| /* SPDX-License-Identifier: GPL-2.0 */ |
| /* |
| * |
| * Optimized version of the copy_user() routine. |
| * It is used to copy date across the kernel/user boundary. |
| * |
| * The source and destination are always on opposite side of |
| * the boundary. When reading from user space we must catch |
| * faults on loads. When writing to user space we must catch |
| * errors on stores. Note that because of the nature of the copy |
| * we don't need to worry about overlapping regions. |
| * |
| * |
| * Inputs: |
| * in0 address of source buffer |
| * in1 address of destination buffer |
| * in2 number of bytes to copy |
| * |
| * Outputs: |
| * ret0 0 in case of success. The number of bytes NOT copied in |
| * case of error. |
| * |
| * Copyright (C) 2000-2001 Hewlett-Packard Co |
| * Stephane Eranian <eranian@hpl.hp.com> |
| * |
| * Fixme: |
| * - handle the case where we have more than 16 bytes and the alignment |
| * are different. |
| * - more benchmarking |
| * - fix extraneous stop bit introduced by the EX() macro. |
| */ |
| |
| #include <linux/export.h> |
| #include <asm/asmmacro.h> |
| |
| // |
| // Tuneable parameters |
| // |
| #define COPY_BREAK 16 // we do byte copy below (must be >=16) |
| #define PIPE_DEPTH 21 // pipe depth |
| |
| #define EPI p[PIPE_DEPTH-1] |
| |
| // |
| // arguments |
| // |
| #define dst in0 |
| #define src in1 |
| #define len in2 |
| |
| // |
| // local registers |
| // |
| #define t1 r2 // rshift in bytes |
| #define t2 r3 // lshift in bytes |
| #define rshift r14 // right shift in bits |
| #define lshift r15 // left shift in bits |
| #define word1 r16 |
| #define word2 r17 |
| #define cnt r18 |
| #define len2 r19 |
| #define saved_lc r20 |
| #define saved_pr r21 |
| #define tmp r22 |
| #define val r23 |
| #define src1 r24 |
| #define dst1 r25 |
| #define src2 r26 |
| #define dst2 r27 |
| #define len1 r28 |
| #define enddst r29 |
| #define endsrc r30 |
| #define saved_pfs r31 |
| |
| GLOBAL_ENTRY(__copy_user) |
| .prologue |
| .save ar.pfs, saved_pfs |
| alloc saved_pfs=ar.pfs,3,((2*PIPE_DEPTH+7)&~7),0,((2*PIPE_DEPTH+7)&~7) |
| |
| .rotr val1[PIPE_DEPTH],val2[PIPE_DEPTH] |
| .rotp p[PIPE_DEPTH] |
| |
| adds len2=-1,len // br.ctop is repeat/until |
| mov ret0=r0 |
| |
| ;; // RAW of cfm when len=0 |
| cmp.eq p8,p0=r0,len // check for zero length |
| .save ar.lc, saved_lc |
| mov saved_lc=ar.lc // preserve ar.lc (slow) |
| (p8) br.ret.spnt.many rp // empty mempcy() |
| ;; |
| add enddst=dst,len // first byte after end of source |
| add endsrc=src,len // first byte after end of destination |
| .save pr, saved_pr |
| mov saved_pr=pr // preserve predicates |
| |
| .body |
| |
| mov dst1=dst // copy because of rotation |
| mov ar.ec=PIPE_DEPTH |
| mov pr.rot=1<<16 // p16=true all others are false |
| |
| mov src1=src // copy because of rotation |
| mov ar.lc=len2 // initialize lc for small count |
| cmp.lt p10,p7=COPY_BREAK,len // if len > COPY_BREAK then long copy |
| |
| xor tmp=src,dst // same alignment test prepare |
| (p10) br.cond.dptk .long_copy_user |
| ;; // RAW pr.rot/p16 ? |
| // |
| // Now we do the byte by byte loop with software pipeline |
