| // SPDX-License-Identifier: GPL-2.0 |
| /** |
| * net/tipc/crypto.c: TIPC crypto for key handling & packet en/decryption |
| * |
| * Copyright (c) 2019, Ericsson AB |
| * All rights reserved. |
| * |
| * Redistribution and use in source and binary forms, with or without |
| * modification, are permitted provided that the following conditions are met: |
| * |
| * 1. Redistributions of source code must retain the above copyright |
| * notice, this list of conditions and the following disclaimer. |
| * 2. Redistributions in binary form must reproduce the above copyright |
| * notice, this list of conditions and the following disclaimer in the |
| * documentation and/or other materials provided with the distribution. |
| * 3. Neither the names of the copyright holders nor the names of its |
| * contributors may be used to endorse or promote products derived from |
| * this software without specific prior written permission. |
| * |
| * Alternatively, this software may be distributed under the terms of the |
| * GNU General Public License ("GPL") version 2 as published by the Free |
| * Software Foundation. |
| * |
| * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" |
| * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
| * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE |
| * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE |
| * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR |
| * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF |
| * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS |
| * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN |
| * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) |
| * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE |
| * POSSIBILITY OF SUCH DAMAGE. |
| */ |
| |
| #include <crypto/aead.h> |
| #include <crypto/aes.h> |
| #include <crypto/rng.h> |
| #include "crypto.h" |
| #include "msg.h" |
| #include "bcast.h" |
| |
| #define TIPC_TX_GRACE_PERIOD msecs_to_jiffies(5000) /* 5s */ |
| #define TIPC_TX_LASTING_TIME msecs_to_jiffies(10000) /* 10s */ |
| #define TIPC_RX_ACTIVE_LIM msecs_to_jiffies(3000) /* 3s */ |
| #define TIPC_RX_PASSIVE_LIM msecs_to_jiffies(15000) /* 15s */ |
| |
| #define TIPC_MAX_TFMS_DEF 10 |
| #define TIPC_MAX_TFMS_LIM 1000 |
| |
| #define TIPC_REKEYING_INTV_DEF (60 * 24) /* default: 1 day */ |
| |
| /** |
| * TIPC Key ids |
| */ |
| enum { |
| KEY_MASTER = 0, |
| KEY_MIN = KEY_MASTER, |
| KEY_1 = 1, |
| KEY_2, |
| KEY_3, |
| KEY_MAX = KEY_3, |
| }; |
| |
| /** |
| * TIPC Crypto statistics |
| */ |
| enum { |
| STAT_OK, |
| STAT_NOK, |
| STAT_ASYNC, |
| STAT_ASYNC_OK, |
| STAT_ASYNC_NOK, |
| STAT_BADKEYS, /* tx only */ |
| STAT_BADMSGS = STAT_BADKEYS, /* rx only */ |
| STAT_NOKEYS, |
| STAT_SWITCHES, |
| |
| MAX_STATS, |
| }; |
| |
| /* TIPC crypto statistics' header */ |
| static const char *hstats[MAX_STATS] = {"ok", "nok", "async", "async_ok", |
| "async_nok", "badmsgs", "nokeys", |
| "switches"}; |
| |
| /* Max TFMs number per key */ |
| int sysctl_tipc_max_tfms __read_mostly = TIPC_MAX_TFMS_DEF; |
| /* Key exchange switch, default: on */ |
| int sysctl_tipc_key_exchange_enabled __read_mostly = 1; |
| |
| /** |
| * struct tipc_key - TIPC keys' status indicator |
| * |
| * 7 6 5 4 3 2 1 0 |
| * +-----+-----+-----+-----+-----+-----+-----+-----+ |
| * key: | (reserved)|passive idx| active idx|pending idx| |
| * +-----+-----+-----+-----+-----+-----+-----+-----+ |
| */ |
| struct tipc_key { |
| #define KEY_BITS (2) |
| #define KEY_MASK ((1 << KEY_BITS) - 1) |
| union { |
| struct { |
| #if defined(__LITTLE_ENDIAN_BITFIELD) |
| u8 pending:2, |
| active:2, |
| passive:2, /* rx only */ |
| reserved:2; |
| #elif defined(__BIG_ENDIAN_BITFIELD) |
| u8 reserved:2, |
| passive:2, /* rx only */ |
| active:2, |
| pending:2; |
| #else |
| #error "Please fix <asm/byteorder.h>" |
| #endif |
| } __packed; |
| u8 keys; |
| }; |
| }; |
| |
| /** |
| * struct tipc_tfm - TIPC TFM structure to form a list of TFMs |
| */ |
| struct tipc_tfm { |
| struct crypto_aead *tfm; |
| struct list_head list; |
| }; |
| |
| /** |
| * struct tipc_aead - TIPC AEAD key structure |
| * @tfm_entry: per-cpu pointer to one entry in TFM list |
| * @crypto: TIPC crypto owns this key |
| * @cloned: reference to the source key in case cloning |
| * @users: the number of the key users (TX/RX) |
| * @salt: the key's SALT value |
| * @authsize: authentication tag size (max = 16) |
| * @mode: crypto mode is applied to the key |
| * @hint[]: a hint for user key |
| * @rcu: struct rcu_head |
| * @key: the aead key |
| * @gen: the key's generation |
| * @seqno: the key seqno (cluster scope) |
| * @refcnt: the key reference counter |
| */ |
| struct tipc_aead { |
| #define TIPC_AEAD_HINT_LEN (5) |
| struct tipc_tfm * __percpu *tfm_entry; |
| struct tipc_crypto *crypto; |
| struct tipc_aead *cloned; |
| atomic_t users; |
| u32 salt; |
| u8 authsize; |
| u8 mode; |
| char hint[2 * TIPC_AEAD_HINT_LEN + 1]; |
| struct rcu_head rcu; |
| struct tipc_aead_key *key; |
| u16 gen; |
| |
| atomic64_t seqno ____cacheline_aligned; |
| refcount_t refcnt ____cacheline_aligned; |
| |
| } ____cacheline_aligned; |
| |
| /** |
| * struct tipc_crypto_stats - TIPC Crypto statistics |
| */ |
| struct tipc_crypto_stats { |
| unsigned int stat[MAX_STATS]; |
| }; |
| |
| /** |
| * struct tipc_crypto - TIPC TX/RX crypto structure |
| * @net: struct net |
| * @node: TIPC node (RX) |
| * @aead: array of pointers to AEAD keys for encryption/decryption |
| * @peer_rx_active: replicated peer RX active key index |
| * @key_gen: TX/RX key generation |
| * @key: the key states |
| * @skey_mode: session key's mode |
| * @skey: received session key |
| * @wq: common workqueue on TX crypto |
| * @work: delayed work sched for TX/RX |
| * @key_distr: key distributing state |
| * @rekeying_intv: rekeying interval (in minutes) |
| * @stats: the crypto statistics |
| * @name: the crypto name |
| * @sndnxt: the per-peer sndnxt (TX) |
| * @timer1: general timer 1 (jiffies) |
| * @timer2: general timer 2 (jiffies) |
| * @working: the crypto is working or not |
| * @key_master: flag indicates if master key exists |
| * @legacy_user: flag indicates if a peer joins w/o master key (for bwd comp.) |
| * @nokey: no key indication |
| * @lock: tipc_key lock |
| */ |
| struct tipc_crypto { |
| struct net *net; |
| struct tipc_node *node; |
| struct tipc_aead __rcu *aead[KEY_MAX + 1]; |
| atomic_t peer_rx_active; |
| u16 key_gen; |
| struct tipc_key key; |
| u8 skey_mode; |
| struct tipc_aead_key *skey; |
| struct workqueue_struct *wq; |
| struct delayed_work work; |
| #define KEY_DISTR_SCHED 1 |
| #define KEY_DISTR_COMPL 2 |
| atomic_t key_distr; |
| u32 rekeying_intv; |
| |
| struct tipc_crypto_stats __percpu *stats; |
| char name[48]; |
| |
| atomic64_t sndnxt ____cacheline_aligned; |
| unsigned long timer1; |
| unsigned long timer2; |
| union { |
| struct { |
| u8 working:1; |
| u8 key_master:1; |
| u8 legacy_user:1; |
| u8 nokey: 1; |
| }; |
| u8 flags; |
| }; |
| spinlock_t lock; /* crypto lock */ |
| |
| } ____cacheline_aligned; |
| |
| /* struct tipc_crypto_tx_ctx - TX context for callbacks */ |
| struct tipc_crypto_tx_ctx { |
| struct tipc_aead *aead; |
| struct tipc_bearer *bearer; |
| struct tipc_media_addr dst; |
| }; |
| |
| /* struct tipc_crypto_rx_ctx - RX context for callbacks */ |
| struct tipc_crypto_rx_ctx { |
| struct tipc_aead *aead; |
| struct tipc_bearer *bearer; |
| }; |
| |
| static struct tipc_aead *tipc_aead_get(struct tipc_aead __rcu *aead); |
| static inline void tipc_aead_put(struct tipc_aead *aead); |
| static void tipc_aead_free(struct rcu_head *rp); |
| static int tipc_aead_users(struct tipc_aead __rcu *aead); |
| static void tipc_aead_users_inc(struct tipc_aead __rcu *aead, int lim); |
| static void tipc_aead_users_dec(struct tipc_aead __rcu *aead, int lim); |
| static void tipc_aead_users_set(struct tipc_aead __rcu *aead, int val); |
| static struct crypto_aead *tipc_aead_tfm_next(struct tipc_aead *aead); |
| static int tipc_aead_init(struct tipc_aead **aead, struct tipc_aead_key *ukey, |
| u8 mode); |
| static int tipc_aead_clone(struct tipc_aead **dst, struct tipc_aead *src); |
| static void *tipc_aead_mem_alloc(struct crypto_aead *tfm, |
| unsigned int crypto_ctx_size, |
| u8 **iv, struct aead_request **req, |
| struct scatterlist **sg, int nsg); |
| static int tipc_aead_encrypt(struct tipc_aead *aead, struct sk_buff *skb, |
| struct tipc_bearer *b, |
| struct tipc_media_addr *dst, |
| struct tipc_node *__dnode); |
| static void tipc_aead_encrypt_done(struct crypto_async_request *base, int err); |
| static int tipc_aead_decrypt(struct net *net, struct tipc_aead *aead, |
| struct sk_buff *skb, struct tipc_bearer *b); |
| static void tipc_aead_decrypt_done(struct crypto_async_request *base, int err); |
| static inline int tipc_ehdr_size(struct tipc_ehdr *ehdr); |
| static int tipc_ehdr_build(struct net *net, struct tipc_aead *aead, |
| u8 tx_key, struct sk_buff *skb, |
| struct tipc_crypto *__rx); |
| static inline void tipc_crypto_key_set_state(struct tipc_crypto *c, |
