blob: d1149b1c3ed50e4220227ddde7e0f9bc13e883f6 [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0-only
/*
* Copyright (c) 2013-2016, Linux Foundation. All rights reserved.
*/
#include <linux/acpi.h>
#include <linux/time.h>
#include <linux/clk.h>
#include <linux/delay.h>
#include <linux/interconnect.h>
#include <linux/module.h>
#include <linux/of.h>
#include <linux/platform_device.h>
#include <linux/phy/phy.h>
#include <linux/gpio/consumer.h>
#include <linux/reset-controller.h>
#include <linux/devfreq.h>
#include <soc/qcom/ice.h>
#include <ufs/ufshcd.h>
#include "ufshcd-pltfrm.h"
#include <ufs/unipro.h>
#include "ufs-qcom.h"
#include <ufs/ufshci.h>
#include <ufs/ufs_quirks.h>
#define MCQ_QCFGPTR_MASK GENMASK(7, 0)
#define MCQ_QCFGPTR_UNIT 0x200
#define MCQ_SQATTR_OFFSET(c) \
((((c) >> 16) & MCQ_QCFGPTR_MASK) * MCQ_QCFGPTR_UNIT)
#define MCQ_QCFG_SIZE 0x40
enum {
TSTBUS_UAWM,
TSTBUS_UARM,
TSTBUS_TXUC,
TSTBUS_RXUC,
TSTBUS_DFC,
TSTBUS_TRLUT,
TSTBUS_TMRLUT,
TSTBUS_OCSC,
TSTBUS_UTP_HCI,
TSTBUS_COMBINED,
TSTBUS_WRAPPER,
TSTBUS_UNIPRO,
TSTBUS_MAX,
};
#define QCOM_UFS_MAX_GEAR 4
#define QCOM_UFS_MAX_LANE 2
enum {
MODE_MIN,
MODE_PWM,
MODE_HS_RA,
MODE_HS_RB,
MODE_MAX,
};
static const struct __ufs_qcom_bw_table {
u32 mem_bw;
u32 cfg_bw;
} ufs_qcom_bw_table[MODE_MAX + 1][QCOM_UFS_MAX_GEAR + 1][QCOM_UFS_MAX_LANE + 1] = {
[MODE_MIN][0][0] = { 0, 0 }, /* Bandwidth values in KB/s */
[MODE_PWM][UFS_PWM_G1][UFS_LANE_1] = { 922, 1000 },
[MODE_PWM][UFS_PWM_G2][UFS_LANE_1] = { 1844, 1000 },
[MODE_PWM][UFS_PWM_G3][UFS_LANE_1] = { 3688, 1000 },
[MODE_PWM][UFS_PWM_G4][UFS_LANE_1] = { 7376, 1000 },
[MODE_PWM][UFS_PWM_G1][UFS_LANE_2] = { 1844, 1000 },
[MODE_PWM][UFS_PWM_G2][UFS_LANE_2] = { 3688, 1000 },
[MODE_PWM][UFS_PWM_G3][UFS_LANE_2] = { 7376, 1000 },
[MODE_PWM][UFS_PWM_G4][UFS_LANE_2] = { 14752, 1000 },
[MODE_HS_RA][UFS_HS_G1][UFS_LANE_1] = { 127796, 1000 },
[MODE_HS_RA][UFS_HS_G2][UFS_LANE_1] = { 255591, 1000 },
[MODE_HS_RA][UFS_HS_G3][UFS_LANE_1] = { 1492582, 102400 },
[MODE_HS_RA][UFS_HS_G4][UFS_LANE_1] = { 2915200, 204800 },
[MODE_HS_RA][UFS_HS_G1][UFS_LANE_2] = { 255591, 1000 },
[MODE_HS_RA][UFS_HS_G2][UFS_LANE_2] = { 511181, 1000 },
[MODE_HS_RA][UFS_HS_G3][UFS_LANE_2] = { 1492582, 204800 },
[MODE_HS_RA][UFS_HS_G4][UFS_LANE_2] = { 2915200, 409600 },
[MODE_HS_RB][UFS_HS_G1][UFS_LANE_1] = { 149422, 1000 },
[MODE_HS_RB][UFS_HS_G2][UFS_LANE_1] = { 298189, 1000 },
[MODE_HS_RB][UFS_HS_G3][UFS_LANE_1] = { 1492582, 102400 },
[MODE_HS_RB][UFS_HS_G4][UFS_LANE_1] = { 2915200, 204800 },
[MODE_HS_RB][UFS_HS_G1][UFS_LANE_2] = { 298189, 1000 },
[MODE_HS_RB][UFS_HS_G2][UFS_LANE_2] = { 596378, 1000 },
[MODE_HS_RB][UFS_HS_G3][UFS_LANE_2] = { 1492582, 204800 },
[MODE_HS_RB][UFS_HS_G4][UFS_LANE_2] = { 2915200, 409600 },
[MODE_MAX][0][0] = { 7643136, 307200 },
};
static struct ufs_qcom_host *ufs_qcom_hosts[MAX_UFS_QCOM_HOSTS];
static void ufs_qcom_get_default_testbus_cfg(struct ufs_qcom_host *host);
static int ufs_qcom_set_dme_vs_core_clk_ctrl_clear_div(struct ufs_hba *hba,
u32 clk_cycles);
static struct ufs_qcom_host *rcdev_to_ufs_host(struct reset_controller_dev *rcd)
{
return container_of(rcd, struct ufs_qcom_host, rcdev);
}
#ifdef CONFIG_SCSI_UFS_CRYPTO
static inline void ufs_qcom_ice_enable(struct ufs_qcom_host *host)
{
if (host->hba->caps & UFSHCD_CAP_CRYPTO)
qcom_ice_enable(host->ice);
}
static int ufs_qcom_ice_init(struct ufs_qcom_host *host)
{
struct ufs_hba *hba = host->hba;
struct device *dev = hba->dev;
struct qcom_ice *ice;
ice = of_qcom_ice_get(dev);
if (ice == ERR_PTR(-EOPNOTSUPP)) {
dev_warn(dev, "Disabling inline encryption support\n");
ice = NULL;
}
if (IS_ERR_OR_NULL(ice))
return PTR_ERR_OR_ZERO(ice);
host->ice = ice;
hba->caps |= UFSHCD_CAP_CRYPTO;
return 0;
}
static inline int ufs_qcom_ice_resume(struct ufs_qcom_host *host)
{
if (host->hba->caps & UFSHCD_CAP_CRYPTO)
return qcom_ice_resume(host->ice);
return 0;
}
static inline int ufs_qcom_ice_suspend(struct ufs_qcom_host *host)
{
if (host->hba->caps & UFSHCD_CAP_CRYPTO)
return qcom_ice_suspend(host->ice);
return 0;
}
static int ufs_qcom_ice_program_key(struct ufs_hba *hba,
const union ufs_crypto_cfg_entry *cfg,
int slot)
{
struct ufs_qcom_host *host = ufshcd_get_variant(hba);
union ufs_crypto_cap_entry cap;
bool config_enable =
cfg->config_enable & UFS_CRYPTO_CONFIGURATION_ENABLE;
/* Only AES-256-XTS has been tested so far. */
cap = hba->crypto_cap_array[cfg->crypto_cap_idx];
if (cap.algorithm_id != UFS_CRYPTO_ALG_AES_XTS ||
cap.key_size != UFS_CRYPTO_KEY_SIZE_256)
return -EINVAL;
if (config_enable)
return qcom_ice_program_key(host->ice,
QCOM_ICE_CRYPTO_ALG_AES_XTS,
QCOM_ICE_CRYPTO_KEY_SIZE_256,
cfg->crypto_key,
cfg->data_unit_size, slot);
else
return qcom_ice_evict_key(host->ice, slot);
}
#else
#define ufs_qcom_ice_program_key NULL
static inline void ufs_qcom_ice_enable(struct ufs_qcom_host *host)
{
}
static int ufs_qcom_ice_init(struct ufs_qcom_host *host)
{
return 0;
}
static inline int ufs_qcom_ice_resume(struct ufs_qcom_host *host)
{
return 0;
}
static inline int ufs_qcom_ice_suspend(struct ufs_qcom_host *host)
{
return 0;
}
#endif
static int ufs_qcom_host_clk_get(struct device *dev,
const char *name, struct clk **clk_out, bool optional)
{
struct clk *clk;
int err = 0;
clk = devm_clk_get(dev, name);
if (!IS_ERR(clk)) {
*clk_out = clk;
return 0;
}
err = PTR_ERR(clk);
if (optional && err == -ENOENT) {
*clk_out = NULL;
return 0;
}
if (err != -EPROBE_DEFER)
dev_err(dev, "failed to get %s err %d\n", name, err);
return err;
}
static int ufs_qcom_host_clk_enable(struct device *dev,
const char *name, struct clk *clk)
{
int err = 0;
err = clk_prepare_enable(clk);
if (err)
dev_err(dev, "%s: %s enable failed %d\n", __func__, name, err);
return err;
}
static void ufs_qcom_disable_lane_clks(struct ufs_qcom_host *host)