| // |
| // p7 is necessarily false by now |
| 1: |
| EX(.failure_in_pipe1,(p16) ld1 val1[0]=[src1],1) |
| EX(.failure_out,(EPI) st1 [dst1]=val1[PIPE_DEPTH-1],1) |
| br.ctop.dptk.few 1b |
| ;; |
| mov ar.lc=saved_lc |
| mov pr=saved_pr,0xffffffffffff0000 |
| mov ar.pfs=saved_pfs // restore ar.ec |
| br.ret.sptk.many rp // end of short memcpy |
| |
| // |
| // Not 8-byte aligned |
| // |
| .diff_align_copy_user: |
| // At this point we know we have more than 16 bytes to copy |
| // and also that src and dest do _not_ have the same alignment. |
| and src2=0x7,src1 // src offset |
| and dst2=0x7,dst1 // dst offset |
| ;; |
| // The basic idea is that we copy byte-by-byte at the head so |
| // that we can reach 8-byte alignment for both src1 and dst1. |
| // Then copy the body using software pipelined 8-byte copy, |
| // shifting the two back-to-back words right and left, then copy |
| // the tail by copying byte-by-byte. |
| // |
| // Fault handling. If the byte-by-byte at the head fails on the |
| // load, then restart and finish the pipleline by copying zeros |
| // to the dst1. Then copy zeros for the rest of dst1. |
| // If 8-byte software pipeline fails on the load, do the same as |
| // failure_in3 does. If the byte-by-byte at the tail fails, it is |
| // handled simply by failure_in_pipe1. |
| // |
| // The case p14 represents the source has more bytes in the |
| // the first word (by the shifted part), whereas the p15 needs to |
| // copy some bytes from the 2nd word of the source that has the |
| // tail of the 1st of the destination. |
| // |
| |
| // |
| // Optimization. If dst1 is 8-byte aligned (quite common), we don't need |
| // to copy the head to dst1, to start 8-byte copy software pipeline. |
| // We know src1 is not 8-byte aligned in this case. |
| // |
| cmp.eq p14,p15=r0,dst2 |
| (p15) br.cond.spnt 1f |
| ;; |
| sub t1=8,src2 |
| mov t2=src2 |
| ;; |
| shl rshift=t2,3 |
| sub len1=len,t1 // set len1 |
| ;; |
| sub lshift=64,rshift |
| ;; |
| br.cond.spnt .word_copy_user |
| ;; |
| 1: |
| cmp.leu p14,p15=src2,dst2 |
| sub t1=dst2,src2 |
| ;; |
| .pred.rel "mutex", p14, p15 |
| (p14) sub word1=8,src2 // (8 - src offset) |
| (p15) sub t1=r0,t1 // absolute value |
| (p15) sub word1=8,dst2 // (8 - dst offset) |
| ;; |
| // For the case p14, we don't need to copy the shifted part to |
| // the 1st word of destination. |
| sub t2=8,t1 |
| (p14) sub word1=word1,t1 |
| ;; |
| sub len1=len,word1 // resulting len |
| (p15) shl rshift=t1,3 // in bits |
| (p14) shl rshift=t2,3 |
| ;; |
| (p14) sub len1=len1,t1 |
| adds cnt=-1,word1 |
| ;; |
| sub lshift=64,rshift |
| mov ar.ec=PIPE_DEPTH |
| mov pr.rot=1<<16 // p16=true all others are false |
| mov ar.lc=cnt |
| ;; |
| 2: |
| EX(.failure_in_pipe2,(p16) ld1 val1[0]=[src1],1) |
| EX(.failure_out,(EPI) st1 [dst1]=val1[PIPE_DEPTH-1],1) |
| br.ctop.dptk.few 2b |
| ;; |
| clrrrb |
| ;; |
| .word_copy_user: |
| cmp.gtu p9,p0=16,len1 |
| (p9) br.cond.spnt 4f // if (16 > len1) skip 8-byte copy |
| ;; |
| shr.u cnt=len1,3 // number of 64-bit words |
| ;; |
| adds cnt=-1,cnt |
| ;; |
| .pred.rel "mutex", p14, p15 |
| (p14) sub src1=src1,t2 |