| u8 new_passive, |
| u8 new_active, |
| u8 new_pending); |
| static int tipc_crypto_key_attach(struct tipc_crypto *c, |
| struct tipc_aead *aead, u8 pos, |
| bool master_key); |
| static bool tipc_crypto_key_try_align(struct tipc_crypto *rx, u8 new_pending); |
| static struct tipc_aead *tipc_crypto_key_pick_tx(struct tipc_crypto *tx, |
| struct tipc_crypto *rx, |
| struct sk_buff *skb, |
| u8 tx_key); |
| static void tipc_crypto_key_synch(struct tipc_crypto *rx, struct sk_buff *skb); |
| static int tipc_crypto_key_revoke(struct net *net, u8 tx_key); |
| static inline void tipc_crypto_clone_msg(struct net *net, struct sk_buff *_skb, |
| struct tipc_bearer *b, |
| struct tipc_media_addr *dst, |
| struct tipc_node *__dnode, u8 type); |
| static void tipc_crypto_rcv_complete(struct net *net, struct tipc_aead *aead, |
| struct tipc_bearer *b, |
| struct sk_buff **skb, int err); |
| static void tipc_crypto_do_cmd(struct net *net, int cmd); |
| static char *tipc_crypto_key_dump(struct tipc_crypto *c, char *buf); |
| static char *tipc_key_change_dump(struct tipc_key old, struct tipc_key new, |
| char *buf); |
| static int tipc_crypto_key_xmit(struct net *net, struct tipc_aead_key *skey, |
| u16 gen, u8 mode, u32 dnode); |
| static bool tipc_crypto_key_rcv(struct tipc_crypto *rx, struct tipc_msg *hdr); |
| static void tipc_crypto_work_tx(struct work_struct *work); |
| static void tipc_crypto_work_rx(struct work_struct *work); |
| static int tipc_aead_key_generate(struct tipc_aead_key *skey); |
| |
| #define is_tx(crypto) (!(crypto)->node) |
| #define is_rx(crypto) (!is_tx(crypto)) |
| |
| #define key_next(cur) ((cur) % KEY_MAX + 1) |
| |
| #define tipc_aead_rcu_ptr(rcu_ptr, lock) \ |
| rcu_dereference_protected((rcu_ptr), lockdep_is_held(lock)) |
| |
| #define tipc_aead_rcu_replace(rcu_ptr, ptr, lock) \ |
| do { \ |
| typeof(rcu_ptr) __tmp = rcu_dereference_protected((rcu_ptr), \ |
| lockdep_is_held(lock)); \ |
| rcu_assign_pointer((rcu_ptr), (ptr)); \ |
| tipc_aead_put(__tmp); \ |
| } while (0) |
| |
| #define tipc_crypto_key_detach(rcu_ptr, lock) \ |
| tipc_aead_rcu_replace((rcu_ptr), NULL, lock) |
| |
| /** |
| * tipc_aead_key_validate - Validate a AEAD user key |
| */ |
| int tipc_aead_key_validate(struct tipc_aead_key *ukey, struct genl_info *info) |
| { |
| int keylen; |
| |
| /* Check if algorithm exists */ |
| if (unlikely(!crypto_has_alg(ukey->alg_name, 0, 0))) { |
| GENL_SET_ERR_MSG(info, "unable to load the algorithm (module existed?)"); |
| return -ENODEV; |
| } |
| |
| /* Currently, we only support the "gcm(aes)" cipher algorithm */ |
| if (strcmp(ukey->alg_name, "gcm(aes)")) { |
| GENL_SET_ERR_MSG(info, "not supported yet the algorithm"); |
| return -ENOTSUPP; |
| } |
| |
| /* Check if key size is correct */ |
| keylen = ukey->keylen - TIPC_AES_GCM_SALT_SIZE; |
| if (unlikely(keylen != TIPC_AES_GCM_KEY_SIZE_128 && |
| keylen != TIPC_AES_GCM_KEY_SIZE_192 && |
| keylen != TIPC_AES_GCM_KEY_SIZE_256)) { |
| GENL_SET_ERR_MSG(info, "incorrect key length (20, 28 or 36 octets?)"); |
| return -EKEYREJECTED; |
| } |
| |
| return 0; |
| } |
| |
| /** |
| * tipc_aead_key_generate - Generate new session key |
| * @skey: input/output key with new content |
| * |
| * Return: 0 in case of success, otherwise < 0 |
| */ |
| static int tipc_aead_key_generate(struct tipc_aead_key *skey) |
| { |
| int rc = 0; |
| |
| /* Fill the key's content with a random value via RNG cipher */ |
| rc = crypto_get_default_rng(); |
| if (likely(!rc)) { |
| rc = crypto_rng_get_bytes(crypto_default_rng, skey->key, |
| skey->keylen); |
| crypto_put_default_rng(); |
| } |
| |
| return rc; |
| } |
| |
| static struct tipc_aead *tipc_aead_get(struct tipc_aead __rcu *aead) |
| { |
| struct tipc_aead *tmp; |
| |
| rcu_read_lock(); |
| tmp = rcu_dereference(aead); |
| if (unlikely(!tmp || !refcount_inc_not_zero(&tmp->refcnt))) |
| tmp = NULL; |
| rcu_read_unlock(); |
| |
| return tmp; |
| } |
| |
| static inline void tipc_aead_put(struct tipc_aead *aead) |
| { |
| if (aead && refcount_dec_and_test(&aead->refcnt)) |
| call_rcu(&aead->rcu, tipc_aead_free); |
| } |
| |
| /** |
| * tipc_aead_free - Release AEAD key incl. all the TFMs in the list |
| * @rp: rcu head pointer |
| */ |
| static void tipc_aead_free(struct rcu_head *rp) |
| { |
| struct tipc_aead *aead = container_of(rp, struct tipc_aead, rcu); |
| struct tipc_tfm *tfm_entry, *head, *tmp; |
| |
| if (aead->cloned) { |
| tipc_aead_put(aead->cloned); |
| } else { |
| head = *get_cpu_ptr(aead->tfm_entry); |
| put_cpu_ptr(aead->tfm_entry); |
| list_for_each_entry_safe(tfm_entry, tmp, &head->list, list) { |
| crypto_free_aead(tfm_entry->tfm); |
| list_del(&tfm_entry->list); |
| kfree(tfm_entry); |
| } |
| /* Free the head */ |
| crypto_free_aead(head->tfm); |
| list_del(&head->list); |
| kfree(head); |
| } |
| free_percpu(aead->tfm_entry); |
| kfree_sensitive(aead->key); |
| kfree(aead); |
| } |
| |
| static int tipc_aead_users(struct tipc_aead __rcu *aead) |
| { |
| struct tipc_aead *tmp; |
| int users = 0; |
| |
| rcu_read_lock(); |
| tmp = rcu_dereference(aead); |
| if (tmp) |
| users = atomic_read(&tmp->users); |
| rcu_read_unlock(); |
| |
| return users; |
| } |
| |
| static void tipc_aead_users_inc(struct tipc_aead __rcu *aead, int lim) |
| { |
| struct tipc_aead *tmp; |
| |
| rcu_read_lock(); |
| tmp = rcu_dereference(aead); |
| if (tmp) |
| atomic_add_unless(&tmp->users, 1, lim); |
| rcu_read_unlock(); |
| } |
| |
| static void tipc_aead_users_dec(struct tipc_aead __rcu *aead, int lim) |
| { |
| struct tipc_aead *tmp; |
| |
| rcu_read_lock(); |
| tmp = rcu_dereference(aead); |
| if (tmp) |
| atomic_add_unless(&rcu_dereference(aead)->users, -1, lim); |
| rcu_read_unlock(); |
| } |
| |
| static void tipc_aead_users_set(struct tipc_aead __rcu *aead, int val) |
| { |
| struct tipc_aead *tmp; |
| int cur; |
| |
| rcu_read_lock(); |
| tmp = rcu_dereference(aead); |
| if (tmp) { |
| do { |
| cur = atomic_read(&tmp->users); |
| if (cur == val) |
| break; |
| } while (atomic_cmpxchg(&tmp->users, cur, val) != cur); |
| } |
| rcu_read_unlock(); |
| } |
| |
| /** |
| * tipc_aead_tfm_next - Move TFM entry to the next one in list and return it |
| */ |
| static struct crypto_aead *tipc_aead_tfm_next(struct tipc_aead *aead) |
| { |
| struct tipc_tfm **tfm_entry; |
| struct crypto_aead *tfm; |
| |
| tfm_entry = get_cpu_ptr(aead->tfm_entry); |
| *tfm_entry = list_next_entry(*tfm_entry, list); |
| tfm = (*tfm_entry)->tfm; |
| put_cpu_ptr(tfm_entry); |
| |
| return tfm; |
| } |
| |
| /** |
| * tipc_aead_init - Initiate TIPC AEAD |
| * @aead: returned new TIPC AEAD key handle pointer |
| * @ukey: pointer to user key data |
| * @mode: the key mode |
| * |
| * Allocate a (list of) new cipher transformation (TFM) with the specific user |
| * key data if valid. The number of the allocated TFMs can be set via the sysfs |
| * "net/tipc/max_tfms" first. |
| * Also, all the other AEAD data are also initialized. |
| * |
| * Return: 0 if the initiation is successful, otherwise: < 0 |
| */ |
| static int tipc_aead_init(struct tipc_aead **aead, struct tipc_aead_key *ukey, |
| u8 mode) |
| { |
| struct tipc_tfm *tfm_entry, *head; |
| struct crypto_aead *tfm; |
| struct tipc_aead *tmp; |
| int keylen, err, cpu; |
| int tfm_cnt = 0; |
| |
| if (unlikely(*aead)) |
| return -EEXIST; |
| |
| /* Allocate a new AEAD */ |
| tmp = kzalloc(sizeof(*tmp), GFP_ATOMIC); |
| if (unlikely(!tmp)) |
| return -ENOMEM; |
| |
| /* The key consists of two parts: [AES-KEY][SALT] */ |
| keylen = ukey->keylen - TIPC_AES_GCM_SALT_SIZE; |
| |
| /* Allocate per-cpu TFM entry pointer */ |
| tmp->tfm_entry = alloc_percpu(struct tipc_tfm *); |
| if (!tmp->tfm_entry) { |
| kfree_sensitive(tmp); |
| return -ENOMEM; |
| } |
| |
| /* Make a list of TFMs with the user key data */ |
| do { |
| tfm = crypto_alloc_aead(ukey->alg_name, 0, 0); |
| if (IS_ERR(tfm)) { |
| err = PTR_ERR(tfm); |
| break; |
| } |
| |
| if (unlikely(!tfm_cnt && |
| crypto_aead_ivsize(tfm) != TIPC_AES_GCM_IV_SIZE)) { |
| crypto_free_aead(tfm); |
| err = -ENOTSUPP; |
| break; |
| } |
| |
| err = crypto_aead_setauthsize(tfm, TIPC_AES_GCM_TAG_SIZE); |
| err |= crypto_aead_setkey(tfm, ukey->key, keylen); |
| if (unlikely(err)) { |
| crypto_free_aead(tfm); |
| break; |
| } |
| |
| tfm_entry = kmalloc(sizeof(*tfm_entry), GFP_KERNEL); |
| if (unlikely(!tfm_entry)) { |
| crypto_free_aead(tfm); |
| err = -ENOMEM; |
| break; |
| } |
| INIT_LIST_HEAD(&tfm_entry->list); |
| tfm_entry->tfm = tfm; |
| |
| /* First entry? */ |
| if (!tfm_cnt) { |
| head = tfm_entry; |
| for_each_possible_cpu(cpu) { |
| *per_cpu_ptr(tmp->tfm_entry, cpu) = head; |
| } |
| } else { |
| list_add_tail(&tfm_entry->list, &head->list); |
| } |
| |
| } while (++tfm_cnt < sysctl_tipc_max_tfms); |
| |
| /* Not any TFM is allocated? */ |
| if (!tfm_cnt) { |
| free_percpu(tmp->tfm_entry); |
| kfree_sensitive(tmp); |
| return err; |
| } |
| |
| /* Form a hex string of some last bytes as the key's hint */ |
| bin2hex(tmp->hint, ukey->key + keylen - TIPC_AEAD_HINT_LEN, |
| TIPC_AEAD_HINT_LEN); |
| |
| /* Initialize the other data */ |
