| // SPDX-License-Identifier: GPL-2.0 |
| /* |
| * |
| * Shared code by both skx_edac and i10nm_edac. Originally split out |
| * from the skx_edac driver. |
| * |
| * This file is linked into both skx_edac and i10nm_edac drivers. In |
| * order to avoid link errors, this file must be like a pure library |
| * without including symbols and defines which would otherwise conflict, |
| * when linked once into a module and into a built-in object, at the |
| * same time. For example, __this_module symbol references when that |
| * file is being linked into a built-in object. |
| * |
| * Copyright (c) 2018, Intel Corporation. |
| */ |
| |
| #include <linux/acpi.h> |
| #include <linux/dmi.h> |
| #include <linux/adxl.h> |
| #include <acpi/nfit.h> |
| #include <asm/mce.h> |
| #include "edac_module.h" |
| #include "skx_common.h" |
| |
| static const char * const component_names[] = { |
| [INDEX_SOCKET] = "ProcessorSocketId", |
| [INDEX_MEMCTRL] = "MemoryControllerId", |
| [INDEX_CHANNEL] = "ChannelId", |
| [INDEX_DIMM] = "DimmSlotId", |
| }; |
| |
| static int component_indices[ARRAY_SIZE(component_names)]; |
| static int adxl_component_count; |
| static const char * const *adxl_component_names; |
| static u64 *adxl_values; |
| static char *adxl_msg; |
| |
| static char skx_msg[MSG_SIZE]; |
| static skx_decode_f skx_decode; |
| static skx_show_retry_log_f skx_show_retry_rd_err_log; |
| static u64 skx_tolm, skx_tohm; |
| static LIST_HEAD(dev_edac_list); |
| |
| int __init skx_adxl_get(void) |
| { |
| const char * const *names; |
| int i, j; |
| |
| names = adxl_get_component_names(); |
| if (!names) { |
| skx_printk(KERN_NOTICE, "No firmware support for address translation.\n"); |
| return -ENODEV; |
| } |
| |
| for (i = 0; i < INDEX_MAX; i++) { |
| for (j = 0; names[j]; j++) { |
| if (!strcmp(component_names[i], names[j])) { |
| component_indices[i] = j; |
| break; |
| } |
| } |
| |
| if (!names[j]) |
| goto err; |
| } |
| |
| adxl_component_names = names; |
| while (*names++) |
| adxl_component_count++; |
| |
| adxl_values = kcalloc(adxl_component_count, sizeof(*adxl_values), |
| GFP_KERNEL); |
| if (!adxl_values) { |
| adxl_component_count = 0; |
| return -ENOMEM; |
| } |
| |
| adxl_msg = kzalloc(MSG_SIZE, GFP_KERNEL); |
| if (!adxl_msg) { |
| adxl_component_count = 0; |
| kfree(adxl_values); |
| return -ENOMEM; |
| } |
| |
| return 0; |
| err: |
| skx_printk(KERN_ERR, "'%s' is not matched from DSM parameters: ", |
| component_names[i]); |
| for (j = 0; names[j]; j++) |
| skx_printk(KERN_CONT, "%s ", names[j]); |
| skx_printk(KERN_CONT, "\n"); |
| |
| return -ENODEV; |
| } |
| |
| void __exit skx_adxl_put(void) |
| { |
| kfree(adxl_values); |
| kfree(adxl_msg); |
| } |
| |
| static bool skx_adxl_decode(struct decoded_addr *res) |
| { |
| struct skx_dev *d; |
| int i, len = 0; |
| |
| if (res->addr >= skx_tohm || (res->addr >= skx_tolm && |
| res->addr < BIT_ULL(32))) { |
| edac_dbg(0, "Address 0x%llx out of range\n", res->addr); |
| return false; |
| } |
| |