| (p15) sub src1=src1,t1 |
| // |
| // Now both src1 and dst1 point to an 8-byte aligned address. And |
| // we have more than 8 bytes to copy. |
| // |
| mov ar.lc=cnt |
| mov ar.ec=PIPE_DEPTH |
| mov pr.rot=1<<16 // p16=true all others are false |
| ;; |
| 3: |
| // |
| // The pipleline consists of 3 stages: |
| // 1 (p16): Load a word from src1 |
| // 2 (EPI_1): Shift right pair, saving to tmp |
| // 3 (EPI): Store tmp to dst1 |
| // |
| // To make it simple, use at least 2 (p16) loops to set up val1[n] |
| // because we need 2 back-to-back val1[] to get tmp. |
| // Note that this implies EPI_2 must be p18 or greater. |
| // |
| |
| #define EPI_1 p[PIPE_DEPTH-2] |
| #define SWITCH(pred, shift) cmp.eq pred,p0=shift,rshift |
| #define CASE(pred, shift) \ |
| (pred) br.cond.spnt .copy_user_bit##shift |
| #define BODY(rshift) \ |
| .copy_user_bit##rshift: \ |
| 1: \ |
| EX(.failure_out,(EPI) st8 [dst1]=tmp,8); \ |
| (EPI_1) shrp tmp=val1[PIPE_DEPTH-2],val1[PIPE_DEPTH-1],rshift; \ |
| EX(3f,(p16) ld8 val1[1]=[src1],8); \ |
| (p16) mov val1[0]=r0; \ |
| br.ctop.dptk 1b; \ |
| ;; \ |
| br.cond.sptk.many .diff_align_do_tail; \ |
| 2: \ |
| (EPI) st8 [dst1]=tmp,8; \ |
| (EPI_1) shrp tmp=val1[PIPE_DEPTH-2],val1[PIPE_DEPTH-1],rshift; \ |
| 3: \ |
| (p16) mov val1[1]=r0; \ |
| (p16) mov val1[0]=r0; \ |
| br.ctop.dptk 2b; \ |
| ;; \ |
| br.cond.sptk.many .failure_in2 |
| |
| // |
| // Since the instruction 'shrp' requires a fixed 128-bit value |
| // specifying the bits to shift, we need to provide 7 cases |
| // below. |
| // |
| SWITCH(p6, 8) |
| SWITCH(p7, 16) |
| SWITCH(p8, 24) |
| SWITCH(p9, 32) |
| SWITCH(p10, 40) |
| SWITCH(p11, 48) |
| SWITCH(p12, 56) |
| ;; |
| CASE(p6, 8) |
| CASE(p7, 16) |
| CASE(p8, 24) |
| CASE(p9, 32) |
| CASE(p10, 40) |
| CASE(p11, 48) |
| CASE(p12, 56) |
| ;; |
| BODY(8) |
| BODY(16) |
| BODY(24) |
| BODY(32) |
| BODY(40) |
| BODY(48) |
| BODY(56) |
| ;; |
| .diff_align_do_tail: |
| .pred.rel "mutex", p14, p15 |
| (p14) sub src1=src1,t1 |
| (p14) adds dst1=-8,dst1 |
| (p15) sub dst1=dst1,t1 |
| ;; |
| 4: |
| // Tail correction. |
| // |
| // The problem with this piplelined loop is that the last word is not |
| // loaded and thus parf of the last word written is not correct. |
| // To fix that, we simply copy the tail byte by byte. |
| |
| sub len1=endsrc,src1,1 |
| clrrrb |
| ;; |
| mov ar.ec=PIPE_DEPTH |
| mov pr.rot=1<<16 // p16=true all others are false |
| mov ar.lc=len1 |
| ;; |
| 5: |
| EX(.failure_in_pipe1,(p16) ld1 val1[0]=[src1],1) |
| EX(.failure_out,(EPI) st1 [dst1]=val1[PIPE_DEPTH-1],1) |
| br.ctop.dptk.few 5b |
| ;; |
| mov ar.lc=saved_lc |
| mov pr=saved_pr,0xffffffffffff0000 |
| mov ar.pfs=saved_pfs |
| br.ret.sptk.many rp |
| |
| // |
| // Beginning of long mempcy (i.e. > 16 bytes) |
| // |
| .long_copy_user: |
| tbit.nz p6,p7=src1,0 // odd alignment |
| and tmp=7,tmp |
| ;; |
| cmp.eq p10,p8=r0,tmp |
| mov len1=len // copy because of rotation |
| (p8) br.cond.dpnt .diff_align_copy_user |
| ;; |
| // At this point we know we have more than 16 bytes to copy |
| // and also that both src and dest have the same alignment |