| tmp->mode = mode; |
| tmp->cloned = NULL; |
| tmp->authsize = TIPC_AES_GCM_TAG_SIZE; |
| tmp->key = kmemdup(ukey, tipc_aead_key_size(ukey), GFP_KERNEL); |
| memcpy(&tmp->salt, ukey->key + keylen, TIPC_AES_GCM_SALT_SIZE); |
| atomic_set(&tmp->users, 0); |
| atomic64_set(&tmp->seqno, 0); |
| refcount_set(&tmp->refcnt, 1); |
| |
| *aead = tmp; |
| return 0; |
| } |
| |
| /** |
| * tipc_aead_clone - Clone a TIPC AEAD key |
| * @dst: dest key for the cloning |
| * @src: source key to clone from |
| * |
| * Make a "copy" of the source AEAD key data to the dest, the TFMs list is |
| * common for the keys. |
| * A reference to the source is hold in the "cloned" pointer for the later |
| * freeing purposes. |
| * |
| * Note: this must be done in cluster-key mode only! |
| * Return: 0 in case of success, otherwise < 0 |
| */ |
| static int tipc_aead_clone(struct tipc_aead **dst, struct tipc_aead *src) |
| { |
| struct tipc_aead *aead; |
| int cpu; |
| |
| if (!src) |
| return -ENOKEY; |
| |
| if (src->mode != CLUSTER_KEY) |
| return -EINVAL; |
| |
| if (unlikely(*dst)) |
| return -EEXIST; |
| |
| aead = kzalloc(sizeof(*aead), GFP_ATOMIC); |
| if (unlikely(!aead)) |
| return -ENOMEM; |
| |
| aead->tfm_entry = alloc_percpu_gfp(struct tipc_tfm *, GFP_ATOMIC); |
| if (unlikely(!aead->tfm_entry)) { |
| kfree_sensitive(aead); |
| return -ENOMEM; |
| } |
| |
| for_each_possible_cpu(cpu) { |
| *per_cpu_ptr(aead->tfm_entry, cpu) = |
| *per_cpu_ptr(src->tfm_entry, cpu); |
| } |
| |
| memcpy(aead->hint, src->hint, sizeof(src->hint)); |
| aead->mode = src->mode; |
| aead->salt = src->salt; |
| aead->authsize = src->authsize; |
| atomic_set(&aead->users, 0); |
| atomic64_set(&aead->seqno, 0); |
| refcount_set(&aead->refcnt, 1); |
| |
| WARN_ON(!refcount_inc_not_zero(&src->refcnt)); |
| aead->cloned = src; |
| |
| *dst = aead; |
| return 0; |
| } |
| |
| /** |
| * tipc_aead_mem_alloc - Allocate memory for AEAD request operations |
| * @tfm: cipher handle to be registered with the request |
| * @crypto_ctx_size: size of crypto context for callback |
| * @iv: returned pointer to IV data |
| * @req: returned pointer to AEAD request data |
| * @sg: returned pointer to SG lists |
| * @nsg: number of SG lists to be allocated |
| * |
| * Allocate memory to store the crypto context data, AEAD request, IV and SG |
| * lists, the memory layout is as follows: |
| * crypto_ctx || iv || aead_req || sg[] |
| * |
| * Return: the pointer to the memory areas in case of success, otherwise NULL |
| */ |
| static void *tipc_aead_mem_alloc(struct crypto_aead *tfm, |
| unsigned int crypto_ctx_size, |
| u8 **iv, struct aead_request **req, |
| struct scatterlist **sg, int nsg) |
| { |
| unsigned int iv_size, req_size; |
| unsigned int len; |
| u8 *mem; |
| |
| iv_size = crypto_aead_ivsize(tfm); |
| req_size = sizeof(**req) + crypto_aead_reqsize(tfm); |
| |
| len = crypto_ctx_size; |
| len += iv_size; |
| len += crypto_aead_alignmask(tfm) & ~(crypto_tfm_ctx_alignment() - 1); |
| len = ALIGN(len, crypto_tfm_ctx_alignment()); |
| len += req_size; |
| len = ALIGN(len, __alignof__(struct scatterlist)); |
| len += nsg * sizeof(**sg); |
| |
| mem = kmalloc(len, GFP_ATOMIC); |
| if (!mem) |
| return NULL; |
| |
| *iv = (u8 *)PTR_ALIGN(mem + crypto_ctx_size, |
| crypto_aead_alignmask(tfm) + 1); |
| *req = (struct aead_request *)PTR_ALIGN(*iv + iv_size, |
| crypto_tfm_ctx_alignment()); |
| *sg = (struct scatterlist *)PTR_ALIGN((u8 *)*req + req_size, |
| __alignof__(struct scatterlist)); |
| |
| return (void *)mem; |
| } |
| |
| /** |
| * tipc_aead_encrypt - Encrypt a message |
| * @aead: TIPC AEAD key for the message encryption |
| * @skb: the input/output skb |
| * @b: TIPC bearer where the message will be delivered after the encryption |
| * @dst: the destination media address |
| * @__dnode: TIPC dest node if "known" |
| * |
| * Return: |
| * 0 : if the encryption has completed |
| * -EINPROGRESS/-EBUSY : if a callback will be performed |
| * < 0 : the encryption has failed |
| */ |
| static int tipc_aead_encrypt(struct tipc_aead *aead, struct sk_buff *skb, |
| struct tipc_bearer *b, |
| struct tipc_media_addr *dst, |
| struct tipc_node *__dnode) |
| { |
| struct crypto_aead *tfm = tipc_aead_tfm_next(aead); |
| struct tipc_crypto_tx_ctx *tx_ctx; |
| struct aead_request *req; |
| struct sk_buff *trailer; |
| struct scatterlist *sg; |
| struct tipc_ehdr *ehdr; |
| int ehsz, len, tailen, nsg, rc; |
| void *ctx; |
| u32 salt; |
| u8 *iv; |
| |
| /* Make sure message len at least 4-byte aligned */ |
| len = ALIGN(skb->len, 4); |
| tailen = len - skb->len + aead->authsize; |
| |
| /* Expand skb tail for authentication tag: |
| * As for simplicity, we'd have made sure skb having enough tailroom |
| * for authentication tag @skb allocation. Even when skb is nonlinear |
| * but there is no frag_list, it should be still fine! |
| * Otherwise, we must cow it to be a writable buffer with the tailroom. |
| */ |
| SKB_LINEAR_ASSERT(skb); |
| if (tailen > skb_tailroom(skb)) { |
| pr_debug("TX(): skb tailroom is not enough: %d, requires: %d\n", |
| skb_tailroom(skb), tailen); |
| } |
| |
| if (unlikely(!skb_cloned(skb) && tailen <= skb_tailroom(skb))) { |
| nsg = 1; |
| trailer = skb; |
| } else { |
| /* TODO: We could avoid skb_cow_data() if skb has no frag_list |
| * e.g. by skb_fill_page_desc() to add another page to the skb |
| * with the wanted tailen... However, page skbs look not often, |
| * so take it easy now! |
| * Cloned skbs e.g. from link_xmit() seems no choice though :( |
| */ |
| nsg = skb_cow_data(skb, tailen, &trailer); |
| if (unlikely(nsg < 0)) { |
| pr_err("TX: skb_cow_data() returned %d\n", nsg); |
| return nsg; |
| } |
| } |
| |
| pskb_put(skb, trailer, tailen); |
| |
| /* Allocate memory for the AEAD operation */ |
| ctx = tipc_aead_mem_alloc(tfm, sizeof(*tx_ctx), &iv, &req, &sg, nsg); |
| if (unlikely(!ctx)) |
| return -ENOMEM; |
| TIPC_SKB_CB(skb)->crypto_ctx = ctx; |
| |
| /* Map skb to the sg lists */ |
| sg_init_table(sg, nsg); |
| rc = skb_to_sgvec(skb, sg, 0, skb->len); |
| if (unlikely(rc < 0)) { |
| pr_err("TX: skb_to_sgvec() returned %d, nsg %d!\n", rc, nsg); |
| goto exit; |
| } |
| |
| /* Prepare IV: [SALT (4 octets)][SEQNO (8 octets)] |
| * In case we're in cluster-key mode, SALT is varied by xor-ing with |
| * the source address (or w0 of id), otherwise with the dest address |
| * if dest is known. |
| */ |
| ehdr = (struct tipc_ehdr *)skb->data; |
| salt = aead->salt; |
| if (aead->mode == CLUSTER_KEY) |
| salt ^= ehdr->addr; /* __be32 */ |
| else if (__dnode) |
| salt ^= tipc_node_get_addr(__dnode); |
| memcpy(iv, &salt, 4); |
| memcpy(iv + 4, (u8 *)&ehdr->seqno, 8); |
| |
| /* Prepare request */ |
| ehsz = tipc_ehdr_size(ehdr); |
| aead_request_set_tfm(req, tfm); |
| aead_request_set_ad(req, ehsz); |
| aead_request_set_crypt(req, sg, sg, len - ehsz, iv); |
| |
| /* Set callback function & data */ |
| aead_request_set_callback(req, CRYPTO_TFM_REQ_MAY_BACKLOG, |
| tipc_aead_encrypt_done, skb); |
| tx_ctx = (struct tipc_crypto_tx_ctx *)ctx; |
| tx_ctx->aead = aead; |
| tx_ctx->bearer = b; |
| memcpy(&tx_ctx->dst, dst, sizeof(*dst)); |
| |
| /* Hold bearer */ |
| if (unlikely(!tipc_bearer_hold(b))) { |
| rc = -ENODEV; |
| goto exit; |
| } |
| |
| /* Now, do encrypt */ |
| rc = crypto_aead_encrypt(req); |
| if (rc == -EINPROGRESS || rc == -EBUSY) |
| return rc; |
| |
| tipc_bearer_put(b); |
| |
| exit: |
| kfree(ctx); |
| TIPC_SKB_CB(skb)->crypto_ctx = NULL; |
| return rc; |
| } |
| |
| static void tipc_aead_encrypt_done(struct crypto_async_request *base, int err) |
| { |
| struct sk_buff *skb = base->data; |
| struct tipc_crypto_tx_ctx *tx_ctx = TIPC_SKB_CB(skb)->crypto_ctx; |
| struct tipc_bearer *b = tx_ctx->bearer; |
| struct tipc_aead *aead = tx_ctx->aead; |
| struct tipc_crypto *tx = aead->crypto; |
| struct net *net = tx->net; |
| |
| switch (err) { |
| case 0: |
| this_cpu_inc(tx->stats->stat[STAT_ASYNC_OK]); |
| rcu_read_lock(); |
| if (likely(test_bit(0, &b->up))) |
| b->media->send_msg(net, skb, b, &tx_ctx->dst); |
| else |
| kfree_skb(skb); |
| rcu_read_unlock(); |
| break; |
| case -EINPROGRESS: |
| return; |
| default: |
| this_cpu_inc(tx->stats->stat[STAT_ASYNC_NOK]); |
| kfree_skb(skb); |
| break; |
| } |
| |
| kfree(tx_ctx); |
| tipc_bearer_put(b); |
| tipc_aead_put(aead); |
| } |
| |
| /** |
| * tipc_aead_decrypt - Decrypt an encrypted message |
| * @net: struct net |
| * @aead: TIPC AEAD for the message decryption |
| * @skb: the input/output skb |
| * @b: TIPC bearer where the message has been received |
| * |
| * Return: |
| * 0 : if the decryption has completed |
| * -EINPROGRESS/-EBUSY : if a callback will be performed |
| * < 0 : the decryption has failed |
| */ |
| static int tipc_aead_decrypt(struct net *net, struct tipc_aead *aead, |
| struct sk_buff *skb, struct tipc_bearer *b) |
| { |
| struct tipc_crypto_rx_ctx *rx_ctx; |
| struct aead_request *req; |
| struct crypto_aead *tfm; |
| struct sk_buff *unused; |
| struct scatterlist *sg; |
| struct tipc_ehdr *ehdr; |
| int ehsz, nsg, rc; |
| void *ctx; |