{
if (!host->is_lane_clks_enabled)
return;
clk_disable_unprepare(host->tx_l1_sync_clk);
clk_disable_unprepare(host->tx_l0_sync_clk);
clk_disable_unprepare(host->rx_l1_sync_clk);
clk_disable_unprepare(host->rx_l0_sync_clk);
host->is_lane_clks_enabled = false;
}
static int ufs_qcom_enable_lane_clks(struct ufs_qcom_host *host)
{
int err;
struct device *dev = host->hba->dev;
if (host->is_lane_clks_enabled)
return 0;
err = ufs_qcom_host_clk_enable(dev, "rx_lane0_sync_clk",
host->rx_l0_sync_clk);
if (err)
return err;
err = ufs_qcom_host_clk_enable(dev, "tx_lane0_sync_clk",
host->tx_l0_sync_clk);
if (err)
goto disable_rx_l0;
err = ufs_qcom_host_clk_enable(dev, "rx_lane1_sync_clk",
host->rx_l1_sync_clk);
if (err)
goto disable_tx_l0;
err = ufs_qcom_host_clk_enable(dev, "tx_lane1_sync_clk",
host->tx_l1_sync_clk);
if (err)
goto disable_rx_l1;
host->is_lane_clks_enabled = true;
return 0;
disable_rx_l1:
clk_disable_unprepare(host->rx_l1_sync_clk);
disable_tx_l0:
clk_disable_unprepare(host->tx_l0_sync_clk);
disable_rx_l0:
clk_disable_unprepare(host->rx_l0_sync_clk);
return err;
}
static int ufs_qcom_init_lane_clks(struct ufs_qcom_host *host)
{
int err = 0;
struct device *dev = host->hba->dev;
if (has_acpi_companion(dev))
return 0;
err = ufs_qcom_host_clk_get(dev, "rx_lane0_sync_clk",
&host->rx_l0_sync_clk, false);
if (err)
return err;
err = ufs_qcom_host_clk_get(dev, "tx_lane0_sync_clk",
&host->tx_l0_sync_clk, false);
if (err)
return err;
/* In case of single lane per direction, don't read lane1 clocks */
if (host->hba->lanes_per_direction > 1) {
err = ufs_qcom_host_clk_get(dev, "rx_lane1_sync_clk",
&host->rx_l1_sync_clk, false);
if (err)
return err;
err = ufs_qcom_host_clk_get(dev, "tx_lane1_sync_clk",
&host->tx_l1_sync_clk, true);
}
return 0;
}
static int ufs_qcom_check_hibern8(struct ufs_hba *hba)
{
int err;
u32 tx_fsm_val = 0;
unsigned long timeout = jiffies + msecs_to_jiffies(HBRN8_POLL_TOUT_MS);
do {
err = ufshcd_dme_get(hba,
UIC_ARG_MIB_SEL(MPHY_TX_FSM_STATE,
UIC_ARG_MPHY_TX_GEN_SEL_INDEX(0)),
&tx_fsm_val);
if (err || tx_fsm_val == TX_FSM_HIBERN8)
break;
/* sleep for max. 200us */
usleep_range(100, 200);
} while (time_before(jiffies, timeout));
/*
* we might have scheduled out for long during polling so
* check the state again.
*/
if (time_after(jiffies, timeout))
err = ufshcd_dme_get(hba,
UIC_ARG_MIB_SEL(MPHY_TX_FSM_STATE,
UIC_ARG_MPHY_TX_GEN_SEL_INDEX(0)),
&tx_fsm_val);
if (err) {
dev_err(hba->dev, "%s: unable to get TX_FSM_STATE, err %d\n",
__func__, err);
} else if (tx_fsm_val != TX_FSM_HIBERN8) {
err = tx_fsm_val;
dev_err(hba->dev, "%s: invalid TX_FSM_STATE = %d\n",
__func__, err);
}
return err;
}
static void ufs_qcom_select_unipro_mode(struct ufs_qcom_host *host)
{
ufshcd_rmwl(host->hba, QUNIPRO_SEL,
ufs_qcom_cap_qunipro(host) ? QUNIPRO_SEL : 0,
REG_UFS_CFG1);
if (host->hw_ver.major >= 0x05)
ufshcd_rmwl(host->hba, QUNIPRO_G4_SEL, 0, REG_UFS_CFG0);
/* make sure above configuration is applied before we return */
mb();
}
/*
* ufs_qcom_host_reset - reset host controller and PHY
*/
static int ufs_qcom_host_reset(struct ufs_hba *hba)
{
int ret = 0;
struct ufs_qcom_host *host = ufshcd_get_variant(hba);
bool reenable_intr = false;
if (!host->core_reset) {
dev_warn(hba->dev, "%s: reset control not set\n", __func__);
return 0;
}
reenable_intr = hba->is_irq_enabled;
disable_irq(hba->irq);
hba->is_irq_enabled = false;
ret = reset_control_assert(host->core_reset);
if (ret) {
dev_err(hba->dev, "%s: core_reset assert failed, err = %d\n",
__func__, ret);
return ret;
}
/*
* The hardware requirement for delay between assert/deassert
* is at least 3-4 sleep clock (32.7KHz) cycles, which comes to
* ~125us (4/32768). To be on the safe side add 200us delay.
*/
usleep_range(200, 210);
ret = reset_control_deassert(host->core_reset);
if (ret)
dev_err(hba->dev, "%s: core_reset deassert failed, err = %d\n",
__func__, ret);
usleep_range(1000, 1100);
if (reenable_intr) {
enable_irq(hba->irq);
hba->is_irq_enabled = true;
}
return 0;
}
static u32 ufs_qcom_get_hs_gear(struct ufs_hba *hba)
{
struct ufs_qcom_host *host = ufshcd_get_variant(hba);
if (host->hw_ver.major == 0x1) {
/*
* HS-G3 operations may not reliably work on legacy QCOM
* UFS host controller hardware even though capability
* exchange during link startup phase may end up
* negotiating maximum supported gear as G3.
* Hence downgrade the maximum supported gear to HS-G2.
*/
return UFS_HS_G2;
} else if (host->hw_ver.major >= 0x4) {
return UFS_QCOM_MAX_GEAR(ufshcd_readl(hba, REG_UFS_PARAM0));
}
/* Default is HS-G3 */
return UFS_HS_G3;
}
static int ufs_qcom_power_up_sequence(struct ufs_hba *hba)
{
struct ufs_qcom_host *host = ufshcd_get_variant(hba);
struct phy *phy = host->generic_phy;
int ret;
/* Reset UFS Host Controller and PHY */
ret = ufs_qcom_host_reset(hba);
if (ret)
dev_warn(hba->dev, "%s: host reset returned %d\n",
__func__, ret);
/* phy initialization - calibrate the phy */
ret = phy_init(phy);
if (ret) {
dev_err(hba->dev, "%s: phy init failed, ret = %d\n",
__func__, ret);
return ret;
}
phy_set_mode_ext(phy, PHY_MODE_UFS_HS_B, host->hs_gear);
/* power on phy - start serdes and phy's power and clocks */
ret = phy_power_on(phy);
if (ret) {
dev_err(hba->dev, "%s: phy power on failed, ret = %d\n",
__func__, ret);
goto out_disable_phy;
}
ufs_qcom_select_unipro_mode(host);
return 0;
out_disable_phy:
phy_exit(phy);
return ret;
}
/*
* The UTP controller has a number of internal clock gating cells (CGCs).
* Internal hardware sub-modules within the UTP controller control the CGCs.
* Hardware CGCs disable the clock to inactivate UTP sub-modules not involved
* in a specific operation, UTP controller CGCs are by default disabled and
* this function enables them (after every UFS link startup) to save some power
* leakage.