| // which may not be the one we want. So for now we must move |
| // forward slowly until we reach 16byte alignment: no need to |
| // worry about reaching the end of buffer. |
| // |
| EX(.failure_in1,(p6) ld1 val1[0]=[src1],1) // 1-byte aligned |
| (p6) adds len1=-1,len1;; |
| tbit.nz p7,p0=src1,1 |
| ;; |
| EX(.failure_in1,(p7) ld2 val1[1]=[src1],2) // 2-byte aligned |
| (p7) adds len1=-2,len1;; |
| tbit.nz p8,p0=src1,2 |
| ;; |
| // |
| // Stop bit not required after ld4 because if we fail on ld4 |
| // we have never executed the ld1, therefore st1 is not executed. |
| // |
| EX(.failure_in1,(p8) ld4 val2[0]=[src1],4) // 4-byte aligned |
| ;; |
| EX(.failure_out,(p6) st1 [dst1]=val1[0],1) |
| tbit.nz p9,p0=src1,3 |
| ;; |
| // |
| // Stop bit not required after ld8 because if we fail on ld8 |
| // we have never executed the ld2, therefore st2 is not executed. |
| // |
| EX(.failure_in1,(p9) ld8 val2[1]=[src1],8) // 8-byte aligned |
| EX(.failure_out,(p7) st2 [dst1]=val1[1],2) |
| (p8) adds len1=-4,len1 |
| ;; |
| EX(.failure_out, (p8) st4 [dst1]=val2[0],4) |
| (p9) adds len1=-8,len1;; |
| shr.u cnt=len1,4 // number of 128-bit (2x64bit) words |
| ;; |
| EX(.failure_out, (p9) st8 [dst1]=val2[1],8) |
| tbit.nz p6,p0=len1,3 |
| cmp.eq p7,p0=r0,cnt |
| adds tmp=-1,cnt // br.ctop is repeat/until |
| (p7) br.cond.dpnt .dotail // we have less than 16 bytes left |
| ;; |
| adds src2=8,src1 |
| adds dst2=8,dst1 |
| mov ar.lc=tmp |
| ;; |
| // |
| // 16bytes/iteration |
| // |
| 2: |
| EX(.failure_in3,(p16) ld8 val1[0]=[src1],16) |
| (p16) ld8 val2[0]=[src2],16 |
| |
| EX(.failure_out, (EPI) st8 [dst1]=val1[PIPE_DEPTH-1],16) |
| (EPI) st8 [dst2]=val2[PIPE_DEPTH-1],16 |
| br.ctop.dptk 2b |
| ;; // RAW on src1 when fall through from loop |
| // |
| // Tail correction based on len only |
| // |
| // No matter where we come from (loop or test) the src1 pointer |
| // is 16 byte aligned AND we have less than 16 bytes to copy. |
| // |
| .dotail: |
| EX(.failure_in1,(p6) ld8 val1[0]=[src1],8) // at least 8 bytes |
| tbit.nz p7,p0=len1,2 |
| ;; |
| EX(.failure_in1,(p7) ld4 val1[1]=[src1],4) // at least 4 bytes |
| tbit.nz p8,p0=len1,1 |
| ;; |
| EX(.failure_in1,(p8) ld2 val2[0]=[src1],2) // at least 2 bytes |
| tbit.nz p9,p0=len1,0 |
| ;; |
| EX(.failure_out, (p6) st8 [dst1]=val1[0],8) |
| ;; |
| EX(.failure_in1,(p9) ld1 val2[1]=[src1]) // only 1 byte left |
| mov ar.lc=saved_lc |
| ;; |
| EX(.failure_out,(p7) st4 [dst1]=val1[1],4) |
| mov pr=saved_pr,0xffffffffffff0000 |
| ;; |
| EX(.failure_out, (p8) st2 [dst1]=val2[0],2) |
| mov ar.pfs=saved_pfs |
| ;; |
| EX(.failure_out, (p9) st1 [dst1]=val2[1]) |
| br.ret.sptk.many rp |
| |
| |
| // |
| // Here we handle the case where the byte by byte copy fails |
| // on the load. |
| // Several factors make the zeroing of the rest of the buffer kind of |
| // tricky: |
| // - the pipeline: loads/stores are not in sync (pipeline) |
| // |
| // In the same loop iteration, the dst1 pointer does not directly |
| // reflect where the faulty load was. |
| // |
| // - pipeline effect |
| // When you get a fault on load, you may have valid data from |