| u32 salt; |
| u8 *iv; |
| |
| if (unlikely(!aead)) |
| return -ENOKEY; |
| |
| /* Cow skb data if needed */ |
| if (likely(!skb_cloned(skb) && |
| (!skb_is_nonlinear(skb) || !skb_has_frag_list(skb)))) { |
| nsg = 1 + skb_shinfo(skb)->nr_frags; |
| } else { |
| nsg = skb_cow_data(skb, 0, &unused); |
| if (unlikely(nsg < 0)) { |
| pr_err("RX: skb_cow_data() returned %d\n", nsg); |
| return nsg; |
| } |
| } |
| |
| /* Allocate memory for the AEAD operation */ |
| tfm = tipc_aead_tfm_next(aead); |
| ctx = tipc_aead_mem_alloc(tfm, sizeof(*rx_ctx), &iv, &req, &sg, nsg); |
| if (unlikely(!ctx)) |
| return -ENOMEM; |
| TIPC_SKB_CB(skb)->crypto_ctx = ctx; |
| |
| /* Map skb to the sg lists */ |
| sg_init_table(sg, nsg); |
| rc = skb_to_sgvec(skb, sg, 0, skb->len); |
| if (unlikely(rc < 0)) { |
| pr_err("RX: skb_to_sgvec() returned %d, nsg %d\n", rc, nsg); |
| goto exit; |
| } |
| |
| /* Reconstruct IV: */ |
| ehdr = (struct tipc_ehdr *)skb->data; |
| salt = aead->salt; |
| if (aead->mode == CLUSTER_KEY) |
| salt ^= ehdr->addr; /* __be32 */ |
| else if (ehdr->destined) |
| salt ^= tipc_own_addr(net); |
| memcpy(iv, &salt, 4); |
| memcpy(iv + 4, (u8 *)&ehdr->seqno, 8); |
| |
| /* Prepare request */ |
| ehsz = tipc_ehdr_size(ehdr); |
| aead_request_set_tfm(req, tfm); |
| aead_request_set_ad(req, ehsz); |
| aead_request_set_crypt(req, sg, sg, skb->len - ehsz, iv); |
| |
| /* Set callback function & data */ |
| aead_request_set_callback(req, CRYPTO_TFM_REQ_MAY_BACKLOG, |
| tipc_aead_decrypt_done, skb); |
| rx_ctx = (struct tipc_crypto_rx_ctx *)ctx; |
| rx_ctx->aead = aead; |
| rx_ctx->bearer = b; |
| |
| /* Hold bearer */ |
| if (unlikely(!tipc_bearer_hold(b))) { |
| rc = -ENODEV; |
| goto exit; |
| } |
| |
| /* Now, do decrypt */ |
| rc = crypto_aead_decrypt(req); |
| if (rc == -EINPROGRESS || rc == -EBUSY) |
| return rc; |
| |
| tipc_bearer_put(b); |
| |
| exit: |
| kfree(ctx); |
| TIPC_SKB_CB(skb)->crypto_ctx = NULL; |
| return rc; |
| } |
| |
| static void tipc_aead_decrypt_done(struct crypto_async_request *base, int err) |
| { |
| struct sk_buff *skb = base->data; |
| struct tipc_crypto_rx_ctx *rx_ctx = TIPC_SKB_CB(skb)->crypto_ctx; |
| struct tipc_bearer *b = rx_ctx->bearer; |
| struct tipc_aead *aead = rx_ctx->aead; |
| struct tipc_crypto_stats __percpu *stats = aead->crypto->stats; |
| struct net *net = aead->crypto->net; |
| |
| switch (err) { |
| case 0: |
| this_cpu_inc(stats->stat[STAT_ASYNC_OK]); |
| break; |
| case -EINPROGRESS: |
| return; |
| default: |
| this_cpu_inc(stats->stat[STAT_ASYNC_NOK]); |
| break; |
| } |
| |
| kfree(rx_ctx); |
| tipc_crypto_rcv_complete(net, aead, b, &skb, err); |
| if (likely(skb)) { |
| if (likely(test_bit(0, &b->up))) |
| tipc_rcv(net, skb, b); |
| else |
| kfree_skb(skb); |
| } |
| |
| tipc_bearer_put(b); |
| } |
| |
| static inline int tipc_ehdr_size(struct tipc_ehdr *ehdr) |
| { |
| return (ehdr->user != LINK_CONFIG) ? EHDR_SIZE : EHDR_CFG_SIZE; |
| } |
| |
| /** |
| * tipc_ehdr_validate - Validate an encryption message |
| * @skb: the message buffer |
| * |
| * Returns "true" if this is a valid encryption message, otherwise "false" |
| */ |
| bool tipc_ehdr_validate(struct sk_buff *skb) |
| { |
| struct tipc_ehdr *ehdr; |
| int ehsz; |
| |
| if (unlikely(!pskb_may_pull(skb, EHDR_MIN_SIZE))) |
| return false; |
| |
| ehdr = (struct tipc_ehdr *)skb->data; |
| if (unlikely(ehdr->version != TIPC_EVERSION)) |
| return false; |
| ehsz = tipc_ehdr_size(ehdr); |
| if (unlikely(!pskb_may_pull(skb, ehsz))) |
| return false; |
| if (unlikely(skb->len <= ehsz + TIPC_AES_GCM_TAG_SIZE)) |
| return false; |
| |
| return true; |
| } |
| |
| /** |
| * tipc_ehdr_build - Build TIPC encryption message header |
| * @net: struct net |
| * @aead: TX AEAD key to be used for the message encryption |
| * @tx_key: key id used for the message encryption |
| * @skb: input/output message skb |
| * @__rx: RX crypto handle if dest is "known" |
| * |
| * Return: the header size if the building is successful, otherwise < 0 |
| */ |
| static int tipc_ehdr_build(struct net *net, struct tipc_aead *aead, |
| u8 tx_key, struct sk_buff *skb, |
| struct tipc_crypto *__rx) |
| { |
| struct tipc_msg *hdr = buf_msg(skb); |
| struct tipc_ehdr *ehdr; |
| u32 user = msg_user(hdr); |
| u64 seqno; |
| int ehsz; |
| |
| /* Make room for encryption header */ |
| ehsz = (user != LINK_CONFIG) ? EHDR_SIZE : EHDR_CFG_SIZE; |
| WARN_ON(skb_headroom(skb) < ehsz); |
| ehdr = (struct tipc_ehdr *)skb_push(skb, ehsz); |
| |
| /* Obtain a seqno first: |
| * Use the key seqno (= cluster wise) if dest is unknown or we're in |
| * cluster key mode, otherwise it's better for a per-peer seqno! |
| */ |
| if (!__rx || aead->mode == CLUSTER_KEY) |
| seqno = atomic64_inc_return(&aead->seqno); |
| else |
| seqno = atomic64_inc_return(&__rx->sndnxt); |
| |
| /* Revoke the key if seqno is wrapped around */ |
| if (unlikely(!seqno)) |
| return tipc_crypto_key_revoke(net, tx_key); |
| |
| /* Word 1-2 */ |
| ehdr->seqno = cpu_to_be64(seqno); |
| |
| /* Words 0, 3- */ |
| ehdr->version = TIPC_EVERSION; |
| ehdr->user = 0; |
| ehdr->keepalive = 0; |
| ehdr->tx_key = tx_key; |
| ehdr->destined = (__rx) ? 1 : 0; |
| ehdr->rx_key_active = (__rx) ? __rx->key.active : 0; |
| ehdr->rx_nokey = (__rx) ? __rx->nokey : 0; |
| ehdr->master_key = aead->crypto->key_master; |
| ehdr->reserved_1 = 0; |
| ehdr->reserved_2 = 0; |
| |
| switch (user) { |
| case LINK_CONFIG: |
| ehdr->user = LINK_CONFIG; |
| memcpy(ehdr->id, tipc_own_id(net), NODE_ID_LEN); |
| break; |
| default: |
| if (user == LINK_PROTOCOL && msg_type(hdr) == STATE_MSG) { |
| ehdr->user = LINK_PROTOCOL; |
| ehdr->keepalive = msg_is_keepalive(hdr); |
| } |
| ehdr->addr = hdr->hdr[3]; |
| break; |
| } |
| |
| return ehsz; |
| } |
| |
| static inline void tipc_crypto_key_set_state(struct tipc_crypto *c, |
| u8 new_passive, |
| u8 new_active, |
| u8 new_pending) |
| { |
| struct tipc_key old = c->key; |
| char buf[32]; |
| |
| c->key.keys = ((new_passive & KEY_MASK) << (KEY_BITS * 2)) | |
| ((new_active & KEY_MASK) << (KEY_BITS)) | |
| ((new_pending & KEY_MASK)); |
| |
| pr_debug("%s: key changing %s ::%pS\n", c->name, |
| tipc_key_change_dump(old, c->key, buf), |
| __builtin_return_address(0)); |
| } |
| |
| /** |
| * tipc_crypto_key_init - Initiate a new user / AEAD key |
| * @c: TIPC crypto to which new key is attached |
| * @ukey: the user key |
| * @mode: the key mode (CLUSTER_KEY or PER_NODE_KEY) |
| * @master_key: specify this is a cluster master key |
| * |
| * A new TIPC AEAD key will be allocated and initiated with the specified user |
| * key, then attached to the TIPC crypto. |
| * |
| * Return: new key id in case of success, otherwise: < 0 |
| */ |
| int tipc_crypto_key_init(struct tipc_crypto *c, struct tipc_aead_key *ukey, |
| u8 mode, bool master_key) |
| { |
| struct tipc_aead *aead = NULL; |
| int rc = 0; |
| |
| /* Initiate with the new user key */ |
| rc = tipc_aead_init(&aead, ukey, mode); |
| |
| /* Attach it to the crypto */ |
| if (likely(!rc)) { |
| rc = tipc_crypto_key_attach(c, aead, 0, master_key); |
| if (rc < 0) |
| tipc_aead_free(&aead->rcu); |
| } |
| |
| return rc; |
| } |
| |
| /** |
| * tipc_crypto_key_attach - Attach a new AEAD key to TIPC crypto |
| * @c: TIPC crypto to which the new AEAD key is attached |
| * @aead: the new AEAD key pointer |
| * @pos: desired slot in the crypto key array, = 0 if any! |
| * @master_key: specify this is a cluster master key |
| * |
| * Return: new key id in case of success, otherwise: -EBUSY |
| */ |
| static int tipc_crypto_key_attach(struct tipc_crypto *c, |
| struct tipc_aead *aead, u8 pos, |
| bool master_key) |
| { |
| struct tipc_key key; |
| int rc = -EBUSY; |
| u8 new_key; |
| |
| spin_lock_bh(&c->lock); |
| key = c->key; |
| if (master_key) { |
| new_key = KEY_MASTER; |
| goto attach; |
| } |
| if (key.active && key.passive) |
| goto exit; |
| if (key.pending) { |
| if (tipc_aead_users(c->aead[key.pending]) > 0) |
| goto exit; |
| /* if (pos): ok with replacing, will be aligned when needed */ |
| /* Replace it */ |
| new_key = key.pending; |
| } else { |
| if (pos) { |
| if (key.active && pos != key_next(key.active)) { |
| key.passive = pos; |
| new_key = pos; |
| goto attach; |
| } else if (!key.active && !key.passive) { |
| key.pending = pos; |
| new_key = pos; |
| goto attach; |
| } |
| } |
| key.pending = key_next(key.active ?: key.passive); |
| new_key = key.pending; |
| } |
| |
| attach: |
| aead->crypto = c; |
| aead->gen = (is_tx(c)) ? ++c->key_gen : c->key_gen; |
| tipc_aead_rcu_replace(c->aead[new_key], aead, &c->lock); |
| if (likely(c->key.keys != key.keys)) |
| tipc_crypto_key_set_state(c, key.passive, key.active, |
| key.pending); |
| c->working = 1; |
| c->nokey = 0; |
| c->key_master |= master_key; |
| rc = new_key; |
| |
| exit: |
| spin_unlock_bh(&c->lock); |
| return rc; |
| } |
| |
| void tipc_crypto_key_flush(struct tipc_crypto *c) |
| { |
| struct tipc_crypto *tx, *rx; |
| int k; |
| |
| spin_lock_bh(&c->lock); |
| if (is_rx(c)) { |
| /* Try to cancel pending work */ |
| rx = c; |