*/
static void ufs_qcom_enable_hw_clk_gating(struct ufs_hba *hba)
{
ufshcd_writel(hba,
ufshcd_readl(hba, REG_UFS_CFG2) | REG_UFS_CFG2_CGC_EN_ALL,
REG_UFS_CFG2);
/* Ensure that HW clock gating is enabled before next operations */
mb();
}
static int ufs_qcom_hce_enable_notify(struct ufs_hba *hba,
enum ufs_notify_change_status status)
{
struct ufs_qcom_host *host = ufshcd_get_variant(hba);
int err = 0;
switch (status) {
case PRE_CHANGE:
ufs_qcom_power_up_sequence(hba);
/*
* The PHY PLL output is the source of tx/rx lane symbol
* clocks, hence, enable the lane clocks only after PHY
* is initialized.
*/
err = ufs_qcom_enable_lane_clks(host);
break;
case POST_CHANGE:
/* check if UFS PHY moved from DISABLED to HIBERN8 */
err = ufs_qcom_check_hibern8(hba);
ufs_qcom_enable_hw_clk_gating(hba);
ufs_qcom_ice_enable(host);
break;
default:
dev_err(hba->dev, "%s: invalid status %d\n", __func__, status);
err = -EINVAL;
break;
}
return err;
}
/*
* Return: zero for success and non-zero in case of a failure.
*/
static int ufs_qcom_cfg_timers(struct ufs_hba *hba, u32 gear,
u32 hs, u32 rate, bool update_link_startup_timer)
{
struct ufs_qcom_host *host = ufshcd_get_variant(hba);
struct ufs_clk_info *clki;
u32 core_clk_period_in_ns;
u32 tx_clk_cycles_per_us = 0;
unsigned long core_clk_rate = 0;
u32 core_clk_cycles_per_us = 0;
static u32 pwm_fr_table[][2] = {
{UFS_PWM_G1, 0x1},
{UFS_PWM_G2, 0x1},
{UFS_PWM_G3, 0x1},
{UFS_PWM_G4, 0x1},
};
static u32 hs_fr_table_rA[][2] = {
{UFS_HS_G1, 0x1F},
{UFS_HS_G2, 0x3e},
{UFS_HS_G3, 0x7D},
};
static u32 hs_fr_table_rB[][2] = {
{UFS_HS_G1, 0x24},
{UFS_HS_G2, 0x49},
{UFS_HS_G3, 0x92},
};
/*
* The Qunipro controller does not use following registers:
* SYS1CLK_1US_REG, TX_SYMBOL_CLK_1US_REG, CLK_NS_REG &
* UFS_REG_PA_LINK_STARTUP_TIMER
* But UTP controller uses SYS1CLK_1US_REG register for Interrupt
* Aggregation logic.
*/
if (ufs_qcom_cap_qunipro(host) && !ufshcd_is_intr_aggr_allowed(hba))
return 0;
if (gear == 0) {
dev_err(hba->dev, "%s: invalid gear = %d\n", __func__, gear);
return -EINVAL;
}
list_for_each_entry(clki, &hba->clk_list_head, list) {
if (!strcmp(clki->name, "core_clk"))
core_clk_rate = clk_get_rate(clki->clk);
}
/* If frequency is smaller than 1MHz, set to 1MHz */
if (core_clk_rate < DEFAULT_CLK_RATE_HZ)
core_clk_rate = DEFAULT_CLK_RATE_HZ;
core_clk_cycles_per_us = core_clk_rate / USEC_PER_SEC;
if (ufshcd_readl(hba, REG_UFS_SYS1CLK_1US) != core_clk_cycles_per_us) {
ufshcd_writel(hba, core_clk_cycles_per_us, REG_UFS_SYS1CLK_1US);
/*
* make sure above write gets applied before we return from
* this function.
*/
mb();
}
if (ufs_qcom_cap_qunipro(host))
return 0;
core_clk_period_in_ns = NSEC_PER_SEC / core_clk_rate;
core_clk_period_in_ns <<= OFFSET_CLK_NS_REG;
core_clk_period_in_ns &= MASK_CLK_NS_REG;
switch (hs) {
case FASTAUTO_MODE:
case FAST_MODE:
if (rate == PA_HS_MODE_A) {
if (gear > ARRAY_SIZE(hs_fr_table_rA)) {
dev_err(hba->dev,
"%s: index %d exceeds table size %zu\n",
__func__, gear,
ARRAY_SIZE(hs_fr_table_rA));
return -EINVAL;
}
tx_clk_cycles_per_us = hs_fr_table_rA[gear-1][1];
} else if (rate == PA_HS_MODE_B) {
if (gear > ARRAY_SIZE(hs_fr_table_rB)) {
dev_err(hba->dev,
"%s: index %d exceeds table size %zu\n",
__func__, gear,
ARRAY_SIZE(hs_fr_table_rB));
return -EINVAL;
}
tx_clk_cycles_per_us = hs_fr_table_rB[gear-1][1];
} else {
dev_err(hba->dev, "%s: invalid rate = %d\n",
__func__, rate);
return -EINVAL;
}
break;
case SLOWAUTO_MODE:
case SLOW_MODE:
if (gear > ARRAY_SIZE(pwm_fr_table)) {
dev_err(hba->dev,
"%s: index %d exceeds table size %zu\n",
__func__, gear,
ARRAY_SIZE(pwm_fr_table));
return -EINVAL;
}
tx_clk_cycles_per_us = pwm_fr_table[gear-1][1];
break;
case UNCHANGED:
default:
dev_err(hba->dev, "%s: invalid mode = %d\n", __func__, hs);
return -EINVAL;
}
if (ufshcd_readl(hba, REG_UFS_TX_SYMBOL_CLK_NS_US) !=
(core_clk_period_in_ns | tx_clk_cycles_per_us)) {
/* this register 2 fields shall be written at once */
ufshcd_writel(hba, core_clk_period_in_ns | tx_clk_cycles_per_us,
REG_UFS_TX_SYMBOL_CLK_NS_US);
/*
* make sure above write gets applied before we return from
* this function.
*/
mb();
}
if (update_link_startup_timer && host->hw_ver.major != 0x5) {
ufshcd_writel(hba, ((core_clk_rate / MSEC_PER_SEC) * 100),
REG_UFS_CFG0);
/*
* make sure that this configuration is applied before
* we return
*/
mb();
}
return 0;
}
static int ufs_qcom_link_startup_notify(struct ufs_hba *hba,
enum ufs_notify_change_status status)
{
int err = 0;
struct ufs_qcom_host *host = ufshcd_get_variant(hba);
switch (status) {
case PRE_CHANGE:
if (ufs_qcom_cfg_timers(hba, UFS_PWM_G1, SLOWAUTO_MODE,
0, true)) {
dev_err(hba->dev, "%s: ufs_qcom_cfg_timers() failed\n",
__func__);
return -EINVAL;
}
if (ufs_qcom_cap_qunipro(host))
/*
* set unipro core clock cycles to 150 & clear clock
* divider
*/
err = ufs_qcom_set_dme_vs_core_clk_ctrl_clear_div(hba,
150);
/*
* Some UFS devices (and may be host) have issues if LCC is
* enabled. So we are setting PA_Local_TX_LCC_Enable to 0
* before link startup which will make sure that both host
* and device TX LCC are disabled once link startup is
* completed.
*/
if (ufshcd_get_local_unipro_ver(hba) != UFS_UNIPRO_VER_1_41)
err = ufshcd_disable_host_tx_lcc(hba);
break;
default:
break;
}
return err;
}
static void ufs_qcom_device_reset_ctrl(struct ufs_hba *hba, bool asserted)
{
struct ufs_qcom_host *host = ufshcd_get_variant(hba);
/* reset gpio is optional */
if (!host->device_reset)
return;
gpiod_set_value_cansleep(host->device_reset, asserted);
}
static int ufs_qcom_suspend(struct ufs_hba *hba, enum ufs_pm_op pm_op,
enum ufs_notify_change_status status)
{
struct ufs_qcom_host *host = ufshcd_get_variant(hba);
struct phy *phy = host->generic_phy;
if (status == PRE_CHANGE)
return 0;
if (ufs_qcom_is_link_off(hba)) {
/*
* Disable the tx/rx lane symbol clocks before PHY is
* powered down as the PLL source should be disabled
* after downstream clocks are disabled.