| // previous loads not yet store in transit. Such data must be |
| // store normally before moving onto zeroing the rest. |
| // |
| // - single/multi dispersal independence. |
| // |
| // solution: |
| // - we don't disrupt the pipeline, i.e. data in transit in |
| // the software pipeline will be eventually move to memory. |
| // We simply replace the load with a simple mov and keep the |
| // pipeline going. We can't really do this inline because |
| // p16 is always reset to 1 when lc > 0. |
| // |
| .failure_in_pipe1: |
| sub ret0=endsrc,src1 // number of bytes to zero, i.e. not copied |
| 1: |
| (p16) mov val1[0]=r0 |
| (EPI) st1 [dst1]=val1[PIPE_DEPTH-1],1 |
| br.ctop.dptk 1b |
| ;; |
| mov pr=saved_pr,0xffffffffffff0000 |
| mov ar.lc=saved_lc |
| mov ar.pfs=saved_pfs |
| br.ret.sptk.many rp |
| |
| // |
| // This is the case where the byte by byte copy fails on the load |
| // when we copy the head. We need to finish the pipeline and copy |
| // zeros for the rest of the destination. Since this happens |
| // at the top we still need to fill the body and tail. |
| .failure_in_pipe2: |
| sub ret0=endsrc,src1 // number of bytes to zero, i.e. not copied |
| 2: |
| (p16) mov val1[0]=r0 |
| (EPI) st1 [dst1]=val1[PIPE_DEPTH-1],1 |
| br.ctop.dptk 2b |
| ;; |
| sub len=enddst,dst1,1 // precompute len |
| br.cond.dptk.many .failure_in1bis |
| ;; |
| |
| // |
| // Here we handle the head & tail part when we check for alignment. |
| // The following code handles only the load failures. The |
| // main diffculty comes from the fact that loads/stores are |
| // scheduled. So when you fail on a load, the stores corresponding |
| // to previous successful loads must be executed. |
| // |
| // However some simplifications are possible given the way |
| // things work. |
| // |
| // 1) HEAD |
| // Theory of operation: |
| // |
| // Page A | Page B |
| // ---------|----- |
| // 1|8 x |
| // 1 2|8 x |
| // 4|8 x |
| // 1 4|8 x |
| // 2 4|8 x |
| // 1 2 4|8 x |
| // |1 |
| // |2 x |
| // |4 x |
| // |
| // page_size >= 4k (2^12). (x means 4, 2, 1) |
| // Here we suppose Page A exists and Page B does not. |
| // |
| // As we move towards eight byte alignment we may encounter faults. |
| // The numbers on each page show the size of the load (current alignment). |
| // |
| // Key point: |
| // - if you fail on 1, 2, 4 then you have never executed any smaller |
| // size loads, e.g. failing ld4 means no ld1 nor ld2 executed |
| // before. |
| // |
| // This allows us to simplify the cleanup code, because basically you |
| // only have to worry about "pending" stores in the case of a failing |
| // ld8(). Given the way the code is written today, this means only |
| // worry about st2, st4. There we can use the information encapsulated |
| // into the predicates. |
| // |
| // Other key point: |
| // - if you fail on the ld8 in the head, it means you went straight |
| // to it, i.e. 8byte alignment within an unexisting page. |
| // Again this comes from the fact that if you crossed just for the ld8 then |
| // you are 8byte aligned but also 16byte align, therefore you would |
| // either go for the 16byte copy loop OR the ld8 in the tail part. |