| if (adxl_decode(res->addr, adxl_values)) { |
| edac_dbg(0, "Failed to decode 0x%llx\n", res->addr); |
| return false; |
| } |
| |
| res->socket = (int)adxl_values[component_indices[INDEX_SOCKET]]; |
| res->imc = (int)adxl_values[component_indices[INDEX_MEMCTRL]]; |
| res->channel = (int)adxl_values[component_indices[INDEX_CHANNEL]]; |
| res->dimm = (int)adxl_values[component_indices[INDEX_DIMM]]; |
| |
| if (res->imc > NUM_IMC - 1) { |
| skx_printk(KERN_ERR, "Bad imc %d\n", res->imc); |
| return false; |
| } |
| |
| list_for_each_entry(d, &dev_edac_list, list) { |
| if (d->imc[0].src_id == res->socket) { |
| res->dev = d; |
| break; |
| } |
| } |
| |
| if (!res->dev) { |
| skx_printk(KERN_ERR, "No device for src_id %d imc %d\n", |
| res->socket, res->imc); |
| return false; |
| } |
| |
| for (i = 0; i < adxl_component_count; i++) { |
| if (adxl_values[i] == ~0x0ull) |
| continue; |
| |
| len += snprintf(adxl_msg + len, MSG_SIZE - len, " %s:0x%llx", |
| adxl_component_names[i], adxl_values[i]); |
| if (MSG_SIZE - len <= 0) |
| break; |
| } |
| |
| return true; |
| } |
| |
| void skx_set_decode(skx_decode_f decode, skx_show_retry_log_f show_retry_log) |
| { |
| skx_decode = decode; |
| skx_show_retry_rd_err_log = show_retry_log; |
| } |
| |
| int skx_get_src_id(struct skx_dev *d, int off, u8 *id) |
| { |
| u32 reg; |
| |
| if (pci_read_config_dword(d->util_all, off, ®)) { |
| skx_printk(KERN_ERR, "Failed to read src id\n"); |
| return -ENODEV; |
| } |
| |
| *id = GET_BITFIELD(reg, 12, 14); |
| return 0; |
| } |
| |
| int skx_get_node_id(struct skx_dev *d, u8 *id) |
| { |
| u32 reg; |
| |
| if (pci_read_config_dword(d->util_all, 0xf4, ®)) { |
| skx_printk(KERN_ERR, "Failed to read node id\n"); |
| return -ENODEV; |
| } |
| |
| *id = GET_BITFIELD(reg, 0, 2); |
| return 0; |
| } |
| |
| static int get_width(u32 mtr) |
| { |
| switch (GET_BITFIELD(mtr, 8, 9)) { |
| case 0: |
| return DEV_X4; |
| case 1: |
| return DEV_X8; |
| case 2: |
| return DEV_X16; |
| } |
| return DEV_UNKNOWN; |
| } |
| |
| /* |
| * We use the per-socket device @cfg->did to count how many sockets are present, |
| * and to detemine which PCI buses are associated with each socket. Allocate |
| * and build the full list of all the skx_dev structures that we need here. |
| */ |
| int skx_get_all_bus_mappings(struct res_config *cfg, struct list_head **list) |
| { |
| struct pci_dev *pdev, *prev; |
| struct skx_dev *d; |
| u32 reg; |
| int ndev = 0; |
| |
| prev = NULL; |
| for (;;) { |
| pdev = pci_get_device(PCI_VENDOR_ID_INTEL, cfg->decs_did, prev); |
| if (!pdev) |
| break; |
| ndev++; |
| d = kzalloc(sizeof(*d), GFP_KERNEL); |
| if (!d) { |
| pci_dev_put(pdev); |
| return -ENOMEM; |
| } |
| |
| if (pci_read_config_dword(pdev, cfg->busno_cfg_offset, ®)) { |
| kfree(d); |
| pci_dev_put(pdev); |
| skx_printk(KERN_ERR, "Failed to read bus idx\n"); |
| return -ENODEV; |
| } |
| |
| d->bus[0] = GET_BITFIELD(reg, 0, 7); |
| d->bus[1] = GET_BITFIELD(reg, 8, 15); |
| if (cfg->type == SKX) { |