| tx = tipc_net(rx->net)->crypto_tx; |
| if (cancel_delayed_work(&rx->work)) { |
| kfree(rx->skey); |
| rx->skey = NULL; |
| atomic_xchg(&rx->key_distr, 0); |
| tipc_node_put(rx->node); |
| } |
| /* RX stopping => decrease TX key users if any */ |
| k = atomic_xchg(&rx->peer_rx_active, 0); |
| if (k) { |
| tipc_aead_users_dec(tx->aead[k], 0); |
| /* Mark the point TX key users changed */ |
| tx->timer1 = jiffies; |
| } |
| } |
| |
| c->flags = 0; |
| tipc_crypto_key_set_state(c, 0, 0, 0); |
| for (k = KEY_MIN; k <= KEY_MAX; k++) |
| tipc_crypto_key_detach(c->aead[k], &c->lock); |
| atomic64_set(&c->sndnxt, 0); |
| spin_unlock_bh(&c->lock); |
| } |
| |
| /** |
| * tipc_crypto_key_try_align - Align RX keys if possible |
| * @rx: RX crypto handle |
| * @new_pending: new pending slot if aligned (= TX key from peer) |
| * |
| * Peer has used an unknown key slot, this only happens when peer has left and |
| * rejoned, or we are newcomer. |
| * That means, there must be no active key but a pending key at unaligned slot. |
| * If so, we try to move the pending key to the new slot. |
| * Note: A potential passive key can exist, it will be shifted correspondingly! |
| * |
| * Return: "true" if key is successfully aligned, otherwise "false" |
| */ |
| static bool tipc_crypto_key_try_align(struct tipc_crypto *rx, u8 new_pending) |
| { |
| struct tipc_aead *tmp1, *tmp2 = NULL; |
| struct tipc_key key; |
| bool aligned = false; |
| u8 new_passive = 0; |
| int x; |
| |
| spin_lock(&rx->lock); |
| key = rx->key; |
| if (key.pending == new_pending) { |
| aligned = true; |
| goto exit; |
| } |
| if (key.active) |
| goto exit; |
| if (!key.pending) |
| goto exit; |
| if (tipc_aead_users(rx->aead[key.pending]) > 0) |
| goto exit; |
| |
| /* Try to "isolate" this pending key first */ |
| tmp1 = tipc_aead_rcu_ptr(rx->aead[key.pending], &rx->lock); |
| if (!refcount_dec_if_one(&tmp1->refcnt)) |
| goto exit; |
| rcu_assign_pointer(rx->aead[key.pending], NULL); |
| |
| /* Move passive key if any */ |
| if (key.passive) { |
| tmp2 = rcu_replace_pointer(rx->aead[key.passive], tmp2, lockdep_is_held(&rx->lock)); |
| x = (key.passive - key.pending + new_pending) % KEY_MAX; |
| new_passive = (x <= 0) ? x + KEY_MAX : x; |
| } |
| |
| /* Re-allocate the key(s) */ |
| tipc_crypto_key_set_state(rx, new_passive, 0, new_pending); |
| rcu_assign_pointer(rx->aead[new_pending], tmp1); |
| if (new_passive) |
| rcu_assign_pointer(rx->aead[new_passive], tmp2); |
| refcount_set(&tmp1->refcnt, 1); |
| aligned = true; |
| pr_info_ratelimited("%s: key[%d] -> key[%d]\n", rx->name, key.pending, |
| new_pending); |
| |
| exit: |
| spin_unlock(&rx->lock); |
| return aligned; |
| } |
| |
| /** |
| * tipc_crypto_key_pick_tx - Pick one TX key for message decryption |
| * @tx: TX crypto handle |
| * @rx: RX crypto handle (can be NULL) |
| * @skb: the message skb which will be decrypted later |
| * @tx_key: peer TX key id |
| * |
| * This function looks up the existing TX keys and pick one which is suitable |
| * for the message decryption, that must be a cluster key and not used before |
| * on the same message (i.e. recursive). |
| * |
| * Return: the TX AEAD key handle in case of success, otherwise NULL |
| */ |
| static struct tipc_aead *tipc_crypto_key_pick_tx(struct tipc_crypto *tx, |
| struct tipc_crypto *rx, |
| struct sk_buff *skb, |
| u8 tx_key) |
| { |
| struct tipc_skb_cb *skb_cb = TIPC_SKB_CB(skb); |
| struct tipc_aead *aead = NULL; |
| struct tipc_key key = tx->key; |
| u8 k, i = 0; |
| |
| /* Initialize data if not yet */ |
| if (!skb_cb->tx_clone_deferred) { |
| skb_cb->tx_clone_deferred = 1; |
| memset(&skb_cb->tx_clone_ctx, 0, sizeof(skb_cb->tx_clone_ctx)); |
| } |
| |
| skb_cb->tx_clone_ctx.rx = rx; |
| if (++skb_cb->tx_clone_ctx.recurs > 2) |
| return NULL; |
| |
| /* Pick one TX key */ |
| spin_lock(&tx->lock); |
| if (tx_key == KEY_MASTER) { |
| aead = tipc_aead_rcu_ptr(tx->aead[KEY_MASTER], &tx->lock); |
| goto done; |
| } |
| do { |
| k = (i == 0) ? key.pending : |
| ((i == 1) ? key.active : key.passive); |
| if (!k) |
| continue; |
| aead = tipc_aead_rcu_ptr(tx->aead[k], &tx->lock); |
| if (!aead) |
| continue; |
| if (aead->mode != CLUSTER_KEY || |
| aead == skb_cb->tx_clone_ctx.last) { |
| aead = NULL; |
| continue; |
| } |
| /* Ok, found one cluster key */ |
| skb_cb->tx_clone_ctx.last = aead; |
| WARN_ON(skb->next); |
| skb->next = skb_clone(skb, GFP_ATOMIC); |
| if (unlikely(!skb->next)) |
| pr_warn("Failed to clone skb for next round if any\n"); |
| break; |
| } while (++i < 3); |
| |
| done: |
| if (likely(aead)) |
| WARN_ON(!refcount_inc_not_zero(&aead->refcnt)); |
| spin_unlock(&tx->lock); |
| |
| return aead; |
| } |
| |
| /** |
| * tipc_crypto_key_synch: Synch own key data according to peer key status |
| * @rx: RX crypto handle |
| * @skb: TIPCv2 message buffer (incl. the ehdr from peer) |
| * |
| * This function updates the peer node related data as the peer RX active key |
| * has changed, so the number of TX keys' users on this node are increased and |
| * decreased correspondingly. |
| * |
| * It also considers if peer has no key, then we need to make own master key |
| * (if any) taking over i.e. starting grace period and also trigger key |
| * distributing process. |
| * |
| * The "per-peer" sndnxt is also reset when the peer key has switched. |
| */ |
| static void tipc_crypto_key_synch(struct tipc_crypto *rx, struct sk_buff *skb) |
| { |
| struct tipc_ehdr *ehdr = (struct tipc_ehdr *)skb_network_header(skb); |
| struct tipc_crypto *tx = tipc_net(rx->net)->crypto_tx; |
| struct tipc_msg *hdr = buf_msg(skb); |
| u32 self = tipc_own_addr(rx->net); |
| u8 cur, new; |
| unsigned long delay; |
| |
| /* Update RX 'key_master' flag according to peer, also mark "legacy" if |
| * a peer has no master key. |
| */ |
| rx->key_master = ehdr->master_key; |
| if (!rx->key_master) |
| tx->legacy_user = 1; |
| |
| /* For later cases, apply only if message is destined to this node */ |
| if (!ehdr->destined || msg_short(hdr) || msg_destnode(hdr) != self) |
| return; |
| |
| /* Case 1: Peer has no keys, let's make master key take over */ |
| if (ehdr->rx_nokey) { |
| /* Set or extend grace period */ |
| tx->timer2 = jiffies; |
| /* Schedule key distributing for the peer if not yet */ |
| if (tx->key.keys && |
| !atomic_cmpxchg(&rx->key_distr, 0, KEY_DISTR_SCHED)) { |
| get_random_bytes(&delay, 2); |
| delay %= 5; |
| delay = msecs_to_jiffies(500 * ++delay); |
| if (queue_delayed_work(tx->wq, &rx->work, delay)) |
| tipc_node_get(rx->node); |
| } |
| } else { |
| /* Cancel a pending key distributing if any */ |
| atomic_xchg(&rx->key_distr, 0); |
| } |
| |
| /* Case 2: Peer RX active key has changed, let's update own TX users */ |
| cur = atomic_read(&rx->peer_rx_active); |
| new = ehdr->rx_key_active; |
| if (tx->key.keys && |
| cur != new && |
| atomic_cmpxchg(&rx->peer_rx_active, cur, new) == cur) { |
| if (new) |
| tipc_aead_users_inc(tx->aead[new], INT_MAX); |
| if (cur) |
| tipc_aead_users_dec(tx->aead[cur], 0); |
| |
| atomic64_set(&rx->sndnxt, 0); |
| /* Mark the point TX key users changed */ |
| tx->timer1 = jiffies; |
| |
| pr_debug("%s: key users changed %d-- %d++, peer %s\n", |
| tx->name, cur, new, rx->name); |
| } |
| } |
| |
| static int tipc_crypto_key_revoke(struct net *net, u8 tx_key) |
| { |
| struct tipc_crypto *tx = tipc_net(net)->crypto_tx; |
| struct tipc_key key; |
| |
| spin_lock(&tx->lock); |
| key = tx->key; |
| WARN_ON(!key.active || tx_key != key.active); |
| |
| /* Free the active key */ |
| tipc_crypto_key_set_state(tx, key.passive, 0, key.pending); |
| tipc_crypto_key_detach(tx->aead[key.active], &tx->lock); |
| spin_unlock(&tx->lock); |
| |
| pr_warn("%s: key is revoked\n", tx->name); |
| return -EKEYREVOKED; |
| } |
| |
| int tipc_crypto_start(struct tipc_crypto **crypto, struct net *net, |
| struct tipc_node *node) |
| { |
| struct tipc_crypto *c; |
| |
| if (*crypto) |
| return -EEXIST; |
| |
| /* Allocate crypto */ |
| c = kzalloc(sizeof(*c), GFP_ATOMIC); |
| if (!c) |
| return -ENOMEM; |
| |
| /* Allocate workqueue on TX */ |
| if (!node) { |
| c->wq = alloc_ordered_workqueue("tipc_crypto", 0); |
| if (!c->wq) { |
| kfree(c); |
| return -ENOMEM; |
| } |
| } |
| |
| /* Allocate statistic structure */ |
| c->stats = alloc_percpu_gfp(struct tipc_crypto_stats, GFP_ATOMIC); |
| if (!c->stats) { |
| kfree_sensitive(c); |
| return -ENOMEM; |
| } |
| |
| c->flags = 0; |
| c->net = net; |
| c->node = node; |
| get_random_bytes(&c->key_gen, 2); |
| tipc_crypto_key_set_state(c, 0, 0, 0); |
| atomic_set(&c->key_distr, 0); |
| atomic_set(&c->peer_rx_active, 0); |
| atomic64_set(&c->sndnxt, 0); |
| c->timer1 = jiffies; |
| c->timer2 = jiffies; |
| c->rekeying_intv = TIPC_REKEYING_INTV_DEF; |
| spin_lock_init(&c->lock); |
| scnprintf(c->name, 48, "%s(%s)", (is_rx(c)) ? "RX" : "TX", |
| (is_rx(c)) ? tipc_node_get_id_str(c->node) : |
| tipc_own_id_string(c->net)); |
| |
| if (is_rx(c)) |
| INIT_DELAYED_WORK(&c->work, tipc_crypto_work_rx); |
| else |
| INIT_DELAYED_WORK(&c->work, tipc_crypto_work_tx); |
| |
| *crypto = c; |
| return 0; |