*/
ufs_qcom_disable_lane_clks(host);
phy_power_off(phy);
/* reset the connected UFS device during power down */
ufs_qcom_device_reset_ctrl(hba, true);
} else if (!ufs_qcom_is_link_active(hba)) {
ufs_qcom_disable_lane_clks(host);
}
return ufs_qcom_ice_suspend(host);
}
static int ufs_qcom_resume(struct ufs_hba *hba, enum ufs_pm_op pm_op)
{
struct ufs_qcom_host *host = ufshcd_get_variant(hba);
struct phy *phy = host->generic_phy;
int err;
if (ufs_qcom_is_link_off(hba)) {
err = phy_power_on(phy);
if (err) {
dev_err(hba->dev, "%s: failed PHY power on: %d\n",
__func__, err);
return err;
}
err = ufs_qcom_enable_lane_clks(host);
if (err)
return err;
} else if (!ufs_qcom_is_link_active(hba)) {
err = ufs_qcom_enable_lane_clks(host);
if (err)
return err;
}
return ufs_qcom_ice_resume(host);
}
static void ufs_qcom_dev_ref_clk_ctrl(struct ufs_qcom_host *host, bool enable)
{
if (host->dev_ref_clk_ctrl_mmio &&
(enable ^ host->is_dev_ref_clk_enabled)) {
u32 temp = readl_relaxed(host->dev_ref_clk_ctrl_mmio);
if (enable)
temp |= host->dev_ref_clk_en_mask;
else
temp &= ~host->dev_ref_clk_en_mask;
/*
* If we are here to disable this clock it might be immediately
* after entering into hibern8 in which case we need to make
* sure that device ref_clk is active for specific time after
* hibern8 enter.
*/
if (!enable) {
unsigned long gating_wait;
gating_wait = host->hba->dev_info.clk_gating_wait_us;
if (!gating_wait) {
udelay(1);
} else {
/*
* bRefClkGatingWaitTime defines the minimum
* time for which the reference clock is
* required by device during transition from
* HS-MODE to LS-MODE or HIBERN8 state. Give it
* more delay to be on the safe side.
*/
gating_wait += 10;
usleep_range(gating_wait, gating_wait + 10);
}
}
writel_relaxed(temp, host->dev_ref_clk_ctrl_mmio);
/*
* Make sure the write to ref_clk reaches the destination and
* not stored in a Write Buffer (WB).
*/
readl(host->dev_ref_clk_ctrl_mmio);
/*
* If we call hibern8 exit after this, we need to make sure that
* device ref_clk is stable for at least 1us before the hibern8
* exit command.
*/
if (enable)
udelay(1);
host->is_dev_ref_clk_enabled = enable;
}
}
static int ufs_qcom_icc_set_bw(struct ufs_qcom_host *host, u32 mem_bw, u32 cfg_bw)
{
struct device *dev = host->hba->dev;
int ret;
ret = icc_set_bw(host->icc_ddr, 0, mem_bw);
if (ret < 0) {
dev_err(dev, "failed to set bandwidth request: %d\n", ret);
return ret;
}
ret = icc_set_bw(host->icc_cpu, 0, cfg_bw);
if (ret < 0) {
dev_err(dev, "failed to set bandwidth request: %d\n", ret);
return ret;
}
return 0;
}
static struct __ufs_qcom_bw_table ufs_qcom_get_bw_table(struct ufs_qcom_host *host)
{
struct ufs_pa_layer_attr *p = &host->dev_req_params;
int gear = max_t(u32, p->gear_rx, p->gear_tx);
int lane = max_t(u32, p->lane_rx, p->lane_tx);
if (ufshcd_is_hs_mode(p)) {
if (p->hs_rate == PA_HS_MODE_B)
return ufs_qcom_bw_table[MODE_HS_RB][gear][lane];
else
return ufs_qcom_bw_table[MODE_HS_RA][gear][lane];
} else {
return ufs_qcom_bw_table[MODE_PWM][gear][lane];
}
}
static int ufs_qcom_icc_update_bw(struct ufs_qcom_host *host)
{
struct __ufs_qcom_bw_table bw_table;
bw_table = ufs_qcom_get_bw_table(host);
return ufs_qcom_icc_set_bw(host, bw_table.mem_bw, bw_table.cfg_bw);
}
static int ufs_qcom_pwr_change_notify(struct ufs_hba *hba,
enum ufs_notify_change_status status,
struct ufs_pa_layer_attr *dev_max_params,
struct ufs_pa_layer_attr *dev_req_params)
{
struct ufs_qcom_host *host = ufshcd_get_variant(hba);
struct ufs_dev_params ufs_qcom_cap;
int ret = 0;
if (!dev_req_params) {
pr_err("%s: incoming dev_req_params is NULL\n", __func__);
return -EINVAL;
}
switch (status) {
case PRE_CHANGE:
ufshcd_init_pwr_dev_param(&ufs_qcom_cap);
ufs_qcom_cap.hs_rate = UFS_QCOM_LIMIT_HS_RATE;
/* This driver only supports symmetic gear setting i.e., hs_tx_gear == hs_rx_gear */
ufs_qcom_cap.hs_tx_gear = ufs_qcom_cap.hs_rx_gear = ufs_qcom_get_hs_gear(hba);
ret = ufshcd_get_pwr_dev_param(&ufs_qcom_cap,
dev_max_params,
dev_req_params);
if (ret) {
dev_err(hba->dev, "%s: failed to determine capabilities\n",
__func__);
return ret;
}
/* Use the agreed gear */
host->hs_gear = dev_req_params->gear_tx;
/* enable the device ref clock before changing to HS mode */
if (!ufshcd_is_hs_mode(&hba->pwr_info) &&
ufshcd_is_hs_mode(dev_req_params))
ufs_qcom_dev_ref_clk_ctrl(host, true);
if (host->hw_ver.major >= 0x4) {
ufshcd_dme_configure_adapt(hba,
dev_req_params->gear_tx,
PA_INITIAL_ADAPT);
}
break;
case POST_CHANGE:
if (ufs_qcom_cfg_timers(hba, dev_req_params->gear_rx,
dev_req_params->pwr_rx,
dev_req_params->hs_rate, false)) {
dev_err(hba->dev, "%s: ufs_qcom_cfg_timers() failed\n",
__func__);
/*
* we return error code at the end of the routine,
* but continue to configure UFS_PHY_TX_LANE_ENABLE
* and bus voting as usual
*/
ret = -EINVAL;
}
/* cache the power mode parameters to use internally */
memcpy(&host->dev_req_params,
dev_req_params, sizeof(*dev_req_params));
ufs_qcom_icc_update_bw(host);
/* disable the device ref clock if entered PWM mode */
if (ufshcd_is_hs_mode(&hba->pwr_info) &&
!ufshcd_is_hs_mode(dev_req_params))
ufs_qcom_dev_ref_clk_ctrl(host, false);
break;
default:
ret = -EINVAL;
break;
}
return ret;
}
static int ufs_qcom_quirk_host_pa_saveconfigtime(struct ufs_hba *hba)
{
int err;
u32 pa_vs_config_reg1;
err = ufshcd_dme_get(hba, UIC_ARG_MIB(PA_VS_CONFIG_REG1),
&pa_vs_config_reg1);
if (err)
return err;
/* Allow extension of MSB bits of PA_SaveConfigTime attribute */
return ufshcd_dme_set(hba, UIC_ARG_MIB(PA_VS_CONFIG_REG1),
(pa_vs_config_reg1 | (1 << 12)));
}
static int ufs_qcom_apply_dev_quirks(struct ufs_hba *hba)
{
int err = 0;
if (hba->dev_quirks & UFS_DEVICE_QUIRK_HOST_PA_SAVECONFIGTIME)
err = ufs_qcom_quirk_host_pa_saveconfigtime(hba);
if (hba->dev_info.wmanufacturerid == UFS_VENDOR_WDC)
hba->dev_quirks |= UFS_DEVICE_QUIRK_HOST_PA_TACTIVATE;
return err;
}
static u32 ufs_qcom_get_ufs_hci_version(struct ufs_hba *hba)
{
struct ufs_qcom_host *host = ufshcd_get_variant(hba);
if (host->hw_ver.major == 0x1)
return ufshci_version(1, 1);
else
return ufshci_version(2, 0);
}
/**
* ufs_qcom_advertise_quirks - advertise the known QCOM UFS controller quirks
* @hba: host controller instance
*
* QCOM UFS host controller might have some non standard behaviours (quirks)
* than what is specified by UFSHCI specification. Advertise all such
* quirks to standard UFS host controller driver so standard takes them into
* account.