| // The combination ld1, ld2, ld4, ld8 where you fail on ld8 is impossible |
| // because it would mean you had 15bytes to copy in which case you |
| // would have defaulted to the byte by byte copy. |
| // |
| // |
| // 2) TAIL |
| // Here we now we have less than 16 bytes AND we are either 8 or 16 byte |
| // aligned. |
| // |
| // Key point: |
| // This means that we either: |
| // - are right on a page boundary |
| // OR |
| // - are at more than 16 bytes from a page boundary with |
| // at most 15 bytes to copy: no chance of crossing. |
| // |
| // This allows us to assume that if we fail on a load we haven't possibly |
| // executed any of the previous (tail) ones, so we don't need to do |
| // any stores. For instance, if we fail on ld2, this means we had |
| // 2 or 3 bytes left to copy and we did not execute the ld8 nor ld4. |
| // |
| // This means that we are in a situation similar the a fault in the |
| // head part. That's nice! |
| // |
| .failure_in1: |
| sub ret0=endsrc,src1 // number of bytes to zero, i.e. not copied |
| sub len=endsrc,src1,1 |
| // |
| // we know that ret0 can never be zero at this point |
| // because we failed why trying to do a load, i.e. there is still |
| // some work to do. |
| // The failure_in1bis and length problem is taken care of at the |
| // calling side. |
| // |
| ;; |
| .failure_in1bis: // from (.failure_in3) |
| mov ar.lc=len // Continue with a stupid byte store. |
| ;; |
| 5: |
| st1 [dst1]=r0,1 |
| br.cloop.dptk 5b |
| ;; |
| mov pr=saved_pr,0xffffffffffff0000 |
| mov ar.lc=saved_lc |
| mov ar.pfs=saved_pfs |
| br.ret.sptk.many rp |
| |
| // |
| // Here we simply restart the loop but instead |
| // of doing loads we fill the pipeline with zeroes |
| // We can't simply store r0 because we may have valid |
| // data in transit in the pipeline. |
| // ar.lc and ar.ec are setup correctly at this point |
| // |
| // we MUST use src1/endsrc here and not dst1/enddst because |
| // of the pipeline effect. |
| // |
| .failure_in3: |
| sub ret0=endsrc,src1 // number of bytes to zero, i.e. not copied |
| ;; |
| 2: |
| (p16) mov val1[0]=r0 |
| (p16) mov val2[0]=r0 |
| (EPI) st8 [dst1]=val1[PIPE_DEPTH-1],16 |
| (EPI) st8 [dst2]=val2[PIPE_DEPTH-1],16 |
| br.ctop.dptk 2b |
| ;; |
| cmp.ne p6,p0=dst1,enddst // Do we need to finish the tail ? |
| sub len=enddst,dst1,1 // precompute len |
| (p6) br.cond.dptk .failure_in1bis |
| ;; |
| mov pr=saved_pr,0xffffffffffff0000 |
| mov ar.lc=saved_lc |
| mov ar.pfs=saved_pfs |
| br.ret.sptk.many rp |
| |
| .failure_in2: |
| sub ret0=endsrc,src1 |
| cmp.ne p6,p0=dst1,enddst // Do we need to finish the tail ? |
| sub len=enddst,dst1,1 // precompute len |
| (p6) br.cond.dptk .failure_in1bis |
| ;; |
| mov pr=saved_pr,0xffffffffffff0000 |
| mov ar.lc=saved_lc |
| mov ar.pfs=saved_pfs |
| br.ret.sptk.many rp |
| |
| // |
| // handling of failures on stores: that's the easy part |
| // |
| .failure_out: |
| sub ret0=enddst,dst1 |
| mov pr=saved_pr,0xffffffffffff0000 |
| mov ar.lc=saved_lc |
| |
| mov ar.pfs=saved_pfs |
| br.ret.sptk.many rp |
| END(__copy_user) |
| EXPORT_SYMBOL(__copy_user) |