generated in do_dabr(). |
| */ |
| if (ptrace_bp) { |
| for (i = 0; i < nr_wp_slots(); i++) { |
| if (!hit[i]) |
| continue; |
| perf_bp_event(bp[i], regs); |
| info[i] = NULL; |
| } |
| rc = NOTIFY_DONE; |
| goto reset; |
| } |
| |
| if (!IS_ENABLED(CONFIG_PPC_8xx)) { |
| if (is_larx_stcx_instr(type)) { |
| for (i = 0; i < nr_wp_slots(); i++) { |
| if (!hit[i]) |
| continue; |
| larx_stcx_err(bp[i], info[i]); |
| info[i] = NULL; |
| } |
| goto reset; |
| } |
| |
| if (!stepping_handler(regs, bp, info, hit, instr)) |
| goto reset; |
| } |
| |
| /* |
| * As a policy, the callback is invoked in a 'trigger-after-execute' |
| * fashion |
| */ |
| for (i = 0; i < nr_wp_slots(); i++) { |
| if (!hit[i]) |
| continue; |
| if (!(info[i]->type & HW_BRK_TYPE_EXTRANEOUS_IRQ)) |
| perf_bp_event(bp[i], regs); |
| } |
| |
| reset: |
| for (i = 0; i < nr_wp_slots(); i++) { |
| if (!info[i]) |
| continue; |
| __set_breakpoint(i, info[i]); |
| } |
| |
| out: |
| rcu_read_unlock(); |
| return rc; |
| } |
| NOKPROBE_SYMBOL(hw_breakpoint_handler); |
| |
| /* |
| * Handle single-step exceptions following a DABR hit. |
| */ |
| static int single_step_dabr_instruction(struct die_args *args) |
| { |
| struct pt_regs *regs = args->regs; |
| struct perf_event *bp = NULL; |
| struct arch_hw_breakpoint *info; |
| int i; |
| bool found = false; |
| |
| /* |
| * Check if we are single-stepping as a result of a |
| * previous HW Breakpoint exception |
| */ |
| for (i = 0; i < nr_wp_slots(); i++) { |
| bp = current->thread.last_hit_ubp[i]; |
| |
| if (!bp) |
| continue; |
| |
| found = true; |
| info = counter_arch_bp(bp); |
| |
| /* |
| * We shall invoke the user-defined callback function in the |
| * single stepping handler to confirm to 'trigger-after-execute' |
| * semantics |
| */ |
| if (!(info->type & HW_BRK_TYPE_EXTRANEOUS_IRQ)) |
| perf_bp_event(bp, regs); |
| current->thread.last_hit_ubp[i] = NULL; |
| } |
| |
| if (!found) |
| return NOTIFY_DONE; |
| |
| for (i = 0; i < nr_wp_slots(); i++) { |
| bp = __this_cpu_read(bp_per_reg[i]); |
| if (!bp) |
| continue; |
| |
| info = counter_arch_bp(bp); |
| __set_breakpoint(i, info); |
| } |
| |
| /* |
| * If the process was being single-stepped by ptrace, let the |
| * other single-step actions occur (e.g. generate SIGTRAP). |
| */ |
| if (test_thread_flag(TIF_SINGLESTEP)) |
| return NOTIFY_DONE; |
| |
| return NOTIFY_STOP; |
| } |
| NOKPROBE_SYMBOL(single_step_dabr_instruction); |
| |
| /* |
| * Handle debug exception notifications. |
| */ |
| int hw_breakpoint_exceptions_notify( |
| struct notifier_block *unused, unsigned long val, void *data) |
| { |
| int ret = NOTIFY_DONE; |
| |
| switch (val) { |
| case DIE_DABR_MATCH: |
| ret = hw_breakpoint_handler(data); |
| break; |
| case DIE_SSTEP: |
| ret = single_step_dabr_instruction(data); |
| break; |
| } |
| |
| return ret; |
| } |
| NOKPROBE_SYMBOL(hw_breakpoint_exceptions_notify); |
| |
| /* |
| * Release the user breakpoints used by ptrace |
| */ |
| void flush_ptrace_hw_breakpoint(struct task_struct *tsk) |
| { |
| int i; |
| struct thread_struct *t = &tsk->thread; |
| |
| for (i = 0; i < nr_wp_slots(); i++) { |
| unregister_hw_breakpoint(t->ptrace_bps[i]); |
| t->ptrace_bps[i] = NULL; |
| } |
| } |
| |
| void hw_breakpoint_pmu_read(struct perf_event *bp) |
| { |
| /* TODO */ |
| } |
| |
| void ptrace_triggered(struct perf_event *bp, |
| struct perf_sample_data *data, struct pt_regs *regs) |
| { |
| struct perf_event_attr attr; |
| |
| /* |
| * Disable the breakpoint request here since ptrace has defined a |
| * one-shot behaviour for breakpoint exceptions in PPC64. |
| * The SIGTRAP signal is generated automatically for us in do_dabr(). |
| * We don't have to do anything about that here |
| */ |
| attr = bp->attr; |
| attr.disabled = true; |
| modify_user_hw_breakpoint(bp, &attr); |
| } |