*/
static void ufs_qcom_advertise_quirks(struct ufs_hba *hba)
{
struct ufs_qcom_host *host = ufshcd_get_variant(hba);
if (host->hw_ver.major == 0x01) {
hba->quirks |= UFSHCD_QUIRK_DELAY_BEFORE_DME_CMDS
| UFSHCD_QUIRK_BROKEN_PA_RXHSUNTERMCAP
| UFSHCD_QUIRK_DME_PEER_ACCESS_AUTO_MODE;
if (host->hw_ver.minor == 0x0001 && host->hw_ver.step == 0x0001)
hba->quirks |= UFSHCD_QUIRK_BROKEN_INTR_AGGR;
hba->quirks |= UFSHCD_QUIRK_BROKEN_LCC;
}
if (host->hw_ver.major == 0x2) {
hba->quirks |= UFSHCD_QUIRK_BROKEN_UFS_HCI_VERSION;
if (!ufs_qcom_cap_qunipro(host))
/* Legacy UniPro mode still need following quirks */
hba->quirks |= (UFSHCD_QUIRK_DELAY_BEFORE_DME_CMDS
| UFSHCD_QUIRK_DME_PEER_ACCESS_AUTO_MODE
| UFSHCD_QUIRK_BROKEN_PA_RXHSUNTERMCAP);
}
if (host->hw_ver.major > 0x3)
hba->quirks |= UFSHCD_QUIRK_REINIT_AFTER_MAX_GEAR_SWITCH;
}
static void ufs_qcom_set_caps(struct ufs_hba *hba)
{
struct ufs_qcom_host *host = ufshcd_get_variant(hba);
hba->caps |= UFSHCD_CAP_CLK_GATING | UFSHCD_CAP_HIBERN8_WITH_CLK_GATING;
hba->caps |= UFSHCD_CAP_CLK_SCALING | UFSHCD_CAP_WB_WITH_CLK_SCALING;
hba->caps |= UFSHCD_CAP_AUTO_BKOPS_SUSPEND;
hba->caps |= UFSHCD_CAP_WB_EN;
hba->caps |= UFSHCD_CAP_AGGR_POWER_COLLAPSE;
hba->caps |= UFSHCD_CAP_RPM_AUTOSUSPEND;
if (host->hw_ver.major >= 0x2) {
host->caps = UFS_QCOM_CAP_QUNIPRO |
UFS_QCOM_CAP_RETAIN_SEC_CFG_AFTER_PWR_COLLAPSE;
}
}
/**
* ufs_qcom_setup_clocks - enables/disable clocks
* @hba: host controller instance
* @on: If true, enable clocks else disable them.
* @status: PRE_CHANGE or POST_CHANGE notify
*
* Return: 0 on success, non-zero on failure.
*/
static int ufs_qcom_setup_clocks(struct ufs_hba *hba, bool on,
enum ufs_notify_change_status status)
{
struct ufs_qcom_host *host = ufshcd_get_variant(hba);
/*
* In case ufs_qcom_init() is not yet done, simply ignore.
* This ufs_qcom_setup_clocks() shall be called from
* ufs_qcom_init() after init is done.
*/
if (!host)
return 0;
switch (status) {
case PRE_CHANGE:
if (on) {
ufs_qcom_icc_update_bw(host);
} else {
if (!ufs_qcom_is_link_active(hba)) {
/* disable device ref_clk */
ufs_qcom_dev_ref_clk_ctrl(host, false);
}
}
break;
case POST_CHANGE:
if (on) {
/* enable the device ref clock for HS mode*/
if (ufshcd_is_hs_mode(&hba->pwr_info))
ufs_qcom_dev_ref_clk_ctrl(host, true);
} else {
ufs_qcom_icc_set_bw(host, ufs_qcom_bw_table[MODE_MIN][0][0].mem_bw,
ufs_qcom_bw_table[MODE_MIN][0][0].cfg_bw);
}
break;
}
return 0;
}
static int
ufs_qcom_reset_assert(struct reset_controller_dev *rcdev, unsigned long id)
{
struct ufs_qcom_host *host = rcdev_to_ufs_host(rcdev);
ufs_qcom_assert_reset(host->hba);
/* provide 1ms delay to let the reset pulse propagate. */
usleep_range(1000, 1100);
return 0;
}
static int
ufs_qcom_reset_deassert(struct reset_controller_dev *rcdev, unsigned long id)
{
struct ufs_qcom_host *host = rcdev_to_ufs_host(rcdev);
ufs_qcom_deassert_reset(host->hba);
/*
* after reset deassertion, phy will need all ref clocks,
* voltage, current to settle down before starting serdes.
*/
usleep_range(1000, 1100);
return 0;
}
static const struct reset_control_ops ufs_qcom_reset_ops = {
.assert = ufs_qcom_reset_assert,
.deassert = ufs_qcom_reset_deassert,
};
static int ufs_qcom_icc_init(struct ufs_qcom_host *host)
{
struct device *dev = host->hba->dev;
int ret;
host->icc_ddr = devm_of_icc_get(dev, "ufs-ddr");
if (IS_ERR(host->icc_ddr))
return dev_err_probe(dev, PTR_ERR(host->icc_ddr),
"failed to acquire interconnect path\n");
host->icc_cpu = devm_of_icc_get(dev, "cpu-ufs");
if (IS_ERR(host->icc_cpu))
return dev_err_probe(dev, PTR_ERR(host->icc_cpu),
"failed to acquire interconnect path\n");
/*
* Set Maximum bandwidth vote before initializing the UFS controller and
* device. Ideally, a minimal interconnect vote would suffice for the
* initialization, but a max vote would allow faster initialization.
*/
ret = ufs_qcom_icc_set_bw(host, ufs_qcom_bw_table[MODE_MAX][0][0].mem_bw,
ufs_qcom_bw_table[MODE_MAX][0][0].cfg_bw);
if (ret < 0)
return dev_err_probe(dev, ret, "failed to set bandwidth request\n");
return 0;
}
/**
* ufs_qcom_init - bind phy with controller
* @hba: host controller instance
*
* Binds PHY with controller and powers up PHY enabling clocks
* and regulators.
*
* Return: -EPROBE_DEFER if binding fails, returns negative error
* on phy power up failure and returns zero on success.
*/
static int ufs_qcom_init(struct ufs_hba *hba)
{
int err;
struct device *dev = hba->dev;
struct platform_device *pdev = to_platform_device(dev);
struct ufs_qcom_host *host;
struct resource *res;
struct ufs_clk_info *clki;
host = devm_kzalloc(dev, sizeof(*host), GFP_KERNEL);
if (!host) {
dev_err(dev, "%s: no memory for qcom ufs host\n", __func__);
return -ENOMEM;
}
/* Make a two way bind between the qcom host and the hba */
host->hba = hba;
ufshcd_set_variant(hba, host);
/* Setup the optional reset control of HCI */
host->core_reset = devm_reset_control_get_optional(hba->dev, "rst");
if (IS_ERR(host->core_reset)) {
err = dev_err_probe(dev, PTR_ERR(host->core_reset),
"Failed to get reset control\n");
goto out_variant_clear;
}
/* Fire up the reset controller. Failure here is non-fatal. */
host->rcdev.of_node = dev->of_node;
host->rcdev.ops = &ufs_qcom_reset_ops;
host->rcdev.owner = dev->driver->owner;
host->rcdev.nr_resets = 1;
err = devm_reset_controller_register(dev, &host->rcdev);
if (err)
dev_warn(dev, "Failed to register reset controller\n");
if (!has_acpi_companion(dev)) {
host->generic_phy = devm_phy_get(dev, "ufsphy");
if (IS_ERR(host->generic_phy)) {
err = dev_err_probe(dev, PTR_ERR(host->generic_phy), "Failed to get PHY\n");
goto out_variant_clear;
}
}
err = ufs_qcom_icc_init(host);
if (err)
goto out_variant_clear;
host->device_reset = devm_gpiod_get_optional(dev, "reset",
GPIOD_OUT_HIGH);
if (IS_ERR(host->device_reset)) {
err = PTR_ERR(host->device_reset);
if (err != -EPROBE_DEFER)
dev_err(dev, "failed to acquire reset gpio: %d\n", err);
goto out_variant_clear;
}
ufs_qcom_get_controller_revision(hba, &host->hw_ver.major,
&host->hw_ver.minor, &host->hw_ver.step);
/*
* for newer controllers, device reference clock control bit has
* moved inside UFS controller register address space itself.