| } |
| |
| void tipc_crypto_stop(struct tipc_crypto **crypto) |
| { |
| struct tipc_crypto *c = *crypto; |
| u8 k; |
| |
| if (!c) |
| return; |
| |
| /* Flush any queued works & destroy wq */ |
| if (is_tx(c)) { |
| c->rekeying_intv = 0; |
| cancel_delayed_work_sync(&c->work); |
| destroy_workqueue(c->wq); |
| } |
| |
| /* Release AEAD keys */ |
| rcu_read_lock(); |
| for (k = KEY_MIN; k <= KEY_MAX; k++) |
| tipc_aead_put(rcu_dereference(c->aead[k])); |
| rcu_read_unlock(); |
| pr_debug("%s: has been stopped\n", c->name); |
| |
| /* Free this crypto statistics */ |
| free_percpu(c->stats); |
| |
| *crypto = NULL; |
| kfree_sensitive(c); |
| } |
| |
| void tipc_crypto_timeout(struct tipc_crypto *rx) |
| { |
| struct tipc_net *tn = tipc_net(rx->net); |
| struct tipc_crypto *tx = tn->crypto_tx; |
| struct tipc_key key; |
| int cmd; |
| |
| /* TX pending: taking all users & stable -> active */ |
| spin_lock(&tx->lock); |
| key = tx->key; |
| if (key.active && tipc_aead_users(tx->aead[key.active]) > 0) |
| goto s1; |
| if (!key.pending || tipc_aead_users(tx->aead[key.pending]) <= 0) |
| goto s1; |
| if (time_before(jiffies, tx->timer1 + TIPC_TX_LASTING_TIME)) |
| goto s1; |
| |
| tipc_crypto_key_set_state(tx, key.passive, key.pending, 0); |
| if (key.active) |
| tipc_crypto_key_detach(tx->aead[key.active], &tx->lock); |
| this_cpu_inc(tx->stats->stat[STAT_SWITCHES]); |
| pr_info("%s: key[%d] is activated\n", tx->name, key.pending); |
| |
| s1: |
| spin_unlock(&tx->lock); |
| |
| /* RX pending: having user -> active */ |
| spin_lock(&rx->lock); |
| key = rx->key; |
| if (!key.pending || tipc_aead_users(rx->aead[key.pending]) <= 0) |
| goto s2; |
| |
| if (key.active) |
| key.passive = key.active; |
| key.active = key.pending; |
| rx->timer2 = jiffies; |
| tipc_crypto_key_set_state(rx, key.passive, key.active, 0); |
| this_cpu_inc(rx->stats->stat[STAT_SWITCHES]); |
| pr_info("%s: key[%d] is activated\n", rx->name, key.pending); |
| goto s5; |
| |
| s2: |
| /* RX pending: not working -> remove */ |
| if (!key.pending || tipc_aead_users(rx->aead[key.pending]) > -10) |
| goto s3; |
| |
| tipc_crypto_key_set_state(rx, key.passive, key.active, 0); |
| tipc_crypto_key_detach(rx->aead[key.pending], &rx->lock); |
| pr_debug("%s: key[%d] is removed\n", rx->name, key.pending); |
| goto s5; |
| |
| s3: |
| /* RX active: timed out or no user -> pending */ |
| if (!key.active) |
| goto s4; |
| if (time_before(jiffies, rx->timer1 + TIPC_RX_ACTIVE_LIM) && |
| tipc_aead_users(rx->aead[key.active]) > 0) |
| goto s4; |
| |
| if (key.pending) |
| key.passive = key.active; |
| else |
| key.pending = key.active; |
| rx->timer2 = jiffies; |
| tipc_crypto_key_set_state(rx, key.passive, 0, key.pending); |
| tipc_aead_users_set(rx->aead[key.pending], 0); |
| pr_debug("%s: key[%d] is deactivated\n", rx->name, key.active); |
| goto s5; |
| |
| s4: |
| /* RX passive: outdated or not working -> free */ |
| if (!key.passive) |
| goto s5; |
| if (time_before(jiffies, rx->timer2 + TIPC_RX_PASSIVE_LIM) && |
| tipc_aead_users(rx->aead[key.passive]) > -10) |
| goto s5; |
| |
| tipc_crypto_key_set_state(rx, 0, key.active, key.pending); |
| tipc_crypto_key_detach(rx->aead[key.passive], &rx->lock); |
| pr_debug("%s: key[%d] is freed\n", rx->name, key.passive); |
| |
| s5: |
| spin_unlock(&rx->lock); |
| |
| /* Relax it here, the flag will be set again if it really is, but only |
| * when we are not in grace period for safety! |
| */ |
| if (time_after(jiffies, tx->timer2 + TIPC_TX_GRACE_PERIOD)) |
| tx->legacy_user = 0; |
| |
| /* Limit max_tfms & do debug commands if needed */ |
| if (likely(sysctl_tipc_max_tfms <= TIPC_MAX_TFMS_LIM)) |
| return; |
| |
| cmd = sysctl_tipc_max_tfms; |
| sysctl_tipc_max_tfms = TIPC_MAX_TFMS_DEF; |
| tipc_crypto_do_cmd(rx->net, cmd); |
| } |
| |
| static inline void tipc_crypto_clone_msg(struct net *net, struct sk_buff *_skb, |
| struct tipc_bearer *b, |
| struct tipc_media_addr *dst, |
| struct tipc_node *__dnode, u8 type) |
| { |
| struct sk_buff *skb; |
| |
| skb = skb_clone(_skb, GFP_ATOMIC); |
| if (skb) { |
| TIPC_SKB_CB(skb)->xmit_type = type; |
| tipc_crypto_xmit(net, &skb, b, dst, __dnode); |
| if (skb) |
| b->media->send_msg(net, skb, b, dst); |
| } |
| } |
| |
| /** |
| * tipc_crypto_xmit - Build & encrypt TIPC message for xmit |
| * @net: struct net |
| * @skb: input/output message skb pointer |
| * @b: bearer used for xmit later |
| * @dst: destination media address |
| * @__dnode: destination node for reference if any |
| * |
| * First, build an encryption message header on the top of the message, then |
| * encrypt the original TIPC message by using the pending, master or active |
| * key with this preference order. |
| * If the encryption is successful, the encrypted skb is returned directly or |
| * via the callback. |
| * Otherwise, the skb is freed! |
| * |
| * Return: |
| * 0 : the encryption has succeeded (or no encryption) |
| * -EINPROGRESS/-EBUSY : the encryption is ongoing, a callback will be made |
| * -ENOKEK : the encryption has failed due to no key |
| * -EKEYREVOKED : the encryption has failed due to key revoked |
| * -ENOMEM : the encryption has failed due to no memory |
| * < 0 : the encryption has failed due to other reasons |
| */ |
| int tipc_crypto_xmit(struct net *net, struct sk_buff **skb, |
| struct tipc_bearer *b, struct tipc_media_addr *dst, |
| struct tipc_node *__dnode) |
| { |
| struct tipc_crypto *__rx = tipc_node_crypto_rx(__dnode); |
| struct tipc_crypto *tx = tipc_net(net)->crypto_tx; |
| struct tipc_crypto_stats __percpu *stats = tx->stats; |
| struct tipc_msg *hdr = buf_msg(*skb); |
| struct tipc_key key = tx->key; |
| struct tipc_aead *aead = NULL; |
| u32 user = msg_user(hdr); |
| u32 type = msg_type(hdr); |
| int rc = -ENOKEY; |
| u8 tx_key = 0; |
| |
| /* No encryption? */ |
| if (!tx->working) |
| return 0; |
| |
| /* Pending key if peer has active on it or probing time */ |
| if (unlikely(key.pending)) { |
| tx_key = key.pending; |
| if (!tx->key_master && !key.active) |
| goto encrypt; |
| if (__rx && atomic_read(&__rx->peer_rx_active) == tx_key) |
| goto encrypt; |
| if (TIPC_SKB_CB(*skb)->xmit_type == SKB_PROBING) { |
| pr_debug("%s: probing for key[%d]\n", tx->name, |
| key.pending); |
| goto encrypt; |
| } |
| if (user == LINK_CONFIG || user == LINK_PROTOCOL) |
| tipc_crypto_clone_msg(net, *skb, b, dst, __dnode, |
| SKB_PROBING); |
| } |
| |
| /* Master key if this is a *vital* message or in grace period */ |
| if (tx->key_master) { |
| tx_key = KEY_MASTER; |
| if (!key.active) |
| goto encrypt; |
| if (TIPC_SKB_CB(*skb)->xmit_type == SKB_GRACING) { |
| pr_debug("%s: gracing for msg (%d %d)\n", tx->name, |
| user, type); |
| goto encrypt; |
| } |
| if (user == LINK_CONFIG || |
| (user == LINK_PROTOCOL && type == RESET_MSG) || |
| (user == MSG_CRYPTO && type == KEY_DISTR_MSG) || |
| time_before(jiffies, tx->timer2 + TIPC_TX_GRACE_PERIOD)) { |
| if (__rx && __rx->key_master && |
| !atomic_read(&__rx->peer_rx_active)) |
| goto encrypt; |
| if (!__rx) { |
| if (likely(!tx->legacy_user)) |
| goto encrypt; |
| tipc_crypto_clone_msg(net, *skb, b, dst, |
| __dnode, SKB_GRACING); |
| } |
| } |
| } |
| |
| /* Else, use the active key if any */ |
| if (likely(key.active)) { |
| tx_key = key.active; |
| goto encrypt; |
| } |
| |
| goto exit; |
| |
| encrypt: |
| aead = tipc_aead_get(tx->aead[tx_key]); |
| if (unlikely(!aead)) |
| goto exit; |
| rc = tipc_ehdr_build(net, aead, tx_key, *skb, __rx); |
| if (likely(rc > 0)) |
| rc = tipc_aead_encrypt(aead, *skb, b, dst, __dnode); |
| |
| exit: |
| switch (rc) { |
| case 0: |
| this_cpu_inc(stats->stat[STAT_OK]); |
| break; |
| case -EINPROGRESS: |
| case -EBUSY: |
| this_cpu_inc(stats->stat[STAT_ASYNC]); |
| *skb = NULL; |
| return rc; |
| default: |
| this_cpu_inc(stats->stat[STAT_NOK]); |
| if (rc == -ENOKEY) |
| this_cpu_inc(stats->stat[STAT_NOKEYS]); |
| else if (rc == -EKEYREVOKED) |
| this_cpu_inc(stats->stat[STAT_BADKEYS]); |
| kfree_skb(*skb); |
| *skb = NULL; |
| break; |
| } |
| |
| tipc_aead_put(aead); |
| return rc; |
| } |
| |
| /** |
| * tipc_crypto_rcv - Decrypt an encrypted TIPC message from peer |
| * @net: struct net |
| * @rx: RX crypto handle |
| * @skb: input/output message skb pointer |
| * @b: bearer where the message has been received |
| * |
| * If the decryption is successful, the decrypted skb is returned directly or |
| * as the callback, the encryption header and auth tag will be trimed out |
| * before forwarding to tipc_rcv() via the tipc_crypto_rcv_complete(). |
| * Otherwise, the skb will be freed! |
| * Note: RX key(s) can be re-aligned, or in case of no key suitable, TX |
| * cluster key(s) can be taken for decryption (- recursive). |
| * |
| * Return: |
| * 0 : the decryption has successfully completed |
| * -EINPROGRESS/-EBUSY : the decryption is ongoing, a callback will be made |
| * -ENOKEY : the decryption has failed due to no key |
| * -EBADMSG : the decryption has failed due to bad message |
| * -ENOMEM : the decryption has failed due to no memory |