| d->seg = pci_domain_nr(pdev->bus); |
| d->bus[2] = GET_BITFIELD(reg, 16, 23); |
| d->bus[3] = GET_BITFIELD(reg, 24, 31); |
| } else { |
| d->seg = GET_BITFIELD(reg, 16, 23); |
| } |
| |
| edac_dbg(2, "busses: 0x%x, 0x%x, 0x%x, 0x%x\n", |
| d->bus[0], d->bus[1], d->bus[2], d->bus[3]); |
| list_add_tail(&d->list, &dev_edac_list); |
| prev = pdev; |
| } |
| |
| if (list) |
| *list = &dev_edac_list; |
| return ndev; |
| } |
| |
| int skx_get_hi_lo(unsigned int did, int off[], u64 *tolm, u64 *tohm) |
| { |
| struct pci_dev *pdev; |
| u32 reg; |
| |
| pdev = pci_get_device(PCI_VENDOR_ID_INTEL, did, NULL); |
| if (!pdev) { |
| edac_dbg(2, "Can't get tolm/tohm\n"); |
| return -ENODEV; |
| } |
| |
| if (pci_read_config_dword(pdev, off[0], ®)) { |
| skx_printk(KERN_ERR, "Failed to read tolm\n"); |
| goto fail; |
| } |
| skx_tolm = reg; |
| |
| if (pci_read_config_dword(pdev, off[1], ®)) { |
| skx_printk(KERN_ERR, "Failed to read lower tohm\n"); |
| goto fail; |
| } |
| skx_tohm = reg; |
| |
| if (pci_read_config_dword(pdev, off[2], ®)) { |
| skx_printk(KERN_ERR, "Failed to read upper tohm\n"); |
| goto fail; |
| } |
| skx_tohm |= (u64)reg << 32; |
| |
| pci_dev_put(pdev); |
| *tolm = skx_tolm; |
| *tohm = skx_tohm; |
| edac_dbg(2, "tolm = 0x%llx tohm = 0x%llx\n", skx_tolm, skx_tohm); |
| return 0; |
| fail: |
| pci_dev_put(pdev); |
| return -ENODEV; |
| } |
| |
| static int skx_get_dimm_attr(u32 reg, int lobit, int hibit, int add, |
| int minval, int maxval, const char *name) |
| { |
| u32 val = GET_BITFIELD(reg, lobit, hibit); |
| |
| if (val < minval || val > maxval) { |
| edac_dbg(2, "bad %s = %d (raw=0x%x)\n", name, val, reg); |
| return -EINVAL; |
| } |
| return val + add; |
| } |
| |
| #define numrank(reg) skx_get_dimm_attr(reg, 12, 13, 0, 0, 2, "ranks") |
| #define numrow(reg) skx_get_dimm_attr(reg, 2, 4, 12, 1, 6, "rows") |
| #define numcol(reg) skx_get_dimm_attr(reg, 0, 1, 10, 0, 2, "cols") |
| |
| int skx_get_dimm_info(u32 mtr, u32 mcmtr, u32 amap, struct dimm_info *dimm, |
| struct skx_imc *imc, int chan, int dimmno) |
| { |
| int banks = 16, ranks, rows, cols, npages; |
| u64 size; |
| |
| ranks = numrank(mtr); |
| rows = numrow(mtr); |
| cols = numcol(mtr); |
| |
| /* |
| * Compute size in 8-byte (2^3) words, then shift to MiB (2^20) |
| */ |
| size = ((1ull << (rows + cols + ranks)) * banks) >> (20 - 3); |
| npages = MiB_TO_PAGES(size); |
| |
| edac_dbg(0, "mc#%d: channel %d, dimm %d, %lld MiB (%d pages) bank: %d, rank: %d, row: 0x%x, col: 0x%x\n", |
| imc->mc, chan, dimmno, size, npages, |
| banks, 1 << ranks, rows, cols); |
| |
| imc->chan[chan].dimms[dimmno].close_pg = GET_BITFIELD(mcmtr, 0, 0); |
| imc->chan[chan].dimms[dimmno].bank_xor_enable = GET_BITFIELD(mcmtr, 9, 9); |
| imc->chan[chan].dimms[dimmno].fine_grain_bank = GET_BITFIELD(amap, 0, 0); |
| imc->chan[chan].dimms[dimmno].rowbits = rows; |
| imc->chan[chan].dimms[dimmno].colbits = cols; |
| |
| dimm->nr_pages = npages; |
| dimm->grain = 32; |
| dimm->dtype = get_width(mtr); |