*/
if (host->hw_ver.major >= 0x02) {
host->dev_ref_clk_ctrl_mmio = hba->mmio_base + REG_UFS_CFG1;
host->dev_ref_clk_en_mask = BIT(26);
} else {
/* "dev_ref_clk_ctrl_mem" is optional resource */
res = platform_get_resource_byname(pdev, IORESOURCE_MEM,
"dev_ref_clk_ctrl_mem");
if (res) {
host->dev_ref_clk_ctrl_mmio =
devm_ioremap_resource(dev, res);
if (IS_ERR(host->dev_ref_clk_ctrl_mmio))
host->dev_ref_clk_ctrl_mmio = NULL;
host->dev_ref_clk_en_mask = BIT(5);
}
}
list_for_each_entry(clki, &hba->clk_list_head, list) {
if (!strcmp(clki->name, "core_clk_unipro"))
clki->keep_link_active = true;
}
err = ufs_qcom_init_lane_clks(host);
if (err)
goto out_variant_clear;
ufs_qcom_set_caps(hba);
ufs_qcom_advertise_quirks(hba);
err = ufs_qcom_ice_init(host);
if (err)
goto out_variant_clear;
ufs_qcom_setup_clocks(hba, true, POST_CHANGE);
if (hba->dev->id < MAX_UFS_QCOM_HOSTS)
ufs_qcom_hosts[hba->dev->id] = host;
ufs_qcom_get_default_testbus_cfg(host);
err = ufs_qcom_testbus_config(host);
if (err)
/* Failure is non-fatal */
dev_warn(dev, "%s: failed to configure the testbus %d\n",
__func__, err);
/*
* Power up the PHY using the minimum supported gear (UFS_HS_G2).
* Switching to max gear will be performed during reinit if supported.
*/
host->hs_gear = UFS_HS_G2;
return 0;
out_variant_clear:
ufshcd_set_variant(hba, NULL);
return err;
}
static void ufs_qcom_exit(struct ufs_hba *hba)
{
struct ufs_qcom_host *host = ufshcd_get_variant(hba);
ufs_qcom_disable_lane_clks(host);
phy_power_off(host->generic_phy);
phy_exit(host->generic_phy);
}
static int ufs_qcom_set_dme_vs_core_clk_ctrl_clear_div(struct ufs_hba *hba,
u32 clk_cycles)
{
int err;
u32 core_clk_ctrl_reg;
if (clk_cycles > DME_VS_CORE_CLK_CTRL_MAX_CORE_CLK_1US_CYCLES_MASK)
return -EINVAL;
err = ufshcd_dme_get(hba,
UIC_ARG_MIB(DME_VS_CORE_CLK_CTRL),
&core_clk_ctrl_reg);
if (err)
return err;
core_clk_ctrl_reg &= ~DME_VS_CORE_CLK_CTRL_MAX_CORE_CLK_1US_CYCLES_MASK;
core_clk_ctrl_reg |= clk_cycles;
/* Clear CORE_CLK_DIV_EN */
core_clk_ctrl_reg &= ~DME_VS_CORE_CLK_CTRL_CORE_CLK_DIV_EN_BIT;
return ufshcd_dme_set(hba,
UIC_ARG_MIB(DME_VS_CORE_CLK_CTRL),
core_clk_ctrl_reg);
}
static int ufs_qcom_clk_scale_up_pre_change(struct ufs_hba *hba)
{
/* nothing to do as of now */
return 0;
}
static int ufs_qcom_clk_scale_up_post_change(struct ufs_hba *hba)
{
struct ufs_qcom_host *host = ufshcd_get_variant(hba);
if (!ufs_qcom_cap_qunipro(host))
return 0;
/* set unipro core clock cycles to 150 and clear clock divider */
return ufs_qcom_set_dme_vs_core_clk_ctrl_clear_div(hba, 150);
}
static int ufs_qcom_clk_scale_down_pre_change(struct ufs_hba *hba)
{
struct ufs_qcom_host *host = ufshcd_get_variant(hba);
int err;
u32 core_clk_ctrl_reg;
if (!ufs_qcom_cap_qunipro(host))
return 0;
err = ufshcd_dme_get(hba,
UIC_ARG_MIB(DME_VS_CORE_CLK_CTRL),
&core_clk_ctrl_reg);
/* make sure CORE_CLK_DIV_EN is cleared */
if (!err &&
(core_clk_ctrl_reg & DME_VS_CORE_CLK_CTRL_CORE_CLK_DIV_EN_BIT)) {
core_clk_ctrl_reg &= ~DME_VS_CORE_CLK_CTRL_CORE_CLK_DIV_EN_BIT;
err = ufshcd_dme_set(hba,
UIC_ARG_MIB(DME_VS_CORE_CLK_CTRL),
core_clk_ctrl_reg);
}
return err;
}
static int ufs_qcom_clk_scale_down_post_change(struct ufs_hba *hba)
{
struct ufs_qcom_host *host = ufshcd_get_variant(hba);
if (!ufs_qcom_cap_qunipro(host))
return 0;
/* set unipro core clock cycles to 75 and clear clock divider */
return ufs_qcom_set_dme_vs_core_clk_ctrl_clear_div(hba, 75);
}
static int ufs_qcom_clk_scale_notify(struct ufs_hba *hba,
bool scale_up, enum ufs_notify_change_status status)
{
struct ufs_qcom_host *host = ufshcd_get_variant(hba);
struct ufs_pa_layer_attr *dev_req_params = &host->dev_req_params;
int err = 0;
/* check the host controller state before sending hibern8 cmd */
if (!ufshcd_is_hba_active(hba))
return 0;
if (status == PRE_CHANGE) {
err = ufshcd_uic_hibern8_enter(hba);
if (err)
return err;
if (scale_up)
err = ufs_qcom_clk_scale_up_pre_change(hba);
else
err = ufs_qcom_clk_scale_down_pre_change(hba);
if (err)
ufshcd_uic_hibern8_exit(hba);
} else {
if (scale_up)
err = ufs_qcom_clk_scale_up_post_change(hba);
else
err = ufs_qcom_clk_scale_down_post_change(hba);
if (err) {
ufshcd_uic_hibern8_exit(hba);
return err;
}
ufs_qcom_cfg_timers(hba,
dev_req_params->gear_rx,
dev_req_params->pwr_rx,
dev_req_params->hs_rate,
false);
ufs_qcom_icc_update_bw(host);
ufshcd_uic_hibern8_exit(hba);
}
return 0;
}
static void ufs_qcom_enable_test_bus(struct ufs_qcom_host *host)
{
ufshcd_rmwl(host->hba, UFS_REG_TEST_BUS_EN,
UFS_REG_TEST_BUS_EN, REG_UFS_CFG1);
ufshcd_rmwl(host->hba, TEST_BUS_EN, TEST_BUS_EN, REG_UFS_CFG1);
}
static void ufs_qcom_get_default_testbus_cfg(struct ufs_qcom_host *host)
{
/* provide a legal default configuration */
host->testbus.select_major = TSTBUS_UNIPRO;
host->testbus.select_minor = 37;
}
static bool ufs_qcom_testbus_cfg_is_ok(struct ufs_qcom_host *host)
{
if (host->testbus.select_major >= TSTBUS_MAX) {
dev_err(host->hba->dev,
"%s: UFS_CFG1[TEST_BUS_SEL} may not equal 0x%05X\n",
__func__, host->testbus.select_major);
return false;
}
return true;
}
int ufs_qcom_testbus_config(struct ufs_qcom_host *host)
{
int reg;
int offset;
u32 mask = TEST_BUS_SUB_SEL_MASK;
if (!host)
return -EINVAL;
if (!ufs_qcom_testbus_cfg_is_ok(host))
return -EPERM;
switch (host->testbus.select_major) {
case TSTBUS_UAWM:
reg = UFS_TEST_BUS_CTRL_0;
offset = 24;
break;
case TSTBUS_UARM:
reg = UFS_TEST_BUS_CTRL_0;
offset = 16;
break;
case TSTBUS_TXUC:
reg = UFS_TEST_BUS_CTRL_0;
offset = 8;
break;
case TSTBUS_RXUC:
reg = UFS_TEST_BUS_CTRL_0;
offset = 0;
break;
case TSTBUS_DFC:
reg = UFS_TEST_BUS_CTRL_1;
offset = 24;
break;
case TSTBUS_TRLUT:
reg = UFS_TEST_BUS_CTRL_1;
offset = 16;
break;
case TSTBUS_TMRLUT:
reg = UFS_TEST_BUS_CTRL_1;
offset = 8;
break;
case TSTBUS_OCSC:
reg = UFS_TEST_BUS_CTRL_1;
offset = 0;
break;
case TSTBUS_WRAPPER:
reg = UFS_TEST_BUS_CTRL_2;
offset = 16;
break;
case TSTBUS_COMBINED:
reg = UFS_TEST_BUS_CTRL_2;
offset = 8;
break;
case TSTBUS_UTP_HCI:
reg = UFS_TEST_BUS_CTRL_2;
offset = 0;
break;
case TSTBUS_UNIPRO:
reg = UFS_UNIPRO_CFG;
offset = 20;
mask = 0xFFF;
break;
/*
* No need for a default case, since
* ufs_qcom_testbus_cfg_is_ok() checks that the configuration
* is legal
*/
}
mask <<= offset;
ufshcd_rmwl(host->hba, TEST_BUS_SEL,
(u32)host->testbus.select_major << 19,
REG_UFS_CFG1);
ufshcd_rmwl(host->hba, mask,
(u32)host->testbus.select_minor << offset,
reg);
ufs_qcom_enable_test_bus(host);
/*
* Make sure the test bus configuration is
* committed before returning.