| * < 0 : the decryption has failed due to other reasons |
| */ |
| int tipc_crypto_rcv(struct net *net, struct tipc_crypto *rx, |
| struct sk_buff **skb, struct tipc_bearer *b) |
| { |
| struct tipc_crypto *tx = tipc_net(net)->crypto_tx; |
| struct tipc_crypto_stats __percpu *stats; |
| struct tipc_aead *aead = NULL; |
| struct tipc_key key; |
| int rc = -ENOKEY; |
| u8 tx_key, n; |
| |
| tx_key = ((struct tipc_ehdr *)(*skb)->data)->tx_key; |
| |
| /* New peer? |
| * Let's try with TX key (i.e. cluster mode) & verify the skb first! |
| */ |
| if (unlikely(!rx || tx_key == KEY_MASTER)) |
| goto pick_tx; |
| |
| /* Pick RX key according to TX key if any */ |
| key = rx->key; |
| if (tx_key == key.active || tx_key == key.pending || |
| tx_key == key.passive) |
| goto decrypt; |
| |
| /* Unknown key, let's try to align RX key(s) */ |
| if (tipc_crypto_key_try_align(rx, tx_key)) |
| goto decrypt; |
| |
| pick_tx: |
| /* No key suitable? Try to pick one from TX... */ |
| aead = tipc_crypto_key_pick_tx(tx, rx, *skb, tx_key); |
| if (aead) |
| goto decrypt; |
| goto exit; |
| |
| decrypt: |
| rcu_read_lock(); |
| if (!aead) |
| aead = tipc_aead_get(rx->aead[tx_key]); |
| rc = tipc_aead_decrypt(net, aead, *skb, b); |
| rcu_read_unlock(); |
| |
| exit: |
| stats = ((rx) ?: tx)->stats; |
| switch (rc) { |
| case 0: |
| this_cpu_inc(stats->stat[STAT_OK]); |
| break; |
| case -EINPROGRESS: |
| case -EBUSY: |
| this_cpu_inc(stats->stat[STAT_ASYNC]); |
| *skb = NULL; |
| return rc; |
| default: |
| this_cpu_inc(stats->stat[STAT_NOK]); |
| if (rc == -ENOKEY) { |
| kfree_skb(*skb); |
| *skb = NULL; |
| if (rx) { |
| /* Mark rx->nokey only if we dont have a |
| * pending received session key, nor a newer |
| * one i.e. in the next slot. |
| */ |
| n = key_next(tx_key); |
| rx->nokey = !(rx->skey || |
| rcu_access_pointer(rx->aead[n])); |
| pr_debug_ratelimited("%s: nokey %d, key %d/%x\n", |
| rx->name, rx->nokey, |
| tx_key, rx->key.keys); |
| tipc_node_put(rx->node); |
| } |
| this_cpu_inc(stats->stat[STAT_NOKEYS]); |
| return rc; |
| } else if (rc == -EBADMSG) { |
| this_cpu_inc(stats->stat[STAT_BADMSGS]); |
| } |
| break; |
| } |
| |
| tipc_crypto_rcv_complete(net, aead, b, skb, rc); |
| return rc; |
| } |
| |
| static void tipc_crypto_rcv_complete(struct net *net, struct tipc_aead *aead, |
| struct tipc_bearer *b, |
| struct sk_buff **skb, int err) |
| { |
| struct tipc_skb_cb *skb_cb = TIPC_SKB_CB(*skb); |
| struct tipc_crypto *rx = aead->crypto; |
| struct tipc_aead *tmp = NULL; |
| struct tipc_ehdr *ehdr; |
| struct tipc_node *n; |
| |
| /* Is this completed by TX? */ |
| if (unlikely(is_tx(aead->crypto))) { |
| rx = skb_cb->tx_clone_ctx.rx; |
| pr_debug("TX->RX(%s): err %d, aead %p, skb->next %p, flags %x\n", |
| (rx) ? tipc_node_get_id_str(rx->node) : "-", err, aead, |
| (*skb)->next, skb_cb->flags); |
| pr_debug("skb_cb [recurs %d, last %p], tx->aead [%p %p %p]\n", |
| skb_cb->tx_clone_ctx.recurs, skb_cb->tx_clone_ctx.last, |
| aead->crypto->aead[1], aead->crypto->aead[2], |
| aead->crypto->aead[3]); |
| if (unlikely(err)) { |
| if (err == -EBADMSG && (*skb)->next) |
| tipc_rcv(net, (*skb)->next, b); |
| goto free_skb; |
| } |
| |
| if (likely((*skb)->next)) { |
| kfree_skb((*skb)->next); |
| (*skb)->next = NULL; |
| } |
| ehdr = (struct tipc_ehdr *)(*skb)->data; |
| if (!rx) { |
| WARN_ON(ehdr->user != LINK_CONFIG); |
| n = tipc_node_create(net, 0, ehdr->id, 0xffffu, 0, |
| true); |
| rx = tipc_node_crypto_rx(n); |
| if (unlikely(!rx)) |
| goto free_skb; |
| } |
| |
| /* Ignore cloning if it was TX master key */ |
| if (ehdr->tx_key == KEY_MASTER) |
| goto rcv; |
| if (tipc_aead_clone(&tmp, aead) < 0) |
| goto rcv; |
| if (tipc_crypto_key_attach(rx, tmp, ehdr->tx_key, false) < 0) { |
| tipc_aead_free(&tmp->rcu); |
| goto rcv; |
| } |
| tipc_aead_put(aead); |
| aead = tipc_aead_get(tmp); |
| } |
| |
| if (unlikely(err)) { |
| tipc_aead_users_dec(aead, INT_MIN); |
| goto free_skb; |
| } |
| |
| /* Set the RX key's user */ |
| tipc_aead_users_set(aead, 1); |
| |
| /* Mark this point, RX works */ |
| rx->timer1 = jiffies; |
| |
| rcv: |
| /* Remove ehdr & auth. tag prior to tipc_rcv() */ |
| ehdr = (struct tipc_ehdr *)(*skb)->data; |
| |
| /* Mark this point, RX passive still works */ |
| if (rx->key.passive && ehdr->tx_key == rx->key.passive) |
| rx->timer2 = jiffies; |
| |
| skb_reset_network_header(*skb); |
| skb_pull(*skb, tipc_ehdr_size(ehdr)); |
| pskb_trim(*skb, (*skb)->len - aead->authsize); |
| |
| /* Validate TIPCv2 message */ |
| if (unlikely(!tipc_msg_validate(skb))) { |
| pr_err_ratelimited("Packet dropped after decryption!\n"); |
| goto free_skb; |
| } |
| |
| /* Ok, everything's fine, try to synch own keys according to peers' */ |
| tipc_crypto_key_synch(rx, *skb); |
| |
| /* Mark skb decrypted */ |
| skb_cb->decrypted = 1; |
| |
| /* Clear clone cxt if any */ |
| if (likely(!skb_cb->tx_clone_deferred)) |
| goto exit; |
| skb_cb->tx_clone_deferred = 0; |
| memset(&skb_cb->tx_clone_ctx, 0, sizeof(skb_cb->tx_clone_ctx)); |
| goto exit; |
| |
| free_skb: |
| kfree_skb(*skb); |
| *skb = NULL; |
| |
| exit: |
| tipc_aead_put(aead); |
| if (rx) |
| tipc_node_put(rx->node); |
| } |
| |
| static void tipc_crypto_do_cmd(struct net *net, int cmd) |
| { |
| struct tipc_net *tn = tipc_net(net); |
| struct tipc_crypto *tx = tn->crypto_tx, *rx; |
| struct list_head *p; |
| unsigned int stat; |
| int i, j, cpu; |
| char buf[200]; |
| |
| /* Currently only one command is supported */ |
| switch (cmd) { |
| case 0xfff1: |
| goto print_stats; |
| default: |
| return; |
| } |
| |
| print_stats: |
| /* Print a header */ |
| pr_info("\n=============== TIPC Crypto Statistics ===============\n\n"); |
| |
| /* Print key status */ |
| pr_info("Key status:\n"); |
| pr_info("TX(%7.7s)\n%s", tipc_own_id_string(net), |
| tipc_crypto_key_dump(tx, buf)); |
| |
| rcu_read_lock(); |
| for (p = tn->node_list.next; p != &tn->node_list; p = p->next) { |
| rx = tipc_node_crypto_rx_by_list(p); |
| pr_info("RX(%7.7s)\n%s", tipc_node_get_id_str(rx->node), |
| tipc_crypto_key_dump(rx, buf)); |
| } |
| rcu_read_unlock(); |
| |
| /* Print crypto statistics */ |
| for (i = 0, j = 0; i < MAX_STATS; i++) |
| j += scnprintf(buf + j, 200 - j, "|%11s ", hstats[i]); |
| pr_info("Counter %s", buf); |
| |
| memset(buf, '-', 115); |
| buf[115] = '\0'; |
| pr_info("%s\n", buf); |
| |
| j = scnprintf(buf, 200, "TX(%7.7s) ", tipc_own_id_string(net)); |
| for_each_possible_cpu(cpu) { |
| for (i = 0; i < MAX_STATS; i++) { |
| stat = per_cpu_ptr(tx->stats, cpu)->stat[i]; |
| j += scnprintf(buf + j, 200 - j, "|%11d ", stat); |
| } |
| pr_info("%s", buf); |
| j = scnprintf(buf, 200, "%12s", " "); |
| } |
| |
| rcu_read_lock(); |
| for (p = tn->node_list.next; p != &tn->node_list; p = p->next) { |
| rx = tipc_node_crypto_rx_by_list(p); |
| j = scnprintf(buf, 200, "RX(%7.7s) ", |
| tipc_node_get_id_str(rx->node)); |
| for_each_possible_cpu(cpu) { |
| for (i = 0; i < MAX_STATS; i++) { |
| stat = per_cpu_ptr(rx->stats, cpu)->stat[i]; |
| j += scnprintf(buf + j, 200 - j, "|%11d ", |
| stat); |
| } |
| pr_info("%s", buf); |
| j = scnprintf(buf, 200, "%12s", " "); |
| } |
| } |
| rcu_read_unlock(); |
| |
| pr_info("\n======================== Done ========================\n"); |
| } |
| |
| static char *tipc_crypto_key_dump(struct tipc_crypto *c, char *buf) |
| { |
| struct tipc_key key = c->key; |
| struct tipc_aead *aead; |
| int k, i = 0; |
| char *s; |
| |
| for (k = KEY_MIN; k <= KEY_MAX; k++) { |
| if (k == KEY_MASTER) { |
| if (is_rx(c)) |
| continue; |
| if (time_before(jiffies, |
| c->timer2 + TIPC_TX_GRACE_PERIOD)) |
| s = "ACT"; |
| else |
| s = "PAS"; |
| } else { |
| if (k == key.passive) |
| s = "PAS"; |
| else if (k == key.active) |
| s = "ACT"; |
| else if (k == key.pending) |
| s = "PEN"; |
| else |
| s = "-"; |
| } |
| i += scnprintf(buf + i, 200 - i, "\tKey%d: %s", k, s); |
| |
| rcu_read_lock(); |
| aead = rcu_dereference(c->aead[k]); |
| if (aead) |
| i += scnprintf(buf + i, 200 - i, |
| "{\"0x...%s\", \"%s\"}/%d:%d", |
| aead->hint, |
| (aead->mode == CLUSTER_KEY) ? "c" : "p", |
| atomic_read(&aead->users), |
| refcount_read(&aead->refcnt)); |
| rcu_read_unlock(); |
| i += scnprintf(buf + i, 200 - i, "\n"); |
| } |
| |
| if (is_rx(c)) |
| i += scnprintf(buf + i, 200 - i, "\tPeer RX active: %d\n", |
| atomic_read(&c->peer_rx_active)); |
| |
| return buf; |
| } |
| |
| static char *tipc_key_change_dump(struct tipc_key old, struct tipc_key new, |
| char *buf) |
| { |
| struct tipc_key *key = &old; |
| int k, i = 0; |
| char *s; |
| |
| /* Output format: "[%s %s %s] -> [%s %s %s]", max len = 32 */ |
| again: |
| i += scnprintf(buf + i, 32 - i, "["); |
| for (k = KEY_1; k <= KEY_3; k++) { |
| if (k == key->passive) |
| s = "pas"; |
| else if (k == key->active) |
| s = "act"; |
| else if (k == key->pending) |
| s = "pen"; |
| else |
| s = "-"; |
| i += scnprintf(buf + i, 32 - i, |
| (k != KEY_3) ? "%s " : "%s", s); |
| } |
| if (key != &new) { |
| i += scnprintf(buf + i, 32 - i, "] -> "); |
| key = &new; |
| goto again; |
| } |
| i += scnprintf(buf + i, 32 - i, "]"); |
| return buf; |