| dimm->mtype = MEM_DDR4; |
| dimm->edac_mode = EDAC_SECDED; /* likely better than this */ |
| snprintf(dimm->label, sizeof(dimm->label), "CPU_SrcID#%u_MC#%u_Chan#%u_DIMM#%u", |
| imc->src_id, imc->lmc, chan, dimmno); |
| |
| return 1; |
| } |
| |
| int skx_get_nvdimm_info(struct dimm_info *dimm, struct skx_imc *imc, |
| int chan, int dimmno, const char *mod_str) |
| { |
| int smbios_handle; |
| u32 dev_handle; |
| u16 flags; |
| u64 size = 0; |
| |
| dev_handle = ACPI_NFIT_BUILD_DEVICE_HANDLE(dimmno, chan, imc->lmc, |
| imc->src_id, 0); |
| |
| smbios_handle = nfit_get_smbios_id(dev_handle, &flags); |
| if (smbios_handle == -EOPNOTSUPP) { |
| pr_warn_once("%s: Can't find size of NVDIMM. Try enabling CONFIG_ACPI_NFIT\n", mod_str); |
| goto unknown_size; |
| } |
| |
| if (smbios_handle < 0) { |
| skx_printk(KERN_ERR, "Can't find handle for NVDIMM ADR=0x%x\n", dev_handle); |
| goto unknown_size; |
| } |
| |
| if (flags & ACPI_NFIT_MEM_MAP_FAILED) { |
| skx_printk(KERN_ERR, "NVDIMM ADR=0x%x is not mapped\n", dev_handle); |
| goto unknown_size; |
| } |
| |
| size = dmi_memdev_size(smbios_handle); |
| if (size == ~0ull) |
| skx_printk(KERN_ERR, "Can't find size for NVDIMM ADR=0x%x/SMBIOS=0x%x\n", |
| dev_handle, smbios_handle); |
| |
| unknown_size: |
| dimm->nr_pages = size >> PAGE_SHIFT; |
| dimm->grain = 32; |
| dimm->dtype = DEV_UNKNOWN; |
| dimm->mtype = MEM_NVDIMM; |
| dimm->edac_mode = EDAC_SECDED; /* likely better than this */ |
| |
| edac_dbg(0, "mc#%d: channel %d, dimm %d, %llu MiB (%u pages)\n", |
| imc->mc, chan, dimmno, size >> 20, dimm->nr_pages); |
| |
| snprintf(dimm->label, sizeof(dimm->label), "CPU_SrcID#%u_MC#%u_Chan#%u_DIMM#%u", |
| imc->src_id, imc->lmc, chan, dimmno); |
| |
| return (size == 0 || size == ~0ull) ? 0 : 1; |
| } |
| |
| int skx_register_mci(struct skx_imc *imc, struct pci_dev *pdev, |
| const char *ctl_name, const char *mod_str, |
| get_dimm_config_f get_dimm_config) |
| { |
| struct mem_ctl_info *mci; |
| struct edac_mc_layer layers[2]; |
| struct skx_pvt *pvt; |
| int rc; |
| |
| /* Allocate a new MC control structure */ |
| layers[0].type = EDAC_MC_LAYER_CHANNEL; |
| layers[0].size = NUM_CHANNELS; |
| layers[0].is_virt_csrow = false; |
| layers[1].type = EDAC_MC_LAYER_SLOT; |
| layers[1].size = NUM_DIMMS; |
| layers[1].is_virt_csrow = true; |
| mci = edac_mc_alloc(imc->mc, ARRAY_SIZE(layers), layers, |
| sizeof(struct skx_pvt)); |
| |
| if (unlikely(!mci)) |
| return -ENOMEM; |
| |
| edac_dbg(0, "MC#%d: mci = %p\n", imc->mc, mci); |
| |
| /* Associate skx_dev and mci for future usage */ |
| imc->mci = mci; |
| pvt = mci->pvt_info; |
| pvt->imc = imc; |
| |
| mci->ctl_name = kasprintf(GFP_KERNEL, "%s#%d IMC#%d", ctl_name, |
| imc->node_id, imc->lmc); |
| if (!mci->ctl_name) { |
| rc = -ENOMEM; |
| goto fail0; |
| } |
| |
| mci->mtype_cap = MEM_FLAG_DDR4 | MEM_FLAG_NVDIMM; |
| mci->edac_ctl_cap = EDAC_FLAG_NONE; |
| mci->edac_cap = EDAC_FLAG_NONE; |
| mci->mod_name = mod_str; |
| mci->dev_name = pci_name(pdev); |