*/
mb();
return 0;
}
static void ufs_qcom_dump_dbg_regs(struct ufs_hba *hba)
{
u32 reg;
struct ufs_qcom_host *host;
host = ufshcd_get_variant(hba);
ufshcd_dump_regs(hba, REG_UFS_SYS1CLK_1US, 16 * 4,
"HCI Vendor Specific Registers ");
reg = ufs_qcom_get_debug_reg_offset(host, UFS_UFS_DBG_RD_REG_OCSC);
ufshcd_dump_regs(hba, reg, 44 * 4, "UFS_UFS_DBG_RD_REG_OCSC ");
reg = ufshcd_readl(hba, REG_UFS_CFG1);
reg |= UTP_DBG_RAMS_EN;
ufshcd_writel(hba, reg, REG_UFS_CFG1);
reg = ufs_qcom_get_debug_reg_offset(host, UFS_UFS_DBG_RD_EDTL_RAM);
ufshcd_dump_regs(hba, reg, 32 * 4, "UFS_UFS_DBG_RD_EDTL_RAM ");
reg = ufs_qcom_get_debug_reg_offset(host, UFS_UFS_DBG_RD_DESC_RAM);
ufshcd_dump_regs(hba, reg, 128 * 4, "UFS_UFS_DBG_RD_DESC_RAM ");
reg = ufs_qcom_get_debug_reg_offset(host, UFS_UFS_DBG_RD_PRDT_RAM);
ufshcd_dump_regs(hba, reg, 64 * 4, "UFS_UFS_DBG_RD_PRDT_RAM ");
/* clear bit 17 - UTP_DBG_RAMS_EN */
ufshcd_rmwl(hba, UTP_DBG_RAMS_EN, 0, REG_UFS_CFG1);
reg = ufs_qcom_get_debug_reg_offset(host, UFS_DBG_RD_REG_UAWM);
ufshcd_dump_regs(hba, reg, 4 * 4, "UFS_DBG_RD_REG_UAWM ");
reg = ufs_qcom_get_debug_reg_offset(host, UFS_DBG_RD_REG_UARM);
ufshcd_dump_regs(hba, reg, 4 * 4, "UFS_DBG_RD_REG_UARM ");
reg = ufs_qcom_get_debug_reg_offset(host, UFS_DBG_RD_REG_TXUC);
ufshcd_dump_regs(hba, reg, 48 * 4, "UFS_DBG_RD_REG_TXUC ");
reg = ufs_qcom_get_debug_reg_offset(host, UFS_DBG_RD_REG_RXUC);
ufshcd_dump_regs(hba, reg, 27 * 4, "UFS_DBG_RD_REG_RXUC ");
reg = ufs_qcom_get_debug_reg_offset(host, UFS_DBG_RD_REG_DFC);
ufshcd_dump_regs(hba, reg, 19 * 4, "UFS_DBG_RD_REG_DFC ");
reg = ufs_qcom_get_debug_reg_offset(host, UFS_DBG_RD_REG_TRLUT);
ufshcd_dump_regs(hba, reg, 34 * 4, "UFS_DBG_RD_REG_TRLUT ");
reg = ufs_qcom_get_debug_reg_offset(host, UFS_DBG_RD_REG_TMRLUT);
ufshcd_dump_regs(hba, reg, 9 * 4, "UFS_DBG_RD_REG_TMRLUT ");
}
/**
* ufs_qcom_device_reset() - toggle the (optional) device reset line
* @hba: per-adapter instance
*
* Toggles the (optional) reset line to reset the attached device.
*/
static int ufs_qcom_device_reset(struct ufs_hba *hba)
{
struct ufs_qcom_host *host = ufshcd_get_variant(hba);
/* reset gpio is optional */
if (!host->device_reset)
return -EOPNOTSUPP;
/*
* The UFS device shall detect reset pulses of 1us, sleep for 10us to
* be on the safe side.
*/
ufs_qcom_device_reset_ctrl(hba, true);
usleep_range(10, 15);
ufs_qcom_device_reset_ctrl(hba, false);
usleep_range(10, 15);
return 0;
}
#if IS_ENABLED(CONFIG_DEVFREQ_GOV_SIMPLE_ONDEMAND)
static void ufs_qcom_config_scaling_param(struct ufs_hba *hba,
struct devfreq_dev_profile *p,
struct devfreq_simple_ondemand_data *d)
{
p->polling_ms = 60;
p->timer = DEVFREQ_TIMER_DELAYED;
d->upthreshold = 70;
d->downdifferential = 5;
}
#else
static void ufs_qcom_config_scaling_param(struct ufs_hba *hba,
struct devfreq_dev_profile *p,
struct devfreq_simple_ondemand_data *data)
{
}
#endif
static void ufs_qcom_reinit_notify(struct ufs_hba *hba)
{
struct ufs_qcom_host *host = ufshcd_get_variant(hba);
phy_power_off(host->generic_phy);
}
/* Resources */
static const struct ufshcd_res_info ufs_res_info[RES_MAX] = {
{.name = "ufs_mem",},
{.name = "mcq",},
/* Submission Queue DAO */
{.name = "mcq_sqd",},
/* Submission Queue Interrupt Status */
{.name = "mcq_sqis",},
/* Completion Queue DAO */
{.name = "mcq_cqd",},
/* Completion Queue Interrupt Status */
{.name = "mcq_cqis",},
/* MCQ vendor specific */
{.name = "mcq_vs",},
};
static int ufs_qcom_mcq_config_resource(struct ufs_hba *hba)
{
struct platform_device *pdev = to_platform_device(hba->dev);
struct ufshcd_res_info *res;
struct resource *res_mem, *res_mcq;
int i, ret = 0;
memcpy(hba->res, ufs_res_info, sizeof(ufs_res_info));
for (i = 0; i < RES_MAX; i++) {
res = &hba->res[i];
res->resource = platform_get_resource_byname(pdev,
IORESOURCE_MEM,
res->name);
if (!res->resource) {
dev_info(hba->dev, "Resource %s not provided\n", res->name);
if (i == RES_UFS)
return -ENOMEM;
continue;
} else if (i == RES_UFS) {
res_mem = res->resource;
res->base = hba->mmio_base;
continue;
}
res->base = devm_ioremap_resource(hba->dev, res->resource);
if (IS_ERR(res->base)) {
dev_err(hba->dev, "Failed to map res %s, err=%d\n",
res->name, (int)PTR_ERR(res->base));
ret = PTR_ERR(res->base);
res->base = NULL;
return ret;
}
}
/* MCQ resource provided in DT */
res = &hba->res[RES_MCQ];
/* Bail if MCQ resource is provided */
if (res->base)
goto out;
/* Explicitly allocate MCQ resource from ufs_mem */
res_mcq = devm_kzalloc(hba->dev, sizeof(*res_mcq), GFP_KERNEL);
if (!res_mcq)
return -ENOMEM;
res_mcq->start = res_mem->start +
MCQ_SQATTR_OFFSET(hba->mcq_capabilities);
res_mcq->end = res_mcq->start + hba->nr_hw_queues * MCQ_QCFG_SIZE - 1;
res_mcq->flags = res_mem->flags;
res_mcq->name = "mcq";
ret = insert_resource(&iomem_resource, res_mcq);
if (ret) {
dev_err(hba->dev, "Failed to insert MCQ resource, err=%d\n",
ret);
return ret;
}
res->base = devm_ioremap_resource(hba->dev, res_mcq);
if (IS_ERR(res->base)) {
dev_err(hba->dev, "MCQ registers mapping failed, err=%d\n",
(int)PTR_ERR(res->base));
ret = PTR_ERR(res->base);
goto ioremap_err;
}
out:
hba->mcq_base = res->base;
return 0;
ioremap_err:
res->base = NULL;
remove_resource(res_mcq);
return ret;
}
static int ufs_qcom_op_runtime_config(struct ufs_hba *hba)
{
struct ufshcd_res_info *mem_res, *sqdao_res;
struct ufshcd_mcq_opr_info_t *opr;
int i;
mem_res = &hba->res[RES_UFS];
sqdao_res = &hba->res[RES_MCQ_SQD];
if (!mem_res->base || !sqdao_res->base)
return -EINVAL;