| } |
| |
| /** |
| * tipc_crypto_msg_rcv - Common 'MSG_CRYPTO' processing point |
| * @net: the struct net |
| * @skb: the receiving message buffer |
| */ |
| void tipc_crypto_msg_rcv(struct net *net, struct sk_buff *skb) |
| { |
| struct tipc_crypto *rx; |
| struct tipc_msg *hdr; |
| |
| if (unlikely(skb_linearize(skb))) |
| goto exit; |
| |
| hdr = buf_msg(skb); |
| rx = tipc_node_crypto_rx_by_addr(net, msg_prevnode(hdr)); |
| if (unlikely(!rx)) |
| goto exit; |
| |
| switch (msg_type(hdr)) { |
| case KEY_DISTR_MSG: |
| if (tipc_crypto_key_rcv(rx, hdr)) |
| goto exit; |
| break; |
| default: |
| break; |
| } |
| |
| tipc_node_put(rx->node); |
| |
| exit: |
| kfree_skb(skb); |
| } |
| |
| /** |
| * tipc_crypto_key_distr - Distribute a TX key |
| * @tx: the TX crypto |
| * @key: the key's index |
| * @dest: the destination tipc node, = NULL if distributing to all nodes |
| * |
| * Return: 0 in case of success, otherwise < 0 |
| */ |
| int tipc_crypto_key_distr(struct tipc_crypto *tx, u8 key, |
| struct tipc_node *dest) |
| { |
| struct tipc_aead *aead; |
| u32 dnode = tipc_node_get_addr(dest); |
| int rc = -ENOKEY; |
| |
| if (!sysctl_tipc_key_exchange_enabled) |
| return 0; |
| |
| if (key) { |
| rcu_read_lock(); |
| aead = tipc_aead_get(tx->aead[key]); |
| if (likely(aead)) { |
| rc = tipc_crypto_key_xmit(tx->net, aead->key, |
| aead->gen, aead->mode, |
| dnode); |
| tipc_aead_put(aead); |
| } |
| rcu_read_unlock(); |
| } |
| |
| return rc; |
| } |
| |
| /** |
| * tipc_crypto_key_xmit - Send a session key |
| * @net: the struct net |
| * @skey: the session key to be sent |
| * @gen: the key's generation |
| * @mode: the key's mode |
| * @dnode: the destination node address, = 0 if broadcasting to all nodes |
| * |
| * The session key 'skey' is packed in a TIPC v2 'MSG_CRYPTO/KEY_DISTR_MSG' |
| * as its data section, then xmit-ed through the uc/bc link. |
| * |
| * Return: 0 in case of success, otherwise < 0 |
| */ |
| static int tipc_crypto_key_xmit(struct net *net, struct tipc_aead_key *skey, |
| u16 gen, u8 mode, u32 dnode) |
| { |
| struct sk_buff_head pkts; |
| struct tipc_msg *hdr; |
| struct sk_buff *skb; |
| u16 size, cong_link_cnt; |
| u8 *data; |
| int rc; |
| |
| size = tipc_aead_key_size(skey); |
| skb = tipc_buf_acquire(INT_H_SIZE + size, GFP_ATOMIC); |
| if (!skb) |
| return -ENOMEM; |
| |
| hdr = buf_msg(skb); |
| tipc_msg_init(tipc_own_addr(net), hdr, MSG_CRYPTO, KEY_DISTR_MSG, |
| INT_H_SIZE, dnode); |
| msg_set_size(hdr, INT_H_SIZE + size); |
| msg_set_key_gen(hdr, gen); |
| msg_set_key_mode(hdr, mode); |
| |
| data = msg_data(hdr); |
| *((__be32 *)(data + TIPC_AEAD_ALG_NAME)) = htonl(skey->keylen); |
| memcpy(data, skey->alg_name, TIPC_AEAD_ALG_NAME); |
| memcpy(data + TIPC_AEAD_ALG_NAME + sizeof(__be32), skey->key, |
| skey->keylen); |
| |
| __skb_queue_head_init(&pkts); |
| __skb_queue_tail(&pkts, skb); |
| if (dnode) |
| rc = tipc_node_xmit(net, &pkts, dnode, 0); |
| else |
| rc = tipc_bcast_xmit(net, &pkts, &cong_link_cnt); |
| |
| return rc; |
| } |
| |
| /** |
| * tipc_crypto_key_rcv - Receive a session key |
| * @rx: the RX crypto |
| * @hdr: the TIPC v2 message incl. the receiving session key in its data |
| * |
| * This function retrieves the session key in the message from peer, then |
| * schedules a RX work to attach the key to the corresponding RX crypto. |
| * |
| * Return: "true" if the key has been scheduled for attaching, otherwise |
| * "false". |
| */ |
| static bool tipc_crypto_key_rcv(struct tipc_crypto *rx, struct tipc_msg *hdr) |
| { |
| struct tipc_crypto *tx = tipc_net(rx->net)->crypto_tx; |
| struct tipc_aead_key *skey = NULL; |
| u16 key_gen = msg_key_gen(hdr); |
| u16 size = msg_data_sz(hdr); |
| u8 *data = msg_data(hdr); |
| |
| spin_lock(&rx->lock); |
| if (unlikely(rx->skey || (key_gen == rx->key_gen && rx->key.keys))) { |
| pr_err("%s: key existed <%p>, gen %d vs %d\n", rx->name, |
| rx->skey, key_gen, rx->key_gen); |
| goto exit; |
| } |
| |
| /* Allocate memory for the key */ |
| skey = kmalloc(size, GFP_ATOMIC); |
| if (unlikely(!skey)) { |
| pr_err("%s: unable to allocate memory for skey\n", rx->name); |
| goto exit; |
| } |
| |
| /* Copy key from msg data */ |
| skey->keylen = ntohl(*((__be32 *)(data + TIPC_AEAD_ALG_NAME))); |
| memcpy(skey->alg_name, data, TIPC_AEAD_ALG_NAME); |
| memcpy(skey->key, data + TIPC_AEAD_ALG_NAME + sizeof(__be32), |
| skey->keylen); |
| |
| /* Sanity check */ |
| if (unlikely(size != tipc_aead_key_size(skey))) { |
| kfree(skey); |
| skey = NULL; |
| goto exit; |
| } |
| |
| rx->key_gen = key_gen; |
| rx->skey_mode = msg_key_mode(hdr); |
| rx->skey = skey; |
| rx->nokey = 0; |
| mb(); /* for nokey flag */ |
| |
| exit: |
| spin_unlock(&rx->lock); |
| |
| /* Schedule the key attaching on this crypto */ |
| if (likely(skey && queue_delayed_work(tx->wq, &rx->work, 0))) |
| return true; |
| |
| return false; |
| } |
| |
| /** |
| * tipc_crypto_work_rx - Scheduled RX works handler |
| * @work: the struct RX work |
| * |
| * The function processes the previous scheduled works i.e. distributing TX key |
| * or attaching a received session key on RX crypto. |
| */ |
| static void tipc_crypto_work_rx(struct work_struct *work) |
| { |
| struct delayed_work *dwork = to_delayed_work(work); |
| struct tipc_crypto *rx = container_of(dwork, struct tipc_crypto, work); |
| struct tipc_crypto *tx = tipc_net(rx->net)->crypto_tx; |
| unsigned long delay = msecs_to_jiffies(5000); |
| bool resched = false; |
| u8 key; |
| int rc; |
| |
| /* Case 1: Distribute TX key to peer if scheduled */ |
| if (atomic_cmpxchg(&rx->key_distr, |
| KEY_DISTR_SCHED, |
| KEY_DISTR_COMPL) == KEY_DISTR_SCHED) { |
| /* Always pick the newest one for distributing */ |
| key = tx->key.pending ?: tx->key.active; |
| rc = tipc_crypto_key_distr(tx, key, rx->node); |
| if (unlikely(rc)) |
| pr_warn("%s: unable to distr key[%d] to %s, err %d\n", |
| tx->name, key, tipc_node_get_id_str(rx->node), |
| rc); |
| |
| /* Sched for key_distr releasing */ |
| resched = true; |
| } else { |
| atomic_cmpxchg(&rx->key_distr, KEY_DISTR_COMPL, 0); |
| } |
| |
| /* Case 2: Attach a pending received session key from peer if any */ |
| if (rx->skey) { |
| rc = tipc_crypto_key_init(rx, rx->skey, rx->skey_mode, false); |
| if (unlikely(rc < 0)) |
| pr_warn("%s: unable to attach received skey, err %d\n", |
| rx->name, rc); |
| switch (rc) { |
| case -EBUSY: |
| case -ENOMEM: |
| /* Resched the key attaching */ |
| resched = true; |
| break; |
| default: |
| synchronize_rcu(); |
| kfree(rx->skey); |
| rx->skey = NULL; |
| break; |
| } |
| } |
| |
| if (resched && queue_delayed_work(tx->wq, &rx->work, delay)) |
| return; |
| |
| tipc_node_put(rx->node); |
| } |
| |
| /** |
| * tipc_crypto_rekeying_sched - (Re)schedule rekeying w/o new interval |
| * @tx: TX crypto |
| * @changed: if the rekeying needs to be rescheduled with new interval |
| * @new_intv: new rekeying interval (when "changed" = true) |
| */ |
| void tipc_crypto_rekeying_sched(struct tipc_crypto *tx, bool changed, |
| u32 new_intv) |
| { |
| unsigned long delay; |
| bool now = false; |
| |
| if (changed) { |
| if (new_intv == TIPC_REKEYING_NOW) |
| now = true; |
| else |
| tx->rekeying_intv = new_intv; |
| cancel_delayed_work_sync(&tx->work); |
| } |
| |
| if (tx->rekeying_intv || now) { |
| delay = (now) ? 0 : tx->rekeying_intv * 60 * 1000; |
| queue_delayed_work(tx->wq, &tx->work, msecs_to_jiffies(delay)); |
| } |
| } |
| |
| /** |
| * tipc_crypto_work_tx - Scheduled TX works handler |
| * @work: the struct TX work |
| * |
| * The function processes the previous scheduled work, i.e. key rekeying, by |
| * generating a new session key based on current one, then attaching it to the |
| * TX crypto and finally distributing it to peers. It also re-schedules the |
| * rekeying if needed. |
| */ |
| static void tipc_crypto_work_tx(struct work_struct *work) |
| { |
| struct delayed_work *dwork = to_delayed_work(work); |
| struct tipc_crypto *tx = container_of(dwork, struct tipc_crypto, work); |
| struct tipc_aead_key *skey = NULL; |
| struct tipc_key key = tx->key; |
| struct tipc_aead *aead; |
| int rc = -ENOMEM; |
| |
| if (unlikely(key.pending)) |
| goto resched; |
| |
| /* Take current key as a template */ |
| rcu_read_lock(); |
| aead = rcu_dereference(tx->aead[key.active ?: KEY_MASTER]); |
| if (unlikely(!aead)) { |
| rcu_read_unlock(); |
| /* At least one key should exist for securing */ |
| return; |
| } |
| |
| /* Lets duplicate it first */ |
| skey = kmemdup(aead->key, tipc_aead_key_size(aead->key), GFP_ATOMIC); |
| rcu_read_unlock(); |
| |
| /* Now, generate new key, initiate & distribute it */ |
| if (likely(skey)) { |
| rc = tipc_aead_key_generate(skey) ?: |
| tipc_crypto_key_init(tx, skey, PER_NODE_KEY, false); |
| if (likely(rc > 0)) |
| rc = tipc_crypto_key_distr(tx, rc, NULL); |
| kfree_sensitive(skey); |
| } |
| |
| if (unlikely(rc)) |
| pr_warn_ratelimited("%s: rekeying returns %d\n", tx->name, rc); |
| |
| resched: |
| /* Re-schedule rekeying if any */ |
| tipc_crypto_rekeying_sched(tx, false, 0); |
| } |