| mci->ctl_page_to_phys = NULL; |
| |
| rc = get_dimm_config(mci); |
| if (rc < 0) |
| goto fail; |
| |
| /* Record ptr to the generic device */ |
| mci->pdev = &pdev->dev; |
| |
| /* Add this new MC control structure to EDAC's list of MCs */ |
| if (unlikely(edac_mc_add_mc(mci))) { |
| edac_dbg(0, "MC: failed edac_mc_add_mc()\n"); |
| rc = -EINVAL; |
| goto fail; |
| } |
| |
| return 0; |
| |
| fail: |
| kfree(mci->ctl_name); |
| fail0: |
| edac_mc_free(mci); |
| imc->mci = NULL; |
| return rc; |
| } |
| |
| static void skx_unregister_mci(struct skx_imc *imc) |
| { |
| struct mem_ctl_info *mci = imc->mci; |
| |
| if (!mci) |
| return; |
| |
| edac_dbg(0, "MC%d: mci = %p\n", imc->mc, mci); |
| |
| /* Remove MC sysfs nodes */ |
| edac_mc_del_mc(mci->pdev); |
| |
| edac_dbg(1, "%s: free mci struct\n", mci->ctl_name); |
| kfree(mci->ctl_name); |
| edac_mc_free(mci); |
| } |
| |
| static void skx_mce_output_error(struct mem_ctl_info *mci, |
| const struct mce *m, |
| struct decoded_addr *res) |
| { |
| enum hw_event_mc_err_type tp_event; |
| char *optype; |
| bool ripv = GET_BITFIELD(m->mcgstatus, 0, 0); |
| bool overflow = GET_BITFIELD(m->status, 62, 62); |
| bool uncorrected_error = GET_BITFIELD(m->status, 61, 61); |
| bool recoverable; |
| int len; |
| u32 core_err_cnt = GET_BITFIELD(m->status, 38, 52); |
| u32 mscod = GET_BITFIELD(m->status, 16, 31); |
| u32 errcode = GET_BITFIELD(m->status, 0, 15); |
| u32 optypenum = GET_BITFIELD(m->status, 4, 6); |
| |
| recoverable = GET_BITFIELD(m->status, 56, 56); |
| |
| if (uncorrected_error) { |
| core_err_cnt = 1; |
| if (ripv) { |
| tp_event = HW_EVENT_ERR_FATAL; |
| } else { |
| tp_event = HW_EVENT_ERR_UNCORRECTED; |
| } |
| } else { |
| tp_event = HW_EVENT_ERR_CORRECTED; |
| } |
| |
| /* |
| * According to Intel Architecture spec vol 3B, |
| * Table 15-10 "IA32_MCi_Status [15:0] Compound Error Code Encoding" |
| * memory errors should fit one of these masks: |
| * 000f 0000 1mmm cccc (binary) |
| * 000f 0010 1mmm cccc (binary) [RAM used as cache] |
| * where: |
| * f = Correction Report Filtering Bit. If 1, subsequent errors |
| * won't be shown |
| * mmm = error type |
| * cccc = channel |
| * If the mask doesn't match, report an error to the parsing logic |
| */ |
| if (!((errcode & 0xef80) == 0x80 || (errcode & 0xef80) == 0x280)) { |
| optype = "Can't parse: it is not a mem"; |
| } else { |
| switch (optypenum) { |
| case 0: |
| optype = "generic undef request error"; |
| break; |
| case 1: |
| optype = "memory read error"; |
| break; |
| case 2: |
| optype = "memory write error"; |
| break; |
| case 3: |
| optype = "addr/cmd error"; |
| break; |
| case 4: |
| optype = "memory scrubbing error"; |
| break; |
| default: |
| optype = "reserved"; |
| break; |
| } |
| } |
| if (adxl_component_count) { |
| len = snprintf(skx_msg, MSG_SIZE, "%s%s err_code:0x%04x:0x%04x %s", |
| overflow ? " OVERFLOW" : "", |
| (uncorrected_error && recoverable) ? " recoverable" : "", |
| mscod, errcode, adxl_msg); |
| } else { |