for (i = 0; i < OPR_MAX; i++) {
opr = &hba->mcq_opr[i];
opr->offset = sqdao_res->resource->start -
mem_res->resource->start + 0x40 * i;
opr->stride = 0x100;
opr->base = sqdao_res->base + 0x40 * i;
}
return 0;
}
static int ufs_qcom_get_hba_mac(struct ufs_hba *hba)
{
/* Qualcomm HC supports up to 64 */
return MAX_SUPP_MAC;
}
static int ufs_qcom_get_outstanding_cqs(struct ufs_hba *hba,
unsigned long *ocqs)
{
struct ufshcd_res_info *mcq_vs_res = &hba->res[RES_MCQ_VS];
if (!mcq_vs_res->base)
return -EINVAL;
*ocqs = readl(mcq_vs_res->base + UFS_MEM_CQIS_VS);
return 0;
}
static void ufs_qcom_write_msi_msg(struct msi_desc *desc, struct msi_msg *msg)
{
struct device *dev = msi_desc_to_dev(desc);
struct ufs_hba *hba = dev_get_drvdata(dev);
ufshcd_mcq_config_esi(hba, msg);
}
static irqreturn_t ufs_qcom_mcq_esi_handler(int irq, void *data)
{
struct msi_desc *desc = data;
struct device *dev = msi_desc_to_dev(desc);
struct ufs_hba *hba = dev_get_drvdata(dev);
u32 id = desc->msi_index;
struct ufs_hw_queue *hwq = &hba->uhq[id];
ufshcd_mcq_write_cqis(hba, 0x1, id);
ufshcd_mcq_poll_cqe_lock(hba, hwq);
return IRQ_HANDLED;
}
static int ufs_qcom_config_esi(struct ufs_hba *hba)
{
struct ufs_qcom_host *host = ufshcd_get_variant(hba);
struct msi_desc *desc;
struct msi_desc *failed_desc = NULL;
int nr_irqs, ret;
if (host->esi_enabled)
return 0;
/*
* 1. We only handle CQs as of now.
* 2. Poll queues do not need ESI.
*/
nr_irqs = hba->nr_hw_queues - hba->nr_queues[HCTX_TYPE_POLL];
ret = platform_msi_domain_alloc_irqs(hba->dev, nr_irqs,
ufs_qcom_write_msi_msg);
if (ret) {
dev_err(hba->dev, "Failed to request Platform MSI %d\n", ret);
goto out;
}
msi_lock_descs(hba->dev);
msi_for_each_desc(desc, hba->dev, MSI_DESC_ALL) {
ret = devm_request_irq(hba->dev, desc->irq,
ufs_qcom_mcq_esi_handler,
IRQF_SHARED, "qcom-mcq-esi", desc);
if (ret) {
dev_err(hba->dev, "%s: Fail to request IRQ for %d, err = %d\n",
__func__, desc->irq, ret);
failed_desc = desc;
break;
}
}
msi_unlock_descs(hba->dev);
if (ret) {
/* Rewind */
msi_lock_descs(hba->dev);
msi_for_each_desc(desc, hba->dev, MSI_DESC_ALL) {
if (desc == failed_desc)
break;
devm_free_irq(hba->dev, desc->irq, hba);
}
msi_unlock_descs(hba->dev);
platform_msi_domain_free_irqs(hba->dev);
} else {
if (host->hw_ver.major == 6 && host->hw_ver.minor == 0 &&
host->hw_ver.step == 0) {
ufshcd_writel(hba,
ufshcd_readl(hba, REG_UFS_CFG3) | 0x1F000,
REG_UFS_CFG3);
}
ufshcd_mcq_enable_esi(hba);
}
out:
if (!ret)
host->esi_enabled = true;
return ret;
}
/*
* struct ufs_hba_qcom_vops - UFS QCOM specific variant operations
*
* The variant operations configure the necessary controller and PHY
* handshake during initialization.
*/
static const struct ufs_hba_variant_ops ufs_hba_qcom_vops = {
.name = "qcom",
.init = ufs_qcom_init,
.exit = ufs_qcom_exit,
.get_ufs_hci_version = ufs_qcom_get_ufs_hci_version,
.clk_scale_notify = ufs_qcom_clk_scale_notify,
.setup_clocks = ufs_qcom_setup_clocks,
.hce_enable_notify = ufs_qcom_hce_enable_notify,
.link_startup_notify = ufs_qcom_link_startup_notify,
.pwr_change_notify = ufs_qcom_pwr_change_notify,
.apply_dev_quirks = ufs_qcom_apply_dev_quirks,
.suspend = ufs_qcom_suspend,
.resume = ufs_qcom_resume,
.dbg_register_dump = ufs_qcom_dump_dbg_regs,
.device_reset = ufs_qcom_device_reset,
.config_scaling_param = ufs_qcom_config_scaling_param,
.program_key = ufs_qcom_ice_program_key,
.reinit_notify = ufs_qcom_reinit_notify,
.mcq_config_resource = ufs_qcom_mcq_config_resource,
.get_hba_mac = ufs_qcom_get_hba_mac,
.op_runtime_config = ufs_qcom_op_runtime_config,
.get_outstanding_cqs = ufs_qcom_get_outstanding_cqs,
.config_esi = ufs_qcom_config_esi,
};
/**
* ufs_qcom_probe - probe routine of the driver
* @pdev: pointer to Platform device handle
*
* Return: zero for success and non-zero for failure.
*/
static int ufs_qcom_probe(struct platform_device *pdev)
{
int err;
struct device *dev = &pdev->dev;
/* Perform generic probe */
err = ufshcd_pltfrm_init(pdev, &ufs_hba_qcom_vops);
if (err)
return dev_err_probe(dev, err, "ufshcd_pltfrm_init() failed\n");
return 0;
}
/**
* ufs_qcom_remove - set driver_data of the device to NULL
* @pdev: pointer to platform device handle
*
* Always returns 0
*/
static int ufs_qcom_remove(struct platform_device *pdev)
{
struct ufs_hba *hba = platform_get_drvdata(pdev);
pm_runtime_get_sync(&(pdev)->dev);
ufshcd_remove(hba);
platform_msi_domain_free_irqs(hba->dev);
return 0;
}
static const struct of_device_id ufs_qcom_of_match[] __maybe_unused = {
{ .compatible = "qcom,ufshc"},
{},
};
MODULE_DEVICE_TABLE(of, ufs_qcom_of_match);
#ifdef CONFIG_ACPI
static const struct acpi_device_id ufs_qcom_acpi_match[] = {
{ "QCOM24A5" },
{ },
};
MODULE_DEVICE_TABLE(acpi, ufs_qcom_acpi_match);
#endif
static const struct dev_pm_ops ufs_qcom_pm_ops = {
SET_RUNTIME_PM_OPS(ufshcd_runtime_suspend, ufshcd_runtime_resume, NULL)
.prepare = ufshcd_suspend_prepare,
.complete = ufshcd_resume_complete,
#ifdef CONFIG_PM_SLEEP
.suspend = ufshcd_system_suspend,
.resume = ufshcd_system_resume,
.freeze = ufshcd_system_freeze,
.restore = ufshcd_system_restore,
.thaw = ufshcd_system_thaw,
#endif
};
static struct platform_driver ufs_qcom_pltform = {
.probe = ufs_qcom_probe,
.remove = ufs_qcom_remove,
.driver = {
.name = "ufshcd-qcom",
.pm = &ufs_qcom_pm_ops,
.of_match_table = of_match_ptr(ufs_qcom_of_match),
.acpi_match_table = ACPI_PTR(ufs_qcom_acpi_match),
},
};
module_platform_driver(ufs_qcom_pltform);
MODULE_LICENSE("GPL v2");