| len = snprintf(skx_msg, MSG_SIZE, |
| "%s%s err_code:0x%04x:0x%04x socket:%d imc:%d rank:%d bg:%d ba:%d row:0x%x col:0x%x", |
| overflow ? " OVERFLOW" : "", |
| (uncorrected_error && recoverable) ? " recoverable" : "", |
| mscod, errcode, |
| res->socket, res->imc, res->rank, |
| res->bank_group, res->bank_address, res->row, res->column); |
| } |
| |
| if (skx_show_retry_rd_err_log) |
| skx_show_retry_rd_err_log(res, skx_msg + len, MSG_SIZE - len); |
| |
| edac_dbg(0, "%s\n", skx_msg); |
| |
| /* Call the helper to output message */ |
| edac_mc_handle_error(tp_event, mci, core_err_cnt, |
| m->addr >> PAGE_SHIFT, m->addr & ~PAGE_MASK, 0, |
| res->channel, res->dimm, -1, |
| optype, skx_msg); |
| } |
| |
| int skx_mce_check_error(struct notifier_block *nb, unsigned long val, |
| void *data) |
| { |
| struct mce *mce = (struct mce *)data; |
| struct decoded_addr res; |
| struct mem_ctl_info *mci; |
| char *type; |
| |
| if (mce->kflags & MCE_HANDLED_CEC) |
| return NOTIFY_DONE; |
| |
| /* ignore unless this is memory related with an address */ |
| if ((mce->status & 0xefff) >> 7 != 1 || !(mce->status & MCI_STATUS_ADDRV)) |
| return NOTIFY_DONE; |
| |
| memset(&res, 0, sizeof(res)); |
| res.addr = mce->addr; |
| |
| if (adxl_component_count) { |
| if (!skx_adxl_decode(&res)) |
| return NOTIFY_DONE; |
| } else if (!skx_decode || !skx_decode(&res)) { |
| return NOTIFY_DONE; |
| } |
| |
| mci = res.dev->imc[res.imc].mci; |
| |
| if (!mci) |
| return NOTIFY_DONE; |
| |
| if (mce->mcgstatus & MCG_STATUS_MCIP) |
| type = "Exception"; |
| else |
| type = "Event"; |
| |
| skx_mc_printk(mci, KERN_DEBUG, "HANDLING MCE MEMORY ERROR\n"); |
| |
| skx_mc_printk(mci, KERN_DEBUG, "CPU %d: Machine Check %s: 0x%llx " |
| "Bank %d: 0x%llx\n", mce->extcpu, type, |
| mce->mcgstatus, mce->bank, mce->status); |
| skx_mc_printk(mci, KERN_DEBUG, "TSC 0x%llx ", mce->tsc); |
| skx_mc_printk(mci, KERN_DEBUG, "ADDR 0x%llx ", mce->addr); |
| skx_mc_printk(mci, KERN_DEBUG, "MISC 0x%llx ", mce->misc); |
| |
| skx_mc_printk(mci, KERN_DEBUG, "PROCESSOR %u:0x%x TIME %llu SOCKET " |
| "%u APIC 0x%x\n", mce->cpuvendor, mce->cpuid, |
| mce->time, mce->socketid, mce->apicid); |
| |
| skx_mce_output_error(mci, mce, &res); |
| |
| mce->kflags |= MCE_HANDLED_EDAC; |
| return NOTIFY_DONE; |
| } |
| |
| void skx_remove(void) |
| { |
| int i, j; |
| struct skx_dev *d, *tmp; |
| |
| edac_dbg(0, "\n"); |
| |
| list_for_each_entry_safe(d, tmp, &dev_edac_list, list) { |
| list_del(&d->list); |
| for (i = 0; i < NUM_IMC; i++) { |
| if (d->imc[i].mci) |
| skx_unregister_mci(&d->imc[i]); |
| |
| if (d->imc[i].mdev) |
| pci_dev_put(d->imc[i].mdev); |
| |
| if (d->imc[i].mbase) |
| iounmap(d->imc[i].mbase); |
| |
| for (j = 0; j < NUM_CHANNELS; j++) { |
| if (d->imc[i].chan[j].cdev) |
| pci_dev_put(d->imc[i].chan[j].cdev); |
| } |
| } |
| if (d->util_all) |
| pci_dev_put(d->util_all); |
| if (d->sad_all) |
| pci_dev_put(d->sad_all); |
| if (d->uracu) |
| pci_dev_put(d->uracu); |
| |
| kfree(d); |
| } |
| } |